linux/drivers/scsi/ufs/ufshcd.c
Namjae Jeon 94c122ab01 [SCSI] ufs: fix incorrect return value about SUCCESS and FAILED
Currently the UFS host driver has returned incorrect values for SUCCESS
and FAILED.  Fix it to return the correct value to the upper layer.

Signed-off-by: Namjae Jeon <linkinjeon@gmail.com>
Acked-by: Santosh Y <santoshsy@gmail.com>
Signed-off-by: Venkatraman S <svenkatr@ti.com>
Signed-off-by: James Bottomley <JBottomley@Parallels.com>
2012-07-20 08:59:02 +01:00

1965 lines
51 KiB
C

/*
* Universal Flash Storage Host controller driver
*
* This code is based on drivers/scsi/ufs/ufshcd.c
* Copyright (C) 2011-2012 Samsung India Software Operations
*
* Santosh Yaraganavi <santosh.sy@samsung.com>
* Vinayak Holikatti <h.vinayak@samsung.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* NO WARRANTY
* THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
* CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
* LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
* solely responsible for determining the appropriateness of using and
* distributing the Program and assumes all risks associated with its
* exercise of rights under this Agreement, including but not limited to
* the risks and costs of program errors, damage to or loss of data,
* programs or equipment, and unavailability or interruption of operations.
* DISCLAIMER OF LIABILITY
* NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
* TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
* USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
* HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
* USA.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/workqueue.h>
#include <linux/errno.h>
#include <linux/types.h>
#include <linux/wait.h>
#include <linux/bitops.h>
#include <asm/irq.h>
#include <asm/byteorder.h>
#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_host.h>
#include <scsi/scsi_tcq.h>
#include <scsi/scsi_dbg.h>
#include <scsi/scsi_eh.h>
#include "ufs.h"
#include "ufshci.h"
#define UFSHCD "ufshcd"
#define UFSHCD_DRIVER_VERSION "0.1"
enum {
UFSHCD_MAX_CHANNEL = 0,
UFSHCD_MAX_ID = 1,
UFSHCD_MAX_LUNS = 8,
UFSHCD_CMD_PER_LUN = 32,
UFSHCD_CAN_QUEUE = 32,
};
/* UFSHCD states */
enum {
UFSHCD_STATE_OPERATIONAL,
UFSHCD_STATE_RESET,
UFSHCD_STATE_ERROR,
};
/* Interrupt configuration options */
enum {
UFSHCD_INT_DISABLE,
UFSHCD_INT_ENABLE,
UFSHCD_INT_CLEAR,
};
/* Interrupt aggregation options */
enum {
INT_AGGR_RESET,
INT_AGGR_CONFIG,
};
/**
* struct uic_command - UIC command structure
* @command: UIC command
* @argument1: UIC command argument 1
* @argument2: UIC command argument 2
* @argument3: UIC command argument 3
* @cmd_active: Indicate if UIC command is outstanding
* @result: UIC command result
*/
struct uic_command {
u32 command;
u32 argument1;
u32 argument2;
u32 argument3;
int cmd_active;
int result;
};
/**
* struct ufs_hba - per adapter private structure
* @mmio_base: UFSHCI base register address
* @ucdl_base_addr: UFS Command Descriptor base address
* @utrdl_base_addr: UTP Transfer Request Descriptor base address
* @utmrdl_base_addr: UTP Task Management Descriptor base address
* @ucdl_dma_addr: UFS Command Descriptor DMA address
* @utrdl_dma_addr: UTRDL DMA address
* @utmrdl_dma_addr: UTMRDL DMA address
* @host: Scsi_Host instance of the driver
* @pdev: PCI device handle
* @lrb: local reference block
* @outstanding_tasks: Bits representing outstanding task requests
* @outstanding_reqs: Bits representing outstanding transfer requests
* @capabilities: UFS Controller Capabilities
* @nutrs: Transfer Request Queue depth supported by controller
* @nutmrs: Task Management Queue depth supported by controller
* @active_uic_cmd: handle of active UIC command
* @ufshcd_tm_wait_queue: wait queue for task management
* @tm_condition: condition variable for task management
* @ufshcd_state: UFSHCD states
* @int_enable_mask: Interrupt Mask Bits
* @uic_workq: Work queue for UIC completion handling
* @feh_workq: Work queue for fatal controller error handling
* @errors: HBA errors
*/
struct ufs_hba {
void __iomem *mmio_base;
/* Virtual memory reference */
struct utp_transfer_cmd_desc *ucdl_base_addr;
struct utp_transfer_req_desc *utrdl_base_addr;
struct utp_task_req_desc *utmrdl_base_addr;
/* DMA memory reference */
dma_addr_t ucdl_dma_addr;
dma_addr_t utrdl_dma_addr;
dma_addr_t utmrdl_dma_addr;
struct Scsi_Host *host;
struct pci_dev *pdev;
struct ufshcd_lrb *lrb;
unsigned long outstanding_tasks;
unsigned long outstanding_reqs;
u32 capabilities;
int nutrs;
int nutmrs;
u32 ufs_version;
struct uic_command active_uic_cmd;
wait_queue_head_t ufshcd_tm_wait_queue;
unsigned long tm_condition;
u32 ufshcd_state;
u32 int_enable_mask;
/* Work Queues */
struct work_struct uic_workq;
struct work_struct feh_workq;
/* HBA Errors */
u32 errors;
};
/**
* struct ufshcd_lrb - local reference block
* @utr_descriptor_ptr: UTRD address of the command
* @ucd_cmd_ptr: UCD address of the command
* @ucd_rsp_ptr: Response UPIU address for this command
* @ucd_prdt_ptr: PRDT address of the command
* @cmd: pointer to SCSI command
* @sense_buffer: pointer to sense buffer address of the SCSI command
* @sense_bufflen: Length of the sense buffer
* @scsi_status: SCSI status of the command
* @command_type: SCSI, UFS, Query.
* @task_tag: Task tag of the command
* @lun: LUN of the command
*/
struct ufshcd_lrb {
struct utp_transfer_req_desc *utr_descriptor_ptr;
struct utp_upiu_cmd *ucd_cmd_ptr;
struct utp_upiu_rsp *ucd_rsp_ptr;
struct ufshcd_sg_entry *ucd_prdt_ptr;
struct scsi_cmnd *cmd;
u8 *sense_buffer;
unsigned int sense_bufflen;
int scsi_status;
int command_type;
int task_tag;
unsigned int lun;
};
/**
* ufshcd_get_ufs_version - Get the UFS version supported by the HBA
* @hba - Pointer to adapter instance
*
* Returns UFSHCI version supported by the controller
*/
static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba)
{
return readl(hba->mmio_base + REG_UFS_VERSION);
}
/**
* ufshcd_is_device_present - Check if any device connected to
* the host controller
* @reg_hcs - host controller status register value
*
* Returns 1 if device present, 0 if no device detected
*/
static inline int ufshcd_is_device_present(u32 reg_hcs)
{
return (DEVICE_PRESENT & reg_hcs) ? 1 : 0;
}
/**
* ufshcd_get_tr_ocs - Get the UTRD Overall Command Status
* @lrb: pointer to local command reference block
*
* This function is used to get the OCS field from UTRD
* Returns the OCS field in the UTRD
*/
static inline int ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp)
{
return lrbp->utr_descriptor_ptr->header.dword_2 & MASK_OCS;
}
/**
* ufshcd_get_tmr_ocs - Get the UTMRD Overall Command Status
* @task_req_descp: pointer to utp_task_req_desc structure
*
* This function is used to get the OCS field from UTMRD
* Returns the OCS field in the UTMRD
*/
static inline int
ufshcd_get_tmr_ocs(struct utp_task_req_desc *task_req_descp)
{
return task_req_descp->header.dword_2 & MASK_OCS;
}
/**
* ufshcd_get_tm_free_slot - get a free slot for task management request
* @hba: per adapter instance
*
* Returns maximum number of task management request slots in case of
* task management queue full or returns the free slot number
*/
static inline int ufshcd_get_tm_free_slot(struct ufs_hba *hba)
{
return find_first_zero_bit(&hba->outstanding_tasks, hba->nutmrs);
}
/**
* ufshcd_utrl_clear - Clear a bit in UTRLCLR register
* @hba: per adapter instance
* @pos: position of the bit to be cleared
*/
static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 pos)
{
writel(~(1 << pos),
(hba->mmio_base + REG_UTP_TRANSFER_REQ_LIST_CLEAR));
}
/**
* ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY
* @reg: Register value of host controller status
*
* Returns integer, 0 on Success and positive value if failed
*/
static inline int ufshcd_get_lists_status(u32 reg)
{
/*
* The mask 0xFF is for the following HCS register bits
* Bit Description
* 0 Device Present
* 1 UTRLRDY
* 2 UTMRLRDY
* 3 UCRDY
* 4 HEI
* 5 DEI
* 6-7 reserved
*/
return (((reg) & (0xFF)) >> 1) ^ (0x07);
}
/**
* ufshcd_get_uic_cmd_result - Get the UIC command result
* @hba: Pointer to adapter instance
*
* This function gets the result of UIC command completion
* Returns 0 on success, non zero value on error
*/
static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba)
{
return readl(hba->mmio_base + REG_UIC_COMMAND_ARG_2) &
MASK_UIC_COMMAND_RESULT;
}
/**
* ufshcd_free_hba_memory - Free allocated memory for LRB, request
* and task lists
* @hba: Pointer to adapter instance
*/
static inline void ufshcd_free_hba_memory(struct ufs_hba *hba)
{
size_t utmrdl_size, utrdl_size, ucdl_size;
kfree(hba->lrb);
if (hba->utmrdl_base_addr) {
utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs;
dma_free_coherent(&hba->pdev->dev, utmrdl_size,
hba->utmrdl_base_addr, hba->utmrdl_dma_addr);
}
if (hba->utrdl_base_addr) {
utrdl_size =
(sizeof(struct utp_transfer_req_desc) * hba->nutrs);
dma_free_coherent(&hba->pdev->dev, utrdl_size,
hba->utrdl_base_addr, hba->utrdl_dma_addr);
}
if (hba->ucdl_base_addr) {
ucdl_size =
(sizeof(struct utp_transfer_cmd_desc) * hba->nutrs);
dma_free_coherent(&hba->pdev->dev, ucdl_size,
hba->ucdl_base_addr, hba->ucdl_dma_addr);
}
}
/**
* ufshcd_is_valid_req_rsp - checks if controller TR response is valid
* @ucd_rsp_ptr: pointer to response UPIU
*
* This function checks the response UPIU for valid transaction type in
* response field
* Returns 0 on success, non-zero on failure
*/
static inline int
ufshcd_is_valid_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr)
{
return ((be32_to_cpu(ucd_rsp_ptr->header.dword_0) >> 24) ==
UPIU_TRANSACTION_RESPONSE) ? 0 : DID_ERROR << 16;
}
/**
* ufshcd_get_rsp_upiu_result - Get the result from response UPIU
* @ucd_rsp_ptr: pointer to response UPIU
*
* This function gets the response status and scsi_status from response UPIU
* Returns the response result code.
*/
static inline int
ufshcd_get_rsp_upiu_result(struct utp_upiu_rsp *ucd_rsp_ptr)
{
return be32_to_cpu(ucd_rsp_ptr->header.dword_1) & MASK_RSP_UPIU_RESULT;
}
/**
* ufshcd_config_int_aggr - Configure interrupt aggregation values.
* Currently there is no use case where we want to configure
* interrupt aggregation dynamically. So to configure interrupt
* aggregation, #define INT_AGGR_COUNTER_THRESHOLD_VALUE and
* INT_AGGR_TIMEOUT_VALUE are used.
* @hba: per adapter instance
* @option: Interrupt aggregation option
*/
static inline void
ufshcd_config_int_aggr(struct ufs_hba *hba, int option)
{
switch (option) {
case INT_AGGR_RESET:
writel((INT_AGGR_ENABLE |
INT_AGGR_COUNTER_AND_TIMER_RESET),
(hba->mmio_base +
REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL));
break;
case INT_AGGR_CONFIG:
writel((INT_AGGR_ENABLE |
INT_AGGR_PARAM_WRITE |
INT_AGGR_COUNTER_THRESHOLD_VALUE |
INT_AGGR_TIMEOUT_VALUE),
(hba->mmio_base +
REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL));
break;
}
}
/**
* ufshcd_enable_run_stop_reg - Enable run-stop registers,
* When run-stop registers are set to 1, it indicates the
* host controller that it can process the requests
* @hba: per adapter instance
*/
static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba)
{
writel(UTP_TASK_REQ_LIST_RUN_STOP_BIT,
(hba->mmio_base +
REG_UTP_TASK_REQ_LIST_RUN_STOP));
writel(UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT,
(hba->mmio_base +
REG_UTP_TRANSFER_REQ_LIST_RUN_STOP));
}
/**
* ufshcd_hba_stop - Send controller to reset state
* @hba: per adapter instance
*/
static inline void ufshcd_hba_stop(struct ufs_hba *hba)
{
writel(CONTROLLER_DISABLE, (hba->mmio_base + REG_CONTROLLER_ENABLE));
}
/**
* ufshcd_hba_start - Start controller initialization sequence
* @hba: per adapter instance
*/
static inline void ufshcd_hba_start(struct ufs_hba *hba)
{
writel(CONTROLLER_ENABLE , (hba->mmio_base + REG_CONTROLLER_ENABLE));
}
/**
* ufshcd_is_hba_active - Get controller state
* @hba: per adapter instance
*
* Returns zero if controller is active, 1 otherwise
*/
static inline int ufshcd_is_hba_active(struct ufs_hba *hba)
{
return (readl(hba->mmio_base + REG_CONTROLLER_ENABLE) & 0x1) ? 0 : 1;
}
/**
* ufshcd_send_command - Send SCSI or device management commands
* @hba: per adapter instance
* @task_tag: Task tag of the command
*/
static inline
void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag)
{
__set_bit(task_tag, &hba->outstanding_reqs);
writel((1 << task_tag),
(hba->mmio_base + REG_UTP_TRANSFER_REQ_DOOR_BELL));
}
/**
* ufshcd_copy_sense_data - Copy sense data in case of check condition
* @lrb - pointer to local reference block
*/
static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp)
{
int len;
if (lrbp->sense_buffer) {
len = be16_to_cpu(lrbp->ucd_rsp_ptr->sense_data_len);
memcpy(lrbp->sense_buffer,
lrbp->ucd_rsp_ptr->sense_data,
min_t(int, len, SCSI_SENSE_BUFFERSIZE));
}
}
/**
* ufshcd_hba_capabilities - Read controller capabilities
* @hba: per adapter instance
*/
static inline void ufshcd_hba_capabilities(struct ufs_hba *hba)
{
hba->capabilities =
readl(hba->mmio_base + REG_CONTROLLER_CAPABILITIES);
/* nutrs and nutmrs are 0 based values */
hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS) + 1;
hba->nutmrs =
((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1;
}
/**
* ufshcd_send_uic_command - Send UIC commands to unipro layers
* @hba: per adapter instance
* @uic_command: UIC command
*/
static inline void
ufshcd_send_uic_command(struct ufs_hba *hba, struct uic_command *uic_cmnd)
{
/* Write Args */
writel(uic_cmnd->argument1,
(hba->mmio_base + REG_UIC_COMMAND_ARG_1));
writel(uic_cmnd->argument2,
(hba->mmio_base + REG_UIC_COMMAND_ARG_2));
writel(uic_cmnd->argument3,
(hba->mmio_base + REG_UIC_COMMAND_ARG_3));
/* Write UIC Cmd */
writel((uic_cmnd->command & COMMAND_OPCODE_MASK),
(hba->mmio_base + REG_UIC_COMMAND));
}
/**
* ufshcd_map_sg - Map scatter-gather list to prdt
* @lrbp - pointer to local reference block
*
* Returns 0 in case of success, non-zero value in case of failure
*/
static int ufshcd_map_sg(struct ufshcd_lrb *lrbp)
{
struct ufshcd_sg_entry *prd_table;
struct scatterlist *sg;
struct scsi_cmnd *cmd;
int sg_segments;
int i;
cmd = lrbp->cmd;
sg_segments = scsi_dma_map(cmd);
if (sg_segments < 0)
return sg_segments;
if (sg_segments) {
lrbp->utr_descriptor_ptr->prd_table_length =
cpu_to_le16((u16) (sg_segments));
prd_table = (struct ufshcd_sg_entry *)lrbp->ucd_prdt_ptr;
scsi_for_each_sg(cmd, sg, sg_segments, i) {
prd_table[i].size =
cpu_to_le32(((u32) sg_dma_len(sg))-1);
prd_table[i].base_addr =
cpu_to_le32(lower_32_bits(sg->dma_address));
prd_table[i].upper_addr =
cpu_to_le32(upper_32_bits(sg->dma_address));
}
} else {
lrbp->utr_descriptor_ptr->prd_table_length = 0;
}
return 0;
}
/**
* ufshcd_int_config - enable/disable interrupts
* @hba: per adapter instance
* @option: interrupt option
*/
static void ufshcd_int_config(struct ufs_hba *hba, u32 option)
{
switch (option) {
case UFSHCD_INT_ENABLE:
writel(hba->int_enable_mask,
(hba->mmio_base + REG_INTERRUPT_ENABLE));
break;
case UFSHCD_INT_DISABLE:
if (hba->ufs_version == UFSHCI_VERSION_10)
writel(INTERRUPT_DISABLE_MASK_10,
(hba->mmio_base + REG_INTERRUPT_ENABLE));
else
writel(INTERRUPT_DISABLE_MASK_11,
(hba->mmio_base + REG_INTERRUPT_ENABLE));
break;
}
}
/**
* ufshcd_compose_upiu - form UFS Protocol Information Unit(UPIU)
* @lrb - pointer to local reference block
*/
static void ufshcd_compose_upiu(struct ufshcd_lrb *lrbp)
{
struct utp_transfer_req_desc *req_desc;
struct utp_upiu_cmd *ucd_cmd_ptr;
u32 data_direction;
u32 upiu_flags;
ucd_cmd_ptr = lrbp->ucd_cmd_ptr;
req_desc = lrbp->utr_descriptor_ptr;
switch (lrbp->command_type) {
case UTP_CMD_TYPE_SCSI:
if (lrbp->cmd->sc_data_direction == DMA_FROM_DEVICE) {
data_direction = UTP_DEVICE_TO_HOST;
upiu_flags = UPIU_CMD_FLAGS_READ;
} else if (lrbp->cmd->sc_data_direction == DMA_TO_DEVICE) {
data_direction = UTP_HOST_TO_DEVICE;
upiu_flags = UPIU_CMD_FLAGS_WRITE;
} else {
data_direction = UTP_NO_DATA_TRANSFER;
upiu_flags = UPIU_CMD_FLAGS_NONE;
}
/* Transfer request descriptor header fields */
req_desc->header.dword_0 =
cpu_to_le32(data_direction | UTP_SCSI_COMMAND);
/*
* assigning invalid value for command status. Controller
* updates OCS on command completion, with the command
* status
*/
req_desc->header.dword_2 =
cpu_to_le32(OCS_INVALID_COMMAND_STATUS);
/* command descriptor fields */
ucd_cmd_ptr->header.dword_0 =
cpu_to_be32(UPIU_HEADER_DWORD(UPIU_TRANSACTION_COMMAND,
upiu_flags,
lrbp->lun,
lrbp->task_tag));
ucd_cmd_ptr->header.dword_1 =
cpu_to_be32(
UPIU_HEADER_DWORD(UPIU_COMMAND_SET_TYPE_SCSI,
0,
0,
0));
/* Total EHS length and Data segment length will be zero */
ucd_cmd_ptr->header.dword_2 = 0;
ucd_cmd_ptr->exp_data_transfer_len =
cpu_to_be32(lrbp->cmd->transfersize);
memcpy(ucd_cmd_ptr->cdb,
lrbp->cmd->cmnd,
(min_t(unsigned short,
lrbp->cmd->cmd_len,
MAX_CDB_SIZE)));
break;
case UTP_CMD_TYPE_DEV_MANAGE:
/* For query function implementation */
break;
case UTP_CMD_TYPE_UFS:
/* For UFS native command implementation */
break;
} /* end of switch */
}
/**
* ufshcd_queuecommand - main entry point for SCSI requests
* @cmd: command from SCSI Midlayer
* @done: call back function
*
* Returns 0 for success, non-zero in case of failure
*/
static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd)
{
struct ufshcd_lrb *lrbp;
struct ufs_hba *hba;
unsigned long flags;
int tag;
int err = 0;
hba = shost_priv(host);
tag = cmd->request->tag;
if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) {
err = SCSI_MLQUEUE_HOST_BUSY;
goto out;
}
lrbp = &hba->lrb[tag];
lrbp->cmd = cmd;
lrbp->sense_bufflen = SCSI_SENSE_BUFFERSIZE;
lrbp->sense_buffer = cmd->sense_buffer;
lrbp->task_tag = tag;
lrbp->lun = cmd->device->lun;
lrbp->command_type = UTP_CMD_TYPE_SCSI;
/* form UPIU before issuing the command */
ufshcd_compose_upiu(lrbp);
err = ufshcd_map_sg(lrbp);
if (err)
goto out;
/* issue command to the controller */
spin_lock_irqsave(hba->host->host_lock, flags);
ufshcd_send_command(hba, tag);
spin_unlock_irqrestore(hba->host->host_lock, flags);
out:
return err;
}
/**
* ufshcd_memory_alloc - allocate memory for host memory space data structures
* @hba: per adapter instance
*
* 1. Allocate DMA memory for Command Descriptor array
* Each command descriptor consist of Command UPIU, Response UPIU and PRDT
* 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL).
* 3. Allocate DMA memory for UTP Task Management Request Descriptor List
* (UTMRDL)
* 4. Allocate memory for local reference block(lrb).
*
* Returns 0 for success, non-zero in case of failure
*/
static int ufshcd_memory_alloc(struct ufs_hba *hba)
{
size_t utmrdl_size, utrdl_size, ucdl_size;
/* Allocate memory for UTP command descriptors */
ucdl_size = (sizeof(struct utp_transfer_cmd_desc) * hba->nutrs);
hba->ucdl_base_addr = dma_alloc_coherent(&hba->pdev->dev,
ucdl_size,
&hba->ucdl_dma_addr,
GFP_KERNEL);
/*
* UFSHCI requires UTP command descriptor to be 128 byte aligned.
* make sure hba->ucdl_dma_addr is aligned to PAGE_SIZE
* if hba->ucdl_dma_addr is aligned to PAGE_SIZE, then it will
* be aligned to 128 bytes as well
*/
if (!hba->ucdl_base_addr ||
WARN_ON(hba->ucdl_dma_addr & (PAGE_SIZE - 1))) {
dev_err(&hba->pdev->dev,
"Command Descriptor Memory allocation failed\n");
goto out;
}
/*
* Allocate memory for UTP Transfer descriptors
* UFSHCI requires 1024 byte alignment of UTRD
*/
utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs);
hba->utrdl_base_addr = dma_alloc_coherent(&hba->pdev->dev,
utrdl_size,
&hba->utrdl_dma_addr,
GFP_KERNEL);
if (!hba->utrdl_base_addr ||
WARN_ON(hba->utrdl_dma_addr & (PAGE_SIZE - 1))) {
dev_err(&hba->pdev->dev,
"Transfer Descriptor Memory allocation failed\n");
goto out;
}
/*
* Allocate memory for UTP Task Management descriptors
* UFSHCI requires 1024 byte alignment of UTMRD
*/
utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs;
hba->utmrdl_base_addr = dma_alloc_coherent(&hba->pdev->dev,
utmrdl_size,
&hba->utmrdl_dma_addr,
GFP_KERNEL);
if (!hba->utmrdl_base_addr ||
WARN_ON(hba->utmrdl_dma_addr & (PAGE_SIZE - 1))) {
dev_err(&hba->pdev->dev,
"Task Management Descriptor Memory allocation failed\n");
goto out;
}
/* Allocate memory for local reference block */
hba->lrb = kcalloc(hba->nutrs, sizeof(struct ufshcd_lrb), GFP_KERNEL);
if (!hba->lrb) {
dev_err(&hba->pdev->dev, "LRB Memory allocation failed\n");
goto out;
}
return 0;
out:
ufshcd_free_hba_memory(hba);
return -ENOMEM;
}
/**
* ufshcd_host_memory_configure - configure local reference block with
* memory offsets
* @hba: per adapter instance
*
* Configure Host memory space
* 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA
* address.
* 2. Update each UTRD with Response UPIU offset, Response UPIU length
* and PRDT offset.
* 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT
* into local reference block.
*/
static void ufshcd_host_memory_configure(struct ufs_hba *hba)
{
struct utp_transfer_cmd_desc *cmd_descp;
struct utp_transfer_req_desc *utrdlp;
dma_addr_t cmd_desc_dma_addr;
dma_addr_t cmd_desc_element_addr;
u16 response_offset;
u16 prdt_offset;
int cmd_desc_size;
int i;
utrdlp = hba->utrdl_base_addr;
cmd_descp = hba->ucdl_base_addr;
response_offset =
offsetof(struct utp_transfer_cmd_desc, response_upiu);
prdt_offset =
offsetof(struct utp_transfer_cmd_desc, prd_table);
cmd_desc_size = sizeof(struct utp_transfer_cmd_desc);
cmd_desc_dma_addr = hba->ucdl_dma_addr;
for (i = 0; i < hba->nutrs; i++) {
/* Configure UTRD with command descriptor base address */
cmd_desc_element_addr =
(cmd_desc_dma_addr + (cmd_desc_size * i));
utrdlp[i].command_desc_base_addr_lo =
cpu_to_le32(lower_32_bits(cmd_desc_element_addr));
utrdlp[i].command_desc_base_addr_hi =
cpu_to_le32(upper_32_bits(cmd_desc_element_addr));
/* Response upiu and prdt offset should be in double words */
utrdlp[i].response_upiu_offset =
cpu_to_le16((response_offset >> 2));
utrdlp[i].prd_table_offset =
cpu_to_le16((prdt_offset >> 2));
utrdlp[i].response_upiu_length =
cpu_to_le16(ALIGNED_UPIU_SIZE);
hba->lrb[i].utr_descriptor_ptr = (utrdlp + i);
hba->lrb[i].ucd_cmd_ptr =
(struct utp_upiu_cmd *)(cmd_descp + i);
hba->lrb[i].ucd_rsp_ptr =
(struct utp_upiu_rsp *)cmd_descp[i].response_upiu;
hba->lrb[i].ucd_prdt_ptr =
(struct ufshcd_sg_entry *)cmd_descp[i].prd_table;
}
}
/**
* ufshcd_dme_link_startup - Notify Unipro to perform link startup
* @hba: per adapter instance
*
* UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer,
* in order to initialize the Unipro link startup procedure.
* Once the Unipro links are up, the device connected to the controller
* is detected.
*
* Returns 0 on success, non-zero value on failure
*/
static int ufshcd_dme_link_startup(struct ufs_hba *hba)
{
struct uic_command *uic_cmd;
unsigned long flags;
/* check if controller is ready to accept UIC commands */
if (((readl(hba->mmio_base + REG_CONTROLLER_STATUS)) &
UIC_COMMAND_READY) == 0x0) {
dev_err(&hba->pdev->dev,
"Controller not ready"
" to accept UIC commands\n");
return -EIO;
}
spin_lock_irqsave(hba->host->host_lock, flags);
/* form UIC command */
uic_cmd = &hba->active_uic_cmd;
uic_cmd->command = UIC_CMD_DME_LINK_STARTUP;
uic_cmd->argument1 = 0;
uic_cmd->argument2 = 0;
uic_cmd->argument3 = 0;
/* enable UIC related interrupts */
hba->int_enable_mask |= UIC_COMMAND_COMPL;
ufshcd_int_config(hba, UFSHCD_INT_ENABLE);
/* sending UIC commands to controller */
ufshcd_send_uic_command(hba, uic_cmd);
spin_unlock_irqrestore(hba->host->host_lock, flags);
return 0;
}
/**
* ufshcd_make_hba_operational - Make UFS controller operational
* @hba: per adapter instance
*
* To bring UFS host controller to operational state,
* 1. Check if device is present
* 2. Configure run-stop-registers
* 3. Enable required interrupts
* 4. Configure interrupt aggregation
*
* Returns 0 on success, non-zero value on failure
*/
static int ufshcd_make_hba_operational(struct ufs_hba *hba)
{
int err = 0;
u32 reg;
/* check if device present */
reg = readl((hba->mmio_base + REG_CONTROLLER_STATUS));
if (!ufshcd_is_device_present(reg)) {
dev_err(&hba->pdev->dev, "cc: Device not present\n");
err = -ENXIO;
goto out;
}
/*
* UCRDY, UTMRLDY and UTRLRDY bits must be 1
* DEI, HEI bits must be 0
*/
if (!(ufshcd_get_lists_status(reg))) {
ufshcd_enable_run_stop_reg(hba);
} else {
dev_err(&hba->pdev->dev,
"Host controller not ready to process requests");
err = -EIO;
goto out;
}
/* Enable required interrupts */
hba->int_enable_mask |= (UTP_TRANSFER_REQ_COMPL |
UIC_ERROR |
UTP_TASK_REQ_COMPL |
DEVICE_FATAL_ERROR |
CONTROLLER_FATAL_ERROR |
SYSTEM_BUS_FATAL_ERROR);
ufshcd_int_config(hba, UFSHCD_INT_ENABLE);
/* Configure interrupt aggregation */
ufshcd_config_int_aggr(hba, INT_AGGR_CONFIG);
if (hba->ufshcd_state == UFSHCD_STATE_RESET)
scsi_unblock_requests(hba->host);
hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
scsi_scan_host(hba->host);
out:
return err;
}
/**
* ufshcd_hba_enable - initialize the controller
* @hba: per adapter instance
*
* The controller resets itself and controller firmware initialization
* sequence kicks off. When controller is ready it will set
* the Host Controller Enable bit to 1.
*
* Returns 0 on success, non-zero value on failure
*/
static int ufshcd_hba_enable(struct ufs_hba *hba)
{
int retry;
/*
* msleep of 1 and 5 used in this function might result in msleep(20),
* but it was necessary to send the UFS FPGA to reset mode during
* development and testing of this driver. msleep can be changed to
* mdelay and retry count can be reduced based on the controller.
*/
if (!ufshcd_is_hba_active(hba)) {
/* change controller state to "reset state" */
ufshcd_hba_stop(hba);
/*
* This delay is based on the testing done with UFS host
* controller FPGA. The delay can be changed based on the
* host controller used.
*/
msleep(5);
}
/* start controller initialization sequence */
ufshcd_hba_start(hba);
/*
* To initialize a UFS host controller HCE bit must be set to 1.
* During initialization the HCE bit value changes from 1->0->1.
* When the host controller completes initialization sequence
* it sets the value of HCE bit to 1. The same HCE bit is read back
* to check if the controller has completed initialization sequence.
* So without this delay the value HCE = 1, set in the previous
* instruction might be read back.
* This delay can be changed based on the controller.
*/
msleep(1);
/* wait for the host controller to complete initialization */
retry = 10;
while (ufshcd_is_hba_active(hba)) {
if (retry) {
retry--;
} else {
dev_err(&hba->pdev->dev,
"Controller enable failed\n");
return -EIO;
}
msleep(5);
}
return 0;
}
/**
* ufshcd_initialize_hba - start the initialization process
* @hba: per adapter instance
*
* 1. Enable the controller via ufshcd_hba_enable.
* 2. Program the Transfer Request List Address with the starting address of
* UTRDL.
* 3. Program the Task Management Request List Address with starting address
* of UTMRDL.
*
* Returns 0 on success, non-zero value on failure.
*/
static int ufshcd_initialize_hba(struct ufs_hba *hba)
{
if (ufshcd_hba_enable(hba))
return -EIO;
/* Configure UTRL and UTMRL base address registers */
writel(lower_32_bits(hba->utrdl_dma_addr),
(hba->mmio_base + REG_UTP_TRANSFER_REQ_LIST_BASE_L));
writel(upper_32_bits(hba->utrdl_dma_addr),
(hba->mmio_base + REG_UTP_TRANSFER_REQ_LIST_BASE_H));
writel(lower_32_bits(hba->utmrdl_dma_addr),
(hba->mmio_base + REG_UTP_TASK_REQ_LIST_BASE_L));
writel(upper_32_bits(hba->utmrdl_dma_addr),
(hba->mmio_base + REG_UTP_TASK_REQ_LIST_BASE_H));
/* Initialize unipro link startup procedure */
return ufshcd_dme_link_startup(hba);
}
/**
* ufshcd_do_reset - reset the host controller
* @hba: per adapter instance
*
* Returns SUCCESS/FAILED
*/
static int ufshcd_do_reset(struct ufs_hba *hba)
{
struct ufshcd_lrb *lrbp;
unsigned long flags;
int tag;
/* block commands from midlayer */
scsi_block_requests(hba->host);
spin_lock_irqsave(hba->host->host_lock, flags);
hba->ufshcd_state = UFSHCD_STATE_RESET;
/* send controller to reset state */
ufshcd_hba_stop(hba);
spin_unlock_irqrestore(hba->host->host_lock, flags);
/* abort outstanding commands */
for (tag = 0; tag < hba->nutrs; tag++) {
if (test_bit(tag, &hba->outstanding_reqs)) {
lrbp = &hba->lrb[tag];
scsi_dma_unmap(lrbp->cmd);
lrbp->cmd->result = DID_RESET << 16;
lrbp->cmd->scsi_done(lrbp->cmd);
lrbp->cmd = NULL;
}
}
/* clear outstanding request/task bit maps */
hba->outstanding_reqs = 0;
hba->outstanding_tasks = 0;
/* start the initialization process */
if (ufshcd_initialize_hba(hba)) {
dev_err(&hba->pdev->dev,
"Reset: Controller initialization failed\n");
return FAILED;
}
return SUCCESS;
}
/**
* ufshcd_slave_alloc - handle initial SCSI device configurations
* @sdev: pointer to SCSI device
*
* Returns success
*/
static int ufshcd_slave_alloc(struct scsi_device *sdev)
{
struct ufs_hba *hba;
hba = shost_priv(sdev->host);
sdev->tagged_supported = 1;
/* Mode sense(6) is not supported by UFS, so use Mode sense(10) */
sdev->use_10_for_ms = 1;
scsi_set_tag_type(sdev, MSG_SIMPLE_TAG);
/*
* Inform SCSI Midlayer that the LUN queue depth is same as the
* controller queue depth. If a LUN queue depth is less than the
* controller queue depth and if the LUN reports
* SAM_STAT_TASK_SET_FULL, the LUN queue depth will be adjusted
* with scsi_adjust_queue_depth.
*/
scsi_activate_tcq(sdev, hba->nutrs);
return 0;
}
/**
* ufshcd_slave_destroy - remove SCSI device configurations
* @sdev: pointer to SCSI device
*/
static void ufshcd_slave_destroy(struct scsi_device *sdev)
{
struct ufs_hba *hba;
hba = shost_priv(sdev->host);
scsi_deactivate_tcq(sdev, hba->nutrs);
}
/**
* ufshcd_task_req_compl - handle task management request completion
* @hba: per adapter instance
* @index: index of the completed request
*
* Returns SUCCESS/FAILED
*/
static int ufshcd_task_req_compl(struct ufs_hba *hba, u32 index)
{
struct utp_task_req_desc *task_req_descp;
struct utp_upiu_task_rsp *task_rsp_upiup;
unsigned long flags;
int ocs_value;
int task_result;
spin_lock_irqsave(hba->host->host_lock, flags);
/* Clear completed tasks from outstanding_tasks */
__clear_bit(index, &hba->outstanding_tasks);
task_req_descp = hba->utmrdl_base_addr;
ocs_value = ufshcd_get_tmr_ocs(&task_req_descp[index]);
if (ocs_value == OCS_SUCCESS) {
task_rsp_upiup = (struct utp_upiu_task_rsp *)
task_req_descp[index].task_rsp_upiu;
task_result = be32_to_cpu(task_rsp_upiup->header.dword_1);
task_result = ((task_result & MASK_TASK_RESPONSE) >> 8);
if (task_result != UPIU_TASK_MANAGEMENT_FUNC_COMPL &&
task_result != UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED)
task_result = FAILED;
else
task_result = SUCCESS;
} else {
task_result = FAILED;
dev_err(&hba->pdev->dev,
"trc: Invalid ocs = %x\n", ocs_value);
}
spin_unlock_irqrestore(hba->host->host_lock, flags);
return task_result;
}
/**
* ufshcd_adjust_lun_qdepth - Update LUN queue depth if device responds with
* SAM_STAT_TASK_SET_FULL SCSI command status.
* @cmd: pointer to SCSI command
*/
static void ufshcd_adjust_lun_qdepth(struct scsi_cmnd *cmd)
{
struct ufs_hba *hba;
int i;
int lun_qdepth = 0;
hba = shost_priv(cmd->device->host);
/*
* LUN queue depth can be obtained by counting outstanding commands
* on the LUN.
*/
for (i = 0; i < hba->nutrs; i++) {
if (test_bit(i, &hba->outstanding_reqs)) {
/*
* Check if the outstanding command belongs
* to the LUN which reported SAM_STAT_TASK_SET_FULL.
*/
if (cmd->device->lun == hba->lrb[i].lun)
lun_qdepth++;
}
}
/*
* LUN queue depth will be total outstanding commands, except the
* command for which the LUN reported SAM_STAT_TASK_SET_FULL.
*/
scsi_adjust_queue_depth(cmd->device, MSG_SIMPLE_TAG, lun_qdepth - 1);
}
/**
* ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status
* @lrb: pointer to local reference block of completed command
* @scsi_status: SCSI command status
*
* Returns value base on SCSI command status
*/
static inline int
ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status)
{
int result = 0;
switch (scsi_status) {
case SAM_STAT_GOOD:
result |= DID_OK << 16 |
COMMAND_COMPLETE << 8 |
SAM_STAT_GOOD;
break;
case SAM_STAT_CHECK_CONDITION:
result |= DID_OK << 16 |
COMMAND_COMPLETE << 8 |
SAM_STAT_CHECK_CONDITION;
ufshcd_copy_sense_data(lrbp);
break;
case SAM_STAT_BUSY:
result |= SAM_STAT_BUSY;
break;
case SAM_STAT_TASK_SET_FULL:
/*
* If a LUN reports SAM_STAT_TASK_SET_FULL, then the LUN queue
* depth needs to be adjusted to the exact number of
* outstanding commands the LUN can handle at any given time.
*/
ufshcd_adjust_lun_qdepth(lrbp->cmd);
result |= SAM_STAT_TASK_SET_FULL;
break;
case SAM_STAT_TASK_ABORTED:
result |= SAM_STAT_TASK_ABORTED;
break;
default:
result |= DID_ERROR << 16;
break;
} /* end of switch */
return result;
}
/**
* ufshcd_transfer_rsp_status - Get overall status of the response
* @hba: per adapter instance
* @lrb: pointer to local reference block of completed command
*
* Returns result of the command to notify SCSI midlayer
*/
static inline int
ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
{
int result = 0;
int scsi_status;
int ocs;
/* overall command status of utrd */
ocs = ufshcd_get_tr_ocs(lrbp);
switch (ocs) {
case OCS_SUCCESS:
/* check if the returned transfer response is valid */
result = ufshcd_is_valid_req_rsp(lrbp->ucd_rsp_ptr);
if (result) {
dev_err(&hba->pdev->dev,
"Invalid response = %x\n", result);
break;
}
/*
* get the response UPIU result to extract
* the SCSI command status
*/
result = ufshcd_get_rsp_upiu_result(lrbp->ucd_rsp_ptr);
/*
* get the result based on SCSI status response
* to notify the SCSI midlayer of the command status
*/
scsi_status = result & MASK_SCSI_STATUS;
result = ufshcd_scsi_cmd_status(lrbp, scsi_status);
break;
case OCS_ABORTED:
result |= DID_ABORT << 16;
break;
case OCS_INVALID_CMD_TABLE_ATTR:
case OCS_INVALID_PRDT_ATTR:
case OCS_MISMATCH_DATA_BUF_SIZE:
case OCS_MISMATCH_RESP_UPIU_SIZE:
case OCS_PEER_COMM_FAILURE:
case OCS_FATAL_ERROR:
default:
result |= DID_ERROR << 16;
dev_err(&hba->pdev->dev,
"OCS error from controller = %x\n", ocs);
break;
} /* end of switch */
return result;
}
/**
* ufshcd_transfer_req_compl - handle SCSI and query command completion
* @hba: per adapter instance
*/
static void ufshcd_transfer_req_compl(struct ufs_hba *hba)
{
struct ufshcd_lrb *lrb;
unsigned long completed_reqs;
u32 tr_doorbell;
int result;
int index;
lrb = hba->lrb;
tr_doorbell =
readl(hba->mmio_base + REG_UTP_TRANSFER_REQ_DOOR_BELL);
completed_reqs = tr_doorbell ^ hba->outstanding_reqs;
for (index = 0; index < hba->nutrs; index++) {
if (test_bit(index, &completed_reqs)) {
result = ufshcd_transfer_rsp_status(hba, &lrb[index]);
if (lrb[index].cmd) {
scsi_dma_unmap(lrb[index].cmd);
lrb[index].cmd->result = result;
lrb[index].cmd->scsi_done(lrb[index].cmd);
/* Mark completed command as NULL in LRB */
lrb[index].cmd = NULL;
}
} /* end of if */
} /* end of for */
/* clear corresponding bits of completed commands */
hba->outstanding_reqs ^= completed_reqs;
/* Reset interrupt aggregation counters */
ufshcd_config_int_aggr(hba, INT_AGGR_RESET);
}
/**
* ufshcd_uic_cc_handler - handle UIC command completion
* @work: pointer to a work queue structure
*
* Returns 0 on success, non-zero value on failure
*/
static void ufshcd_uic_cc_handler (struct work_struct *work)
{
struct ufs_hba *hba;
hba = container_of(work, struct ufs_hba, uic_workq);
if ((hba->active_uic_cmd.command == UIC_CMD_DME_LINK_STARTUP) &&
!(ufshcd_get_uic_cmd_result(hba))) {
if (ufshcd_make_hba_operational(hba))
dev_err(&hba->pdev->dev,
"cc: hba not operational state\n");
return;
}
}
/**
* ufshcd_fatal_err_handler - handle fatal errors
* @hba: per adapter instance
*/
static void ufshcd_fatal_err_handler(struct work_struct *work)
{
struct ufs_hba *hba;
hba = container_of(work, struct ufs_hba, feh_workq);
/* check if reset is already in progress */
if (hba->ufshcd_state != UFSHCD_STATE_RESET)
ufshcd_do_reset(hba);
}
/**
* ufshcd_err_handler - Check for fatal errors
* @work: pointer to a work queue structure
*/
static void ufshcd_err_handler(struct ufs_hba *hba)
{
u32 reg;
if (hba->errors & INT_FATAL_ERRORS)
goto fatal_eh;
if (hba->errors & UIC_ERROR) {
reg = readl(hba->mmio_base +
REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT)
goto fatal_eh;
}
return;
fatal_eh:
hba->ufshcd_state = UFSHCD_STATE_ERROR;
schedule_work(&hba->feh_workq);
}
/**
* ufshcd_tmc_handler - handle task management function completion
* @hba: per adapter instance
*/
static void ufshcd_tmc_handler(struct ufs_hba *hba)
{
u32 tm_doorbell;
tm_doorbell = readl(hba->mmio_base + REG_UTP_TASK_REQ_DOOR_BELL);
hba->tm_condition = tm_doorbell ^ hba->outstanding_tasks;
wake_up_interruptible(&hba->ufshcd_tm_wait_queue);
}
/**
* ufshcd_sl_intr - Interrupt service routine
* @hba: per adapter instance
* @intr_status: contains interrupts generated by the controller
*/
static void ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status)
{
hba->errors = UFSHCD_ERROR_MASK & intr_status;
if (hba->errors)
ufshcd_err_handler(hba);
if (intr_status & UIC_COMMAND_COMPL)
schedule_work(&hba->uic_workq);
if (intr_status & UTP_TASK_REQ_COMPL)
ufshcd_tmc_handler(hba);
if (intr_status & UTP_TRANSFER_REQ_COMPL)
ufshcd_transfer_req_compl(hba);
}
/**
* ufshcd_intr - Main interrupt service routine
* @irq: irq number
* @__hba: pointer to adapter instance
*
* Returns IRQ_HANDLED - If interrupt is valid
* IRQ_NONE - If invalid interrupt
*/
static irqreturn_t ufshcd_intr(int irq, void *__hba)
{
u32 intr_status;
irqreturn_t retval = IRQ_NONE;
struct ufs_hba *hba = __hba;
spin_lock(hba->host->host_lock);
intr_status = readl(hba->mmio_base + REG_INTERRUPT_STATUS);
if (intr_status) {
ufshcd_sl_intr(hba, intr_status);
/* If UFSHCI 1.0 then clear interrupt status register */
if (hba->ufs_version == UFSHCI_VERSION_10)
writel(intr_status,
(hba->mmio_base + REG_INTERRUPT_STATUS));
retval = IRQ_HANDLED;
}
spin_unlock(hba->host->host_lock);
return retval;
}
/**
* ufshcd_issue_tm_cmd - issues task management commands to controller
* @hba: per adapter instance
* @lrbp: pointer to local reference block
*
* Returns SUCCESS/FAILED
*/
static int
ufshcd_issue_tm_cmd(struct ufs_hba *hba,
struct ufshcd_lrb *lrbp,
u8 tm_function)
{
struct utp_task_req_desc *task_req_descp;
struct utp_upiu_task_req *task_req_upiup;
struct Scsi_Host *host;
unsigned long flags;
int free_slot = 0;
int err;
host = hba->host;
spin_lock_irqsave(host->host_lock, flags);
/* If task management queue is full */
free_slot = ufshcd_get_tm_free_slot(hba);
if (free_slot >= hba->nutmrs) {
spin_unlock_irqrestore(host->host_lock, flags);
dev_err(&hba->pdev->dev, "Task management queue full\n");
err = FAILED;
goto out;
}
task_req_descp = hba->utmrdl_base_addr;
task_req_descp += free_slot;
/* Configure task request descriptor */
task_req_descp->header.dword_0 = cpu_to_le32(UTP_REQ_DESC_INT_CMD);
task_req_descp->header.dword_2 =
cpu_to_le32(OCS_INVALID_COMMAND_STATUS);
/* Configure task request UPIU */
task_req_upiup =
(struct utp_upiu_task_req *) task_req_descp->task_req_upiu;
task_req_upiup->header.dword_0 =
cpu_to_be32(UPIU_HEADER_DWORD(UPIU_TRANSACTION_TASK_REQ, 0,
lrbp->lun, lrbp->task_tag));
task_req_upiup->header.dword_1 =
cpu_to_be32(UPIU_HEADER_DWORD(0, tm_function, 0, 0));
task_req_upiup->input_param1 = lrbp->lun;
task_req_upiup->input_param1 =
cpu_to_be32(task_req_upiup->input_param1);
task_req_upiup->input_param2 = lrbp->task_tag;
task_req_upiup->input_param2 =
cpu_to_be32(task_req_upiup->input_param2);
/* send command to the controller */
__set_bit(free_slot, &hba->outstanding_tasks);
writel((1 << free_slot),
(hba->mmio_base + REG_UTP_TASK_REQ_DOOR_BELL));
spin_unlock_irqrestore(host->host_lock, flags);
/* wait until the task management command is completed */
err =
wait_event_interruptible_timeout(hba->ufshcd_tm_wait_queue,
(test_bit(free_slot,
&hba->tm_condition) != 0),
60 * HZ);
if (!err) {
dev_err(&hba->pdev->dev,
"Task management command timed-out\n");
err = FAILED;
goto out;
}
clear_bit(free_slot, &hba->tm_condition);
err = ufshcd_task_req_compl(hba, free_slot);
out:
return err;
}
/**
* ufshcd_device_reset - reset device and abort all the pending commands
* @cmd: SCSI command pointer
*
* Returns SUCCESS/FAILED
*/
static int ufshcd_device_reset(struct scsi_cmnd *cmd)
{
struct Scsi_Host *host;
struct ufs_hba *hba;
unsigned int tag;
u32 pos;
int err;
host = cmd->device->host;
hba = shost_priv(host);
tag = cmd->request->tag;
err = ufshcd_issue_tm_cmd(hba, &hba->lrb[tag], UFS_LOGICAL_RESET);
if (err == FAILED)
goto out;
for (pos = 0; pos < hba->nutrs; pos++) {
if (test_bit(pos, &hba->outstanding_reqs) &&
(hba->lrb[tag].lun == hba->lrb[pos].lun)) {
/* clear the respective UTRLCLR register bit */
ufshcd_utrl_clear(hba, pos);
clear_bit(pos, &hba->outstanding_reqs);
if (hba->lrb[pos].cmd) {
scsi_dma_unmap(hba->lrb[pos].cmd);
hba->lrb[pos].cmd->result =
DID_ABORT << 16;
hba->lrb[pos].cmd->scsi_done(cmd);
hba->lrb[pos].cmd = NULL;
}
}
} /* end of for */
out:
return err;
}
/**
* ufshcd_host_reset - Main reset function registered with scsi layer
* @cmd: SCSI command pointer
*
* Returns SUCCESS/FAILED
*/
static int ufshcd_host_reset(struct scsi_cmnd *cmd)
{
struct ufs_hba *hba;
hba = shost_priv(cmd->device->host);
if (hba->ufshcd_state == UFSHCD_STATE_RESET)
return SUCCESS;
return ufshcd_do_reset(hba);
}
/**
* ufshcd_abort - abort a specific command
* @cmd: SCSI command pointer
*
* Returns SUCCESS/FAILED
*/
static int ufshcd_abort(struct scsi_cmnd *cmd)
{
struct Scsi_Host *host;
struct ufs_hba *hba;
unsigned long flags;
unsigned int tag;
int err;
host = cmd->device->host;
hba = shost_priv(host);
tag = cmd->request->tag;
spin_lock_irqsave(host->host_lock, flags);
/* check if command is still pending */
if (!(test_bit(tag, &hba->outstanding_reqs))) {
err = FAILED;
spin_unlock_irqrestore(host->host_lock, flags);
goto out;
}
spin_unlock_irqrestore(host->host_lock, flags);
err = ufshcd_issue_tm_cmd(hba, &hba->lrb[tag], UFS_ABORT_TASK);
if (err == FAILED)
goto out;
scsi_dma_unmap(cmd);
spin_lock_irqsave(host->host_lock, flags);
/* clear the respective UTRLCLR register bit */
ufshcd_utrl_clear(hba, tag);
__clear_bit(tag, &hba->outstanding_reqs);
hba->lrb[tag].cmd = NULL;
spin_unlock_irqrestore(host->host_lock, flags);
out:
return err;
}
static struct scsi_host_template ufshcd_driver_template = {
.module = THIS_MODULE,
.name = UFSHCD,
.proc_name = UFSHCD,
.queuecommand = ufshcd_queuecommand,
.slave_alloc = ufshcd_slave_alloc,
.slave_destroy = ufshcd_slave_destroy,
.eh_abort_handler = ufshcd_abort,
.eh_device_reset_handler = ufshcd_device_reset,
.eh_host_reset_handler = ufshcd_host_reset,
.this_id = -1,
.sg_tablesize = SG_ALL,
.cmd_per_lun = UFSHCD_CMD_PER_LUN,
.can_queue = UFSHCD_CAN_QUEUE,
};
/**
* ufshcd_shutdown - main function to put the controller in reset state
* @pdev: pointer to PCI device handle
*/
static void ufshcd_shutdown(struct pci_dev *pdev)
{
ufshcd_hba_stop((struct ufs_hba *)pci_get_drvdata(pdev));
}
#ifdef CONFIG_PM
/**
* ufshcd_suspend - suspend power management function
* @pdev: pointer to PCI device handle
* @state: power state
*
* Returns -ENOSYS
*/
static int ufshcd_suspend(struct pci_dev *pdev, pm_message_t state)
{
/*
* TODO:
* 1. Block SCSI requests from SCSI midlayer
* 2. Change the internal driver state to non operational
* 3. Set UTRLRSR and UTMRLRSR bits to zero
* 4. Wait until outstanding commands are completed
* 5. Set HCE to zero to send the UFS host controller to reset state
*/
return -ENOSYS;
}
/**
* ufshcd_resume - resume power management function
* @pdev: pointer to PCI device handle
*
* Returns -ENOSYS
*/
static int ufshcd_resume(struct pci_dev *pdev)
{
/*
* TODO:
* 1. Set HCE to 1, to start the UFS host controller
* initialization process
* 2. Set UTRLRSR and UTMRLRSR bits to 1
* 3. Change the internal driver state to operational
* 4. Unblock SCSI requests from SCSI midlayer
*/
return -ENOSYS;
}
#endif /* CONFIG_PM */
/**
* ufshcd_hba_free - free allocated memory for
* host memory space data structures
* @hba: per adapter instance
*/
static void ufshcd_hba_free(struct ufs_hba *hba)
{
iounmap(hba->mmio_base);
ufshcd_free_hba_memory(hba);
pci_release_regions(hba->pdev);
}
/**
* ufshcd_remove - de-allocate PCI/SCSI host and host memory space
* data structure memory
* @pdev - pointer to PCI handle
*/
static void ufshcd_remove(struct pci_dev *pdev)
{
struct ufs_hba *hba = pci_get_drvdata(pdev);
/* disable interrupts */
ufshcd_int_config(hba, UFSHCD_INT_DISABLE);
free_irq(pdev->irq, hba);
ufshcd_hba_stop(hba);
ufshcd_hba_free(hba);
scsi_remove_host(hba->host);
scsi_host_put(hba->host);
pci_set_drvdata(pdev, NULL);
pci_clear_master(pdev);
pci_disable_device(pdev);
}
/**
* ufshcd_set_dma_mask - Set dma mask based on the controller
* addressing capability
* @pdev: PCI device structure
*
* Returns 0 for success, non-zero for failure
*/
static int ufshcd_set_dma_mask(struct ufs_hba *hba)
{
int err;
u64 dma_mask;
/*
* If controller supports 64 bit addressing mode, then set the DMA
* mask to 64-bit, else set the DMA mask to 32-bit
*/
if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT)
dma_mask = DMA_BIT_MASK(64);
else
dma_mask = DMA_BIT_MASK(32);
err = pci_set_dma_mask(hba->pdev, dma_mask);
if (err)
return err;
err = pci_set_consistent_dma_mask(hba->pdev, dma_mask);
return err;
}
/**
* ufshcd_probe - probe routine of the driver
* @pdev: pointer to PCI device handle
* @id: PCI device id
*
* Returns 0 on success, non-zero value on failure
*/
static int __devinit
ufshcd_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{
struct Scsi_Host *host;
struct ufs_hba *hba;
int err;
err = pci_enable_device(pdev);
if (err) {
dev_err(&pdev->dev, "pci_enable_device failed\n");
goto out_error;
}
pci_set_master(pdev);
host = scsi_host_alloc(&ufshcd_driver_template,
sizeof(struct ufs_hba));
if (!host) {
dev_err(&pdev->dev, "scsi_host_alloc failed\n");
err = -ENOMEM;
goto out_disable;
}
hba = shost_priv(host);
err = pci_request_regions(pdev, UFSHCD);
if (err < 0) {
dev_err(&pdev->dev, "request regions failed\n");
goto out_host_put;
}
hba->mmio_base = pci_ioremap_bar(pdev, 0);
if (!hba->mmio_base) {
dev_err(&pdev->dev, "memory map failed\n");
err = -ENOMEM;
goto out_release_regions;
}
hba->host = host;
hba->pdev = pdev;
/* Read capabilities registers */
ufshcd_hba_capabilities(hba);
/* Get UFS version supported by the controller */
hba->ufs_version = ufshcd_get_ufs_version(hba);
err = ufshcd_set_dma_mask(hba);
if (err) {
dev_err(&pdev->dev, "set dma mask failed\n");
goto out_iounmap;
}
/* Allocate memory for host memory space */
err = ufshcd_memory_alloc(hba);
if (err) {
dev_err(&pdev->dev, "Memory allocation failed\n");
goto out_iounmap;
}
/* Configure LRB */
ufshcd_host_memory_configure(hba);
host->can_queue = hba->nutrs;
host->cmd_per_lun = hba->nutrs;
host->max_id = UFSHCD_MAX_ID;
host->max_lun = UFSHCD_MAX_LUNS;
host->max_channel = UFSHCD_MAX_CHANNEL;
host->unique_id = host->host_no;
host->max_cmd_len = MAX_CDB_SIZE;
/* Initailize wait queue for task management */
init_waitqueue_head(&hba->ufshcd_tm_wait_queue);
/* Initialize work queues */
INIT_WORK(&hba->uic_workq, ufshcd_uic_cc_handler);
INIT_WORK(&hba->feh_workq, ufshcd_fatal_err_handler);
/* IRQ registration */
err = request_irq(pdev->irq, ufshcd_intr, IRQF_SHARED, UFSHCD, hba);
if (err) {
dev_err(&pdev->dev, "request irq failed\n");
goto out_lrb_free;
}
/* Enable SCSI tag mapping */
err = scsi_init_shared_tag_map(host, host->can_queue);
if (err) {
dev_err(&pdev->dev, "init shared queue failed\n");
goto out_free_irq;
}
pci_set_drvdata(pdev, hba);
err = scsi_add_host(host, &pdev->dev);
if (err) {
dev_err(&pdev->dev, "scsi_add_host failed\n");
goto out_free_irq;
}
/* Initialization routine */
err = ufshcd_initialize_hba(hba);
if (err) {
dev_err(&pdev->dev, "Initialization failed\n");
goto out_free_irq;
}
return 0;
out_free_irq:
free_irq(pdev->irq, hba);
out_lrb_free:
ufshcd_free_hba_memory(hba);
out_iounmap:
iounmap(hba->mmio_base);
out_release_regions:
pci_release_regions(pdev);
out_host_put:
scsi_host_put(host);
out_disable:
pci_clear_master(pdev);
pci_disable_device(pdev);
out_error:
return err;
}
static DEFINE_PCI_DEVICE_TABLE(ufshcd_pci_tbl) = {
{ PCI_VENDOR_ID_SAMSUNG, 0xC00C, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
{ } /* terminate list */
};
MODULE_DEVICE_TABLE(pci, ufshcd_pci_tbl);
static struct pci_driver ufshcd_pci_driver = {
.name = UFSHCD,
.id_table = ufshcd_pci_tbl,
.probe = ufshcd_probe,
.remove = __devexit_p(ufshcd_remove),
.shutdown = ufshcd_shutdown,
#ifdef CONFIG_PM
.suspend = ufshcd_suspend,
.resume = ufshcd_resume,
#endif
};
module_pci_driver(ufshcd_pci_driver);
MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>, "
"Vinayak Holikatti <h.vinayak@samsung.com>");
MODULE_DESCRIPTION("Generic UFS host controller driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(UFSHCD_DRIVER_VERSION);