forked from Minki/linux
f77814dd57
This enables support for reading, writing and locking so called "Protection Registers" present on some flash chips. A subset of them are pre-programmed at the factory with a unique set of values. The rest is user-programmable. Signed-off-by: Nicolas Pitre <nico@cam.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2334 lines
64 KiB
C
2334 lines
64 KiB
C
/*
|
||
* Common Flash Interface support:
|
||
* Intel Extended Vendor Command Set (ID 0x0001)
|
||
*
|
||
* (C) 2000 Red Hat. GPL'd
|
||
*
|
||
* $Id: cfi_cmdset_0001.c,v 1.167 2005/02/08 17:11:15 nico Exp $
|
||
*
|
||
*
|
||
* 10/10/2000 Nicolas Pitre <nico@cam.org>
|
||
* - completely revamped method functions so they are aware and
|
||
* independent of the flash geometry (buswidth, interleave, etc.)
|
||
* - scalability vs code size is completely set at compile-time
|
||
* (see include/linux/mtd/cfi.h for selection)
|
||
* - optimized write buffer method
|
||
* 02/05/2002 Christopher Hoover <ch@hpl.hp.com>/<ch@murgatroid.com>
|
||
* - reworked lock/unlock/erase support for var size flash
|
||
*/
|
||
|
||
#include <linux/module.h>
|
||
#include <linux/types.h>
|
||
#include <linux/kernel.h>
|
||
#include <linux/sched.h>
|
||
#include <linux/init.h>
|
||
#include <asm/io.h>
|
||
#include <asm/byteorder.h>
|
||
|
||
#include <linux/errno.h>
|
||
#include <linux/slab.h>
|
||
#include <linux/delay.h>
|
||
#include <linux/interrupt.h>
|
||
#include <linux/mtd/xip.h>
|
||
#include <linux/mtd/map.h>
|
||
#include <linux/mtd/mtd.h>
|
||
#include <linux/mtd/compatmac.h>
|
||
#include <linux/mtd/cfi.h>
|
||
|
||
/* #define CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE */
|
||
/* #define CMDSET0001_DISABLE_WRITE_SUSPEND */
|
||
|
||
// debugging, turns off buffer write mode if set to 1
|
||
#define FORCE_WORD_WRITE 0
|
||
|
||
#define MANUFACTURER_INTEL 0x0089
|
||
#define I82802AB 0x00ad
|
||
#define I82802AC 0x00ac
|
||
#define MANUFACTURER_ST 0x0020
|
||
#define M50LPW080 0x002F
|
||
|
||
static int cfi_intelext_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
|
||
static int cfi_intelext_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
|
||
static int cfi_intelext_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
|
||
static int cfi_intelext_erase_varsize(struct mtd_info *, struct erase_info *);
|
||
static void cfi_intelext_sync (struct mtd_info *);
|
||
static int cfi_intelext_lock(struct mtd_info *mtd, loff_t ofs, size_t len);
|
||
static int cfi_intelext_unlock(struct mtd_info *mtd, loff_t ofs, size_t len);
|
||
static int cfi_intelext_read_fact_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
|
||
static int cfi_intelext_read_user_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
|
||
static int cfi_intelext_write_user_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
|
||
static int cfi_intelext_lock_user_prot_reg (struct mtd_info *, loff_t, size_t);
|
||
static int cfi_intelext_get_fact_prot_info (struct mtd_info *,
|
||
struct otp_info *, size_t);
|
||
static int cfi_intelext_get_user_prot_info (struct mtd_info *,
|
||
struct otp_info *, size_t);
|
||
static int cfi_intelext_suspend (struct mtd_info *);
|
||
static void cfi_intelext_resume (struct mtd_info *);
|
||
|
||
static void cfi_intelext_destroy(struct mtd_info *);
|
||
|
||
struct mtd_info *cfi_cmdset_0001(struct map_info *, int);
|
||
|
||
static struct mtd_info *cfi_intelext_setup (struct mtd_info *);
|
||
static int cfi_intelext_partition_fixup(struct mtd_info *, struct cfi_private **);
|
||
|
||
static int cfi_intelext_point (struct mtd_info *mtd, loff_t from, size_t len,
|
||
size_t *retlen, u_char **mtdbuf);
|
||
static void cfi_intelext_unpoint (struct mtd_info *mtd, u_char *addr, loff_t from,
|
||
size_t len);
|
||
|
||
static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
|
||
static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
|
||
#include "fwh_lock.h"
|
||
|
||
|
||
|
||
/*
|
||
* *********** SETUP AND PROBE BITS ***********
|
||
*/
|
||
|
||
static struct mtd_chip_driver cfi_intelext_chipdrv = {
|
||
.probe = NULL, /* Not usable directly */
|
||
.destroy = cfi_intelext_destroy,
|
||
.name = "cfi_cmdset_0001",
|
||
.module = THIS_MODULE
|
||
};
|
||
|
||
/* #define DEBUG_LOCK_BITS */
|
||
/* #define DEBUG_CFI_FEATURES */
|
||
|
||
#ifdef DEBUG_CFI_FEATURES
|
||
static void cfi_tell_features(struct cfi_pri_intelext *extp)
|
||
{
|
||
int i;
|
||
printk(" Feature/Command Support: %4.4X\n", extp->FeatureSupport);
|
||
printk(" - Chip Erase: %s\n", extp->FeatureSupport&1?"supported":"unsupported");
|
||
printk(" - Suspend Erase: %s\n", extp->FeatureSupport&2?"supported":"unsupported");
|
||
printk(" - Suspend Program: %s\n", extp->FeatureSupport&4?"supported":"unsupported");
|
||
printk(" - Legacy Lock/Unlock: %s\n", extp->FeatureSupport&8?"supported":"unsupported");
|
||
printk(" - Queued Erase: %s\n", extp->FeatureSupport&16?"supported":"unsupported");
|
||
printk(" - Instant block lock: %s\n", extp->FeatureSupport&32?"supported":"unsupported");
|
||
printk(" - Protection Bits: %s\n", extp->FeatureSupport&64?"supported":"unsupported");
|
||
printk(" - Page-mode read: %s\n", extp->FeatureSupport&128?"supported":"unsupported");
|
||
printk(" - Synchronous read: %s\n", extp->FeatureSupport&256?"supported":"unsupported");
|
||
printk(" - Simultaneous operations: %s\n", extp->FeatureSupport&512?"supported":"unsupported");
|
||
for (i=10; i<32; i++) {
|
||
if (extp->FeatureSupport & (1<<i))
|
||
printk(" - Unknown Bit %X: supported\n", i);
|
||
}
|
||
|
||
printk(" Supported functions after Suspend: %2.2X\n", extp->SuspendCmdSupport);
|
||
printk(" - Program after Erase Suspend: %s\n", extp->SuspendCmdSupport&1?"supported":"unsupported");
|
||
for (i=1; i<8; i++) {
|
||
if (extp->SuspendCmdSupport & (1<<i))
|
||
printk(" - Unknown Bit %X: supported\n", i);
|
||
}
|
||
|
||
printk(" Block Status Register Mask: %4.4X\n", extp->BlkStatusRegMask);
|
||
printk(" - Lock Bit Active: %s\n", extp->BlkStatusRegMask&1?"yes":"no");
|
||
printk(" - Valid Bit Active: %s\n", extp->BlkStatusRegMask&2?"yes":"no");
|
||
for (i=2; i<16; i++) {
|
||
if (extp->BlkStatusRegMask & (1<<i))
|
||
printk(" - Unknown Bit %X Active: yes\n",i);
|
||
}
|
||
|
||
printk(" Vcc Logic Supply Optimum Program/Erase Voltage: %d.%d V\n",
|
||
extp->VccOptimal >> 4, extp->VccOptimal & 0xf);
|
||
if (extp->VppOptimal)
|
||
printk(" Vpp Programming Supply Optimum Program/Erase Voltage: %d.%d V\n",
|
||
extp->VppOptimal >> 4, extp->VppOptimal & 0xf);
|
||
}
|
||
#endif
|
||
|
||
#ifdef CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE
|
||
/* Some Intel Strata Flash prior to FPO revision C has bugs in this area */
|
||
static void fixup_intel_strataflash(struct mtd_info *mtd, void* param)
|
||
{
|
||
struct map_info *map = mtd->priv;
|
||
struct cfi_private *cfi = map->fldrv_priv;
|
||
struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
|
||
|
||
printk(KERN_WARNING "cfi_cmdset_0001: Suspend "
|
||
"erase on write disabled.\n");
|
||
extp->SuspendCmdSupport &= ~1;
|
||
}
|
||
#endif
|
||
|
||
#ifdef CMDSET0001_DISABLE_WRITE_SUSPEND
|
||
static void fixup_no_write_suspend(struct mtd_info *mtd, void* param)
|
||
{
|
||
struct map_info *map = mtd->priv;
|
||
struct cfi_private *cfi = map->fldrv_priv;
|
||
struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
|
||
|
||
if (cfip && (cfip->FeatureSupport&4)) {
|
||
cfip->FeatureSupport &= ~4;
|
||
printk(KERN_WARNING "cfi_cmdset_0001: write suspend disabled\n");
|
||
}
|
||
}
|
||
#endif
|
||
|
||
static void fixup_st_m28w320ct(struct mtd_info *mtd, void* param)
|
||
{
|
||
struct map_info *map = mtd->priv;
|
||
struct cfi_private *cfi = map->fldrv_priv;
|
||
|
||
cfi->cfiq->BufWriteTimeoutTyp = 0; /* Not supported */
|
||
cfi->cfiq->BufWriteTimeoutMax = 0; /* Not supported */
|
||
}
|
||
|
||
static void fixup_st_m28w320cb(struct mtd_info *mtd, void* param)
|
||
{
|
||
struct map_info *map = mtd->priv;
|
||
struct cfi_private *cfi = map->fldrv_priv;
|
||
|
||
/* Note this is done after the region info is endian swapped */
|
||
cfi->cfiq->EraseRegionInfo[1] =
|
||
(cfi->cfiq->EraseRegionInfo[1] & 0xffff0000) | 0x3e;
|
||
};
|
||
|
||
static void fixup_use_point(struct mtd_info *mtd, void *param)
|
||
{
|
||
struct map_info *map = mtd->priv;
|
||
if (!mtd->point && map_is_linear(map)) {
|
||
mtd->point = cfi_intelext_point;
|
||
mtd->unpoint = cfi_intelext_unpoint;
|
||
}
|
||
}
|
||
|
||
static void fixup_use_write_buffers(struct mtd_info *mtd, void *param)
|
||
{
|
||
struct map_info *map = mtd->priv;
|
||
struct cfi_private *cfi = map->fldrv_priv;
|
||
if (cfi->cfiq->BufWriteTimeoutTyp) {
|
||
printk(KERN_INFO "Using buffer write method\n" );
|
||
mtd->write = cfi_intelext_write_buffers;
|
||
}
|
||
}
|
||
|
||
static struct cfi_fixup cfi_fixup_table[] = {
|
||
#ifdef CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE
|
||
{ CFI_MFR_ANY, CFI_ID_ANY, fixup_intel_strataflash, NULL },
|
||
#endif
|
||
#ifdef CMDSET0001_DISABLE_WRITE_SUSPEND
|
||
{ CFI_MFR_ANY, CFI_ID_ANY, fixup_no_write_suspend, NULL },
|
||
#endif
|
||
#if !FORCE_WORD_WRITE
|
||
{ CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers, NULL },
|
||
#endif
|
||
{ CFI_MFR_ST, 0x00ba, /* M28W320CT */ fixup_st_m28w320ct, NULL },
|
||
{ CFI_MFR_ST, 0x00bb, /* M28W320CB */ fixup_st_m28w320cb, NULL },
|
||
{ 0, 0, NULL, NULL }
|
||
};
|
||
|
||
static struct cfi_fixup jedec_fixup_table[] = {
|
||
{ MANUFACTURER_INTEL, I82802AB, fixup_use_fwh_lock, NULL, },
|
||
{ MANUFACTURER_INTEL, I82802AC, fixup_use_fwh_lock, NULL, },
|
||
{ MANUFACTURER_ST, M50LPW080, fixup_use_fwh_lock, NULL, },
|
||
{ 0, 0, NULL, NULL }
|
||
};
|
||
static struct cfi_fixup fixup_table[] = {
|
||
/* The CFI vendor ids and the JEDEC vendor IDs appear
|
||
* to be common. It is like the devices id's are as
|
||
* well. This table is to pick all cases where
|
||
* we know that is the case.
|
||
*/
|
||
{ CFI_MFR_ANY, CFI_ID_ANY, fixup_use_point, NULL },
|
||
{ 0, 0, NULL, NULL }
|
||
};
|
||
|
||
static inline struct cfi_pri_intelext *
|
||
read_pri_intelext(struct map_info *map, __u16 adr)
|
||
{
|
||
struct cfi_pri_intelext *extp;
|
||
unsigned int extp_size = sizeof(*extp);
|
||
|
||
again:
|
||
extp = (struct cfi_pri_intelext *)cfi_read_pri(map, adr, extp_size, "Intel/Sharp");
|
||
if (!extp)
|
||
return NULL;
|
||
|
||
/* Do some byteswapping if necessary */
|
||
extp->FeatureSupport = le32_to_cpu(extp->FeatureSupport);
|
||
extp->BlkStatusRegMask = le16_to_cpu(extp->BlkStatusRegMask);
|
||
extp->ProtRegAddr = le16_to_cpu(extp->ProtRegAddr);
|
||
|
||
if (extp->MajorVersion == '1' && extp->MinorVersion == '3') {
|
||
unsigned int extra_size = 0;
|
||
int nb_parts, i;
|
||
|
||
/* Protection Register info */
|
||
extra_size += (extp->NumProtectionFields - 1) *
|
||
sizeof(struct cfi_intelext_otpinfo);
|
||
|
||
/* Burst Read info */
|
||
extra_size += 6;
|
||
|
||
/* Number of hardware-partitions */
|
||
extra_size += 1;
|
||
if (extp_size < sizeof(*extp) + extra_size)
|
||
goto need_more;
|
||
nb_parts = extp->extra[extra_size - 1];
|
||
|
||
for (i = 0; i < nb_parts; i++) {
|
||
struct cfi_intelext_regioninfo *rinfo;
|
||
rinfo = (struct cfi_intelext_regioninfo *)&extp->extra[extra_size];
|
||
extra_size += sizeof(*rinfo);
|
||
if (extp_size < sizeof(*extp) + extra_size)
|
||
goto need_more;
|
||
rinfo->NumIdentPartitions=le16_to_cpu(rinfo->NumIdentPartitions);
|
||
extra_size += (rinfo->NumBlockTypes - 1)
|
||
* sizeof(struct cfi_intelext_blockinfo);
|
||
}
|
||
|
||
if (extp_size < sizeof(*extp) + extra_size) {
|
||
need_more:
|
||
extp_size = sizeof(*extp) + extra_size;
|
||
kfree(extp);
|
||
if (extp_size > 4096) {
|
||
printk(KERN_ERR
|
||
"%s: cfi_pri_intelext is too fat\n",
|
||
__FUNCTION__);
|
||
return NULL;
|
||
}
|
||
goto again;
|
||
}
|
||
}
|
||
|
||
return extp;
|
||
}
|
||
|
||
/* This routine is made available to other mtd code via
|
||
* inter_module_register. It must only be accessed through
|
||
* inter_module_get which will bump the use count of this module. The
|
||
* addresses passed back in cfi are valid as long as the use count of
|
||
* this module is non-zero, i.e. between inter_module_get and
|
||
* inter_module_put. Keith Owens <kaos@ocs.com.au> 29 Oct 2000.
|
||
*/
|
||
struct mtd_info *cfi_cmdset_0001(struct map_info *map, int primary)
|
||
{
|
||
struct cfi_private *cfi = map->fldrv_priv;
|
||
struct mtd_info *mtd;
|
||
int i;
|
||
|
||
mtd = kmalloc(sizeof(*mtd), GFP_KERNEL);
|
||
if (!mtd) {
|
||
printk(KERN_ERR "Failed to allocate memory for MTD device\n");
|
||
return NULL;
|
||
}
|
||
memset(mtd, 0, sizeof(*mtd));
|
||
mtd->priv = map;
|
||
mtd->type = MTD_NORFLASH;
|
||
|
||
/* Fill in the default mtd operations */
|
||
mtd->erase = cfi_intelext_erase_varsize;
|
||
mtd->read = cfi_intelext_read;
|
||
mtd->write = cfi_intelext_write_words;
|
||
mtd->sync = cfi_intelext_sync;
|
||
mtd->lock = cfi_intelext_lock;
|
||
mtd->unlock = cfi_intelext_unlock;
|
||
mtd->suspend = cfi_intelext_suspend;
|
||
mtd->resume = cfi_intelext_resume;
|
||
mtd->flags = MTD_CAP_NORFLASH;
|
||
mtd->name = map->name;
|
||
|
||
if (cfi->cfi_mode == CFI_MODE_CFI) {
|
||
/*
|
||
* It's a real CFI chip, not one for which the probe
|
||
* routine faked a CFI structure. So we read the feature
|
||
* table from it.
|
||
*/
|
||
__u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
|
||
struct cfi_pri_intelext *extp;
|
||
|
||
extp = read_pri_intelext(map, adr);
|
||
if (!extp) {
|
||
kfree(mtd);
|
||
return NULL;
|
||
}
|
||
|
||
/* Install our own private info structure */
|
||
cfi->cmdset_priv = extp;
|
||
|
||
cfi_fixup(mtd, cfi_fixup_table);
|
||
|
||
#ifdef DEBUG_CFI_FEATURES
|
||
/* Tell the user about it in lots of lovely detail */
|
||
cfi_tell_features(extp);
|
||
#endif
|
||
|
||
if(extp->SuspendCmdSupport & 1) {
|
||
printk(KERN_NOTICE "cfi_cmdset_0001: Erase suspend on write enabled\n");
|
||
}
|
||
}
|
||
else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
|
||
/* Apply jedec specific fixups */
|
||
cfi_fixup(mtd, jedec_fixup_table);
|
||
}
|
||
/* Apply generic fixups */
|
||
cfi_fixup(mtd, fixup_table);
|
||
|
||
for (i=0; i< cfi->numchips; i++) {
|
||
cfi->chips[i].word_write_time = 1<<cfi->cfiq->WordWriteTimeoutTyp;
|
||
cfi->chips[i].buffer_write_time = 1<<cfi->cfiq->BufWriteTimeoutTyp;
|
||
cfi->chips[i].erase_time = 1<<cfi->cfiq->BlockEraseTimeoutTyp;
|
||
cfi->chips[i].ref_point_counter = 0;
|
||
}
|
||
|
||
map->fldrv = &cfi_intelext_chipdrv;
|
||
|
||
return cfi_intelext_setup(mtd);
|
||
}
|
||
|
||
static struct mtd_info *cfi_intelext_setup(struct mtd_info *mtd)
|
||
{
|
||
struct map_info *map = mtd->priv;
|
||
struct cfi_private *cfi = map->fldrv_priv;
|
||
unsigned long offset = 0;
|
||
int i,j;
|
||
unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
|
||
|
||
//printk(KERN_DEBUG "number of CFI chips: %d\n", cfi->numchips);
|
||
|
||
mtd->size = devsize * cfi->numchips;
|
||
|
||
mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
|
||
mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info)
|
||
* mtd->numeraseregions, GFP_KERNEL);
|
||
if (!mtd->eraseregions) {
|
||
printk(KERN_ERR "Failed to allocate memory for MTD erase region info\n");
|
||
goto setup_err;
|
||
}
|
||
|
||
for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
|
||
unsigned long ernum, ersize;
|
||
ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
|
||
ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
|
||
|
||
if (mtd->erasesize < ersize) {
|
||
mtd->erasesize = ersize;
|
||
}
|
||
for (j=0; j<cfi->numchips; j++) {
|
||
mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
|
||
mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
|
||
mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
|
||
}
|
||
offset += (ersize * ernum);
|
||
}
|
||
|
||
if (offset != devsize) {
|
||
/* Argh */
|
||
printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
|
||
goto setup_err;
|
||
}
|
||
|
||
for (i=0; i<mtd->numeraseregions;i++){
|
||
printk(KERN_DEBUG "%d: offset=0x%x,size=0x%x,blocks=%d\n",
|
||
i,mtd->eraseregions[i].offset,
|
||
mtd->eraseregions[i].erasesize,
|
||
mtd->eraseregions[i].numblocks);
|
||
}
|
||
|
||
#ifdef CONFIG_MTD_OTP
|
||
mtd->read_fact_prot_reg = cfi_intelext_read_fact_prot_reg;
|
||
mtd->read_user_prot_reg = cfi_intelext_read_user_prot_reg;
|
||
mtd->write_user_prot_reg = cfi_intelext_write_user_prot_reg;
|
||
mtd->lock_user_prot_reg = cfi_intelext_lock_user_prot_reg;
|
||
mtd->get_fact_prot_info = cfi_intelext_get_fact_prot_info;
|
||
mtd->get_user_prot_info = cfi_intelext_get_user_prot_info;
|
||
#endif
|
||
|
||
/* This function has the potential to distort the reality
|
||
a bit and therefore should be called last. */
|
||
if (cfi_intelext_partition_fixup(mtd, &cfi) != 0)
|
||
goto setup_err;
|
||
|
||
__module_get(THIS_MODULE);
|
||
return mtd;
|
||
|
||
setup_err:
|
||
if(mtd) {
|
||
if(mtd->eraseregions)
|
||
kfree(mtd->eraseregions);
|
||
kfree(mtd);
|
||
}
|
||
kfree(cfi->cmdset_priv);
|
||
return NULL;
|
||
}
|
||
|
||
static int cfi_intelext_partition_fixup(struct mtd_info *mtd,
|
||
struct cfi_private **pcfi)
|
||
{
|
||
struct map_info *map = mtd->priv;
|
||
struct cfi_private *cfi = *pcfi;
|
||
struct cfi_pri_intelext *extp = cfi->cmdset_priv;
|
||
|
||
/*
|
||
* Probing of multi-partition flash ships.
|
||
*
|
||
* To support multiple partitions when available, we simply arrange
|
||
* for each of them to have their own flchip structure even if they
|
||
* are on the same physical chip. This means completely recreating
|
||
* a new cfi_private structure right here which is a blatent code
|
||
* layering violation, but this is still the least intrusive
|
||
* arrangement at this point. This can be rearranged in the future
|
||
* if someone feels motivated enough. --nico
|
||
*/
|
||
if (extp && extp->MajorVersion == '1' && extp->MinorVersion == '3'
|
||
&& extp->FeatureSupport & (1 << 9)) {
|
||
struct cfi_private *newcfi;
|
||
struct flchip *chip;
|
||
struct flchip_shared *shared;
|
||
int offs, numregions, numparts, partshift, numvirtchips, i, j;
|
||
|
||
/* Protection Register info */
|
||
offs = (extp->NumProtectionFields - 1) *
|
||
sizeof(struct cfi_intelext_otpinfo);
|
||
|
||
/* Burst Read info */
|
||
offs += 6;
|
||
|
||
/* Number of partition regions */
|
||
numregions = extp->extra[offs];
|
||
offs += 1;
|
||
|
||
/* Number of hardware partitions */
|
||
numparts = 0;
|
||
for (i = 0; i < numregions; i++) {
|
||
struct cfi_intelext_regioninfo *rinfo;
|
||
rinfo = (struct cfi_intelext_regioninfo *)&extp->extra[offs];
|
||
numparts += rinfo->NumIdentPartitions;
|
||
offs += sizeof(*rinfo)
|
||
+ (rinfo->NumBlockTypes - 1) *
|
||
sizeof(struct cfi_intelext_blockinfo);
|
||
}
|
||
|
||
/*
|
||
* All functions below currently rely on all chips having
|
||
* the same geometry so we'll just assume that all hardware
|
||
* partitions are of the same size too.
|
||
*/
|
||
partshift = cfi->chipshift - __ffs(numparts);
|
||
|
||
if ((1 << partshift) < mtd->erasesize) {
|
||
printk( KERN_ERR
|
||
"%s: bad number of hw partitions (%d)\n",
|
||
__FUNCTION__, numparts);
|
||
return -EINVAL;
|
||
}
|
||
|
||
numvirtchips = cfi->numchips * numparts;
|
||
newcfi = kmalloc(sizeof(struct cfi_private) + numvirtchips * sizeof(struct flchip), GFP_KERNEL);
|
||
if (!newcfi)
|
||
return -ENOMEM;
|
||
shared = kmalloc(sizeof(struct flchip_shared) * cfi->numchips, GFP_KERNEL);
|
||
if (!shared) {
|
||
kfree(newcfi);
|
||
return -ENOMEM;
|
||
}
|
||
memcpy(newcfi, cfi, sizeof(struct cfi_private));
|
||
newcfi->numchips = numvirtchips;
|
||
newcfi->chipshift = partshift;
|
||
|
||
chip = &newcfi->chips[0];
|
||
for (i = 0; i < cfi->numchips; i++) {
|
||
shared[i].writing = shared[i].erasing = NULL;
|
||
spin_lock_init(&shared[i].lock);
|
||
for (j = 0; j < numparts; j++) {
|
||
*chip = cfi->chips[i];
|
||
chip->start += j << partshift;
|
||
chip->priv = &shared[i];
|
||
/* those should be reset too since
|
||
they create memory references. */
|
||
init_waitqueue_head(&chip->wq);
|
||
spin_lock_init(&chip->_spinlock);
|
||
chip->mutex = &chip->_spinlock;
|
||
chip++;
|
||
}
|
||
}
|
||
|
||
printk(KERN_DEBUG "%s: %d set(s) of %d interleaved chips "
|
||
"--> %d partitions of %d KiB\n",
|
||
map->name, cfi->numchips, cfi->interleave,
|
||
newcfi->numchips, 1<<(newcfi->chipshift-10));
|
||
|
||
map->fldrv_priv = newcfi;
|
||
*pcfi = newcfi;
|
||
kfree(cfi);
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/*
|
||
* *********** CHIP ACCESS FUNCTIONS ***********
|
||
*/
|
||
|
||
static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
|
||
{
|
||
DECLARE_WAITQUEUE(wait, current);
|
||
struct cfi_private *cfi = map->fldrv_priv;
|
||
map_word status, status_OK = CMD(0x80), status_PWS = CMD(0x01);
|
||
unsigned long timeo;
|
||
struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
|
||
|
||
resettime:
|
||
timeo = jiffies + HZ;
|
||
retry:
|
||
if (chip->priv && (mode == FL_WRITING || mode == FL_ERASING || mode == FL_OTP_WRITE)) {
|
||
/*
|
||
* OK. We have possibility for contension on the write/erase
|
||
* operations which are global to the real chip and not per
|
||
* partition. So let's fight it over in the partition which
|
||
* currently has authority on the operation.
|
||
*
|
||
* The rules are as follows:
|
||
*
|
||
* - any write operation must own shared->writing.
|
||
*
|
||
* - any erase operation must own _both_ shared->writing and
|
||
* shared->erasing.
|
||
*
|
||
* - contension arbitration is handled in the owner's context.
|
||
*
|
||
* The 'shared' struct can be read when its lock is taken.
|
||
* However any writes to it can only be made when the current
|
||
* owner's lock is also held.
|
||
*/
|
||
struct flchip_shared *shared = chip->priv;
|
||
struct flchip *contender;
|
||
spin_lock(&shared->lock);
|
||
contender = shared->writing;
|
||
if (contender && contender != chip) {
|
||
/*
|
||
* The engine to perform desired operation on this
|
||
* partition is already in use by someone else.
|
||
* Let's fight over it in the context of the chip
|
||
* currently using it. If it is possible to suspend,
|
||
* that other partition will do just that, otherwise
|
||
* it'll happily send us to sleep. In any case, when
|
||
* get_chip returns success we're clear to go ahead.
|
||
*/
|
||
int ret = spin_trylock(contender->mutex);
|
||
spin_unlock(&shared->lock);
|
||
if (!ret)
|
||
goto retry;
|
||
spin_unlock(chip->mutex);
|
||
ret = get_chip(map, contender, contender->start, mode);
|
||
spin_lock(chip->mutex);
|
||
if (ret) {
|
||
spin_unlock(contender->mutex);
|
||
return ret;
|
||
}
|
||
timeo = jiffies + HZ;
|
||
spin_lock(&shared->lock);
|
||
}
|
||
|
||
/* We now own it */
|
||
shared->writing = chip;
|
||
if (mode == FL_ERASING)
|
||
shared->erasing = chip;
|
||
if (contender && contender != chip)
|
||
spin_unlock(contender->mutex);
|
||
spin_unlock(&shared->lock);
|
||
}
|
||
|
||
switch (chip->state) {
|
||
|
||
case FL_STATUS:
|
||
for (;;) {
|
||
status = map_read(map, adr);
|
||
if (map_word_andequal(map, status, status_OK, status_OK))
|
||
break;
|
||
|
||
/* At this point we're fine with write operations
|
||
in other partitions as they don't conflict. */
|
||
if (chip->priv && map_word_andequal(map, status, status_PWS, status_PWS))
|
||
break;
|
||
|
||
if (time_after(jiffies, timeo)) {
|
||
printk(KERN_ERR "Waiting for chip to be ready timed out. Status %lx\n",
|
||
status.x[0]);
|
||
return -EIO;
|
||
}
|
||
spin_unlock(chip->mutex);
|
||
cfi_udelay(1);
|
||
spin_lock(chip->mutex);
|
||
/* Someone else might have been playing with it. */
|
||
goto retry;
|
||
}
|
||
|
||
case FL_READY:
|
||
case FL_CFI_QUERY:
|
||
case FL_JEDEC_QUERY:
|
||
return 0;
|
||
|
||
case FL_ERASING:
|
||
if (!cfip ||
|
||
!(cfip->FeatureSupport & 2) ||
|
||
!(mode == FL_READY || mode == FL_POINT ||
|
||
(mode == FL_WRITING && (cfip->SuspendCmdSupport & 1))))
|
||
goto sleep;
|
||
|
||
|
||
/* Erase suspend */
|
||
map_write(map, CMD(0xB0), adr);
|
||
|
||
/* If the flash has finished erasing, then 'erase suspend'
|
||
* appears to make some (28F320) flash devices switch to
|
||
* 'read' mode. Make sure that we switch to 'read status'
|
||
* mode so we get the right data. --rmk
|
||
*/
|
||
map_write(map, CMD(0x70), adr);
|
||
chip->oldstate = FL_ERASING;
|
||
chip->state = FL_ERASE_SUSPENDING;
|
||
chip->erase_suspended = 1;
|
||
for (;;) {
|
||
status = map_read(map, adr);
|
||
if (map_word_andequal(map, status, status_OK, status_OK))
|
||
break;
|
||
|
||
if (time_after(jiffies, timeo)) {
|
||
/* Urgh. Resume and pretend we weren't here. */
|
||
map_write(map, CMD(0xd0), adr);
|
||
/* Make sure we're in 'read status' mode if it had finished */
|
||
map_write(map, CMD(0x70), adr);
|
||
chip->state = FL_ERASING;
|
||
chip->oldstate = FL_READY;
|
||
printk(KERN_ERR "Chip not ready after erase "
|
||
"suspended: status = 0x%lx\n", status.x[0]);
|
||
return -EIO;
|
||
}
|
||
|
||
spin_unlock(chip->mutex);
|
||
cfi_udelay(1);
|
||
spin_lock(chip->mutex);
|
||
/* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
|
||
So we can just loop here. */
|
||
}
|
||
chip->state = FL_STATUS;
|
||
return 0;
|
||
|
||
case FL_XIP_WHILE_ERASING:
|
||
if (mode != FL_READY && mode != FL_POINT &&
|
||
(mode != FL_WRITING || !cfip || !(cfip->SuspendCmdSupport&1)))
|
||
goto sleep;
|
||
chip->oldstate = chip->state;
|
||
chip->state = FL_READY;
|
||
return 0;
|
||
|
||
case FL_POINT:
|
||
/* Only if there's no operation suspended... */
|
||
if (mode == FL_READY && chip->oldstate == FL_READY)
|
||
return 0;
|
||
|
||
default:
|
||
sleep:
|
||
set_current_state(TASK_UNINTERRUPTIBLE);
|
||
add_wait_queue(&chip->wq, &wait);
|
||
spin_unlock(chip->mutex);
|
||
schedule();
|
||
remove_wait_queue(&chip->wq, &wait);
|
||
spin_lock(chip->mutex);
|
||
goto resettime;
|
||
}
|
||
}
|
||
|
||
static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
|
||
{
|
||
struct cfi_private *cfi = map->fldrv_priv;
|
||
|
||
if (chip->priv) {
|
||
struct flchip_shared *shared = chip->priv;
|
||
spin_lock(&shared->lock);
|
||
if (shared->writing == chip && chip->oldstate == FL_READY) {
|
||
/* We own the ability to write, but we're done */
|
||
shared->writing = shared->erasing;
|
||
if (shared->writing && shared->writing != chip) {
|
||
/* give back ownership to who we loaned it from */
|
||
struct flchip *loaner = shared->writing;
|
||
spin_lock(loaner->mutex);
|
||
spin_unlock(&shared->lock);
|
||
spin_unlock(chip->mutex);
|
||
put_chip(map, loaner, loaner->start);
|
||
spin_lock(chip->mutex);
|
||
spin_unlock(loaner->mutex);
|
||
wake_up(&chip->wq);
|
||
return;
|
||
}
|
||
shared->erasing = NULL;
|
||
shared->writing = NULL;
|
||
} else if (shared->erasing == chip && shared->writing != chip) {
|
||
/*
|
||
* We own the ability to erase without the ability
|
||
* to write, which means the erase was suspended
|
||
* and some other partition is currently writing.
|
||
* Don't let the switch below mess things up since
|
||
* we don't have ownership to resume anything.
|
||
*/
|
||
spin_unlock(&shared->lock);
|
||
wake_up(&chip->wq);
|
||
return;
|
||
}
|
||
spin_unlock(&shared->lock);
|
||
}
|
||
|
||
switch(chip->oldstate) {
|
||
case FL_ERASING:
|
||
chip->state = chip->oldstate;
|
||
/* What if one interleaved chip has finished and the
|
||
other hasn't? The old code would leave the finished
|
||
one in READY mode. That's bad, and caused -EROFS
|
||
errors to be returned from do_erase_oneblock because
|
||
that's the only bit it checked for at the time.
|
||
As the state machine appears to explicitly allow
|
||
sending the 0x70 (Read Status) command to an erasing
|
||
chip and expecting it to be ignored, that's what we
|
||
do. */
|
||
map_write(map, CMD(0xd0), adr);
|
||
map_write(map, CMD(0x70), adr);
|
||
chip->oldstate = FL_READY;
|
||
chip->state = FL_ERASING;
|
||
break;
|
||
|
||
case FL_XIP_WHILE_ERASING:
|
||
chip->state = chip->oldstate;
|
||
chip->oldstate = FL_READY;
|
||
break;
|
||
|
||
case FL_READY:
|
||
case FL_STATUS:
|
||
case FL_JEDEC_QUERY:
|
||
/* We should really make set_vpp() count, rather than doing this */
|
||
DISABLE_VPP(map);
|
||
break;
|
||
default:
|
||
printk(KERN_ERR "put_chip() called with oldstate %d!!\n", chip->oldstate);
|
||
}
|
||
wake_up(&chip->wq);
|
||
}
|
||
|
||
#ifdef CONFIG_MTD_XIP
|
||
|
||
/*
|
||
* No interrupt what so ever can be serviced while the flash isn't in array
|
||
* mode. This is ensured by the xip_disable() and xip_enable() functions
|
||
* enclosing any code path where the flash is known not to be in array mode.
|
||
* And within a XIP disabled code path, only functions marked with __xipram
|
||
* may be called and nothing else (it's a good thing to inspect generated
|
||
* assembly to make sure inline functions were actually inlined and that gcc
|
||
* didn't emit calls to its own support functions). Also configuring MTD CFI
|
||
* support to a single buswidth and a single interleave is also recommended.
|
||
* Note that not only IRQs are disabled but the preemption count is also
|
||
* increased to prevent other locking primitives (namely spin_unlock) from
|
||
* decrementing the preempt count to zero and scheduling the CPU away while
|
||
* not in array mode.
|
||
*/
|
||
|
||
static void xip_disable(struct map_info *map, struct flchip *chip,
|
||
unsigned long adr)
|
||
{
|
||
/* TODO: chips with no XIP use should ignore and return */
|
||
(void) map_read(map, adr); /* ensure mmu mapping is up to date */
|
||
preempt_disable();
|
||
local_irq_disable();
|
||
}
|
||
|
||
static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
|
||
unsigned long adr)
|
||
{
|
||
struct cfi_private *cfi = map->fldrv_priv;
|
||
if (chip->state != FL_POINT && chip->state != FL_READY) {
|
||
map_write(map, CMD(0xff), adr);
|
||
chip->state = FL_READY;
|
||
}
|
||
(void) map_read(map, adr);
|
||
asm volatile (".rep 8; nop; .endr"); /* fill instruction prefetch */
|
||
local_irq_enable();
|
||
preempt_enable();
|
||
}
|
||
|
||
/*
|
||
* When a delay is required for the flash operation to complete, the
|
||
* xip_udelay() function is polling for both the given timeout and pending
|
||
* (but still masked) hardware interrupts. Whenever there is an interrupt
|
||
* pending then the flash erase or write operation is suspended, array mode
|
||
* restored and interrupts unmasked. Task scheduling might also happen at that
|
||
* point. The CPU eventually returns from the interrupt or the call to
|
||
* schedule() and the suspended flash operation is resumed for the remaining
|
||
* of the delay period.
|
||
*
|
||
* Warning: this function _will_ fool interrupt latency tracing tools.
|
||
*/
|
||
|
||
static void __xipram xip_udelay(struct map_info *map, struct flchip *chip,
|
||
unsigned long adr, int usec)
|
||
{
|
||
struct cfi_private *cfi = map->fldrv_priv;
|
||
struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
|
||
map_word status, OK = CMD(0x80);
|
||
unsigned long suspended, start = xip_currtime();
|
||
flstate_t oldstate, newstate;
|
||
|
||
do {
|
||
cpu_relax();
|
||
if (xip_irqpending() && cfip &&
|
||
((chip->state == FL_ERASING && (cfip->FeatureSupport&2)) ||
|
||
(chip->state == FL_WRITING && (cfip->FeatureSupport&4))) &&
|
||
(cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
|
||
/*
|
||
* Let's suspend the erase or write operation when
|
||
* supported. Note that we currently don't try to
|
||
* suspend interleaved chips if there is already
|
||
* another operation suspended (imagine what happens
|
||
* when one chip was already done with the current
|
||
* operation while another chip suspended it, then
|
||
* we resume the whole thing at once). Yes, it
|
||
* can happen!
|
||
*/
|
||
map_write(map, CMD(0xb0), adr);
|
||
map_write(map, CMD(0x70), adr);
|
||
usec -= xip_elapsed_since(start);
|
||
suspended = xip_currtime();
|
||
do {
|
||
if (xip_elapsed_since(suspended) > 100000) {
|
||
/*
|
||
* The chip doesn't want to suspend
|
||
* after waiting for 100 msecs.
|
||
* This is a critical error but there
|
||
* is not much we can do here.
|
||
*/
|
||
return;
|
||
}
|
||
status = map_read(map, adr);
|
||
} while (!map_word_andequal(map, status, OK, OK));
|
||
|
||
/* Suspend succeeded */
|
||
oldstate = chip->state;
|
||
if (oldstate == FL_ERASING) {
|
||
if (!map_word_bitsset(map, status, CMD(0x40)))
|
||
break;
|
||
newstate = FL_XIP_WHILE_ERASING;
|
||
chip->erase_suspended = 1;
|
||
} else {
|
||
if (!map_word_bitsset(map, status, CMD(0x04)))
|
||
break;
|
||
newstate = FL_XIP_WHILE_WRITING;
|
||
chip->write_suspended = 1;
|
||
}
|
||
chip->state = newstate;
|
||
map_write(map, CMD(0xff), adr);
|
||
(void) map_read(map, adr);
|
||
asm volatile (".rep 8; nop; .endr");
|
||
local_irq_enable();
|
||
preempt_enable();
|
||
asm volatile (".rep 8; nop; .endr");
|
||
cond_resched();
|
||
|
||
/*
|
||
* We're back. However someone else might have
|
||
* decided to go write to the chip if we are in
|
||
* a suspended erase state. If so let's wait
|
||
* until it's done.
|
||
*/
|
||
preempt_disable();
|
||
while (chip->state != newstate) {
|
||
DECLARE_WAITQUEUE(wait, current);
|
||
set_current_state(TASK_UNINTERRUPTIBLE);
|
||
add_wait_queue(&chip->wq, &wait);
|
||
preempt_enable();
|
||
schedule();
|
||
remove_wait_queue(&chip->wq, &wait);
|
||
preempt_disable();
|
||
}
|
||
/* Disallow XIP again */
|
||
local_irq_disable();
|
||
|
||
/* Resume the write or erase operation */
|
||
map_write(map, CMD(0xd0), adr);
|
||
map_write(map, CMD(0x70), adr);
|
||
chip->state = oldstate;
|
||
start = xip_currtime();
|
||
} else if (usec >= 1000000/HZ) {
|
||
/*
|
||
* Try to save on CPU power when waiting delay
|
||
* is at least a system timer tick period.
|
||
* No need to be extremely accurate here.
|
||
*/
|
||
xip_cpu_idle();
|
||
}
|
||
status = map_read(map, adr);
|
||
} while (!map_word_andequal(map, status, OK, OK)
|
||
&& xip_elapsed_since(start) < usec);
|
||
}
|
||
|
||
#define UDELAY(map, chip, adr, usec) xip_udelay(map, chip, adr, usec)
|
||
|
||
/*
|
||
* The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
|
||
* the flash is actively programming or erasing since we have to poll for
|
||
* the operation to complete anyway. We can't do that in a generic way with
|
||
* a XIP setup so do it before the actual flash operation in this case.
|
||
*/
|
||
#undef INVALIDATE_CACHED_RANGE
|
||
#define INVALIDATE_CACHED_RANGE(x...)
|
||
#define XIP_INVAL_CACHED_RANGE(map, from, size) \
|
||
do { if(map->inval_cache) map->inval_cache(map, from, size); } while(0)
|
||
|
||
/*
|
||
* Extra notes:
|
||
*
|
||
* Activating this XIP support changes the way the code works a bit. For
|
||
* example the code to suspend the current process when concurrent access
|
||
* happens is never executed because xip_udelay() will always return with the
|
||
* same chip state as it was entered with. This is why there is no care for
|
||
* the presence of add_wait_queue() or schedule() calls from within a couple
|
||
* xip_disable()'d areas of code, like in do_erase_oneblock for example.
|
||
* The queueing and scheduling are always happening within xip_udelay().
|
||
*
|
||
* Similarly, get_chip() and put_chip() just happen to always be executed
|
||
* with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state
|
||
* is in array mode, therefore never executing many cases therein and not
|
||
* causing any problem with XIP.
|
||
*/
|
||
|
||
#else
|
||
|
||
#define xip_disable(map, chip, adr)
|
||
#define xip_enable(map, chip, adr)
|
||
|
||
#define UDELAY(map, chip, adr, usec) cfi_udelay(usec)
|
||
|
||
#define XIP_INVAL_CACHED_RANGE(x...)
|
||
|
||
#endif
|
||
|
||
static int do_point_onechip (struct map_info *map, struct flchip *chip, loff_t adr, size_t len)
|
||
{
|
||
unsigned long cmd_addr;
|
||
struct cfi_private *cfi = map->fldrv_priv;
|
||
int ret = 0;
|
||
|
||
adr += chip->start;
|
||
|
||
/* Ensure cmd read/writes are aligned. */
|
||
cmd_addr = adr & ~(map_bankwidth(map)-1);
|
||
|
||
spin_lock(chip->mutex);
|
||
|
||
ret = get_chip(map, chip, cmd_addr, FL_POINT);
|
||
|
||
if (!ret) {
|
||
if (chip->state != FL_POINT && chip->state != FL_READY)
|
||
map_write(map, CMD(0xff), cmd_addr);
|
||
|
||
chip->state = FL_POINT;
|
||
chip->ref_point_counter++;
|
||
}
|
||
spin_unlock(chip->mutex);
|
||
|
||
return ret;
|
||
}
|
||
|
||
static int cfi_intelext_point (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char **mtdbuf)
|
||
{
|
||
struct map_info *map = mtd->priv;
|
||
struct cfi_private *cfi = map->fldrv_priv;
|
||
unsigned long ofs;
|
||
int chipnum;
|
||
int ret = 0;
|
||
|
||
if (!map->virt || (from + len > mtd->size))
|
||
return -EINVAL;
|
||
|
||
*mtdbuf = (void *)map->virt + from;
|
||
*retlen = 0;
|
||
|
||
/* Now lock the chip(s) to POINT state */
|
||
|
||
/* ofs: offset within the first chip that the first read should start */
|
||
chipnum = (from >> cfi->chipshift);
|
||
ofs = from - (chipnum << cfi->chipshift);
|
||
|
||
while (len) {
|
||
unsigned long thislen;
|
||
|
||
if (chipnum >= cfi->numchips)
|
||
break;
|
||
|
||
if ((len + ofs -1) >> cfi->chipshift)
|
||
thislen = (1<<cfi->chipshift) - ofs;
|
||
else
|
||
thislen = len;
|
||
|
||
ret = do_point_onechip(map, &cfi->chips[chipnum], ofs, thislen);
|
||
if (ret)
|
||
break;
|
||
|
||
*retlen += thislen;
|
||
len -= thislen;
|
||
|
||
ofs = 0;
|
||
chipnum++;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
static void cfi_intelext_unpoint (struct mtd_info *mtd, u_char *addr, loff_t from, size_t len)
|
||
{
|
||
struct map_info *map = mtd->priv;
|
||
struct cfi_private *cfi = map->fldrv_priv;
|
||
unsigned long ofs;
|
||
int chipnum;
|
||
|
||
/* Now unlock the chip(s) POINT state */
|
||
|
||
/* ofs: offset within the first chip that the first read should start */
|
||
chipnum = (from >> cfi->chipshift);
|
||
ofs = from - (chipnum << cfi->chipshift);
|
||
|
||
while (len) {
|
||
unsigned long thislen;
|
||
struct flchip *chip;
|
||
|
||
chip = &cfi->chips[chipnum];
|
||
if (chipnum >= cfi->numchips)
|
||
break;
|
||
|
||
if ((len + ofs -1) >> cfi->chipshift)
|
||
thislen = (1<<cfi->chipshift) - ofs;
|
||
else
|
||
thislen = len;
|
||
|
||
spin_lock(chip->mutex);
|
||
if (chip->state == FL_POINT) {
|
||
chip->ref_point_counter--;
|
||
if(chip->ref_point_counter == 0)
|
||
chip->state = FL_READY;
|
||
} else
|
||
printk(KERN_ERR "Warning: unpoint called on non pointed region\n"); /* Should this give an error? */
|
||
|
||
put_chip(map, chip, chip->start);
|
||
spin_unlock(chip->mutex);
|
||
|
||
len -= thislen;
|
||
ofs = 0;
|
||
chipnum++;
|
||
}
|
||
}
|
||
|
||
static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
|
||
{
|
||
unsigned long cmd_addr;
|
||
struct cfi_private *cfi = map->fldrv_priv;
|
||
int ret;
|
||
|
||
adr += chip->start;
|
||
|
||
/* Ensure cmd read/writes are aligned. */
|
||
cmd_addr = adr & ~(map_bankwidth(map)-1);
|
||
|
||
spin_lock(chip->mutex);
|
||
ret = get_chip(map, chip, cmd_addr, FL_READY);
|
||
if (ret) {
|
||
spin_unlock(chip->mutex);
|
||
return ret;
|
||
}
|
||
|
||
if (chip->state != FL_POINT && chip->state != FL_READY) {
|
||
map_write(map, CMD(0xff), cmd_addr);
|
||
|
||
chip->state = FL_READY;
|
||
}
|
||
|
||
map_copy_from(map, buf, adr, len);
|
||
|
||
put_chip(map, chip, cmd_addr);
|
||
|
||
spin_unlock(chip->mutex);
|
||
return 0;
|
||
}
|
||
|
||
static int cfi_intelext_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
|
||
{
|
||
struct map_info *map = mtd->priv;
|
||
struct cfi_private *cfi = map->fldrv_priv;
|
||
unsigned long ofs;
|
||
int chipnum;
|
||
int ret = 0;
|
||
|
||
/* ofs: offset within the first chip that the first read should start */
|
||
chipnum = (from >> cfi->chipshift);
|
||
ofs = from - (chipnum << cfi->chipshift);
|
||
|
||
*retlen = 0;
|
||
|
||
while (len) {
|
||
unsigned long thislen;
|
||
|
||
if (chipnum >= cfi->numchips)
|
||
break;
|
||
|
||
if ((len + ofs -1) >> cfi->chipshift)
|
||
thislen = (1<<cfi->chipshift) - ofs;
|
||
else
|
||
thislen = len;
|
||
|
||
ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
|
||
if (ret)
|
||
break;
|
||
|
||
*retlen += thislen;
|
||
len -= thislen;
|
||
buf += thislen;
|
||
|
||
ofs = 0;
|
||
chipnum++;
|
||
}
|
||
return ret;
|
||
}
|
||
|
||
static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
|
||
unsigned long adr, map_word datum, int mode)
|
||
{
|
||
struct cfi_private *cfi = map->fldrv_priv;
|
||
map_word status, status_OK, write_cmd;
|
||
unsigned long timeo;
|
||
int z, ret=0;
|
||
|
||
adr += chip->start;
|
||
|
||
/* Let's determine this according to the interleave only once */
|
||
status_OK = CMD(0x80);
|
||
switch (mode) {
|
||
case FL_WRITING: write_cmd = CMD(0x40); break;
|
||
case FL_OTP_WRITE: write_cmd = CMD(0xc0); break;
|
||
default: return -EINVAL;
|
||
}
|
||
|
||
spin_lock(chip->mutex);
|
||
ret = get_chip(map, chip, adr, mode);
|
||
if (ret) {
|
||
spin_unlock(chip->mutex);
|
||
return ret;
|
||
}
|
||
|
||
XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
|
||
ENABLE_VPP(map);
|
||
xip_disable(map, chip, adr);
|
||
map_write(map, write_cmd, adr);
|
||
map_write(map, datum, adr);
|
||
chip->state = mode;
|
||
|
||
spin_unlock(chip->mutex);
|
||
INVALIDATE_CACHED_RANGE(map, adr, map_bankwidth(map));
|
||
UDELAY(map, chip, adr, chip->word_write_time);
|
||
spin_lock(chip->mutex);
|
||
|
||
timeo = jiffies + (HZ/2);
|
||
z = 0;
|
||
for (;;) {
|
||
if (chip->state != mode) {
|
||
/* Someone's suspended the write. Sleep */
|
||
DECLARE_WAITQUEUE(wait, current);
|
||
|
||
set_current_state(TASK_UNINTERRUPTIBLE);
|
||
add_wait_queue(&chip->wq, &wait);
|
||
spin_unlock(chip->mutex);
|
||
schedule();
|
||
remove_wait_queue(&chip->wq, &wait);
|
||
timeo = jiffies + (HZ / 2); /* FIXME */
|
||
spin_lock(chip->mutex);
|
||
continue;
|
||
}
|
||
|
||
status = map_read(map, adr);
|
||
if (map_word_andequal(map, status, status_OK, status_OK))
|
||
break;
|
||
|
||
/* OK Still waiting */
|
||
if (time_after(jiffies, timeo)) {
|
||
chip->state = FL_STATUS;
|
||
xip_enable(map, chip, adr);
|
||
printk(KERN_ERR "waiting for chip to be ready timed out in word write\n");
|
||
ret = -EIO;
|
||
goto out;
|
||
}
|
||
|
||
/* Latency issues. Drop the lock, wait a while and retry */
|
||
spin_unlock(chip->mutex);
|
||
z++;
|
||
UDELAY(map, chip, adr, 1);
|
||
spin_lock(chip->mutex);
|
||
}
|
||
if (!z) {
|
||
chip->word_write_time--;
|
||
if (!chip->word_write_time)
|
||
chip->word_write_time++;
|
||
}
|
||
if (z > 1)
|
||
chip->word_write_time++;
|
||
|
||
/* Done and happy. */
|
||
chip->state = FL_STATUS;
|
||
|
||
/* check for lock bit */
|
||
if (map_word_bitsset(map, status, CMD(0x02))) {
|
||
/* clear status */
|
||
map_write(map, CMD(0x50), adr);
|
||
/* put back into read status register mode */
|
||
map_write(map, CMD(0x70), adr);
|
||
ret = -EROFS;
|
||
}
|
||
|
||
xip_enable(map, chip, adr);
|
||
out: put_chip(map, chip, adr);
|
||
spin_unlock(chip->mutex);
|
||
|
||
return ret;
|
||
}
|
||
|
||
|
||
static int cfi_intelext_write_words (struct mtd_info *mtd, loff_t to , size_t len, size_t *retlen, const u_char *buf)
|
||
{
|
||
struct map_info *map = mtd->priv;
|
||
struct cfi_private *cfi = map->fldrv_priv;
|
||
int ret = 0;
|
||
int chipnum;
|
||
unsigned long ofs;
|
||
|
||
*retlen = 0;
|
||
if (!len)
|
||
return 0;
|
||
|
||
chipnum = to >> cfi->chipshift;
|
||
ofs = to - (chipnum << cfi->chipshift);
|
||
|
||
/* If it's not bus-aligned, do the first byte write */
|
||
if (ofs & (map_bankwidth(map)-1)) {
|
||
unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
|
||
int gap = ofs - bus_ofs;
|
||
int n;
|
||
map_word datum;
|
||
|
||
n = min_t(int, len, map_bankwidth(map)-gap);
|
||
datum = map_word_ff(map);
|
||
datum = map_word_load_partial(map, datum, buf, gap, n);
|
||
|
||
ret = do_write_oneword(map, &cfi->chips[chipnum],
|
||
bus_ofs, datum, FL_WRITING);
|
||
if (ret)
|
||
return ret;
|
||
|
||
len -= n;
|
||
ofs += n;
|
||
buf += n;
|
||
(*retlen) += n;
|
||
|
||
if (ofs >> cfi->chipshift) {
|
||
chipnum ++;
|
||
ofs = 0;
|
||
if (chipnum == cfi->numchips)
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
while(len >= map_bankwidth(map)) {
|
||
map_word datum = map_word_load(map, buf);
|
||
|
||
ret = do_write_oneword(map, &cfi->chips[chipnum],
|
||
ofs, datum, FL_WRITING);
|
||
if (ret)
|
||
return ret;
|
||
|
||
ofs += map_bankwidth(map);
|
||
buf += map_bankwidth(map);
|
||
(*retlen) += map_bankwidth(map);
|
||
len -= map_bankwidth(map);
|
||
|
||
if (ofs >> cfi->chipshift) {
|
||
chipnum ++;
|
||
ofs = 0;
|
||
if (chipnum == cfi->numchips)
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
if (len & (map_bankwidth(map)-1)) {
|
||
map_word datum;
|
||
|
||
datum = map_word_ff(map);
|
||
datum = map_word_load_partial(map, datum, buf, 0, len);
|
||
|
||
ret = do_write_oneword(map, &cfi->chips[chipnum],
|
||
ofs, datum, FL_WRITING);
|
||
if (ret)
|
||
return ret;
|
||
|
||
(*retlen) += len;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
|
||
static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
|
||
unsigned long adr, const u_char *buf, int len)
|
||
{
|
||
struct cfi_private *cfi = map->fldrv_priv;
|
||
map_word status, status_OK;
|
||
unsigned long cmd_adr, timeo;
|
||
int wbufsize, z, ret=0, bytes, words;
|
||
|
||
wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
|
||
adr += chip->start;
|
||
cmd_adr = adr & ~(wbufsize-1);
|
||
|
||
/* Let's determine this according to the interleave only once */
|
||
status_OK = CMD(0x80);
|
||
|
||
spin_lock(chip->mutex);
|
||
ret = get_chip(map, chip, cmd_adr, FL_WRITING);
|
||
if (ret) {
|
||
spin_unlock(chip->mutex);
|
||
return ret;
|
||
}
|
||
|
||
XIP_INVAL_CACHED_RANGE(map, adr, len);
|
||
ENABLE_VPP(map);
|
||
xip_disable(map, chip, cmd_adr);
|
||
|
||
/* <20>4.8 of the 28FxxxJ3A datasheet says "Any time SR.4 and/or SR.5 is set
|
||
[...], the device will not accept any more Write to Buffer commands".
|
||
So we must check here and reset those bits if they're set. Otherwise
|
||
we're just pissing in the wind */
|
||
if (chip->state != FL_STATUS)
|
||
map_write(map, CMD(0x70), cmd_adr);
|
||
status = map_read(map, cmd_adr);
|
||
if (map_word_bitsset(map, status, CMD(0x30))) {
|
||
xip_enable(map, chip, cmd_adr);
|
||
printk(KERN_WARNING "SR.4 or SR.5 bits set in buffer write (status %lx). Clearing.\n", status.x[0]);
|
||
xip_disable(map, chip, cmd_adr);
|
||
map_write(map, CMD(0x50), cmd_adr);
|
||
map_write(map, CMD(0x70), cmd_adr);
|
||
}
|
||
|
||
chip->state = FL_WRITING_TO_BUFFER;
|
||
|
||
z = 0;
|
||
for (;;) {
|
||
map_write(map, CMD(0xe8), cmd_adr);
|
||
|
||
status = map_read(map, cmd_adr);
|
||
if (map_word_andequal(map, status, status_OK, status_OK))
|
||
break;
|
||
|
||
spin_unlock(chip->mutex);
|
||
UDELAY(map, chip, cmd_adr, 1);
|
||
spin_lock(chip->mutex);
|
||
|
||
if (++z > 20) {
|
||
/* Argh. Not ready for write to buffer */
|
||
map_word Xstatus;
|
||
map_write(map, CMD(0x70), cmd_adr);
|
||
chip->state = FL_STATUS;
|
||
Xstatus = map_read(map, cmd_adr);
|
||
/* Odd. Clear status bits */
|
||
map_write(map, CMD(0x50), cmd_adr);
|
||
map_write(map, CMD(0x70), cmd_adr);
|
||
xip_enable(map, chip, cmd_adr);
|
||
printk(KERN_ERR "Chip not ready for buffer write. status = %lx, Xstatus = %lx\n",
|
||
status.x[0], Xstatus.x[0]);
|
||
ret = -EIO;
|
||
goto out;
|
||
}
|
||
}
|
||
|
||
/* Write length of data to come */
|
||
bytes = len & (map_bankwidth(map)-1);
|
||
words = len / map_bankwidth(map);
|
||
map_write(map, CMD(words - !bytes), cmd_adr );
|
||
|
||
/* Write data */
|
||
z = 0;
|
||
while(z < words * map_bankwidth(map)) {
|
||
map_word datum = map_word_load(map, buf);
|
||
map_write(map, datum, adr+z);
|
||
|
||
z += map_bankwidth(map);
|
||
buf += map_bankwidth(map);
|
||
}
|
||
|
||
if (bytes) {
|
||
map_word datum;
|
||
|
||
datum = map_word_ff(map);
|
||
datum = map_word_load_partial(map, datum, buf, 0, bytes);
|
||
map_write(map, datum, adr+z);
|
||
}
|
||
|
||
/* GO GO GO */
|
||
map_write(map, CMD(0xd0), cmd_adr);
|
||
chip->state = FL_WRITING;
|
||
|
||
spin_unlock(chip->mutex);
|
||
INVALIDATE_CACHED_RANGE(map, adr, len);
|
||
UDELAY(map, chip, cmd_adr, chip->buffer_write_time);
|
||
spin_lock(chip->mutex);
|
||
|
||
timeo = jiffies + (HZ/2);
|
||
z = 0;
|
||
for (;;) {
|
||
if (chip->state != FL_WRITING) {
|
||
/* Someone's suspended the write. Sleep */
|
||
DECLARE_WAITQUEUE(wait, current);
|
||
set_current_state(TASK_UNINTERRUPTIBLE);
|
||
add_wait_queue(&chip->wq, &wait);
|
||
spin_unlock(chip->mutex);
|
||
schedule();
|
||
remove_wait_queue(&chip->wq, &wait);
|
||
timeo = jiffies + (HZ / 2); /* FIXME */
|
||
spin_lock(chip->mutex);
|
||
continue;
|
||
}
|
||
|
||
status = map_read(map, cmd_adr);
|
||
if (map_word_andequal(map, status, status_OK, status_OK))
|
||
break;
|
||
|
||
/* OK Still waiting */
|
||
if (time_after(jiffies, timeo)) {
|
||
chip->state = FL_STATUS;
|
||
xip_enable(map, chip, cmd_adr);
|
||
printk(KERN_ERR "waiting for chip to be ready timed out in bufwrite\n");
|
||
ret = -EIO;
|
||
goto out;
|
||
}
|
||
|
||
/* Latency issues. Drop the lock, wait a while and retry */
|
||
spin_unlock(chip->mutex);
|
||
UDELAY(map, chip, cmd_adr, 1);
|
||
z++;
|
||
spin_lock(chip->mutex);
|
||
}
|
||
if (!z) {
|
||
chip->buffer_write_time--;
|
||
if (!chip->buffer_write_time)
|
||
chip->buffer_write_time++;
|
||
}
|
||
if (z > 1)
|
||
chip->buffer_write_time++;
|
||
|
||
/* Done and happy. */
|
||
chip->state = FL_STATUS;
|
||
|
||
/* check for lock bit */
|
||
if (map_word_bitsset(map, status, CMD(0x02))) {
|
||
/* clear status */
|
||
map_write(map, CMD(0x50), cmd_adr);
|
||
/* put back into read status register mode */
|
||
map_write(map, CMD(0x70), adr);
|
||
ret = -EROFS;
|
||
}
|
||
|
||
xip_enable(map, chip, cmd_adr);
|
||
out: put_chip(map, chip, cmd_adr);
|
||
spin_unlock(chip->mutex);
|
||
return ret;
|
||
}
|
||
|
||
static int cfi_intelext_write_buffers (struct mtd_info *mtd, loff_t to,
|
||
size_t len, size_t *retlen, const u_char *buf)
|
||
{
|
||
struct map_info *map = mtd->priv;
|
||
struct cfi_private *cfi = map->fldrv_priv;
|
||
int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
|
||
int ret = 0;
|
||
int chipnum;
|
||
unsigned long ofs;
|
||
|
||
*retlen = 0;
|
||
if (!len)
|
||
return 0;
|
||
|
||
chipnum = to >> cfi->chipshift;
|
||
ofs = to - (chipnum << cfi->chipshift);
|
||
|
||
/* If it's not bus-aligned, do the first word write */
|
||
if (ofs & (map_bankwidth(map)-1)) {
|
||
size_t local_len = (-ofs)&(map_bankwidth(map)-1);
|
||
if (local_len > len)
|
||
local_len = len;
|
||
ret = cfi_intelext_write_words(mtd, to, local_len,
|
||
retlen, buf);
|
||
if (ret)
|
||
return ret;
|
||
ofs += local_len;
|
||
buf += local_len;
|
||
len -= local_len;
|
||
|
||
if (ofs >> cfi->chipshift) {
|
||
chipnum ++;
|
||
ofs = 0;
|
||
if (chipnum == cfi->numchips)
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
while(len) {
|
||
/* We must not cross write block boundaries */
|
||
int size = wbufsize - (ofs & (wbufsize-1));
|
||
|
||
if (size > len)
|
||
size = len;
|
||
ret = do_write_buffer(map, &cfi->chips[chipnum],
|
||
ofs, buf, size);
|
||
if (ret)
|
||
return ret;
|
||
|
||
ofs += size;
|
||
buf += size;
|
||
(*retlen) += size;
|
||
len -= size;
|
||
|
||
if (ofs >> cfi->chipshift) {
|
||
chipnum ++;
|
||
ofs = 0;
|
||
if (chipnum == cfi->numchips)
|
||
return 0;
|
||
}
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip,
|
||
unsigned long adr, int len, void *thunk)
|
||
{
|
||
struct cfi_private *cfi = map->fldrv_priv;
|
||
map_word status, status_OK;
|
||
unsigned long timeo;
|
||
int retries = 3;
|
||
DECLARE_WAITQUEUE(wait, current);
|
||
int ret = 0;
|
||
|
||
adr += chip->start;
|
||
|
||
/* Let's determine this according to the interleave only once */
|
||
status_OK = CMD(0x80);
|
||
|
||
retry:
|
||
spin_lock(chip->mutex);
|
||
ret = get_chip(map, chip, adr, FL_ERASING);
|
||
if (ret) {
|
||
spin_unlock(chip->mutex);
|
||
return ret;
|
||
}
|
||
|
||
XIP_INVAL_CACHED_RANGE(map, adr, len);
|
||
ENABLE_VPP(map);
|
||
xip_disable(map, chip, adr);
|
||
|
||
/* Clear the status register first */
|
||
map_write(map, CMD(0x50), adr);
|
||
|
||
/* Now erase */
|
||
map_write(map, CMD(0x20), adr);
|
||
map_write(map, CMD(0xD0), adr);
|
||
chip->state = FL_ERASING;
|
||
chip->erase_suspended = 0;
|
||
|
||
spin_unlock(chip->mutex);
|
||
INVALIDATE_CACHED_RANGE(map, adr, len);
|
||
UDELAY(map, chip, adr, chip->erase_time*1000/2);
|
||
spin_lock(chip->mutex);
|
||
|
||
/* FIXME. Use a timer to check this, and return immediately. */
|
||
/* Once the state machine's known to be working I'll do that */
|
||
|
||
timeo = jiffies + (HZ*20);
|
||
for (;;) {
|
||
if (chip->state != FL_ERASING) {
|
||
/* Someone's suspended the erase. Sleep */
|
||
set_current_state(TASK_UNINTERRUPTIBLE);
|
||
add_wait_queue(&chip->wq, &wait);
|
||
spin_unlock(chip->mutex);
|
||
schedule();
|
||
remove_wait_queue(&chip->wq, &wait);
|
||
spin_lock(chip->mutex);
|
||
continue;
|
||
}
|
||
if (chip->erase_suspended) {
|
||
/* This erase was suspended and resumed.
|
||
Adjust the timeout */
|
||
timeo = jiffies + (HZ*20); /* FIXME */
|
||
chip->erase_suspended = 0;
|
||
}
|
||
|
||
status = map_read(map, adr);
|
||
if (map_word_andequal(map, status, status_OK, status_OK))
|
||
break;
|
||
|
||
/* OK Still waiting */
|
||
if (time_after(jiffies, timeo)) {
|
||
map_word Xstatus;
|
||
map_write(map, CMD(0x70), adr);
|
||
chip->state = FL_STATUS;
|
||
Xstatus = map_read(map, adr);
|
||
/* Clear status bits */
|
||
map_write(map, CMD(0x50), adr);
|
||
map_write(map, CMD(0x70), adr);
|
||
xip_enable(map, chip, adr);
|
||
printk(KERN_ERR "waiting for erase at %08lx to complete timed out. status = %lx, Xstatus = %lx.\n",
|
||
adr, status.x[0], Xstatus.x[0]);
|
||
ret = -EIO;
|
||
goto out;
|
||
}
|
||
|
||
/* Latency issues. Drop the lock, wait a while and retry */
|
||
spin_unlock(chip->mutex);
|
||
UDELAY(map, chip, adr, 1000000/HZ);
|
||
spin_lock(chip->mutex);
|
||
}
|
||
|
||
/* We've broken this before. It doesn't hurt to be safe */
|
||
map_write(map, CMD(0x70), adr);
|
||
chip->state = FL_STATUS;
|
||
status = map_read(map, adr);
|
||
|
||
/* check for lock bit */
|
||
if (map_word_bitsset(map, status, CMD(0x3a))) {
|
||
unsigned char chipstatus;
|
||
|
||
/* Reset the error bits */
|
||
map_write(map, CMD(0x50), adr);
|
||
map_write(map, CMD(0x70), adr);
|
||
xip_enable(map, chip, adr);
|
||
|
||
chipstatus = status.x[0];
|
||
if (!map_word_equal(map, status, CMD(chipstatus))) {
|
||
int i, w;
|
||
for (w=0; w<map_words(map); w++) {
|
||
for (i = 0; i<cfi_interleave(cfi); i++) {
|
||
chipstatus |= status.x[w] >> (cfi->device_type * 8);
|
||
}
|
||
}
|
||
printk(KERN_WARNING "Status is not identical for all chips: 0x%lx. Merging to give 0x%02x\n",
|
||
status.x[0], chipstatus);
|
||
}
|
||
|
||
if ((chipstatus & 0x30) == 0x30) {
|
||
printk(KERN_NOTICE "Chip reports improper command sequence: status 0x%x\n", chipstatus);
|
||
ret = -EIO;
|
||
} else if (chipstatus & 0x02) {
|
||
/* Protection bit set */
|
||
ret = -EROFS;
|
||
} else if (chipstatus & 0x8) {
|
||
/* Voltage */
|
||
printk(KERN_WARNING "Chip reports voltage low on erase: status 0x%x\n", chipstatus);
|
||
ret = -EIO;
|
||
} else if (chipstatus & 0x20) {
|
||
if (retries--) {
|
||
printk(KERN_DEBUG "Chip erase failed at 0x%08lx: status 0x%x. Retrying...\n", adr, chipstatus);
|
||
timeo = jiffies + HZ;
|
||
put_chip(map, chip, adr);
|
||
spin_unlock(chip->mutex);
|
||
goto retry;
|
||
}
|
||
printk(KERN_DEBUG "Chip erase failed at 0x%08lx: status 0x%x\n", adr, chipstatus);
|
||
ret = -EIO;
|
||
}
|
||
} else {
|
||
xip_enable(map, chip, adr);
|
||
ret = 0;
|
||
}
|
||
|
||
out: put_chip(map, chip, adr);
|
||
spin_unlock(chip->mutex);
|
||
return ret;
|
||
}
|
||
|
||
int cfi_intelext_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
|
||
{
|
||
unsigned long ofs, len;
|
||
int ret;
|
||
|
||
ofs = instr->addr;
|
||
len = instr->len;
|
||
|
||
ret = cfi_varsize_frob(mtd, do_erase_oneblock, ofs, len, NULL);
|
||
if (ret)
|
||
return ret;
|
||
|
||
instr->state = MTD_ERASE_DONE;
|
||
mtd_erase_callback(instr);
|
||
|
||
return 0;
|
||
}
|
||
|
||
static void cfi_intelext_sync (struct mtd_info *mtd)
|
||
{
|
||
struct map_info *map = mtd->priv;
|
||
struct cfi_private *cfi = map->fldrv_priv;
|
||
int i;
|
||
struct flchip *chip;
|
||
int ret = 0;
|
||
|
||
for (i=0; !ret && i<cfi->numchips; i++) {
|
||
chip = &cfi->chips[i];
|
||
|
||
spin_lock(chip->mutex);
|
||
ret = get_chip(map, chip, chip->start, FL_SYNCING);
|
||
|
||
if (!ret) {
|
||
chip->oldstate = chip->state;
|
||
chip->state = FL_SYNCING;
|
||
/* No need to wake_up() on this state change -
|
||
* as the whole point is that nobody can do anything
|
||
* with the chip now anyway.
|
||
*/
|
||
}
|
||
spin_unlock(chip->mutex);
|
||
}
|
||
|
||
/* Unlock the chips again */
|
||
|
||
for (i--; i >=0; i--) {
|
||
chip = &cfi->chips[i];
|
||
|
||
spin_lock(chip->mutex);
|
||
|
||
if (chip->state == FL_SYNCING) {
|
||
chip->state = chip->oldstate;
|
||
wake_up(&chip->wq);
|
||
}
|
||
spin_unlock(chip->mutex);
|
||
}
|
||
}
|
||
|
||
#ifdef DEBUG_LOCK_BITS
|
||
static int __xipram do_printlockstatus_oneblock(struct map_info *map,
|
||
struct flchip *chip,
|
||
unsigned long adr,
|
||
int len, void *thunk)
|
||
{
|
||
struct cfi_private *cfi = map->fldrv_priv;
|
||
int status, ofs_factor = cfi->interleave * cfi->device_type;
|
||
|
||
xip_disable(map, chip, adr+(2*ofs_factor));
|
||
cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL);
|
||
chip->state = FL_JEDEC_QUERY;
|
||
status = cfi_read_query(map, adr+(2*ofs_factor));
|
||
xip_enable(map, chip, 0);
|
||
printk(KERN_DEBUG "block status register for 0x%08lx is %x\n",
|
||
adr, status);
|
||
return 0;
|
||
}
|
||
#endif
|
||
|
||
#define DO_XXLOCK_ONEBLOCK_LOCK ((void *) 1)
|
||
#define DO_XXLOCK_ONEBLOCK_UNLOCK ((void *) 2)
|
||
|
||
static int __xipram do_xxlock_oneblock(struct map_info *map, struct flchip *chip,
|
||
unsigned long adr, int len, void *thunk)
|
||
{
|
||
struct cfi_private *cfi = map->fldrv_priv;
|
||
map_word status, status_OK;
|
||
unsigned long timeo = jiffies + HZ;
|
||
int ret;
|
||
|
||
adr += chip->start;
|
||
|
||
/* Let's determine this according to the interleave only once */
|
||
status_OK = CMD(0x80);
|
||
|
||
spin_lock(chip->mutex);
|
||
ret = get_chip(map, chip, adr, FL_LOCKING);
|
||
if (ret) {
|
||
spin_unlock(chip->mutex);
|
||
return ret;
|
||
}
|
||
|
||
ENABLE_VPP(map);
|
||
xip_disable(map, chip, adr);
|
||
|
||
map_write(map, CMD(0x60), adr);
|
||
if (thunk == DO_XXLOCK_ONEBLOCK_LOCK) {
|
||
map_write(map, CMD(0x01), adr);
|
||
chip->state = FL_LOCKING;
|
||
} else if (thunk == DO_XXLOCK_ONEBLOCK_UNLOCK) {
|
||
map_write(map, CMD(0xD0), adr);
|
||
chip->state = FL_UNLOCKING;
|
||
} else
|
||
BUG();
|
||
|
||
spin_unlock(chip->mutex);
|
||
UDELAY(map, chip, adr, 1000000/HZ);
|
||
spin_lock(chip->mutex);
|
||
|
||
/* FIXME. Use a timer to check this, and return immediately. */
|
||
/* Once the state machine's known to be working I'll do that */
|
||
|
||
timeo = jiffies + (HZ*20);
|
||
for (;;) {
|
||
|
||
status = map_read(map, adr);
|
||
if (map_word_andequal(map, status, status_OK, status_OK))
|
||
break;
|
||
|
||
/* OK Still waiting */
|
||
if (time_after(jiffies, timeo)) {
|
||
map_word Xstatus;
|
||
map_write(map, CMD(0x70), adr);
|
||
chip->state = FL_STATUS;
|
||
Xstatus = map_read(map, adr);
|
||
xip_enable(map, chip, adr);
|
||
printk(KERN_ERR "waiting for unlock to complete timed out. status = %lx, Xstatus = %lx.\n",
|
||
status.x[0], Xstatus.x[0]);
|
||
put_chip(map, chip, adr);
|
||
spin_unlock(chip->mutex);
|
||
return -EIO;
|
||
}
|
||
|
||
/* Latency issues. Drop the lock, wait a while and retry */
|
||
spin_unlock(chip->mutex);
|
||
UDELAY(map, chip, adr, 1);
|
||
spin_lock(chip->mutex);
|
||
}
|
||
|
||
/* Done and happy. */
|
||
chip->state = FL_STATUS;
|
||
xip_enable(map, chip, adr);
|
||
put_chip(map, chip, adr);
|
||
spin_unlock(chip->mutex);
|
||
return 0;
|
||
}
|
||
|
||
static int cfi_intelext_lock(struct mtd_info *mtd, loff_t ofs, size_t len)
|
||
{
|
||
int ret;
|
||
|
||
#ifdef DEBUG_LOCK_BITS
|
||
printk(KERN_DEBUG "%s: lock status before, ofs=0x%08llx, len=0x%08X\n",
|
||
__FUNCTION__, ofs, len);
|
||
cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
|
||
ofs, len, 0);
|
||
#endif
|
||
|
||
ret = cfi_varsize_frob(mtd, do_xxlock_oneblock,
|
||
ofs, len, DO_XXLOCK_ONEBLOCK_LOCK);
|
||
|
||
#ifdef DEBUG_LOCK_BITS
|
||
printk(KERN_DEBUG "%s: lock status after, ret=%d\n",
|
||
__FUNCTION__, ret);
|
||
cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
|
||
ofs, len, 0);
|
||
#endif
|
||
|
||
return ret;
|
||
}
|
||
|
||
static int cfi_intelext_unlock(struct mtd_info *mtd, loff_t ofs, size_t len)
|
||
{
|
||
int ret;
|
||
|
||
#ifdef DEBUG_LOCK_BITS
|
||
printk(KERN_DEBUG "%s: lock status before, ofs=0x%08llx, len=0x%08X\n",
|
||
__FUNCTION__, ofs, len);
|
||
cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
|
||
ofs, len, 0);
|
||
#endif
|
||
|
||
ret = cfi_varsize_frob(mtd, do_xxlock_oneblock,
|
||
ofs, len, DO_XXLOCK_ONEBLOCK_UNLOCK);
|
||
|
||
#ifdef DEBUG_LOCK_BITS
|
||
printk(KERN_DEBUG "%s: lock status after, ret=%d\n",
|
||
__FUNCTION__, ret);
|
||
cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
|
||
ofs, len, 0);
|
||
#endif
|
||
|
||
return ret;
|
||
}
|
||
|
||
#ifdef CONFIG_MTD_OTP
|
||
|
||
typedef int (*otp_op_t)(struct map_info *map, struct flchip *chip,
|
||
u_long data_offset, u_char *buf, u_int size,
|
||
u_long prot_offset, u_int groupno, u_int groupsize);
|
||
|
||
static int __xipram
|
||
do_otp_read(struct map_info *map, struct flchip *chip, u_long offset,
|
||
u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz)
|
||
{
|
||
struct cfi_private *cfi = map->fldrv_priv;
|
||
int ret;
|
||
|
||
spin_lock(chip->mutex);
|
||
ret = get_chip(map, chip, chip->start, FL_JEDEC_QUERY);
|
||
if (ret) {
|
||
spin_unlock(chip->mutex);
|
||
return ret;
|
||
}
|
||
|
||
/* let's ensure we're not reading back cached data from array mode */
|
||
if (map->inval_cache)
|
||
map->inval_cache(map, chip->start + offset, size);
|
||
|
||
xip_disable(map, chip, chip->start);
|
||
if (chip->state != FL_JEDEC_QUERY) {
|
||
map_write(map, CMD(0x90), chip->start);
|
||
chip->state = FL_JEDEC_QUERY;
|
||
}
|
||
map_copy_from(map, buf, chip->start + offset, size);
|
||
xip_enable(map, chip, chip->start);
|
||
|
||
/* then ensure we don't keep OTP data in the cache */
|
||
if (map->inval_cache)
|
||
map->inval_cache(map, chip->start + offset, size);
|
||
|
||
put_chip(map, chip, chip->start);
|
||
spin_unlock(chip->mutex);
|
||
return 0;
|
||
}
|
||
|
||
static int
|
||
do_otp_write(struct map_info *map, struct flchip *chip, u_long offset,
|
||
u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz)
|
||
{
|
||
int ret;
|
||
|
||
while (size) {
|
||
unsigned long bus_ofs = offset & ~(map_bankwidth(map)-1);
|
||
int gap = offset - bus_ofs;
|
||
int n = min_t(int, size, map_bankwidth(map)-gap);
|
||
map_word datum = map_word_ff(map);
|
||
|
||
datum = map_word_load_partial(map, datum, buf, gap, n);
|
||
ret = do_write_oneword(map, chip, bus_ofs, datum, FL_OTP_WRITE);
|
||
if (ret)
|
||
return ret;
|
||
|
||
offset += n;
|
||
buf += n;
|
||
size -= n;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
static int
|
||
do_otp_lock(struct map_info *map, struct flchip *chip, u_long offset,
|
||
u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz)
|
||
{
|
||
struct cfi_private *cfi = map->fldrv_priv;
|
||
map_word datum;
|
||
|
||
/* make sure area matches group boundaries */
|
||
if (offset != 0 || size != grpsz)
|
||
return -EXDEV;
|
||
|
||
datum = map_word_ff(map);
|
||
datum = map_word_clr(map, datum, CMD(1 << grpno));
|
||
return do_write_oneword(map, chip, prot, datum, FL_OTP_WRITE);
|
||
}
|
||
|
||
static int cfi_intelext_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
|
||
size_t *retlen, u_char *buf,
|
||
otp_op_t action, int user_regs)
|
||
{
|
||
struct map_info *map = mtd->priv;
|
||
struct cfi_private *cfi = map->fldrv_priv;
|
||
struct cfi_pri_intelext *extp = cfi->cmdset_priv;
|
||
struct flchip *chip;
|
||
struct cfi_intelext_otpinfo *otp;
|
||
u_long devsize, reg_prot_offset, data_offset;
|
||
u_int chip_num, chip_step, field, reg_fact_size, reg_user_size;
|
||
u_int groups, groupno, groupsize, reg_fact_groups, reg_user_groups;
|
||
int ret;
|
||
|
||
*retlen = 0;
|
||
|
||
/* Check that we actually have some OTP registers */
|
||
if (!extp || !(extp->FeatureSupport & 64) || !extp->NumProtectionFields)
|
||
return -ENODATA;
|
||
|
||
/* we need real chips here not virtual ones */
|
||
devsize = (1 << cfi->cfiq->DevSize) * cfi->interleave;
|
||
chip_step = devsize >> cfi->chipshift;
|
||
|
||
for (chip_num = 0; chip_num < cfi->numchips; chip_num += chip_step) {
|
||
chip = &cfi->chips[chip_num];
|
||
otp = (struct cfi_intelext_otpinfo *)&extp->extra[0];
|
||
|
||
/* first OTP region */
|
||
field = 0;
|
||
reg_prot_offset = extp->ProtRegAddr;
|
||
reg_fact_groups = 1;
|
||
reg_fact_size = 1 << extp->FactProtRegSize;
|
||
reg_user_groups = 1;
|
||
reg_user_size = 1 << extp->UserProtRegSize;
|
||
|
||
while (len > 0) {
|
||
/* flash geometry fixup */
|
||
data_offset = reg_prot_offset + 1;
|
||
data_offset *= cfi->interleave * cfi->device_type;
|
||
reg_prot_offset *= cfi->interleave * cfi->device_type;
|
||
reg_fact_size *= cfi->interleave;
|
||
reg_user_size *= cfi->interleave;
|
||
|
||
if (user_regs) {
|
||
groups = reg_user_groups;
|
||
groupsize = reg_user_size;
|
||
/* skip over factory reg area */
|
||
groupno = reg_fact_groups;
|
||
data_offset += reg_fact_groups * reg_fact_size;
|
||
} else {
|
||
groups = reg_fact_groups;
|
||
groupsize = reg_fact_size;
|
||
groupno = 0;
|
||
}
|
||
|
||
while (groups > 0) {
|
||
if (!action) {
|
||
/*
|
||
* Special case: if action is NULL
|
||
* we fill buf with otp_info records.
|
||
*/
|
||
struct otp_info *otpinfo;
|
||
map_word lockword;
|
||
len -= sizeof(struct otp_info);
|
||
if (len <= 0)
|
||
return -ENOSPC;
|
||
ret = do_otp_read(map, chip,
|
||
reg_prot_offset,
|
||
(u_char *)&lockword,
|
||
map_bankwidth(map),
|
||
0, 0, 0);
|
||
if (ret)
|
||
return ret;
|
||
otpinfo = (struct otp_info *)buf;
|
||
otpinfo->start = from;
|
||
otpinfo->length = groupsize;
|
||
otpinfo->locked =
|
||
!map_word_bitsset(map, lockword,
|
||
CMD(1 << groupno));
|
||
from += groupsize;
|
||
buf += sizeof(*otpinfo);
|
||
*retlen += sizeof(*otpinfo);
|
||
} else if (from >= groupsize) {
|
||
from -= groupsize;
|
||
} else {
|
||
int size = groupsize;
|
||
data_offset += from;
|
||
size -= from;
|
||
from = 0;
|
||
if (size > len)
|
||
size = len;
|
||
ret = action(map, chip, data_offset,
|
||
buf, size, reg_prot_offset,
|
||
groupno, groupsize);
|
||
if (ret < 0)
|
||
return ret;
|
||
buf += size;
|
||
len -= size;
|
||
*retlen += size;
|
||
}
|
||
groupno++;
|
||
groups--;
|
||
}
|
||
|
||
/* next OTP region */
|
||
if (++field == extp->NumProtectionFields)
|
||
break;
|
||
reg_prot_offset = otp->ProtRegAddr;
|
||
reg_fact_groups = otp->FactGroups;
|
||
reg_fact_size = 1 << otp->FactProtRegSize;
|
||
reg_user_groups = otp->UserGroups;
|
||
reg_user_size = 1 << otp->UserProtRegSize;
|
||
otp++;
|
||
}
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
static int cfi_intelext_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
|
||
size_t len, size_t *retlen,
|
||
u_char *buf)
|
||
{
|
||
return cfi_intelext_otp_walk(mtd, from, len, retlen,
|
||
buf, do_otp_read, 0);
|
||
}
|
||
|
||
static int cfi_intelext_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
|
||
size_t len, size_t *retlen,
|
||
u_char *buf)
|
||
{
|
||
return cfi_intelext_otp_walk(mtd, from, len, retlen,
|
||
buf, do_otp_read, 1);
|
||
}
|
||
|
||
static int cfi_intelext_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
|
||
size_t len, size_t *retlen,
|
||
u_char *buf)
|
||
{
|
||
return cfi_intelext_otp_walk(mtd, from, len, retlen,
|
||
buf, do_otp_write, 1);
|
||
}
|
||
|
||
static int cfi_intelext_lock_user_prot_reg(struct mtd_info *mtd,
|
||
loff_t from, size_t len)
|
||
{
|
||
size_t retlen;
|
||
return cfi_intelext_otp_walk(mtd, from, len, &retlen,
|
||
NULL, do_otp_lock, 1);
|
||
}
|
||
|
||
static int cfi_intelext_get_fact_prot_info(struct mtd_info *mtd,
|
||
struct otp_info *buf, size_t len)
|
||
{
|
||
size_t retlen;
|
||
int ret;
|
||
|
||
ret = cfi_intelext_otp_walk(mtd, 0, len, &retlen, (u_char *)buf, NULL, 0);
|
||
return ret ? : retlen;
|
||
}
|
||
|
||
static int cfi_intelext_get_user_prot_info(struct mtd_info *mtd,
|
||
struct otp_info *buf, size_t len)
|
||
{
|
||
size_t retlen;
|
||
int ret;
|
||
|
||
ret = cfi_intelext_otp_walk(mtd, 0, len, &retlen, (u_char *)buf, NULL, 1);
|
||
return ret ? : retlen;
|
||
}
|
||
|
||
#endif
|
||
|
||
static int cfi_intelext_suspend(struct mtd_info *mtd)
|
||
{
|
||
struct map_info *map = mtd->priv;
|
||
struct cfi_private *cfi = map->fldrv_priv;
|
||
int i;
|
||
struct flchip *chip;
|
||
int ret = 0;
|
||
|
||
for (i=0; !ret && i<cfi->numchips; i++) {
|
||
chip = &cfi->chips[i];
|
||
|
||
spin_lock(chip->mutex);
|
||
|
||
switch (chip->state) {
|
||
case FL_READY:
|
||
case FL_STATUS:
|
||
case FL_CFI_QUERY:
|
||
case FL_JEDEC_QUERY:
|
||
if (chip->oldstate == FL_READY) {
|
||
chip->oldstate = chip->state;
|
||
chip->state = FL_PM_SUSPENDED;
|
||
/* No need to wake_up() on this state change -
|
||
* as the whole point is that nobody can do anything
|
||
* with the chip now anyway.
|
||
*/
|
||
} else {
|
||
/* There seems to be an operation pending. We must wait for it. */
|
||
printk(KERN_NOTICE "Flash device refused suspend due to pending operation (oldstate %d)\n", chip->oldstate);
|
||
ret = -EAGAIN;
|
||
}
|
||
break;
|
||
default:
|
||
/* Should we actually wait? Once upon a time these routines weren't
|
||
allowed to. Or should we return -EAGAIN, because the upper layers
|
||
ought to have already shut down anything which was using the device
|
||
anyway? The latter for now. */
|
||
printk(KERN_NOTICE "Flash device refused suspend due to active operation (state %d)\n", chip->oldstate);
|
||
ret = -EAGAIN;
|
||
case FL_PM_SUSPENDED:
|
||
break;
|
||
}
|
||
spin_unlock(chip->mutex);
|
||
}
|
||
|
||
/* Unlock the chips again */
|
||
|
||
if (ret) {
|
||
for (i--; i >=0; i--) {
|
||
chip = &cfi->chips[i];
|
||
|
||
spin_lock(chip->mutex);
|
||
|
||
if (chip->state == FL_PM_SUSPENDED) {
|
||
/* No need to force it into a known state here,
|
||
because we're returning failure, and it didn't
|
||
get power cycled */
|
||
chip->state = chip->oldstate;
|
||
chip->oldstate = FL_READY;
|
||
wake_up(&chip->wq);
|
||
}
|
||
spin_unlock(chip->mutex);
|
||
}
|
||
}
|
||
|
||
return ret;
|
||
}
|
||
|
||
static void cfi_intelext_resume(struct mtd_info *mtd)
|
||
{
|
||
struct map_info *map = mtd->priv;
|
||
struct cfi_private *cfi = map->fldrv_priv;
|
||
int i;
|
||
struct flchip *chip;
|
||
|
||
for (i=0; i<cfi->numchips; i++) {
|
||
|
||
chip = &cfi->chips[i];
|
||
|
||
spin_lock(chip->mutex);
|
||
|
||
/* Go to known state. Chip may have been power cycled */
|
||
if (chip->state == FL_PM_SUSPENDED) {
|
||
map_write(map, CMD(0xFF), cfi->chips[i].start);
|
||
chip->oldstate = chip->state = FL_READY;
|
||
wake_up(&chip->wq);
|
||
}
|
||
|
||
spin_unlock(chip->mutex);
|
||
}
|
||
}
|
||
|
||
static void cfi_intelext_destroy(struct mtd_info *mtd)
|
||
{
|
||
struct map_info *map = mtd->priv;
|
||
struct cfi_private *cfi = map->fldrv_priv;
|
||
kfree(cfi->cmdset_priv);
|
||
kfree(cfi->cfiq);
|
||
kfree(cfi->chips[0].priv);
|
||
kfree(cfi);
|
||
kfree(mtd->eraseregions);
|
||
}
|
||
|
||
static char im_name_1[]="cfi_cmdset_0001";
|
||
static char im_name_3[]="cfi_cmdset_0003";
|
||
|
||
static int __init cfi_intelext_init(void)
|
||
{
|
||
inter_module_register(im_name_1, THIS_MODULE, &cfi_cmdset_0001);
|
||
inter_module_register(im_name_3, THIS_MODULE, &cfi_cmdset_0001);
|
||
return 0;
|
||
}
|
||
|
||
static void __exit cfi_intelext_exit(void)
|
||
{
|
||
inter_module_unregister(im_name_1);
|
||
inter_module_unregister(im_name_3);
|
||
}
|
||
|
||
module_init(cfi_intelext_init);
|
||
module_exit(cfi_intelext_exit);
|
||
|
||
MODULE_LICENSE("GPL");
|
||
MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org> et al.");
|
||
MODULE_DESCRIPTION("MTD chip driver for Intel/Sharp flash chips");
|