linux/kernel/rcu/rcu.h
Paul E. McKenney f1ec57a462 srcu: Allow a second bit in rcu_seq for SRCU state
This commit increases the number of reserved bits at the bottom of an
rcu_seq grace-period counter from one to two, as will be needed to
accommodate SRCU's three-state grace periods.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2017-04-18 11:38:21 -07:00

287 lines
8.6 KiB
C

/*
* Read-Copy Update definitions shared among RCU implementations.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you can access it online at
* http://www.gnu.org/licenses/gpl-2.0.html.
*
* Copyright IBM Corporation, 2011
*
* Author: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
*/
#ifndef __LINUX_RCU_H
#define __LINUX_RCU_H
#include <trace/events/rcu.h>
#ifdef CONFIG_RCU_TRACE
#define RCU_TRACE(stmt) stmt
#else /* #ifdef CONFIG_RCU_TRACE */
#define RCU_TRACE(stmt)
#endif /* #else #ifdef CONFIG_RCU_TRACE */
/*
* Process-level increment to ->dynticks_nesting field. This allows for
* architectures that use half-interrupts and half-exceptions from
* process context.
*
* DYNTICK_TASK_NEST_MASK defines a field of width DYNTICK_TASK_NEST_WIDTH
* that counts the number of process-based reasons why RCU cannot
* consider the corresponding CPU to be idle, and DYNTICK_TASK_NEST_VALUE
* is the value used to increment or decrement this field.
*
* The rest of the bits could in principle be used to count interrupts,
* but this would mean that a negative-one value in the interrupt
* field could incorrectly zero out the DYNTICK_TASK_NEST_MASK field.
* We therefore provide a two-bit guard field defined by DYNTICK_TASK_MASK
* that is set to DYNTICK_TASK_FLAG upon initial exit from idle.
* The DYNTICK_TASK_EXIT_IDLE value is thus the combined value used upon
* initial exit from idle.
*/
#define DYNTICK_TASK_NEST_WIDTH 7
#define DYNTICK_TASK_NEST_VALUE ((LLONG_MAX >> DYNTICK_TASK_NEST_WIDTH) + 1)
#define DYNTICK_TASK_NEST_MASK (LLONG_MAX - DYNTICK_TASK_NEST_VALUE + 1)
#define DYNTICK_TASK_FLAG ((DYNTICK_TASK_NEST_VALUE / 8) * 2)
#define DYNTICK_TASK_MASK ((DYNTICK_TASK_NEST_VALUE / 8) * 3)
#define DYNTICK_TASK_EXIT_IDLE (DYNTICK_TASK_NEST_VALUE + \
DYNTICK_TASK_FLAG)
/*
* Grace-period counter management.
*/
#define RCU_SEQ_CTR_SHIFT 2
#define RCU_SEQ_STATE_MASK ((1 << RCU_SEQ_CTR_SHIFT) - 1)
/*
* Return the counter portion of a sequence number previously returned
* by rcu_seq_snap() or rcu_seq_current().
*/
static inline unsigned long rcu_seq_ctr(unsigned long s)
{
return s >> RCU_SEQ_CTR_SHIFT;
}
/*
* Return the state portion of a sequence number previously returned
* by rcu_seq_snap() or rcu_seq_current().
*/
static inline int rcu_seq_state(unsigned long s)
{
return s & RCU_SEQ_STATE_MASK;
}
/* Adjust sequence number for start of update-side operation. */
static inline void rcu_seq_start(unsigned long *sp)
{
WRITE_ONCE(*sp, *sp + 1);
smp_mb(); /* Ensure update-side operation after counter increment. */
WARN_ON_ONCE(rcu_seq_state(*sp) != 1);
}
/* Adjust sequence number for end of update-side operation. */
static inline void rcu_seq_end(unsigned long *sp)
{
smp_mb(); /* Ensure update-side operation before counter increment. */
WARN_ON_ONCE(!rcu_seq_state(*sp));
WRITE_ONCE(*sp, (*sp | RCU_SEQ_STATE_MASK) + 1);
}
/* Take a snapshot of the update side's sequence number. */
static inline unsigned long rcu_seq_snap(unsigned long *sp)
{
unsigned long s;
s = (READ_ONCE(*sp) + 2 * RCU_SEQ_STATE_MASK + 1) & ~RCU_SEQ_STATE_MASK;
smp_mb(); /* Above access must not bleed into critical section. */
return s;
}
/* Return the current value the update side's sequence number, no ordering. */
static inline unsigned long rcu_seq_current(unsigned long *sp)
{
return READ_ONCE(*sp);
}
/*
* Given a snapshot from rcu_seq_snap(), determine whether or not a
* full update-side operation has occurred.
*/
static inline bool rcu_seq_done(unsigned long *sp, unsigned long s)
{
return ULONG_CMP_GE(READ_ONCE(*sp), s);
}
/*
* debug_rcu_head_queue()/debug_rcu_head_unqueue() are used internally
* by call_rcu() and rcu callback execution, and are therefore not part of the
* RCU API. Leaving in rcupdate.h because they are used by all RCU flavors.
*/
#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
# define STATE_RCU_HEAD_READY 0
# define STATE_RCU_HEAD_QUEUED 1
extern struct debug_obj_descr rcuhead_debug_descr;
static inline int debug_rcu_head_queue(struct rcu_head *head)
{
int r1;
r1 = debug_object_activate(head, &rcuhead_debug_descr);
debug_object_active_state(head, &rcuhead_debug_descr,
STATE_RCU_HEAD_READY,
STATE_RCU_HEAD_QUEUED);
return r1;
}
static inline void debug_rcu_head_unqueue(struct rcu_head *head)
{
debug_object_active_state(head, &rcuhead_debug_descr,
STATE_RCU_HEAD_QUEUED,
STATE_RCU_HEAD_READY);
debug_object_deactivate(head, &rcuhead_debug_descr);
}
#else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
static inline int debug_rcu_head_queue(struct rcu_head *head)
{
return 0;
}
static inline void debug_rcu_head_unqueue(struct rcu_head *head)
{
}
#endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
void kfree(const void *);
/*
* Reclaim the specified callback, either by invoking it (non-lazy case)
* or freeing it directly (lazy case). Return true if lazy, false otherwise.
*/
static inline bool __rcu_reclaim(const char *rn, struct rcu_head *head)
{
unsigned long offset = (unsigned long)head->func;
rcu_lock_acquire(&rcu_callback_map);
if (__is_kfree_rcu_offset(offset)) {
RCU_TRACE(trace_rcu_invoke_kfree_callback(rn, head, offset);)
kfree((void *)head - offset);
rcu_lock_release(&rcu_callback_map);
return true;
} else {
RCU_TRACE(trace_rcu_invoke_callback(rn, head);)
head->func(head);
rcu_lock_release(&rcu_callback_map);
return false;
}
}
#ifdef CONFIG_RCU_STALL_COMMON
extern int rcu_cpu_stall_suppress;
int rcu_jiffies_till_stall_check(void);
#endif /* #ifdef CONFIG_RCU_STALL_COMMON */
/*
* Strings used in tracepoints need to be exported via the
* tracing system such that tools like perf and trace-cmd can
* translate the string address pointers to actual text.
*/
#define TPS(x) tracepoint_string(x)
void rcu_early_boot_tests(void);
void rcu_test_sync_prims(void);
/*
* This function really isn't for public consumption, but RCU is special in
* that context switches can allow the state machine to make progress.
*/
extern void resched_cpu(int cpu);
#if defined(SRCU) || !defined(TINY_RCU)
#include <linux/rcu_node_tree.h>
extern int rcu_num_lvls;
extern int num_rcu_lvl[];
extern int rcu_num_nodes;
static bool rcu_fanout_exact;
static int rcu_fanout_leaf;
/*
* Compute the per-level fanout, either using the exact fanout specified
* or balancing the tree, depending on the rcu_fanout_exact boot parameter.
*/
static inline void rcu_init_levelspread(int *levelspread, const int *levelcnt)
{
int i;
if (rcu_fanout_exact) {
levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
for (i = rcu_num_lvls - 2; i >= 0; i--)
levelspread[i] = RCU_FANOUT;
} else {
int ccur;
int cprv;
cprv = nr_cpu_ids;
for (i = rcu_num_lvls - 1; i >= 0; i--) {
ccur = levelcnt[i];
levelspread[i] = (cprv + ccur - 1) / ccur;
cprv = ccur;
}
}
}
/*
* Do a full breadth-first scan of the rcu_node structures for the
* specified rcu_state structure.
*/
#define rcu_for_each_node_breadth_first(rsp, rnp) \
for ((rnp) = &(rsp)->node[0]; \
(rnp) < &(rsp)->node[rcu_num_nodes]; (rnp)++)
/*
* Do a breadth-first scan of the non-leaf rcu_node structures for the
* specified rcu_state structure. Note that if there is a singleton
* rcu_node tree with but one rcu_node structure, this loop is a no-op.
*/
#define rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) \
for ((rnp) = &(rsp)->node[0]; \
(rnp) < (rsp)->level[rcu_num_lvls - 1]; (rnp)++)
/*
* Scan the leaves of the rcu_node hierarchy for the specified rcu_state
* structure. Note that if there is a singleton rcu_node tree with but
* one rcu_node structure, this loop -will- visit the rcu_node structure.
* It is still a leaf node, even if it is also the root node.
*/
#define rcu_for_each_leaf_node(rsp, rnp) \
for ((rnp) = (rsp)->level[rcu_num_lvls - 1]; \
(rnp) < &(rsp)->node[rcu_num_nodes]; (rnp)++)
/*
* Iterate over all possible CPUs in a leaf RCU node.
*/
#define for_each_leaf_node_possible_cpu(rnp, cpu) \
for ((cpu) = cpumask_next(rnp->grplo - 1, cpu_possible_mask); \
cpu <= rnp->grphi; \
cpu = cpumask_next((cpu), cpu_possible_mask))
#endif /* #if defined(SRCU) || !defined(TINY_RCU) */
#endif /* __LINUX_RCU_H */