linux/arch/arm64/kernel/efi.c
Ard Biesheuvel f3cdfd239d arm64/efi: move SetVirtualAddressMap() to UEFI stub
In order to support kexec, the kernel needs to be able to deal with the
state of the UEFI firmware after SetVirtualAddressMap() has been called.
To avoid having separate code paths for non-kexec and kexec, let's move
the call to SetVirtualAddressMap() to the stub: this will guarantee us
that it will only be called once (since the stub is not executed during
kexec), and ensures that the UEFI state is identical between kexec and
normal boot.

This implies that the layout of the virtual mapping needs to be created
by the stub as well. All regions are rounded up to a naturally aligned
multiple of 64 KB (for compatibility with 64k pages kernels) and recorded
in the UEFI memory map. The kernel proper reads those values and installs
the mappings in a dedicated set of page tables that are swapped in during
UEFI Runtime Services calls.

Acked-by: Leif Lindholm <leif.lindholm@linaro.org>
Acked-by: Matt Fleming <matt.fleming@intel.com>
Tested-by: Leif Lindholm <leif.lindholm@linaro.org>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
2015-01-12 16:29:12 +00:00

511 lines
12 KiB
C

/*
* Extensible Firmware Interface
*
* Based on Extensible Firmware Interface Specification version 2.4
*
* Copyright (C) 2013, 2014 Linaro Ltd.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
*/
#include <linux/atomic.h>
#include <linux/dmi.h>
#include <linux/efi.h>
#include <linux/export.h>
#include <linux/memblock.h>
#include <linux/mm_types.h>
#include <linux/bootmem.h>
#include <linux/of.h>
#include <linux/of_fdt.h>
#include <linux/preempt.h>
#include <linux/rbtree.h>
#include <linux/rwsem.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <asm/cacheflush.h>
#include <asm/efi.h>
#include <asm/tlbflush.h>
#include <asm/mmu_context.h>
#include <asm/mmu.h>
#include <asm/pgtable.h>
struct efi_memory_map memmap;
static u64 efi_system_table;
static int uefi_debug __initdata;
static int __init uefi_debug_setup(char *str)
{
uefi_debug = 1;
return 0;
}
early_param("uefi_debug", uefi_debug_setup);
static int __init is_normal_ram(efi_memory_desc_t *md)
{
if (md->attribute & EFI_MEMORY_WB)
return 1;
return 0;
}
static void __init efi_setup_idmap(void)
{
struct memblock_region *r;
efi_memory_desc_t *md;
u64 paddr, npages, size;
for_each_memblock(memory, r)
create_id_mapping(r->base, r->size, 0);
/* map runtime io spaces */
for_each_efi_memory_desc(&memmap, md) {
if (!(md->attribute & EFI_MEMORY_RUNTIME) || is_normal_ram(md))
continue;
paddr = md->phys_addr;
npages = md->num_pages;
memrange_efi_to_native(&paddr, &npages);
size = npages << PAGE_SHIFT;
create_id_mapping(paddr, size, 1);
}
}
/*
* Translate a EFI virtual address into a physical address: this is necessary,
* as some data members of the EFI system table are virtually remapped after
* SetVirtualAddressMap() has been called.
*/
static phys_addr_t efi_to_phys(unsigned long addr)
{
efi_memory_desc_t *md;
for_each_efi_memory_desc(&memmap, md) {
if (!(md->attribute & EFI_MEMORY_RUNTIME))
continue;
if (md->virt_addr == 0)
/* no virtual mapping has been installed by the stub */
break;
if (md->virt_addr <= addr &&
(addr - md->virt_addr) < (md->num_pages << EFI_PAGE_SHIFT))
return md->phys_addr + addr - md->virt_addr;
}
return addr;
}
static int __init uefi_init(void)
{
efi_char16_t *c16;
void *config_tables;
u64 table_size;
char vendor[100] = "unknown";
int i, retval;
efi.systab = early_memremap(efi_system_table,
sizeof(efi_system_table_t));
if (efi.systab == NULL) {
pr_warn("Unable to map EFI system table.\n");
return -ENOMEM;
}
set_bit(EFI_BOOT, &efi.flags);
set_bit(EFI_64BIT, &efi.flags);
/*
* Verify the EFI Table
*/
if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) {
pr_err("System table signature incorrect\n");
retval = -EINVAL;
goto out;
}
if ((efi.systab->hdr.revision >> 16) < 2)
pr_warn("Warning: EFI system table version %d.%02d, expected 2.00 or greater\n",
efi.systab->hdr.revision >> 16,
efi.systab->hdr.revision & 0xffff);
/* Show what we know for posterity */
c16 = early_memremap(efi_to_phys(efi.systab->fw_vendor),
sizeof(vendor));
if (c16) {
for (i = 0; i < (int) sizeof(vendor) - 1 && *c16; ++i)
vendor[i] = c16[i];
vendor[i] = '\0';
early_memunmap(c16, sizeof(vendor));
}
pr_info("EFI v%u.%.02u by %s\n",
efi.systab->hdr.revision >> 16,
efi.systab->hdr.revision & 0xffff, vendor);
table_size = sizeof(efi_config_table_64_t) * efi.systab->nr_tables;
config_tables = early_memremap(efi_to_phys(efi.systab->tables),
table_size);
retval = efi_config_parse_tables(config_tables, efi.systab->nr_tables,
sizeof(efi_config_table_64_t), NULL);
early_memunmap(config_tables, table_size);
out:
early_memunmap(efi.systab, sizeof(efi_system_table_t));
return retval;
}
/*
* Return true for RAM regions we want to permanently reserve.
*/
static __init int is_reserve_region(efi_memory_desc_t *md)
{
switch (md->type) {
case EFI_LOADER_CODE:
case EFI_LOADER_DATA:
case EFI_BOOT_SERVICES_CODE:
case EFI_BOOT_SERVICES_DATA:
case EFI_CONVENTIONAL_MEMORY:
return 0;
default:
break;
}
return is_normal_ram(md);
}
static __init void reserve_regions(void)
{
efi_memory_desc_t *md;
u64 paddr, npages, size;
if (uefi_debug)
pr_info("Processing EFI memory map:\n");
for_each_efi_memory_desc(&memmap, md) {
paddr = md->phys_addr;
npages = md->num_pages;
if (uefi_debug) {
char buf[64];
pr_info(" 0x%012llx-0x%012llx %s",
paddr, paddr + (npages << EFI_PAGE_SHIFT) - 1,
efi_md_typeattr_format(buf, sizeof(buf), md));
}
memrange_efi_to_native(&paddr, &npages);
size = npages << PAGE_SHIFT;
if (is_normal_ram(md))
early_init_dt_add_memory_arch(paddr, size);
if (is_reserve_region(md) ||
md->type == EFI_BOOT_SERVICES_CODE ||
md->type == EFI_BOOT_SERVICES_DATA) {
memblock_reserve(paddr, size);
if (uefi_debug)
pr_cont("*");
}
if (uefi_debug)
pr_cont("\n");
}
set_bit(EFI_MEMMAP, &efi.flags);
}
static u64 __init free_one_region(u64 start, u64 end)
{
u64 size = end - start;
if (uefi_debug)
pr_info(" EFI freeing: 0x%012llx-0x%012llx\n", start, end - 1);
free_bootmem_late(start, size);
return size;
}
static u64 __init free_region(u64 start, u64 end)
{
u64 map_start, map_end, total = 0;
if (end <= start)
return total;
map_start = (u64)memmap.phys_map;
map_end = PAGE_ALIGN(map_start + (memmap.map_end - memmap.map));
map_start &= PAGE_MASK;
if (start < map_end && end > map_start) {
/* region overlaps UEFI memmap */
if (start < map_start)
total += free_one_region(start, map_start);
if (map_end < end)
total += free_one_region(map_end, end);
} else
total += free_one_region(start, end);
return total;
}
static void __init free_boot_services(void)
{
u64 total_freed = 0;
u64 keep_end, free_start, free_end;
efi_memory_desc_t *md;
/*
* If kernel uses larger pages than UEFI, we have to be careful
* not to inadvertantly free memory we want to keep if there is
* overlap at the kernel page size alignment. We do not want to
* free is_reserve_region() memory nor the UEFI memmap itself.
*
* The memory map is sorted, so we keep track of the end of
* any previous region we want to keep, remember any region
* we want to free and defer freeing it until we encounter
* the next region we want to keep. This way, before freeing
* it, we can clip it as needed to avoid freeing memory we
* want to keep for UEFI.
*/
keep_end = 0;
free_start = 0;
for_each_efi_memory_desc(&memmap, md) {
u64 paddr, npages, size;
if (is_reserve_region(md)) {
/*
* We don't want to free any memory from this region.
*/
if (free_start) {
/* adjust free_end then free region */
if (free_end > md->phys_addr)
free_end -= PAGE_SIZE;
total_freed += free_region(free_start, free_end);
free_start = 0;
}
keep_end = md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT);
continue;
}
if (md->type != EFI_BOOT_SERVICES_CODE &&
md->type != EFI_BOOT_SERVICES_DATA) {
/* no need to free this region */
continue;
}
/*
* We want to free memory from this region.
*/
paddr = md->phys_addr;
npages = md->num_pages;
memrange_efi_to_native(&paddr, &npages);
size = npages << PAGE_SHIFT;
if (free_start) {
if (paddr <= free_end)
free_end = paddr + size;
else {
total_freed += free_region(free_start, free_end);
free_start = paddr;
free_end = paddr + size;
}
} else {
free_start = paddr;
free_end = paddr + size;
}
if (free_start < keep_end) {
free_start += PAGE_SIZE;
if (free_start >= free_end)
free_start = 0;
}
}
if (free_start)
total_freed += free_region(free_start, free_end);
if (total_freed)
pr_info("Freed 0x%llx bytes of EFI boot services memory",
total_freed);
}
void __init efi_init(void)
{
struct efi_fdt_params params;
/* Grab UEFI information placed in FDT by stub */
if (!efi_get_fdt_params(&params, uefi_debug))
return;
efi_system_table = params.system_table;
memblock_reserve(params.mmap & PAGE_MASK,
PAGE_ALIGN(params.mmap_size + (params.mmap & ~PAGE_MASK)));
memmap.phys_map = (void *)params.mmap;
memmap.map = early_memremap(params.mmap, params.mmap_size);
memmap.map_end = memmap.map + params.mmap_size;
memmap.desc_size = params.desc_size;
memmap.desc_version = params.desc_ver;
if (uefi_init() < 0)
return;
reserve_regions();
}
void __init efi_idmap_init(void)
{
if (!efi_enabled(EFI_BOOT))
return;
/* boot time idmap_pg_dir is incomplete, so fill in missing parts */
efi_setup_idmap();
early_memunmap(memmap.map, memmap.map_end - memmap.map);
}
/*
* Enable the UEFI Runtime Services if all prerequisites are in place, i.e.,
* non-early mapping of the UEFI system table and virtual mappings for all
* EFI_MEMORY_RUNTIME regions.
*/
static int __init arm64_enable_runtime_services(void)
{
u64 mapsize;
if (!efi_enabled(EFI_BOOT)) {
pr_info("EFI services will not be available.\n");
return -1;
}
mapsize = memmap.map_end - memmap.map;
if (efi_runtime_disabled()) {
pr_info("EFI runtime services will be disabled.\n");
return -1;
}
pr_info("Remapping and enabling EFI services.\n");
/* replace early memmap mapping with permanent mapping */
memmap.map = (__force void *)ioremap_cache((phys_addr_t)memmap.phys_map,
mapsize);
memmap.map_end = memmap.map + mapsize;
efi.memmap = &memmap;
efi.systab = (__force void *)ioremap_cache(efi_system_table,
sizeof(efi_system_table_t));
if (!efi.systab) {
pr_err("Failed to remap EFI System Table\n");
return -1;
}
set_bit(EFI_SYSTEM_TABLES, &efi.flags);
free_boot_services();
if (!efi_enabled(EFI_VIRTMAP)) {
pr_err("No UEFI virtual mapping was installed -- runtime services will not be available\n");
return -1;
}
/* Set up runtime services function pointers */
efi_native_runtime_setup();
set_bit(EFI_RUNTIME_SERVICES, &efi.flags);
efi.runtime_version = efi.systab->hdr.revision;
return 0;
}
early_initcall(arm64_enable_runtime_services);
static int __init arm64_dmi_init(void)
{
/*
* On arm64, DMI depends on UEFI, and dmi_scan_machine() needs to
* be called early because dmi_id_init(), which is an arch_initcall
* itself, depends on dmi_scan_machine() having been called already.
*/
dmi_scan_machine();
if (dmi_available)
dmi_set_dump_stack_arch_desc();
return 0;
}
core_initcall(arm64_dmi_init);
static pgd_t efi_pgd[PTRS_PER_PGD] __page_aligned_bss;
static struct mm_struct efi_mm = {
.mm_rb = RB_ROOT,
.pgd = efi_pgd,
.mm_users = ATOMIC_INIT(2),
.mm_count = ATOMIC_INIT(1),
.mmap_sem = __RWSEM_INITIALIZER(efi_mm.mmap_sem),
.page_table_lock = __SPIN_LOCK_UNLOCKED(efi_mm.page_table_lock),
.mmlist = LIST_HEAD_INIT(efi_mm.mmlist),
INIT_MM_CONTEXT(efi_mm)
};
static void efi_set_pgd(struct mm_struct *mm)
{
cpu_switch_mm(mm->pgd, mm);
flush_tlb_all();
if (icache_is_aivivt())
__flush_icache_all();
}
void efi_virtmap_load(void)
{
preempt_disable();
efi_set_pgd(&efi_mm);
}
void efi_virtmap_unload(void)
{
efi_set_pgd(current->active_mm);
preempt_enable();
}
void __init efi_virtmap_init(void)
{
efi_memory_desc_t *md;
if (!efi_enabled(EFI_BOOT))
return;
for_each_efi_memory_desc(&memmap, md) {
u64 paddr, npages, size;
pgprot_t prot;
if (!(md->attribute & EFI_MEMORY_RUNTIME))
continue;
if (WARN(md->virt_addr == 0,
"UEFI virtual mapping incomplete or missing -- no entry found for 0x%llx\n",
md->phys_addr))
return;
paddr = md->phys_addr;
npages = md->num_pages;
memrange_efi_to_native(&paddr, &npages);
size = npages << PAGE_SHIFT;
pr_info(" EFI remap 0x%016llx => %p\n",
md->phys_addr, (void *)md->virt_addr);
/*
* Only regions of type EFI_RUNTIME_SERVICES_CODE need to be
* executable, everything else can be mapped with the XN bits
* set.
*/
if (!is_normal_ram(md))
prot = __pgprot(PROT_DEVICE_nGnRE);
else if (md->type == EFI_RUNTIME_SERVICES_CODE)
prot = PAGE_KERNEL_EXEC;
else
prot = PAGE_KERNEL;
create_pgd_mapping(&efi_mm, paddr, md->virt_addr, size, prot);
}
set_bit(EFI_VIRTMAP, &efi.flags);
}