With GuC handling scheduling, i915 is not aware of the time that a context is scheduled in and out of the engine. Since i915 pmu relies on this info to provide engine busyness to the user, GuC shares this info with i915 for all engines using shared memory. For each engine, this info contains: - total busyness: total time that the context was running (total) - id: id of the running context (id) - start timestamp: timestamp when the context started running (start) At the time (now) of sampling the engine busyness, if the id is valid (!= ~0), and start is non-zero, then the context is considered to be active and the engine busyness is calculated using the below equation engine busyness = total + (now - start) All times are obtained from the gt clock base. For inactive contexts, engine busyness is just equal to the total. The start and total values provided by GuC are 32 bits and wrap around in a few minutes. Since perf pmu provides busyness as 64 bit monotonically increasing values, there is a need for this implementation to account for overflows and extend the time to 64 bits before returning busyness to the user. In order to do that, a worker runs periodically at frequency = 1/8th the time it takes for the timestamp to wrap. As an example, that would be once in 27 seconds for a gt clock frequency of 19.2 MHz. Note: There might be an over-accounting of busyness due to the fact that GuC may be updating the total and start values while kmd is reading them. (i.e kmd may read the updated total and the stale start). In such a case, user may see higher busyness value followed by smaller ones which would eventually catch up to the higher value. v2: (Tvrtko) - Include details in commit message - Move intel engine busyness function into execlist code - Use union inside engine->stats - Use natural type for ping delay jiffies - Drop active_work condition checks - Use for_each_engine if iterating all engines - Drop seq locking, use spinlock at GuC level to update engine stats - Document worker specific details v3: (Tvrtko/Umesh) - Demarcate GuC and execlist stat objects with comments - Document known over-accounting issue in commit - Provide a consistent view of GuC state - Add hooks to gt park/unpark for GuC busyness - Stop/start worker in gt park/unpark path - Drop inline - Move spinlock and worker inits to GuC initialization - Drop helpers that are called only once v4: (Tvrtko/Matt/Umesh) - Drop addressed opens from commit message - Get runtime pm in ping, remove from the park path - Use cancel_delayed_work_sync in disable_submission path - Update stats during reset prepare - Skip ping if reset in progress - Explicitly name execlists and GuC stats objects - Since disable_submission is called from many places, move resetting stats to intel_guc_submission_reset_prepare v5: (Tvrtko) - Add a trylock helper that does not sleep and synchronize PMU event callbacks and worker with gt reset v6: (CI BAT failures) - DUTs using execlist submission failed to boot since __gt_unpark is called during i915 load. This ends up calling the GuC busyness unpark hook and results in kick-starting an uninitialized worker. Let park/unpark hooks check if GuC submission has been initialized. - drop cant_sleep() from trylock helper since rcu_read_lock takes care of that. v7: (CI) Fix igt@i915_selftest@live@gt_engines - For GuC mode of submission the engine busyness is derived from gt time domain. Use gt time elapsed as reference in the selftest. - Increase busyness calculation to 10ms duration to ensure batch runs longer and falls within the busyness tolerances in selftest. v8: - Use ktime_get in selftest as before - intel_reset_trylock_no_wait results in a lockdep splat that is not trivial to fix since the PMU callback runs in irq context and the reset paths are tightly knit into the driver. The test that uncovers this is igt@perf_pmu@faulting-read. Drop intel_reset_trylock_no_wait, instead use the reset_count to synchronize with gt reset during pmu callback. For the ping, continue to use intel_reset_trylock since ping is not run in irq context. - GuC PM timestamp does not tick when GuC is idle. This can potentially result in wrong busyness values when a context is active on the engine, but GuC is idle. Use the RING TIMESTAMP as GPU timestamp to process the GuC busyness stats. This works since both GuC timestamp and RING timestamp are synced with the same clock. - The busyness stats may get updated after the batch starts running. This delay causes the busyness reported for 100us duration to fall below 95% in the selftest. The only option at this time is to wait for GuC busyness to change from idle to active before we sample busyness over a 100us period. Signed-off-by: John Harrison <John.C.Harrison@Intel.com> Signed-off-by: Umesh Nerlige Ramappa <umesh.nerlige.ramappa@intel.com> Acked-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Reviewed-by: Matthew Brost <matthew.brost@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20211027004821.66097-2-umesh.nerlige.ramappa@intel.com
652 lines
18 KiB
C
652 lines
18 KiB
C
// SPDX-License-Identifier: MIT
|
|
/*
|
|
* Copyright © 2014-2019 Intel Corporation
|
|
*/
|
|
|
|
#include <linux/bsearch.h>
|
|
|
|
#include "gt/intel_gt.h"
|
|
#include "gt/intel_lrc.h"
|
|
#include "gt/shmem_utils.h"
|
|
#include "intel_guc_ads.h"
|
|
#include "intel_guc_fwif.h"
|
|
#include "intel_uc.h"
|
|
#include "i915_drv.h"
|
|
|
|
/*
|
|
* The Additional Data Struct (ADS) has pointers for different buffers used by
|
|
* the GuC. One single gem object contains the ADS struct itself (guc_ads) and
|
|
* all the extra buffers indirectly linked via the ADS struct's entries.
|
|
*
|
|
* Layout of the ADS blob allocated for the GuC:
|
|
*
|
|
* +---------------------------------------+ <== base
|
|
* | guc_ads |
|
|
* +---------------------------------------+
|
|
* | guc_policies |
|
|
* +---------------------------------------+
|
|
* | guc_gt_system_info |
|
|
* +---------------------------------------+
|
|
* | guc_engine_usage |
|
|
* +---------------------------------------+ <== static
|
|
* | guc_mmio_reg[countA] (engine 0.0) |
|
|
* | guc_mmio_reg[countB] (engine 0.1) |
|
|
* | guc_mmio_reg[countC] (engine 1.0) |
|
|
* | ... |
|
|
* +---------------------------------------+ <== dynamic
|
|
* | padding |
|
|
* +---------------------------------------+ <== 4K aligned
|
|
* | golden contexts |
|
|
* +---------------------------------------+
|
|
* | padding |
|
|
* +---------------------------------------+ <== 4K aligned
|
|
* | private data |
|
|
* +---------------------------------------+
|
|
* | padding |
|
|
* +---------------------------------------+ <== 4K aligned
|
|
*/
|
|
struct __guc_ads_blob {
|
|
struct guc_ads ads;
|
|
struct guc_policies policies;
|
|
struct guc_gt_system_info system_info;
|
|
struct guc_engine_usage engine_usage;
|
|
/* From here on, location is dynamic! Refer to above diagram. */
|
|
struct guc_mmio_reg regset[0];
|
|
} __packed;
|
|
|
|
static u32 guc_ads_regset_size(struct intel_guc *guc)
|
|
{
|
|
GEM_BUG_ON(!guc->ads_regset_size);
|
|
return guc->ads_regset_size;
|
|
}
|
|
|
|
static u32 guc_ads_golden_ctxt_size(struct intel_guc *guc)
|
|
{
|
|
return PAGE_ALIGN(guc->ads_golden_ctxt_size);
|
|
}
|
|
|
|
static u32 guc_ads_private_data_size(struct intel_guc *guc)
|
|
{
|
|
return PAGE_ALIGN(guc->fw.private_data_size);
|
|
}
|
|
|
|
static u32 guc_ads_regset_offset(struct intel_guc *guc)
|
|
{
|
|
return offsetof(struct __guc_ads_blob, regset);
|
|
}
|
|
|
|
static u32 guc_ads_golden_ctxt_offset(struct intel_guc *guc)
|
|
{
|
|
u32 offset;
|
|
|
|
offset = guc_ads_regset_offset(guc) +
|
|
guc_ads_regset_size(guc);
|
|
|
|
return PAGE_ALIGN(offset);
|
|
}
|
|
|
|
static u32 guc_ads_private_data_offset(struct intel_guc *guc)
|
|
{
|
|
u32 offset;
|
|
|
|
offset = guc_ads_golden_ctxt_offset(guc) +
|
|
guc_ads_golden_ctxt_size(guc);
|
|
|
|
return PAGE_ALIGN(offset);
|
|
}
|
|
|
|
static u32 guc_ads_blob_size(struct intel_guc *guc)
|
|
{
|
|
return guc_ads_private_data_offset(guc) +
|
|
guc_ads_private_data_size(guc);
|
|
}
|
|
|
|
static void guc_policies_init(struct intel_guc *guc, struct guc_policies *policies)
|
|
{
|
|
struct intel_gt *gt = guc_to_gt(guc);
|
|
struct drm_i915_private *i915 = gt->i915;
|
|
|
|
policies->dpc_promote_time = GLOBAL_POLICY_DEFAULT_DPC_PROMOTE_TIME_US;
|
|
policies->max_num_work_items = GLOBAL_POLICY_MAX_NUM_WI;
|
|
|
|
policies->global_flags = 0;
|
|
if (i915->params.reset < 2)
|
|
policies->global_flags |= GLOBAL_POLICY_DISABLE_ENGINE_RESET;
|
|
|
|
policies->is_valid = 1;
|
|
}
|
|
|
|
void intel_guc_ads_print_policy_info(struct intel_guc *guc,
|
|
struct drm_printer *dp)
|
|
{
|
|
struct __guc_ads_blob *blob = guc->ads_blob;
|
|
|
|
if (unlikely(!blob))
|
|
return;
|
|
|
|
drm_printf(dp, "Global scheduling policies:\n");
|
|
drm_printf(dp, " DPC promote time = %u\n", blob->policies.dpc_promote_time);
|
|
drm_printf(dp, " Max num work items = %u\n", blob->policies.max_num_work_items);
|
|
drm_printf(dp, " Flags = %u\n", blob->policies.global_flags);
|
|
}
|
|
|
|
static int guc_action_policies_update(struct intel_guc *guc, u32 policy_offset)
|
|
{
|
|
u32 action[] = {
|
|
INTEL_GUC_ACTION_GLOBAL_SCHED_POLICY_CHANGE,
|
|
policy_offset
|
|
};
|
|
|
|
return intel_guc_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true);
|
|
}
|
|
|
|
int intel_guc_global_policies_update(struct intel_guc *guc)
|
|
{
|
|
struct __guc_ads_blob *blob = guc->ads_blob;
|
|
struct intel_gt *gt = guc_to_gt(guc);
|
|
intel_wakeref_t wakeref;
|
|
int ret;
|
|
|
|
if (!blob)
|
|
return -EOPNOTSUPP;
|
|
|
|
GEM_BUG_ON(!blob->ads.scheduler_policies);
|
|
|
|
guc_policies_init(guc, &blob->policies);
|
|
|
|
if (!intel_guc_is_ready(guc))
|
|
return 0;
|
|
|
|
with_intel_runtime_pm(>->i915->runtime_pm, wakeref)
|
|
ret = guc_action_policies_update(guc, blob->ads.scheduler_policies);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void guc_mapping_table_init(struct intel_gt *gt,
|
|
struct guc_gt_system_info *system_info)
|
|
{
|
|
unsigned int i, j;
|
|
struct intel_engine_cs *engine;
|
|
enum intel_engine_id id;
|
|
|
|
/* Table must be set to invalid values for entries not used */
|
|
for (i = 0; i < GUC_MAX_ENGINE_CLASSES; ++i)
|
|
for (j = 0; j < GUC_MAX_INSTANCES_PER_CLASS; ++j)
|
|
system_info->mapping_table[i][j] =
|
|
GUC_MAX_INSTANCES_PER_CLASS;
|
|
|
|
for_each_engine(engine, gt, id) {
|
|
u8 guc_class = engine_class_to_guc_class(engine->class);
|
|
|
|
system_info->mapping_table[guc_class][ilog2(engine->logical_mask)] =
|
|
engine->instance;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The save/restore register list must be pre-calculated to a temporary
|
|
* buffer of driver defined size before it can be generated in place
|
|
* inside the ADS.
|
|
*/
|
|
#define MAX_MMIO_REGS 128 /* Arbitrary size, increase as needed */
|
|
struct temp_regset {
|
|
struct guc_mmio_reg *registers;
|
|
u32 used;
|
|
u32 size;
|
|
};
|
|
|
|
static int guc_mmio_reg_cmp(const void *a, const void *b)
|
|
{
|
|
const struct guc_mmio_reg *ra = a;
|
|
const struct guc_mmio_reg *rb = b;
|
|
|
|
return (int)ra->offset - (int)rb->offset;
|
|
}
|
|
|
|
static void guc_mmio_reg_add(struct temp_regset *regset,
|
|
u32 offset, u32 flags)
|
|
{
|
|
u32 count = regset->used;
|
|
struct guc_mmio_reg reg = {
|
|
.offset = offset,
|
|
.flags = flags,
|
|
};
|
|
struct guc_mmio_reg *slot;
|
|
|
|
GEM_BUG_ON(count >= regset->size);
|
|
|
|
/*
|
|
* The mmio list is built using separate lists within the driver.
|
|
* It's possible that at some point we may attempt to add the same
|
|
* register more than once. Do not consider this an error; silently
|
|
* move on if the register is already in the list.
|
|
*/
|
|
if (bsearch(®, regset->registers, count,
|
|
sizeof(reg), guc_mmio_reg_cmp))
|
|
return;
|
|
|
|
slot = ®set->registers[count];
|
|
regset->used++;
|
|
*slot = reg;
|
|
|
|
while (slot-- > regset->registers) {
|
|
GEM_BUG_ON(slot[0].offset == slot[1].offset);
|
|
if (slot[1].offset > slot[0].offset)
|
|
break;
|
|
|
|
swap(slot[1], slot[0]);
|
|
}
|
|
}
|
|
|
|
#define GUC_MMIO_REG_ADD(regset, reg, masked) \
|
|
guc_mmio_reg_add(regset, \
|
|
i915_mmio_reg_offset((reg)), \
|
|
(masked) ? GUC_REGSET_MASKED : 0)
|
|
|
|
static void guc_mmio_regset_init(struct temp_regset *regset,
|
|
struct intel_engine_cs *engine)
|
|
{
|
|
const u32 base = engine->mmio_base;
|
|
struct i915_wa_list *wal = &engine->wa_list;
|
|
struct i915_wa *wa;
|
|
unsigned int i;
|
|
|
|
regset->used = 0;
|
|
|
|
GUC_MMIO_REG_ADD(regset, RING_MODE_GEN7(base), true);
|
|
GUC_MMIO_REG_ADD(regset, RING_HWS_PGA(base), false);
|
|
GUC_MMIO_REG_ADD(regset, RING_IMR(base), false);
|
|
|
|
for (i = 0, wa = wal->list; i < wal->count; i++, wa++)
|
|
GUC_MMIO_REG_ADD(regset, wa->reg, wa->masked_reg);
|
|
|
|
/* Be extra paranoid and include all whitelist registers. */
|
|
for (i = 0; i < RING_MAX_NONPRIV_SLOTS; i++)
|
|
GUC_MMIO_REG_ADD(regset,
|
|
RING_FORCE_TO_NONPRIV(base, i),
|
|
false);
|
|
|
|
/* add in local MOCS registers */
|
|
for (i = 0; i < GEN9_LNCFCMOCS_REG_COUNT; i++)
|
|
GUC_MMIO_REG_ADD(regset, GEN9_LNCFCMOCS(i), false);
|
|
}
|
|
|
|
static int guc_mmio_reg_state_query(struct intel_guc *guc)
|
|
{
|
|
struct intel_gt *gt = guc_to_gt(guc);
|
|
struct intel_engine_cs *engine;
|
|
enum intel_engine_id id;
|
|
struct temp_regset temp_set;
|
|
u32 total;
|
|
|
|
/*
|
|
* Need to actually build the list in order to filter out
|
|
* duplicates and other such data dependent constructions.
|
|
*/
|
|
temp_set.size = MAX_MMIO_REGS;
|
|
temp_set.registers = kmalloc_array(temp_set.size,
|
|
sizeof(*temp_set.registers),
|
|
GFP_KERNEL);
|
|
if (!temp_set.registers)
|
|
return -ENOMEM;
|
|
|
|
total = 0;
|
|
for_each_engine(engine, gt, id) {
|
|
guc_mmio_regset_init(&temp_set, engine);
|
|
total += temp_set.used;
|
|
}
|
|
|
|
kfree(temp_set.registers);
|
|
|
|
return total * sizeof(struct guc_mmio_reg);
|
|
}
|
|
|
|
static void guc_mmio_reg_state_init(struct intel_guc *guc,
|
|
struct __guc_ads_blob *blob)
|
|
{
|
|
struct intel_gt *gt = guc_to_gt(guc);
|
|
struct intel_engine_cs *engine;
|
|
enum intel_engine_id id;
|
|
struct temp_regset temp_set;
|
|
struct guc_mmio_reg_set *ads_reg_set;
|
|
u32 addr_ggtt, offset;
|
|
u8 guc_class;
|
|
|
|
offset = guc_ads_regset_offset(guc);
|
|
addr_ggtt = intel_guc_ggtt_offset(guc, guc->ads_vma) + offset;
|
|
temp_set.registers = (struct guc_mmio_reg *)(((u8 *)blob) + offset);
|
|
temp_set.size = guc->ads_regset_size / sizeof(temp_set.registers[0]);
|
|
|
|
for_each_engine(engine, gt, id) {
|
|
/* Class index is checked in class converter */
|
|
GEM_BUG_ON(engine->instance >= GUC_MAX_INSTANCES_PER_CLASS);
|
|
|
|
guc_class = engine_class_to_guc_class(engine->class);
|
|
ads_reg_set = &blob->ads.reg_state_list[guc_class][engine->instance];
|
|
|
|
guc_mmio_regset_init(&temp_set, engine);
|
|
if (!temp_set.used) {
|
|
ads_reg_set->address = 0;
|
|
ads_reg_set->count = 0;
|
|
continue;
|
|
}
|
|
|
|
ads_reg_set->address = addr_ggtt;
|
|
ads_reg_set->count = temp_set.used;
|
|
|
|
temp_set.size -= temp_set.used;
|
|
temp_set.registers += temp_set.used;
|
|
addr_ggtt += temp_set.used * sizeof(struct guc_mmio_reg);
|
|
}
|
|
|
|
GEM_BUG_ON(temp_set.size);
|
|
}
|
|
|
|
static void fill_engine_enable_masks(struct intel_gt *gt,
|
|
struct guc_gt_system_info *info)
|
|
{
|
|
info->engine_enabled_masks[GUC_RENDER_CLASS] = 1;
|
|
info->engine_enabled_masks[GUC_BLITTER_CLASS] = 1;
|
|
info->engine_enabled_masks[GUC_VIDEO_CLASS] = VDBOX_MASK(gt);
|
|
info->engine_enabled_masks[GUC_VIDEOENHANCE_CLASS] = VEBOX_MASK(gt);
|
|
}
|
|
|
|
#define LR_HW_CONTEXT_SIZE (80 * sizeof(u32))
|
|
#define LRC_SKIP_SIZE (LRC_PPHWSP_SZ * PAGE_SIZE + LR_HW_CONTEXT_SIZE)
|
|
static int guc_prep_golden_context(struct intel_guc *guc,
|
|
struct __guc_ads_blob *blob)
|
|
{
|
|
struct intel_gt *gt = guc_to_gt(guc);
|
|
u32 addr_ggtt, offset;
|
|
u32 total_size = 0, alloc_size, real_size;
|
|
u8 engine_class, guc_class;
|
|
struct guc_gt_system_info *info, local_info;
|
|
|
|
/*
|
|
* Reserve the memory for the golden contexts and point GuC at it but
|
|
* leave it empty for now. The context data will be filled in later
|
|
* once there is something available to put there.
|
|
*
|
|
* Note that the HWSP and ring context are not included.
|
|
*
|
|
* Note also that the storage must be pinned in the GGTT, so that the
|
|
* address won't change after GuC has been told where to find it. The
|
|
* GuC will also validate that the LRC base + size fall within the
|
|
* allowed GGTT range.
|
|
*/
|
|
if (blob) {
|
|
offset = guc_ads_golden_ctxt_offset(guc);
|
|
addr_ggtt = intel_guc_ggtt_offset(guc, guc->ads_vma) + offset;
|
|
info = &blob->system_info;
|
|
} else {
|
|
memset(&local_info, 0, sizeof(local_info));
|
|
info = &local_info;
|
|
fill_engine_enable_masks(gt, info);
|
|
}
|
|
|
|
for (engine_class = 0; engine_class <= MAX_ENGINE_CLASS; ++engine_class) {
|
|
if (engine_class == OTHER_CLASS)
|
|
continue;
|
|
|
|
guc_class = engine_class_to_guc_class(engine_class);
|
|
|
|
if (!info->engine_enabled_masks[guc_class])
|
|
continue;
|
|
|
|
real_size = intel_engine_context_size(gt, engine_class);
|
|
alloc_size = PAGE_ALIGN(real_size);
|
|
total_size += alloc_size;
|
|
|
|
if (!blob)
|
|
continue;
|
|
|
|
/*
|
|
* This interface is slightly confusing. We need to pass the
|
|
* base address of the full golden context and the size of just
|
|
* the engine state, which is the section of the context image
|
|
* that starts after the execlists context. This is required to
|
|
* allow the GuC to restore just the engine state when a
|
|
* watchdog reset occurs.
|
|
* We calculate the engine state size by removing the size of
|
|
* what comes before it in the context image (which is identical
|
|
* on all engines).
|
|
*/
|
|
blob->ads.eng_state_size[guc_class] = real_size - LRC_SKIP_SIZE;
|
|
blob->ads.golden_context_lrca[guc_class] = addr_ggtt;
|
|
addr_ggtt += alloc_size;
|
|
}
|
|
|
|
if (!blob)
|
|
return total_size;
|
|
|
|
GEM_BUG_ON(guc->ads_golden_ctxt_size != total_size);
|
|
return total_size;
|
|
}
|
|
|
|
static struct intel_engine_cs *find_engine_state(struct intel_gt *gt, u8 engine_class)
|
|
{
|
|
struct intel_engine_cs *engine;
|
|
enum intel_engine_id id;
|
|
|
|
for_each_engine(engine, gt, id) {
|
|
if (engine->class != engine_class)
|
|
continue;
|
|
|
|
if (!engine->default_state)
|
|
continue;
|
|
|
|
return engine;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void guc_init_golden_context(struct intel_guc *guc)
|
|
{
|
|
struct __guc_ads_blob *blob = guc->ads_blob;
|
|
struct intel_engine_cs *engine;
|
|
struct intel_gt *gt = guc_to_gt(guc);
|
|
u32 addr_ggtt, offset;
|
|
u32 total_size = 0, alloc_size, real_size;
|
|
u8 engine_class, guc_class;
|
|
u8 *ptr;
|
|
|
|
if (!intel_uc_uses_guc_submission(>->uc))
|
|
return;
|
|
|
|
GEM_BUG_ON(!blob);
|
|
|
|
/*
|
|
* Go back and fill in the golden context data now that it is
|
|
* available.
|
|
*/
|
|
offset = guc_ads_golden_ctxt_offset(guc);
|
|
addr_ggtt = intel_guc_ggtt_offset(guc, guc->ads_vma) + offset;
|
|
ptr = ((u8 *)blob) + offset;
|
|
|
|
for (engine_class = 0; engine_class <= MAX_ENGINE_CLASS; ++engine_class) {
|
|
if (engine_class == OTHER_CLASS)
|
|
continue;
|
|
|
|
guc_class = engine_class_to_guc_class(engine_class);
|
|
|
|
if (!blob->system_info.engine_enabled_masks[guc_class])
|
|
continue;
|
|
|
|
real_size = intel_engine_context_size(gt, engine_class);
|
|
alloc_size = PAGE_ALIGN(real_size);
|
|
total_size += alloc_size;
|
|
|
|
engine = find_engine_state(gt, engine_class);
|
|
if (!engine) {
|
|
drm_err(>->i915->drm, "No engine state recorded for class %d!\n",
|
|
engine_class);
|
|
blob->ads.eng_state_size[guc_class] = 0;
|
|
blob->ads.golden_context_lrca[guc_class] = 0;
|
|
continue;
|
|
}
|
|
|
|
GEM_BUG_ON(blob->ads.eng_state_size[guc_class] !=
|
|
real_size - LRC_SKIP_SIZE);
|
|
GEM_BUG_ON(blob->ads.golden_context_lrca[guc_class] != addr_ggtt);
|
|
addr_ggtt += alloc_size;
|
|
|
|
shmem_read(engine->default_state, 0, ptr, real_size);
|
|
ptr += alloc_size;
|
|
}
|
|
|
|
GEM_BUG_ON(guc->ads_golden_ctxt_size != total_size);
|
|
}
|
|
|
|
static void __guc_ads_init(struct intel_guc *guc)
|
|
{
|
|
struct intel_gt *gt = guc_to_gt(guc);
|
|
struct drm_i915_private *i915 = gt->i915;
|
|
struct __guc_ads_blob *blob = guc->ads_blob;
|
|
u32 base;
|
|
|
|
/* GuC scheduling policies */
|
|
guc_policies_init(guc, &blob->policies);
|
|
|
|
/* System info */
|
|
fill_engine_enable_masks(gt, &blob->system_info);
|
|
|
|
blob->system_info.generic_gt_sysinfo[GUC_GENERIC_GT_SYSINFO_SLICE_ENABLED] =
|
|
hweight8(gt->info.sseu.slice_mask);
|
|
blob->system_info.generic_gt_sysinfo[GUC_GENERIC_GT_SYSINFO_VDBOX_SFC_SUPPORT_MASK] =
|
|
gt->info.vdbox_sfc_access;
|
|
|
|
if (GRAPHICS_VER(i915) >= 12 && !IS_DGFX(i915)) {
|
|
u32 distdbreg = intel_uncore_read(gt->uncore,
|
|
GEN12_DIST_DBS_POPULATED);
|
|
blob->system_info.generic_gt_sysinfo[GUC_GENERIC_GT_SYSINFO_DOORBELL_COUNT_PER_SQIDI] =
|
|
((distdbreg >> GEN12_DOORBELLS_PER_SQIDI_SHIFT) &
|
|
GEN12_DOORBELLS_PER_SQIDI) + 1;
|
|
}
|
|
|
|
/* Golden contexts for re-initialising after a watchdog reset */
|
|
guc_prep_golden_context(guc, blob);
|
|
|
|
guc_mapping_table_init(guc_to_gt(guc), &blob->system_info);
|
|
|
|
base = intel_guc_ggtt_offset(guc, guc->ads_vma);
|
|
|
|
/* ADS */
|
|
blob->ads.scheduler_policies = base + ptr_offset(blob, policies);
|
|
blob->ads.gt_system_info = base + ptr_offset(blob, system_info);
|
|
|
|
/* MMIO save/restore list */
|
|
guc_mmio_reg_state_init(guc, blob);
|
|
|
|
/* Private Data */
|
|
blob->ads.private_data = base + guc_ads_private_data_offset(guc);
|
|
|
|
i915_gem_object_flush_map(guc->ads_vma->obj);
|
|
}
|
|
|
|
/**
|
|
* intel_guc_ads_create() - allocates and initializes GuC ADS.
|
|
* @guc: intel_guc struct
|
|
*
|
|
* GuC needs memory block (Additional Data Struct), where it will store
|
|
* some data. Allocate and initialize such memory block for GuC use.
|
|
*/
|
|
int intel_guc_ads_create(struct intel_guc *guc)
|
|
{
|
|
u32 size;
|
|
int ret;
|
|
|
|
GEM_BUG_ON(guc->ads_vma);
|
|
|
|
/* Need to calculate the reg state size dynamically: */
|
|
ret = guc_mmio_reg_state_query(guc);
|
|
if (ret < 0)
|
|
return ret;
|
|
guc->ads_regset_size = ret;
|
|
|
|
/* Likewise the golden contexts: */
|
|
ret = guc_prep_golden_context(guc, NULL);
|
|
if (ret < 0)
|
|
return ret;
|
|
guc->ads_golden_ctxt_size = ret;
|
|
|
|
/* Now the total size can be determined: */
|
|
size = guc_ads_blob_size(guc);
|
|
|
|
ret = intel_guc_allocate_and_map_vma(guc, size, &guc->ads_vma,
|
|
(void **)&guc->ads_blob);
|
|
if (ret)
|
|
return ret;
|
|
|
|
__guc_ads_init(guc);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void intel_guc_ads_init_late(struct intel_guc *guc)
|
|
{
|
|
/*
|
|
* The golden context setup requires the saved engine state from
|
|
* __engines_record_defaults(). However, that requires engines to be
|
|
* operational which means the ADS must already have been configured.
|
|
* Fortunately, the golden context state is not needed until a hang
|
|
* occurs, so it can be filled in during this late init phase.
|
|
*/
|
|
guc_init_golden_context(guc);
|
|
}
|
|
|
|
void intel_guc_ads_destroy(struct intel_guc *guc)
|
|
{
|
|
i915_vma_unpin_and_release(&guc->ads_vma, I915_VMA_RELEASE_MAP);
|
|
guc->ads_blob = NULL;
|
|
}
|
|
|
|
static void guc_ads_private_data_reset(struct intel_guc *guc)
|
|
{
|
|
u32 size;
|
|
|
|
size = guc_ads_private_data_size(guc);
|
|
if (!size)
|
|
return;
|
|
|
|
memset((void *)guc->ads_blob + guc_ads_private_data_offset(guc), 0,
|
|
size);
|
|
}
|
|
|
|
/**
|
|
* intel_guc_ads_reset() - prepares GuC Additional Data Struct for reuse
|
|
* @guc: intel_guc struct
|
|
*
|
|
* GuC stores some data in ADS, which might be stale after a reset.
|
|
* Reinitialize whole ADS in case any part of it was corrupted during
|
|
* previous GuC run.
|
|
*/
|
|
void intel_guc_ads_reset(struct intel_guc *guc)
|
|
{
|
|
if (!guc->ads_vma)
|
|
return;
|
|
|
|
__guc_ads_init(guc);
|
|
|
|
guc_ads_private_data_reset(guc);
|
|
}
|
|
|
|
u32 intel_guc_engine_usage_offset(struct intel_guc *guc)
|
|
{
|
|
struct __guc_ads_blob *blob = guc->ads_blob;
|
|
u32 base = intel_guc_ggtt_offset(guc, guc->ads_vma);
|
|
u32 offset = base + ptr_offset(blob, engine_usage);
|
|
|
|
return offset;
|
|
}
|
|
|
|
struct guc_engine_usage_record *intel_guc_engine_usage(struct intel_engine_cs *engine)
|
|
{
|
|
struct intel_guc *guc = &engine->gt->uc.guc;
|
|
struct __guc_ads_blob *blob = guc->ads_blob;
|
|
u8 guc_class = engine_class_to_guc_class(engine->class);
|
|
|
|
return &blob->engine_usage.engines[guc_class][ilog2(engine->logical_mask)];
|
|
}
|