This adds preliminary support for the SH7786 CPU subtype. While this is a dual-core CPU, only UP is supported for now. L2 cache support is likewise not yet implemented. More information on this particular CPU subtype is available at: http://www.renesas.com/fmwk.jsp?cnt=sh7786_root.jsp&fp=/products/mpumcu/superh_family/sh7780_series/sh7786_group/ Signed-off-by: Kuninori Morimoto <morimoto.kuninori@renesas.com> Signed-off-by: Paul Mundt <lethal@linux-sh.org>
		
			
				
	
	
		
			570 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			570 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * arch/sh/kernel/setup.c
 | |
|  *
 | |
|  * This file handles the architecture-dependent parts of initialization
 | |
|  *
 | |
|  *  Copyright (C) 1999  Niibe Yutaka
 | |
|  *  Copyright (C) 2002 - 2007 Paul Mundt
 | |
|  */
 | |
| #include <linux/screen_info.h>
 | |
| #include <linux/ioport.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/initrd.h>
 | |
| #include <linux/bootmem.h>
 | |
| #include <linux/console.h>
 | |
| #include <linux/seq_file.h>
 | |
| #include <linux/root_dev.h>
 | |
| #include <linux/utsname.h>
 | |
| #include <linux/nodemask.h>
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/pfn.h>
 | |
| #include <linux/fs.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/kexec.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/smp.h>
 | |
| #include <linux/err.h>
 | |
| #include <linux/debugfs.h>
 | |
| #include <linux/crash_dump.h>
 | |
| #include <linux/mmzone.h>
 | |
| #include <linux/clk.h>
 | |
| #include <linux/delay.h>
 | |
| #include <asm/uaccess.h>
 | |
| #include <asm/io.h>
 | |
| #include <asm/page.h>
 | |
| #include <asm/elf.h>
 | |
| #include <asm/sections.h>
 | |
| #include <asm/irq.h>
 | |
| #include <asm/setup.h>
 | |
| #include <asm/clock.h>
 | |
| #include <asm/mmu_context.h>
 | |
| 
 | |
| /*
 | |
|  * Initialize loops_per_jiffy as 10000000 (1000MIPS).
 | |
|  * This value will be used at the very early stage of serial setup.
 | |
|  * The bigger value means no problem.
 | |
|  */
 | |
| struct sh_cpuinfo cpu_data[NR_CPUS] __read_mostly = {
 | |
| 	[0] = {
 | |
| 		.type			= CPU_SH_NONE,
 | |
| 		.loops_per_jiffy	= 10000000,
 | |
| 	},
 | |
| };
 | |
| EXPORT_SYMBOL(cpu_data);
 | |
| 
 | |
| /*
 | |
|  * The machine vector. First entry in .machvec.init, or clobbered by
 | |
|  * sh_mv= on the command line, prior to .machvec.init teardown.
 | |
|  */
 | |
| struct sh_machine_vector sh_mv = { .mv_name = "generic", };
 | |
| EXPORT_SYMBOL(sh_mv);
 | |
| 
 | |
| #ifdef CONFIG_VT
 | |
| struct screen_info screen_info;
 | |
| #endif
 | |
| 
 | |
| extern int root_mountflags;
 | |
| 
 | |
| #define RAMDISK_IMAGE_START_MASK	0x07FF
 | |
| #define RAMDISK_PROMPT_FLAG		0x8000
 | |
| #define RAMDISK_LOAD_FLAG		0x4000
 | |
| 
 | |
| static char __initdata command_line[COMMAND_LINE_SIZE] = { 0, };
 | |
| 
 | |
| static struct resource code_resource = {
 | |
| 	.name = "Kernel code",
 | |
| 	.flags = IORESOURCE_BUSY | IORESOURCE_MEM,
 | |
| };
 | |
| 
 | |
| static struct resource data_resource = {
 | |
| 	.name = "Kernel data",
 | |
| 	.flags = IORESOURCE_BUSY | IORESOURCE_MEM,
 | |
| };
 | |
| 
 | |
| static struct resource bss_resource = {
 | |
| 	.name	= "Kernel bss",
 | |
| 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM,
 | |
| };
 | |
| 
 | |
| unsigned long memory_start;
 | |
| EXPORT_SYMBOL(memory_start);
 | |
| unsigned long memory_end = 0;
 | |
| EXPORT_SYMBOL(memory_end);
 | |
| 
 | |
| static struct resource mem_resources[MAX_NUMNODES];
 | |
| 
 | |
| int l1i_cache_shape, l1d_cache_shape, l2_cache_shape;
 | |
| 
 | |
| static int __init early_parse_mem(char *p)
 | |
| {
 | |
| 	unsigned long size;
 | |
| 
 | |
| 	memory_start = (unsigned long)__va(__MEMORY_START);
 | |
| 	size = memparse(p, &p);
 | |
| 
 | |
| 	if (size > __MEMORY_SIZE) {
 | |
| 		static char msg[] __initdata = KERN_ERR
 | |
| 			"Using mem= to increase the size of kernel memory "
 | |
| 			"is not allowed.\n"
 | |
| 			"  Recompile the kernel with the correct value for "
 | |
| 			"CONFIG_MEMORY_SIZE.\n";
 | |
| 		printk(msg);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	memory_end = memory_start + size;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| early_param("mem", early_parse_mem);
 | |
| 
 | |
| /*
 | |
|  * Register fully available low RAM pages with the bootmem allocator.
 | |
|  */
 | |
| static void __init register_bootmem_low_pages(void)
 | |
| {
 | |
| 	unsigned long curr_pfn, last_pfn, pages;
 | |
| 
 | |
| 	/*
 | |
| 	 * We are rounding up the start address of usable memory:
 | |
| 	 */
 | |
| 	curr_pfn = PFN_UP(__MEMORY_START);
 | |
| 
 | |
| 	/*
 | |
| 	 * ... and at the end of the usable range downwards:
 | |
| 	 */
 | |
| 	last_pfn = PFN_DOWN(__pa(memory_end));
 | |
| 
 | |
| 	if (last_pfn > max_low_pfn)
 | |
| 		last_pfn = max_low_pfn;
 | |
| 
 | |
| 	pages = last_pfn - curr_pfn;
 | |
| 	free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(pages));
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_KEXEC
 | |
| static void __init reserve_crashkernel(void)
 | |
| {
 | |
| 	unsigned long long free_mem;
 | |
| 	unsigned long long crash_size, crash_base;
 | |
| 	void *vp;
 | |
| 	int ret;
 | |
| 
 | |
| 	free_mem = ((unsigned long long)max_low_pfn - min_low_pfn) << PAGE_SHIFT;
 | |
| 
 | |
| 	ret = parse_crashkernel(boot_command_line, free_mem,
 | |
| 			&crash_size, &crash_base);
 | |
| 	if (ret == 0 && crash_size) {
 | |
| 		if (crash_base <= 0) {
 | |
| 			vp = alloc_bootmem_nopanic(crash_size); 
 | |
| 			if (!vp) {
 | |
| 				printk(KERN_INFO "crashkernel allocation "
 | |
| 				       "failed\n");
 | |
| 				return;
 | |
| 			}
 | |
| 			crash_base = __pa(vp);
 | |
| 		} else if (reserve_bootmem(crash_base, crash_size,
 | |
| 					BOOTMEM_EXCLUSIVE) < 0) {
 | |
| 			printk(KERN_INFO "crashkernel reservation failed - "
 | |
| 					"memory is in use\n");
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
 | |
| 				"for crashkernel (System RAM: %ldMB)\n",
 | |
| 				(unsigned long)(crash_size >> 20),
 | |
| 				(unsigned long)(crash_base >> 20),
 | |
| 				(unsigned long)(free_mem >> 20));
 | |
| 		crashk_res.start = crash_base;
 | |
| 		crashk_res.end   = crash_base + crash_size - 1;
 | |
| 		insert_resource(&iomem_resource, &crashk_res);
 | |
| 	}
 | |
| }
 | |
| #else
 | |
| static inline void __init reserve_crashkernel(void)
 | |
| {}
 | |
| #endif
 | |
| 
 | |
| #ifndef CONFIG_GENERIC_CALIBRATE_DELAY
 | |
| void __cpuinit calibrate_delay(void)
 | |
| {
 | |
| 	struct clk *clk = clk_get(NULL, "cpu_clk");
 | |
| 
 | |
| 	if (IS_ERR(clk))
 | |
| 		panic("Need a sane CPU clock definition!");
 | |
| 
 | |
| 	loops_per_jiffy = (clk_get_rate(clk) >> 1) / HZ;
 | |
| 
 | |
| 	printk(KERN_INFO "Calibrating delay loop (skipped)... "
 | |
| 			 "%lu.%02lu BogoMIPS PRESET (lpj=%lu)\n",
 | |
| 			 loops_per_jiffy/(500000/HZ),
 | |
| 			 (loops_per_jiffy/(5000/HZ)) % 100,
 | |
| 			 loops_per_jiffy);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void __init __add_active_range(unsigned int nid, unsigned long start_pfn,
 | |
| 						unsigned long end_pfn)
 | |
| {
 | |
| 	struct resource *res = &mem_resources[nid];
 | |
| 
 | |
| 	WARN_ON(res->name); /* max one active range per node for now */
 | |
| 
 | |
| 	res->name = "System RAM";
 | |
| 	res->start = start_pfn << PAGE_SHIFT;
 | |
| 	res->end = (end_pfn << PAGE_SHIFT) - 1;
 | |
| 	res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
 | |
| 	if (request_resource(&iomem_resource, res)) {
 | |
| 		pr_err("unable to request memory_resource 0x%lx 0x%lx\n",
 | |
| 		       start_pfn, end_pfn);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 *  We don't know which RAM region contains kernel data,
 | |
| 	 *  so we try it repeatedly and let the resource manager
 | |
| 	 *  test it.
 | |
| 	 */
 | |
| 	request_resource(res, &code_resource);
 | |
| 	request_resource(res, &data_resource);
 | |
| 	request_resource(res, &bss_resource);
 | |
| 
 | |
| 	add_active_range(nid, start_pfn, end_pfn);
 | |
| }
 | |
| 
 | |
| void __init setup_bootmem_allocator(unsigned long free_pfn)
 | |
| {
 | |
| 	unsigned long bootmap_size;
 | |
| 
 | |
| 	/*
 | |
| 	 * Find a proper area for the bootmem bitmap. After this
 | |
| 	 * bootstrap step all allocations (until the page allocator
 | |
| 	 * is intact) must be done via bootmem_alloc().
 | |
| 	 */
 | |
| 	bootmap_size = init_bootmem_node(NODE_DATA(0), free_pfn,
 | |
| 					 min_low_pfn, max_low_pfn);
 | |
| 
 | |
| 	__add_active_range(0, min_low_pfn, max_low_pfn);
 | |
| 	register_bootmem_low_pages();
 | |
| 
 | |
| 	node_set_online(0);
 | |
| 
 | |
| 	/*
 | |
| 	 * Reserve the kernel text and
 | |
| 	 * Reserve the bootmem bitmap. We do this in two steps (first step
 | |
| 	 * was init_bootmem()), because this catches the (definitely buggy)
 | |
| 	 * case of us accidentally initializing the bootmem allocator with
 | |
| 	 * an invalid RAM area.
 | |
| 	 */
 | |
| 	reserve_bootmem(__MEMORY_START + CONFIG_ZERO_PAGE_OFFSET,
 | |
| 			(PFN_PHYS(free_pfn) + bootmap_size + PAGE_SIZE - 1) -
 | |
| 			(__MEMORY_START + CONFIG_ZERO_PAGE_OFFSET),
 | |
| 			BOOTMEM_DEFAULT);
 | |
| 
 | |
| 	/*
 | |
| 	 * Reserve physical pages below CONFIG_ZERO_PAGE_OFFSET.
 | |
| 	 */
 | |
| 	if (CONFIG_ZERO_PAGE_OFFSET != 0)
 | |
| 		reserve_bootmem(__MEMORY_START, CONFIG_ZERO_PAGE_OFFSET,
 | |
| 				BOOTMEM_DEFAULT);
 | |
| 
 | |
| 	sparse_memory_present_with_active_regions(0);
 | |
| 
 | |
| #ifdef CONFIG_BLK_DEV_INITRD
 | |
| 	ROOT_DEV = Root_RAM0;
 | |
| 
 | |
| 	if (LOADER_TYPE && INITRD_START) {
 | |
| 		unsigned long initrd_start_phys = INITRD_START + __MEMORY_START;
 | |
| 
 | |
| 		if (initrd_start_phys + INITRD_SIZE <= PFN_PHYS(max_low_pfn)) {
 | |
| 			reserve_bootmem(initrd_start_phys, INITRD_SIZE,
 | |
| 					BOOTMEM_DEFAULT);
 | |
| 			initrd_start = (unsigned long)__va(initrd_start_phys);
 | |
| 			initrd_end = initrd_start + INITRD_SIZE;
 | |
| 		} else {
 | |
| 			printk("initrd extends beyond end of memory "
 | |
| 			       "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
 | |
| 			       initrd_start_phys + INITRD_SIZE,
 | |
| 			       (unsigned long)PFN_PHYS(max_low_pfn));
 | |
| 			initrd_start = 0;
 | |
| 		}
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	reserve_crashkernel();
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_NEED_MULTIPLE_NODES
 | |
| static void __init setup_memory(void)
 | |
| {
 | |
| 	unsigned long start_pfn;
 | |
| 
 | |
| 	/*
 | |
| 	 * Partially used pages are not usable - thus
 | |
| 	 * we are rounding upwards:
 | |
| 	 */
 | |
| 	start_pfn = PFN_UP(__pa(_end));
 | |
| 	setup_bootmem_allocator(start_pfn);
 | |
| }
 | |
| #else
 | |
| extern void __init setup_memory(void);
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Note: elfcorehdr_addr is not just limited to vmcore. It is also used by
 | |
|  * is_kdump_kernel() to determine if we are booting after a panic. Hence
 | |
|  * ifdef it under CONFIG_CRASH_DUMP and not CONFIG_PROC_VMCORE.
 | |
|  */
 | |
| #ifdef CONFIG_CRASH_DUMP
 | |
| /* elfcorehdr= specifies the location of elf core header
 | |
|  * stored by the crashed kernel.
 | |
|  */
 | |
| static int __init parse_elfcorehdr(char *arg)
 | |
| {
 | |
| 	if (!arg)
 | |
| 		return -EINVAL;
 | |
| 	elfcorehdr_addr = memparse(arg, &arg);
 | |
| 	return 0;
 | |
| }
 | |
| early_param("elfcorehdr", parse_elfcorehdr);
 | |
| #endif
 | |
| 
 | |
| void __init setup_arch(char **cmdline_p)
 | |
| {
 | |
| 	enable_mmu();
 | |
| 
 | |
| 	ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV);
 | |
| 
 | |
| 	printk(KERN_NOTICE "Boot params:\n"
 | |
| 			   "... MOUNT_ROOT_RDONLY - %08lx\n"
 | |
| 			   "... RAMDISK_FLAGS     - %08lx\n"
 | |
| 			   "... ORIG_ROOT_DEV     - %08lx\n"
 | |
| 			   "... LOADER_TYPE       - %08lx\n"
 | |
| 			   "... INITRD_START      - %08lx\n"
 | |
| 			   "... INITRD_SIZE       - %08lx\n",
 | |
| 			   MOUNT_ROOT_RDONLY, RAMDISK_FLAGS,
 | |
| 			   ORIG_ROOT_DEV, LOADER_TYPE,
 | |
| 			   INITRD_START, INITRD_SIZE);
 | |
| 
 | |
| #ifdef CONFIG_BLK_DEV_RAM
 | |
| 	rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK;
 | |
| 	rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0);
 | |
| 	rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);
 | |
| #endif
 | |
| 
 | |
| 	if (!MOUNT_ROOT_RDONLY)
 | |
| 		root_mountflags &= ~MS_RDONLY;
 | |
| 	init_mm.start_code = (unsigned long) _text;
 | |
| 	init_mm.end_code = (unsigned long) _etext;
 | |
| 	init_mm.end_data = (unsigned long) _edata;
 | |
| 	init_mm.brk = (unsigned long) _end;
 | |
| 
 | |
| 	code_resource.start = virt_to_phys(_text);
 | |
| 	code_resource.end = virt_to_phys(_etext)-1;
 | |
| 	data_resource.start = virt_to_phys(_etext);
 | |
| 	data_resource.end = virt_to_phys(_edata)-1;
 | |
| 	bss_resource.start = virt_to_phys(__bss_start);
 | |
| 	bss_resource.end = virt_to_phys(_ebss)-1;
 | |
| 
 | |
| 	memory_start = (unsigned long)__va(__MEMORY_START);
 | |
| 	if (!memory_end)
 | |
| 		memory_end = memory_start + __MEMORY_SIZE;
 | |
| 
 | |
| #ifdef CONFIG_CMDLINE_BOOL
 | |
| 	strlcpy(command_line, CONFIG_CMDLINE, sizeof(command_line));
 | |
| #else
 | |
| 	strlcpy(command_line, COMMAND_LINE, sizeof(command_line));
 | |
| #endif
 | |
| 
 | |
| 	/* Save unparsed command line copy for /proc/cmdline */
 | |
| 	memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
 | |
| 	*cmdline_p = command_line;
 | |
| 
 | |
| 	parse_early_param();
 | |
| 
 | |
| 	sh_mv_setup();
 | |
| 
 | |
| 	/*
 | |
| 	 * Find the highest page frame number we have available
 | |
| 	 */
 | |
| 	max_pfn = PFN_DOWN(__pa(memory_end));
 | |
| 
 | |
| 	/*
 | |
| 	 * Determine low and high memory ranges:
 | |
| 	 */
 | |
| 	max_low_pfn = max_pfn;
 | |
| 	min_low_pfn = __MEMORY_START >> PAGE_SHIFT;
 | |
| 
 | |
| 	nodes_clear(node_online_map);
 | |
| 
 | |
| 	/* Setup bootmem with available RAM */
 | |
| 	setup_memory();
 | |
| 	sparse_init();
 | |
| 
 | |
| #ifdef CONFIG_DUMMY_CONSOLE
 | |
| 	conswitchp = &dummy_con;
 | |
| #endif
 | |
| 
 | |
| 	/* Perform the machine specific initialisation */
 | |
| 	if (likely(sh_mv.mv_setup))
 | |
| 		sh_mv.mv_setup(cmdline_p);
 | |
| 
 | |
| 	paging_init();
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	plat_smp_setup();
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static const char *cpu_name[] = {
 | |
| 	[CPU_SH7201]	= "SH7201",
 | |
| 	[CPU_SH7203]	= "SH7203",	[CPU_SH7263]	= "SH7263",
 | |
| 	[CPU_SH7206]	= "SH7206",	[CPU_SH7619]	= "SH7619",
 | |
| 	[CPU_SH7705]	= "SH7705",	[CPU_SH7706]	= "SH7706",
 | |
| 	[CPU_SH7707]	= "SH7707",	[CPU_SH7708]	= "SH7708",
 | |
| 	[CPU_SH7709]	= "SH7709",	[CPU_SH7710]	= "SH7710",
 | |
| 	[CPU_SH7712]	= "SH7712",	[CPU_SH7720]	= "SH7720",
 | |
| 	[CPU_SH7721]	= "SH7721",	[CPU_SH7729]	= "SH7729",
 | |
| 	[CPU_SH7750]	= "SH7750",	[CPU_SH7750S]	= "SH7750S",
 | |
| 	[CPU_SH7750R]	= "SH7750R",	[CPU_SH7751]	= "SH7751",
 | |
| 	[CPU_SH7751R]	= "SH7751R",	[CPU_SH7760]	= "SH7760",
 | |
| 	[CPU_SH4_202]	= "SH4-202",	[CPU_SH4_501]	= "SH4-501",
 | |
| 	[CPU_SH7763]	= "SH7763",	[CPU_SH7770]	= "SH7770",
 | |
| 	[CPU_SH7780]	= "SH7780",	[CPU_SH7781]	= "SH7781",
 | |
| 	[CPU_SH7343]	= "SH7343",	[CPU_SH7785]	= "SH7785",
 | |
| 	[CPU_SH7786]	= "SH7786",
 | |
| 	[CPU_SH7722]	= "SH7722",	[CPU_SHX3]	= "SH-X3",
 | |
| 	[CPU_SH5_101]	= "SH5-101",	[CPU_SH5_103]	= "SH5-103",
 | |
| 	[CPU_MXG]	= "MX-G",	[CPU_SH7723]	= "SH7723",
 | |
| 	[CPU_SH7366]	= "SH7366",	[CPU_SH_NONE]	= "Unknown"
 | |
| };
 | |
| 
 | |
| const char *get_cpu_subtype(struct sh_cpuinfo *c)
 | |
| {
 | |
| 	return cpu_name[c->type];
 | |
| }
 | |
| EXPORT_SYMBOL(get_cpu_subtype);
 | |
| 
 | |
| #ifdef CONFIG_PROC_FS
 | |
| /* Symbolic CPU flags, keep in sync with asm/cpu-features.h */
 | |
| static const char *cpu_flags[] = {
 | |
| 	"none", "fpu", "p2flush", "mmuassoc", "dsp", "perfctr",
 | |
| 	"ptea", "llsc", "l2", "op32", NULL
 | |
| };
 | |
| 
 | |
| static void show_cpuflags(struct seq_file *m, struct sh_cpuinfo *c)
 | |
| {
 | |
| 	unsigned long i;
 | |
| 
 | |
| 	seq_printf(m, "cpu flags\t:");
 | |
| 
 | |
| 	if (!c->flags) {
 | |
| 		seq_printf(m, " %s\n", cpu_flags[0]);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; cpu_flags[i]; i++)
 | |
| 		if ((c->flags & (1 << i)))
 | |
| 			seq_printf(m, " %s", cpu_flags[i+1]);
 | |
| 
 | |
| 	seq_printf(m, "\n");
 | |
| }
 | |
| 
 | |
| static void show_cacheinfo(struct seq_file *m, const char *type,
 | |
| 			   struct cache_info info)
 | |
| {
 | |
| 	unsigned int cache_size;
 | |
| 
 | |
| 	cache_size = info.ways * info.sets * info.linesz;
 | |
| 
 | |
| 	seq_printf(m, "%s size\t: %2dKiB (%d-way)\n",
 | |
| 		   type, cache_size >> 10, info.ways);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	Get CPU information for use by the procfs.
 | |
|  */
 | |
| static int show_cpuinfo(struct seq_file *m, void *v)
 | |
| {
 | |
| 	struct sh_cpuinfo *c = v;
 | |
| 	unsigned int cpu = c - cpu_data;
 | |
| 
 | |
| 	if (!cpu_online(cpu))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (cpu == 0)
 | |
| 		seq_printf(m, "machine\t\t: %s\n", get_system_type());
 | |
| 
 | |
| 	seq_printf(m, "processor\t: %d\n", cpu);
 | |
| 	seq_printf(m, "cpu family\t: %s\n", init_utsname()->machine);
 | |
| 	seq_printf(m, "cpu type\t: %s\n", get_cpu_subtype(c));
 | |
| 	if (c->cut_major == -1)
 | |
| 		seq_printf(m, "cut\t\t: unknown\n");
 | |
| 	else if (c->cut_minor == -1)
 | |
| 		seq_printf(m, "cut\t\t: %d.x\n", c->cut_major);
 | |
| 	else
 | |
| 		seq_printf(m, "cut\t\t: %d.%d\n", c->cut_major, c->cut_minor);
 | |
| 
 | |
| 	show_cpuflags(m, c);
 | |
| 
 | |
| 	seq_printf(m, "cache type\t: ");
 | |
| 
 | |
| 	/*
 | |
| 	 * Check for what type of cache we have, we support both the
 | |
| 	 * unified cache on the SH-2 and SH-3, as well as the harvard
 | |
| 	 * style cache on the SH-4.
 | |
| 	 */
 | |
| 	if (c->icache.flags & SH_CACHE_COMBINED) {
 | |
| 		seq_printf(m, "unified\n");
 | |
| 		show_cacheinfo(m, "cache", c->icache);
 | |
| 	} else {
 | |
| 		seq_printf(m, "split (harvard)\n");
 | |
| 		show_cacheinfo(m, "icache", c->icache);
 | |
| 		show_cacheinfo(m, "dcache", c->dcache);
 | |
| 	}
 | |
| 
 | |
| 	/* Optional secondary cache */
 | |
| 	if (c->flags & CPU_HAS_L2_CACHE)
 | |
| 		show_cacheinfo(m, "scache", c->scache);
 | |
| 
 | |
| 	seq_printf(m, "bogomips\t: %lu.%02lu\n",
 | |
| 		     c->loops_per_jiffy/(500000/HZ),
 | |
| 		     (c->loops_per_jiffy/(5000/HZ)) % 100);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void *c_start(struct seq_file *m, loff_t *pos)
 | |
| {
 | |
| 	return *pos < NR_CPUS ? cpu_data + *pos : NULL;
 | |
| }
 | |
| static void *c_next(struct seq_file *m, void *v, loff_t *pos)
 | |
| {
 | |
| 	++*pos;
 | |
| 	return c_start(m, pos);
 | |
| }
 | |
| static void c_stop(struct seq_file *m, void *v)
 | |
| {
 | |
| }
 | |
| const struct seq_operations cpuinfo_op = {
 | |
| 	.start	= c_start,
 | |
| 	.next	= c_next,
 | |
| 	.stop	= c_stop,
 | |
| 	.show	= show_cpuinfo,
 | |
| };
 | |
| #endif /* CONFIG_PROC_FS */
 | |
| 
 | |
| struct dentry *sh_debugfs_root;
 | |
| 
 | |
| static int __init sh_debugfs_init(void)
 | |
| {
 | |
| 	sh_debugfs_root = debugfs_create_dir("sh", NULL);
 | |
| 	if (!sh_debugfs_root)
 | |
| 		return -ENOMEM;
 | |
| 	if (IS_ERR(sh_debugfs_root))
 | |
| 		return PTR_ERR(sh_debugfs_root);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| arch_initcall(sh_debugfs_init);
 |