linux/drivers/video/omap/rfbi.c
Tomi Valkeinen bc092a303a OMAP: OMAPFB: fix rfbi.c compile error
The code in rfbi.c tried to get the omapdss platform_device via a static
member defined in dispc.c, leading to a compile error. The same
platform_device is available through rfbi-struct.

Signed-off-by: Tomi Valkeinen <tomi.valkeinen@nokia.com>
2010-06-15 10:17:25 +03:00

599 lines
13 KiB
C

/*
* OMAP2 Remote Frame Buffer Interface support
*
* Copyright (C) 2005 Nokia Corporation
* Author: Juha Yrjölä <juha.yrjola@nokia.com>
* Imre Deak <imre.deak@nokia.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/i2c.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/platform_device.h>
#include "omapfb.h"
#include "dispc.h"
/* To work around an RFBI transfer rate limitation */
#define OMAP_RFBI_RATE_LIMIT 1
#define RFBI_BASE 0x48050800
#define RFBI_REVISION 0x0000
#define RFBI_SYSCONFIG 0x0010
#define RFBI_SYSSTATUS 0x0014
#define RFBI_CONTROL 0x0040
#define RFBI_PIXEL_CNT 0x0044
#define RFBI_LINE_NUMBER 0x0048
#define RFBI_CMD 0x004c
#define RFBI_PARAM 0x0050
#define RFBI_DATA 0x0054
#define RFBI_READ 0x0058
#define RFBI_STATUS 0x005c
#define RFBI_CONFIG0 0x0060
#define RFBI_ONOFF_TIME0 0x0064
#define RFBI_CYCLE_TIME0 0x0068
#define RFBI_DATA_CYCLE1_0 0x006c
#define RFBI_DATA_CYCLE2_0 0x0070
#define RFBI_DATA_CYCLE3_0 0x0074
#define RFBI_VSYNC_WIDTH 0x0090
#define RFBI_HSYNC_WIDTH 0x0094
#define DISPC_BASE 0x48050400
#define DISPC_CONTROL 0x0040
#define DISPC_IRQ_FRAMEMASK 0x0001
static struct {
void __iomem *base;
void (*lcdc_callback)(void *data);
void *lcdc_callback_data;
unsigned long l4_khz;
int bits_per_cycle;
struct omapfb_device *fbdev;
struct clk *dss_ick;
struct clk *dss1_fck;
unsigned tearsync_pin_cnt;
unsigned tearsync_mode;
} rfbi;
static inline void rfbi_write_reg(int idx, u32 val)
{
__raw_writel(val, rfbi.base + idx);
}
static inline u32 rfbi_read_reg(int idx)
{
return __raw_readl(rfbi.base + idx);
}
static int rfbi_get_clocks(void)
{
rfbi.dss_ick = clk_get(&rfbi.fbdev->dssdev->dev, "ick");
if (IS_ERR(rfbi.dss_ick)) {
dev_err(rfbi.fbdev->dev, "can't get ick\n");
return PTR_ERR(rfbi.dss_ick);
}
rfbi.dss1_fck = clk_get(&rfbi.fbdev->dssdev->dev, "dss1_fck");
if (IS_ERR(rfbi.dss1_fck)) {
dev_err(rfbi.fbdev->dev, "can't get dss1_fck\n");
clk_put(rfbi.dss_ick);
return PTR_ERR(rfbi.dss1_fck);
}
return 0;
}
static void rfbi_put_clocks(void)
{
clk_put(rfbi.dss1_fck);
clk_put(rfbi.dss_ick);
}
static void rfbi_enable_clocks(int enable)
{
if (enable) {
clk_enable(rfbi.dss_ick);
clk_enable(rfbi.dss1_fck);
} else {
clk_disable(rfbi.dss1_fck);
clk_disable(rfbi.dss_ick);
}
}
#ifdef VERBOSE
static void rfbi_print_timings(void)
{
u32 l;
u32 time;
l = rfbi_read_reg(RFBI_CONFIG0);
time = 1000000000 / rfbi.l4_khz;
if (l & (1 << 4))
time *= 2;
dev_dbg(rfbi.fbdev->dev, "Tick time %u ps\n", time);
l = rfbi_read_reg(RFBI_ONOFF_TIME0);
dev_dbg(rfbi.fbdev->dev,
"CSONTIME %d, CSOFFTIME %d, WEONTIME %d, WEOFFTIME %d, "
"REONTIME %d, REOFFTIME %d\n",
l & 0x0f, (l >> 4) & 0x3f, (l >> 10) & 0x0f, (l >> 14) & 0x3f,
(l >> 20) & 0x0f, (l >> 24) & 0x3f);
l = rfbi_read_reg(RFBI_CYCLE_TIME0);
dev_dbg(rfbi.fbdev->dev,
"WECYCLETIME %d, RECYCLETIME %d, CSPULSEWIDTH %d, "
"ACCESSTIME %d\n",
(l & 0x3f), (l >> 6) & 0x3f, (l >> 12) & 0x3f,
(l >> 22) & 0x3f);
}
#else
static void rfbi_print_timings(void) {}
#endif
static void rfbi_set_timings(const struct extif_timings *t)
{
u32 l;
BUG_ON(!t->converted);
rfbi_enable_clocks(1);
rfbi_write_reg(RFBI_ONOFF_TIME0, t->tim[0]);
rfbi_write_reg(RFBI_CYCLE_TIME0, t->tim[1]);
l = rfbi_read_reg(RFBI_CONFIG0);
l &= ~(1 << 4);
l |= (t->tim[2] ? 1 : 0) << 4;
rfbi_write_reg(RFBI_CONFIG0, l);
rfbi_print_timings();
rfbi_enable_clocks(0);
}
static void rfbi_get_clk_info(u32 *clk_period, u32 *max_clk_div)
{
*clk_period = 1000000000 / rfbi.l4_khz;
*max_clk_div = 2;
}
static int ps_to_rfbi_ticks(int time, int div)
{
unsigned long tick_ps;
int ret;
/* Calculate in picosecs to yield more exact results */
tick_ps = 1000000000 / (rfbi.l4_khz) * div;
ret = (time + tick_ps - 1) / tick_ps;
return ret;
}
#ifdef OMAP_RFBI_RATE_LIMIT
static unsigned long rfbi_get_max_tx_rate(void)
{
unsigned long l4_rate, dss1_rate;
int min_l4_ticks = 0;
int i;
/* According to TI this can't be calculated so make the
* adjustments for a couple of known frequencies and warn for
* others.
*/
static const struct {
unsigned long l4_clk; /* HZ */
unsigned long dss1_clk; /* HZ */
unsigned long min_l4_ticks;
} ftab[] = {
{ 55, 132, 7, }, /* 7.86 MPix/s */
{ 110, 110, 12, }, /* 9.16 MPix/s */
{ 110, 132, 10, }, /* 11 Mpix/s */
{ 120, 120, 10, }, /* 12 Mpix/s */
{ 133, 133, 10, }, /* 13.3 Mpix/s */
};
l4_rate = rfbi.l4_khz / 1000;
dss1_rate = clk_get_rate(rfbi.dss1_fck) / 1000000;
for (i = 0; i < ARRAY_SIZE(ftab); i++) {
/* Use a window instead of an exact match, to account
* for different DPLL multiplier / divider pairs.
*/
if (abs(ftab[i].l4_clk - l4_rate) < 3 &&
abs(ftab[i].dss1_clk - dss1_rate) < 3) {
min_l4_ticks = ftab[i].min_l4_ticks;
break;
}
}
if (i == ARRAY_SIZE(ftab)) {
/* Can't be sure, return anyway the maximum not
* rate-limited. This might cause a problem only for the
* tearing synchronisation.
*/
dev_err(rfbi.fbdev->dev,
"can't determine maximum RFBI transfer rate\n");
return rfbi.l4_khz * 1000;
}
return rfbi.l4_khz * 1000 / min_l4_ticks;
}
#else
static int rfbi_get_max_tx_rate(void)
{
return rfbi.l4_khz * 1000;
}
#endif
static int rfbi_convert_timings(struct extif_timings *t)
{
u32 l;
int reon, reoff, weon, weoff, cson, csoff, cs_pulse;
int actim, recyc, wecyc;
int div = t->clk_div;
if (div <= 0 || div > 2)
return -1;
/* Make sure that after conversion it still holds that:
* weoff > weon, reoff > reon, recyc >= reoff, wecyc >= weoff,
* csoff > cson, csoff >= max(weoff, reoff), actim > reon
*/
weon = ps_to_rfbi_ticks(t->we_on_time, div);
weoff = ps_to_rfbi_ticks(t->we_off_time, div);
if (weoff <= weon)
weoff = weon + 1;
if (weon > 0x0f)
return -1;
if (weoff > 0x3f)
return -1;
reon = ps_to_rfbi_ticks(t->re_on_time, div);
reoff = ps_to_rfbi_ticks(t->re_off_time, div);
if (reoff <= reon)
reoff = reon + 1;
if (reon > 0x0f)
return -1;
if (reoff > 0x3f)
return -1;
cson = ps_to_rfbi_ticks(t->cs_on_time, div);
csoff = ps_to_rfbi_ticks(t->cs_off_time, div);
if (csoff <= cson)
csoff = cson + 1;
if (csoff < max(weoff, reoff))
csoff = max(weoff, reoff);
if (cson > 0x0f)
return -1;
if (csoff > 0x3f)
return -1;
l = cson;
l |= csoff << 4;
l |= weon << 10;
l |= weoff << 14;
l |= reon << 20;
l |= reoff << 24;
t->tim[0] = l;
actim = ps_to_rfbi_ticks(t->access_time, div);
if (actim <= reon)
actim = reon + 1;
if (actim > 0x3f)
return -1;
wecyc = ps_to_rfbi_ticks(t->we_cycle_time, div);
if (wecyc < weoff)
wecyc = weoff;
if (wecyc > 0x3f)
return -1;
recyc = ps_to_rfbi_ticks(t->re_cycle_time, div);
if (recyc < reoff)
recyc = reoff;
if (recyc > 0x3f)
return -1;
cs_pulse = ps_to_rfbi_ticks(t->cs_pulse_width, div);
if (cs_pulse > 0x3f)
return -1;
l = wecyc;
l |= recyc << 6;
l |= cs_pulse << 12;
l |= actim << 22;
t->tim[1] = l;
t->tim[2] = div - 1;
t->converted = 1;
return 0;
}
static int rfbi_setup_tearsync(unsigned pin_cnt,
unsigned hs_pulse_time, unsigned vs_pulse_time,
int hs_pol_inv, int vs_pol_inv, int extif_div)
{
int hs, vs;
int min;
u32 l;
if (pin_cnt != 1 && pin_cnt != 2)
return -EINVAL;
hs = ps_to_rfbi_ticks(hs_pulse_time, 1);
vs = ps_to_rfbi_ticks(vs_pulse_time, 1);
if (hs < 2)
return -EDOM;
if (pin_cnt == 2)
min = 2;
else
min = 4;
if (vs < min)
return -EDOM;
if (vs == hs)
return -EINVAL;
rfbi.tearsync_pin_cnt = pin_cnt;
dev_dbg(rfbi.fbdev->dev,
"setup_tearsync: pins %d hs %d vs %d hs_inv %d vs_inv %d\n",
pin_cnt, hs, vs, hs_pol_inv, vs_pol_inv);
rfbi_enable_clocks(1);
rfbi_write_reg(RFBI_HSYNC_WIDTH, hs);
rfbi_write_reg(RFBI_VSYNC_WIDTH, vs);
l = rfbi_read_reg(RFBI_CONFIG0);
if (hs_pol_inv)
l &= ~(1 << 21);
else
l |= 1 << 21;
if (vs_pol_inv)
l &= ~(1 << 20);
else
l |= 1 << 20;
rfbi_enable_clocks(0);
return 0;
}
static int rfbi_enable_tearsync(int enable, unsigned line)
{
u32 l;
dev_dbg(rfbi.fbdev->dev, "tearsync %d line %d mode %d\n",
enable, line, rfbi.tearsync_mode);
if (line > (1 << 11) - 1)
return -EINVAL;
rfbi_enable_clocks(1);
l = rfbi_read_reg(RFBI_CONFIG0);
l &= ~(0x3 << 2);
if (enable) {
rfbi.tearsync_mode = rfbi.tearsync_pin_cnt;
l |= rfbi.tearsync_mode << 2;
} else
rfbi.tearsync_mode = 0;
rfbi_write_reg(RFBI_CONFIG0, l);
rfbi_write_reg(RFBI_LINE_NUMBER, line);
rfbi_enable_clocks(0);
return 0;
}
static void rfbi_write_command(const void *buf, unsigned int len)
{
rfbi_enable_clocks(1);
if (rfbi.bits_per_cycle == 16) {
const u16 *w = buf;
BUG_ON(len & 1);
for (; len; len -= 2)
rfbi_write_reg(RFBI_CMD, *w++);
} else {
const u8 *b = buf;
BUG_ON(rfbi.bits_per_cycle != 8);
for (; len; len--)
rfbi_write_reg(RFBI_CMD, *b++);
}
rfbi_enable_clocks(0);
}
static void rfbi_read_data(void *buf, unsigned int len)
{
rfbi_enable_clocks(1);
if (rfbi.bits_per_cycle == 16) {
u16 *w = buf;
BUG_ON(len & ~1);
for (; len; len -= 2) {
rfbi_write_reg(RFBI_READ, 0);
*w++ = rfbi_read_reg(RFBI_READ);
}
} else {
u8 *b = buf;
BUG_ON(rfbi.bits_per_cycle != 8);
for (; len; len--) {
rfbi_write_reg(RFBI_READ, 0);
*b++ = rfbi_read_reg(RFBI_READ);
}
}
rfbi_enable_clocks(0);
}
static void rfbi_write_data(const void *buf, unsigned int len)
{
rfbi_enable_clocks(1);
if (rfbi.bits_per_cycle == 16) {
const u16 *w = buf;
BUG_ON(len & 1);
for (; len; len -= 2)
rfbi_write_reg(RFBI_PARAM, *w++);
} else {
const u8 *b = buf;
BUG_ON(rfbi.bits_per_cycle != 8);
for (; len; len--)
rfbi_write_reg(RFBI_PARAM, *b++);
}
rfbi_enable_clocks(0);
}
static void rfbi_transfer_area(int width, int height,
void (callback)(void * data), void *data)
{
u32 w;
BUG_ON(callback == NULL);
rfbi_enable_clocks(1);
omap_dispc_set_lcd_size(width, height);
rfbi.lcdc_callback = callback;
rfbi.lcdc_callback_data = data;
rfbi_write_reg(RFBI_PIXEL_CNT, width * height);
w = rfbi_read_reg(RFBI_CONTROL);
w |= 1; /* enable */
if (!rfbi.tearsync_mode)
w |= 1 << 4; /* internal trigger, reset by HW */
rfbi_write_reg(RFBI_CONTROL, w);
omap_dispc_enable_lcd_out(1);
}
static inline void _stop_transfer(void)
{
u32 w;
w = rfbi_read_reg(RFBI_CONTROL);
rfbi_write_reg(RFBI_CONTROL, w & ~(1 << 0));
rfbi_enable_clocks(0);
}
static void rfbi_dma_callback(void *data)
{
_stop_transfer();
rfbi.lcdc_callback(rfbi.lcdc_callback_data);
}
static void rfbi_set_bits_per_cycle(int bpc)
{
u32 l;
rfbi_enable_clocks(1);
l = rfbi_read_reg(RFBI_CONFIG0);
l &= ~(0x03 << 0);
switch (bpc) {
case 8:
break;
case 16:
l |= 3;
break;
default:
BUG();
}
rfbi_write_reg(RFBI_CONFIG0, l);
rfbi.bits_per_cycle = bpc;
rfbi_enable_clocks(0);
}
static int rfbi_init(struct omapfb_device *fbdev)
{
u32 l;
int r;
rfbi.fbdev = fbdev;
rfbi.base = ioremap(RFBI_BASE, SZ_1K);
if (!rfbi.base) {
dev_err(fbdev->dev, "can't ioremap RFBI\n");
return -ENOMEM;
}
if ((r = rfbi_get_clocks()) < 0)
return r;
rfbi_enable_clocks(1);
rfbi.l4_khz = clk_get_rate(rfbi.dss_ick) / 1000;
/* Reset */
rfbi_write_reg(RFBI_SYSCONFIG, 1 << 1);
while (!(rfbi_read_reg(RFBI_SYSSTATUS) & (1 << 0)));
l = rfbi_read_reg(RFBI_SYSCONFIG);
/* Enable autoidle and smart-idle */
l |= (1 << 0) | (2 << 3);
rfbi_write_reg(RFBI_SYSCONFIG, l);
/* 16-bit interface, ITE trigger mode, 16-bit data */
l = (0x03 << 0) | (0x00 << 2) | (0x01 << 5) | (0x02 << 7);
l |= (0 << 9) | (1 << 20) | (1 << 21);
rfbi_write_reg(RFBI_CONFIG0, l);
rfbi_write_reg(RFBI_DATA_CYCLE1_0, 0x00000010);
l = rfbi_read_reg(RFBI_CONTROL);
/* Select CS0, clear bypass mode */
l = (0x01 << 2);
rfbi_write_reg(RFBI_CONTROL, l);
r = omap_dispc_request_irq(DISPC_IRQ_FRAMEMASK, rfbi_dma_callback,
NULL);
if (r < 0) {
dev_err(fbdev->dev, "can't get DISPC irq\n");
rfbi_enable_clocks(0);
return r;
}
l = rfbi_read_reg(RFBI_REVISION);
pr_info("omapfb: RFBI version %d.%d initialized\n",
(l >> 4) & 0x0f, l & 0x0f);
rfbi_enable_clocks(0);
return 0;
}
static void rfbi_cleanup(void)
{
omap_dispc_free_irq(DISPC_IRQ_FRAMEMASK, rfbi_dma_callback, NULL);
rfbi_put_clocks();
iounmap(rfbi.base);
}
const struct lcd_ctrl_extif omap2_ext_if = {
.init = rfbi_init,
.cleanup = rfbi_cleanup,
.get_clk_info = rfbi_get_clk_info,
.get_max_tx_rate = rfbi_get_max_tx_rate,
.set_bits_per_cycle = rfbi_set_bits_per_cycle,
.convert_timings = rfbi_convert_timings,
.set_timings = rfbi_set_timings,
.write_command = rfbi_write_command,
.read_data = rfbi_read_data,
.write_data = rfbi_write_data,
.transfer_area = rfbi_transfer_area,
.setup_tearsync = rfbi_setup_tearsync,
.enable_tearsync = rfbi_enable_tearsync,
.max_transmit_size = (u32) ~0,
};