forked from Minki/linux
855a95e4fc
This replaces all the pll_types definitions for ones that match the types used in the tables in recent VBIOS versions. get_pll_limits() will now accept either type or register value as input across all limits table versions, and will store the actual register ID that a PLL type refers to in the returned structure. Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
479 lines
13 KiB
C
479 lines
13 KiB
C
/*
|
|
* Copyright 1993-2003 NVIDIA, Corporation
|
|
* Copyright 2007-2009 Stuart Bennett
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
|
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
|
|
* OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
|
|
#include "drmP.h"
|
|
#include "nouveau_drv.h"
|
|
#include "nouveau_hw.h"
|
|
|
|
/****************************************************************************\
|
|
* *
|
|
* The video arbitration routines calculate some "magic" numbers. Fixes *
|
|
* the snow seen when accessing the framebuffer without it. *
|
|
* It just works (I hope). *
|
|
* *
|
|
\****************************************************************************/
|
|
|
|
struct nv_fifo_info {
|
|
int lwm;
|
|
int burst;
|
|
};
|
|
|
|
struct nv_sim_state {
|
|
int pclk_khz;
|
|
int mclk_khz;
|
|
int nvclk_khz;
|
|
int bpp;
|
|
int mem_page_miss;
|
|
int mem_latency;
|
|
int memory_type;
|
|
int memory_width;
|
|
int two_heads;
|
|
};
|
|
|
|
static void
|
|
nv04_calc_arb(struct nv_fifo_info *fifo, struct nv_sim_state *arb)
|
|
{
|
|
int pagemiss, cas, width, bpp;
|
|
int nvclks, mclks, pclks, crtpagemiss;
|
|
int found, mclk_extra, mclk_loop, cbs, m1, p1;
|
|
int mclk_freq, pclk_freq, nvclk_freq;
|
|
int us_m, us_n, us_p, crtc_drain_rate;
|
|
int cpm_us, us_crt, clwm;
|
|
|
|
pclk_freq = arb->pclk_khz;
|
|
mclk_freq = arb->mclk_khz;
|
|
nvclk_freq = arb->nvclk_khz;
|
|
pagemiss = arb->mem_page_miss;
|
|
cas = arb->mem_latency;
|
|
width = arb->memory_width >> 6;
|
|
bpp = arb->bpp;
|
|
cbs = 128;
|
|
|
|
pclks = 2;
|
|
nvclks = 10;
|
|
mclks = 13 + cas;
|
|
mclk_extra = 3;
|
|
found = 0;
|
|
|
|
while (!found) {
|
|
found = 1;
|
|
|
|
mclk_loop = mclks + mclk_extra;
|
|
us_m = mclk_loop * 1000 * 1000 / mclk_freq;
|
|
us_n = nvclks * 1000 * 1000 / nvclk_freq;
|
|
us_p = nvclks * 1000 * 1000 / pclk_freq;
|
|
|
|
crtc_drain_rate = pclk_freq * bpp / 8;
|
|
crtpagemiss = 2;
|
|
crtpagemiss += 1;
|
|
cpm_us = crtpagemiss * pagemiss * 1000 * 1000 / mclk_freq;
|
|
us_crt = cpm_us + us_m + us_n + us_p;
|
|
clwm = us_crt * crtc_drain_rate / (1000 * 1000);
|
|
clwm++;
|
|
|
|
m1 = clwm + cbs - 512;
|
|
p1 = m1 * pclk_freq / mclk_freq;
|
|
p1 = p1 * bpp / 8;
|
|
if ((p1 < m1 && m1 > 0) || clwm > 519) {
|
|
found = !mclk_extra;
|
|
mclk_extra--;
|
|
}
|
|
if (clwm < 384)
|
|
clwm = 384;
|
|
|
|
fifo->lwm = clwm;
|
|
fifo->burst = cbs;
|
|
}
|
|
}
|
|
|
|
static void
|
|
nv10_calc_arb(struct nv_fifo_info *fifo, struct nv_sim_state *arb)
|
|
{
|
|
int fill_rate, drain_rate;
|
|
int pclks, nvclks, mclks, xclks;
|
|
int pclk_freq, nvclk_freq, mclk_freq;
|
|
int fill_lat, extra_lat;
|
|
int max_burst_o, max_burst_l;
|
|
int fifo_len, min_lwm, max_lwm;
|
|
const int burst_lat = 80; /* Maximum allowable latency due
|
|
* to the CRTC FIFO burst. (ns) */
|
|
|
|
pclk_freq = arb->pclk_khz;
|
|
nvclk_freq = arb->nvclk_khz;
|
|
mclk_freq = arb->mclk_khz;
|
|
|
|
fill_rate = mclk_freq * arb->memory_width / 8; /* kB/s */
|
|
drain_rate = pclk_freq * arb->bpp / 8; /* kB/s */
|
|
|
|
fifo_len = arb->two_heads ? 1536 : 1024; /* B */
|
|
|
|
/* Fixed FIFO refill latency. */
|
|
|
|
pclks = 4; /* lwm detect. */
|
|
|
|
nvclks = 3 /* lwm -> sync. */
|
|
+ 2 /* fbi bus cycles (1 req + 1 busy) */
|
|
+ 1 /* 2 edge sync. may be very close to edge so
|
|
* just put one. */
|
|
+ 1 /* fbi_d_rdv_n */
|
|
+ 1 /* Fbi_d_rdata */
|
|
+ 1; /* crtfifo load */
|
|
|
|
mclks = 1 /* 2 edge sync. may be very close to edge so
|
|
* just put one. */
|
|
+ 1 /* arb_hp_req */
|
|
+ 5 /* tiling pipeline */
|
|
+ 2 /* latency fifo */
|
|
+ 2 /* memory request to fbio block */
|
|
+ 7; /* data returned from fbio block */
|
|
|
|
/* Need to accumulate 256 bits for read */
|
|
mclks += (arb->memory_type == 0 ? 2 : 1)
|
|
* arb->memory_width / 32;
|
|
|
|
fill_lat = mclks * 1000 * 1000 / mclk_freq /* minimum mclk latency */
|
|
+ nvclks * 1000 * 1000 / nvclk_freq /* nvclk latency */
|
|
+ pclks * 1000 * 1000 / pclk_freq; /* pclk latency */
|
|
|
|
/* Conditional FIFO refill latency. */
|
|
|
|
xclks = 2 * arb->mem_page_miss + mclks /* Extra latency due to
|
|
* the overlay. */
|
|
+ 2 * arb->mem_page_miss /* Extra pagemiss latency. */
|
|
+ (arb->bpp == 32 ? 8 : 4); /* Margin of error. */
|
|
|
|
extra_lat = xclks * 1000 * 1000 / mclk_freq;
|
|
|
|
if (arb->two_heads)
|
|
/* Account for another CRTC. */
|
|
extra_lat += fill_lat + extra_lat + burst_lat;
|
|
|
|
/* FIFO burst */
|
|
|
|
/* Max burst not leading to overflows. */
|
|
max_burst_o = (1 + fifo_len - extra_lat * drain_rate / (1000 * 1000))
|
|
* (fill_rate / 1000) / ((fill_rate - drain_rate) / 1000);
|
|
fifo->burst = min(max_burst_o, 1024);
|
|
|
|
/* Max burst value with an acceptable latency. */
|
|
max_burst_l = burst_lat * fill_rate / (1000 * 1000);
|
|
fifo->burst = min(max_burst_l, fifo->burst);
|
|
|
|
fifo->burst = rounddown_pow_of_two(fifo->burst);
|
|
|
|
/* FIFO low watermark */
|
|
|
|
min_lwm = (fill_lat + extra_lat) * drain_rate / (1000 * 1000) + 1;
|
|
max_lwm = fifo_len - fifo->burst
|
|
+ fill_lat * drain_rate / (1000 * 1000)
|
|
+ fifo->burst * drain_rate / fill_rate;
|
|
|
|
fifo->lwm = min_lwm + 10 * (max_lwm - min_lwm) / 100; /* Empirical. */
|
|
}
|
|
|
|
static void
|
|
nv04_update_arb(struct drm_device *dev, int VClk, int bpp,
|
|
int *burst, int *lwm)
|
|
{
|
|
struct drm_nouveau_private *dev_priv = dev->dev_private;
|
|
struct nv_fifo_info fifo_data;
|
|
struct nv_sim_state sim_data;
|
|
int MClk = nouveau_hw_get_clock(dev, PLL_MEMORY);
|
|
int NVClk = nouveau_hw_get_clock(dev, PLL_CORE);
|
|
uint32_t cfg1 = nvReadFB(dev, NV04_PFB_CFG1);
|
|
|
|
sim_data.pclk_khz = VClk;
|
|
sim_data.mclk_khz = MClk;
|
|
sim_data.nvclk_khz = NVClk;
|
|
sim_data.bpp = bpp;
|
|
sim_data.two_heads = nv_two_heads(dev);
|
|
if ((dev->pci_device & 0xffff) == 0x01a0 /*CHIPSET_NFORCE*/ ||
|
|
(dev->pci_device & 0xffff) == 0x01f0 /*CHIPSET_NFORCE2*/) {
|
|
uint32_t type;
|
|
|
|
pci_read_config_dword(pci_get_bus_and_slot(0, 1), 0x7c, &type);
|
|
|
|
sim_data.memory_type = (type >> 12) & 1;
|
|
sim_data.memory_width = 64;
|
|
sim_data.mem_latency = 3;
|
|
sim_data.mem_page_miss = 10;
|
|
} else {
|
|
sim_data.memory_type = nvReadFB(dev, NV04_PFB_CFG0) & 0x1;
|
|
sim_data.memory_width = (nvReadEXTDEV(dev, NV_PEXTDEV_BOOT_0) & 0x10) ? 128 : 64;
|
|
sim_data.mem_latency = cfg1 & 0xf;
|
|
sim_data.mem_page_miss = ((cfg1 >> 4) & 0xf) + ((cfg1 >> 31) & 0x1);
|
|
}
|
|
|
|
if (dev_priv->card_type == NV_04)
|
|
nv04_calc_arb(&fifo_data, &sim_data);
|
|
else
|
|
nv10_calc_arb(&fifo_data, &sim_data);
|
|
|
|
*burst = ilog2(fifo_data.burst >> 4);
|
|
*lwm = fifo_data.lwm >> 3;
|
|
}
|
|
|
|
static void
|
|
nv20_update_arb(int *burst, int *lwm)
|
|
{
|
|
unsigned int fifo_size, burst_size, graphics_lwm;
|
|
|
|
fifo_size = 2048;
|
|
burst_size = 512;
|
|
graphics_lwm = fifo_size - burst_size;
|
|
|
|
*burst = ilog2(burst_size >> 5);
|
|
*lwm = graphics_lwm >> 3;
|
|
}
|
|
|
|
void
|
|
nouveau_calc_arb(struct drm_device *dev, int vclk, int bpp, int *burst, int *lwm)
|
|
{
|
|
struct drm_nouveau_private *dev_priv = dev->dev_private;
|
|
|
|
if (dev_priv->card_type < NV_20)
|
|
nv04_update_arb(dev, vclk, bpp, burst, lwm);
|
|
else if ((dev->pci_device & 0xfff0) == 0x0240 /*CHIPSET_C51*/ ||
|
|
(dev->pci_device & 0xfff0) == 0x03d0 /*CHIPSET_C512*/) {
|
|
*burst = 128;
|
|
*lwm = 0x0480;
|
|
} else
|
|
nv20_update_arb(burst, lwm);
|
|
}
|
|
|
|
static int
|
|
getMNP_single(struct drm_device *dev, struct pll_lims *pll_lim, int clk,
|
|
struct nouveau_pll_vals *bestpv)
|
|
{
|
|
/* Find M, N and P for a single stage PLL
|
|
*
|
|
* Note that some bioses (NV3x) have lookup tables of precomputed MNP
|
|
* values, but we're too lazy to use those atm
|
|
*
|
|
* "clk" parameter in kHz
|
|
* returns calculated clock
|
|
*/
|
|
struct drm_nouveau_private *dev_priv = dev->dev_private;
|
|
int cv = dev_priv->vbios.chip_version;
|
|
int minvco = pll_lim->vco1.minfreq, maxvco = pll_lim->vco1.maxfreq;
|
|
int minM = pll_lim->vco1.min_m, maxM = pll_lim->vco1.max_m;
|
|
int minN = pll_lim->vco1.min_n, maxN = pll_lim->vco1.max_n;
|
|
int minU = pll_lim->vco1.min_inputfreq;
|
|
int maxU = pll_lim->vco1.max_inputfreq;
|
|
int minP = pll_lim->max_p ? pll_lim->min_p : 0;
|
|
int maxP = pll_lim->max_p ? pll_lim->max_p : pll_lim->max_usable_log2p;
|
|
int crystal = pll_lim->refclk;
|
|
int M, N, thisP, P;
|
|
int clkP, calcclk;
|
|
int delta, bestdelta = INT_MAX;
|
|
int bestclk = 0;
|
|
|
|
/* this division verified for nv20, nv18, nv28 (Haiku), and nv34 */
|
|
/* possibly correlated with introduction of 27MHz crystal */
|
|
if (dev_priv->card_type < NV_50) {
|
|
if (cv < 0x17 || cv == 0x1a || cv == 0x20) {
|
|
if (clk > 250000)
|
|
maxM = 6;
|
|
if (clk > 340000)
|
|
maxM = 2;
|
|
} else if (cv < 0x40) {
|
|
if (clk > 150000)
|
|
maxM = 6;
|
|
if (clk > 200000)
|
|
maxM = 4;
|
|
if (clk > 340000)
|
|
maxM = 2;
|
|
}
|
|
}
|
|
|
|
P = pll_lim->max_p ? maxP : (1 << maxP);
|
|
if ((clk * P) < minvco) {
|
|
minvco = clk * maxP;
|
|
maxvco = minvco * 2;
|
|
}
|
|
|
|
if (clk + clk/200 > maxvco) /* +0.5% */
|
|
maxvco = clk + clk/200;
|
|
|
|
/* NV34 goes maxlog2P->0, NV20 goes 0->maxlog2P */
|
|
for (thisP = minP; thisP <= maxP; thisP++) {
|
|
P = pll_lim->max_p ? thisP : (1 << thisP);
|
|
clkP = clk * P;
|
|
|
|
if (clkP < minvco)
|
|
continue;
|
|
if (clkP > maxvco)
|
|
return bestclk;
|
|
|
|
for (M = minM; M <= maxM; M++) {
|
|
if (crystal/M < minU)
|
|
return bestclk;
|
|
if (crystal/M > maxU)
|
|
continue;
|
|
|
|
/* add crystal/2 to round better */
|
|
N = (clkP * M + crystal/2) / crystal;
|
|
|
|
if (N < minN)
|
|
continue;
|
|
if (N > maxN)
|
|
break;
|
|
|
|
/* more rounding additions */
|
|
calcclk = ((N * crystal + P/2) / P + M/2) / M;
|
|
delta = abs(calcclk - clk);
|
|
/* we do an exhaustive search rather than terminating
|
|
* on an optimality condition...
|
|
*/
|
|
if (delta < bestdelta) {
|
|
bestdelta = delta;
|
|
bestclk = calcclk;
|
|
bestpv->N1 = N;
|
|
bestpv->M1 = M;
|
|
bestpv->log2P = thisP;
|
|
if (delta == 0) /* except this one */
|
|
return bestclk;
|
|
}
|
|
}
|
|
}
|
|
|
|
return bestclk;
|
|
}
|
|
|
|
static int
|
|
getMNP_double(struct drm_device *dev, struct pll_lims *pll_lim, int clk,
|
|
struct nouveau_pll_vals *bestpv)
|
|
{
|
|
/* Find M, N and P for a two stage PLL
|
|
*
|
|
* Note that some bioses (NV30+) have lookup tables of precomputed MNP
|
|
* values, but we're too lazy to use those atm
|
|
*
|
|
* "clk" parameter in kHz
|
|
* returns calculated clock
|
|
*/
|
|
struct drm_nouveau_private *dev_priv = dev->dev_private;
|
|
int chip_version = dev_priv->vbios.chip_version;
|
|
int minvco1 = pll_lim->vco1.minfreq, maxvco1 = pll_lim->vco1.maxfreq;
|
|
int minvco2 = pll_lim->vco2.minfreq, maxvco2 = pll_lim->vco2.maxfreq;
|
|
int minU1 = pll_lim->vco1.min_inputfreq, minU2 = pll_lim->vco2.min_inputfreq;
|
|
int maxU1 = pll_lim->vco1.max_inputfreq, maxU2 = pll_lim->vco2.max_inputfreq;
|
|
int minM1 = pll_lim->vco1.min_m, maxM1 = pll_lim->vco1.max_m;
|
|
int minN1 = pll_lim->vco1.min_n, maxN1 = pll_lim->vco1.max_n;
|
|
int minM2 = pll_lim->vco2.min_m, maxM2 = pll_lim->vco2.max_m;
|
|
int minN2 = pll_lim->vco2.min_n, maxN2 = pll_lim->vco2.max_n;
|
|
int maxlog2P = pll_lim->max_usable_log2p;
|
|
int crystal = pll_lim->refclk;
|
|
bool fixedgain2 = (minM2 == maxM2 && minN2 == maxN2);
|
|
int M1, N1, M2, N2, log2P;
|
|
int clkP, calcclk1, calcclk2, calcclkout;
|
|
int delta, bestdelta = INT_MAX;
|
|
int bestclk = 0;
|
|
|
|
int vco2 = (maxvco2 - maxvco2/200) / 2;
|
|
for (log2P = 0; clk && log2P < maxlog2P && clk <= (vco2 >> log2P); log2P++)
|
|
;
|
|
clkP = clk << log2P;
|
|
|
|
if (maxvco2 < clk + clk/200) /* +0.5% */
|
|
maxvco2 = clk + clk/200;
|
|
|
|
for (M1 = minM1; M1 <= maxM1; M1++) {
|
|
if (crystal/M1 < minU1)
|
|
return bestclk;
|
|
if (crystal/M1 > maxU1)
|
|
continue;
|
|
|
|
for (N1 = minN1; N1 <= maxN1; N1++) {
|
|
calcclk1 = crystal * N1 / M1;
|
|
if (calcclk1 < minvco1)
|
|
continue;
|
|
if (calcclk1 > maxvco1)
|
|
break;
|
|
|
|
for (M2 = minM2; M2 <= maxM2; M2++) {
|
|
if (calcclk1/M2 < minU2)
|
|
break;
|
|
if (calcclk1/M2 > maxU2)
|
|
continue;
|
|
|
|
/* add calcclk1/2 to round better */
|
|
N2 = (clkP * M2 + calcclk1/2) / calcclk1;
|
|
if (N2 < minN2)
|
|
continue;
|
|
if (N2 > maxN2)
|
|
break;
|
|
|
|
if (!fixedgain2) {
|
|
if (chip_version < 0x60)
|
|
if (N2/M2 < 4 || N2/M2 > 10)
|
|
continue;
|
|
|
|
calcclk2 = calcclk1 * N2 / M2;
|
|
if (calcclk2 < minvco2)
|
|
break;
|
|
if (calcclk2 > maxvco2)
|
|
continue;
|
|
} else
|
|
calcclk2 = calcclk1;
|
|
|
|
calcclkout = calcclk2 >> log2P;
|
|
delta = abs(calcclkout - clk);
|
|
/* we do an exhaustive search rather than terminating
|
|
* on an optimality condition...
|
|
*/
|
|
if (delta < bestdelta) {
|
|
bestdelta = delta;
|
|
bestclk = calcclkout;
|
|
bestpv->N1 = N1;
|
|
bestpv->M1 = M1;
|
|
bestpv->N2 = N2;
|
|
bestpv->M2 = M2;
|
|
bestpv->log2P = log2P;
|
|
if (delta == 0) /* except this one */
|
|
return bestclk;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return bestclk;
|
|
}
|
|
|
|
int
|
|
nouveau_calc_pll_mnp(struct drm_device *dev, struct pll_lims *pll_lim, int clk,
|
|
struct nouveau_pll_vals *pv)
|
|
{
|
|
int outclk;
|
|
|
|
if (!pll_lim->vco2.maxfreq)
|
|
outclk = getMNP_single(dev, pll_lim, clk, pv);
|
|
else
|
|
outclk = getMNP_double(dev, pll_lim, clk, pv);
|
|
|
|
if (!outclk)
|
|
NV_ERROR(dev, "Could not find a compatible set of PLL values\n");
|
|
|
|
return outclk;
|
|
}
|