695b4ec0f0
When fq is used on 32bit kernels, we need to lock the qdisc before
copying 64bit fields.
Otherwise "tc -s qdisc ..." might report bogus values.
Fixes: afe4fd0624
("pkt_sched: fq: Fair Queue packet scheduler")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
890 lines
21 KiB
C
890 lines
21 KiB
C
/*
|
|
* net/sched/sch_fq.c Fair Queue Packet Scheduler (per flow pacing)
|
|
*
|
|
* Copyright (C) 2013-2015 Eric Dumazet <edumazet@google.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*
|
|
* Meant to be mostly used for locally generated traffic :
|
|
* Fast classification depends on skb->sk being set before reaching us.
|
|
* If not, (router workload), we use rxhash as fallback, with 32 bits wide hash.
|
|
* All packets belonging to a socket are considered as a 'flow'.
|
|
*
|
|
* Flows are dynamically allocated and stored in a hash table of RB trees
|
|
* They are also part of one Round Robin 'queues' (new or old flows)
|
|
*
|
|
* Burst avoidance (aka pacing) capability :
|
|
*
|
|
* Transport (eg TCP) can set in sk->sk_pacing_rate a rate, enqueue a
|
|
* bunch of packets, and this packet scheduler adds delay between
|
|
* packets to respect rate limitation.
|
|
*
|
|
* enqueue() :
|
|
* - lookup one RB tree (out of 1024 or more) to find the flow.
|
|
* If non existent flow, create it, add it to the tree.
|
|
* Add skb to the per flow list of skb (fifo).
|
|
* - Use a special fifo for high prio packets
|
|
*
|
|
* dequeue() : serves flows in Round Robin
|
|
* Note : When a flow becomes empty, we do not immediately remove it from
|
|
* rb trees, for performance reasons (its expected to send additional packets,
|
|
* or SLAB cache will reuse socket for another flow)
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/types.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/string.h>
|
|
#include <linux/in.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/init.h>
|
|
#include <linux/skbuff.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/rbtree.h>
|
|
#include <linux/hash.h>
|
|
#include <linux/prefetch.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <net/netlink.h>
|
|
#include <net/pkt_sched.h>
|
|
#include <net/sock.h>
|
|
#include <net/tcp_states.h>
|
|
#include <net/tcp.h>
|
|
|
|
/*
|
|
* Per flow structure, dynamically allocated
|
|
*/
|
|
struct fq_flow {
|
|
struct sk_buff *head; /* list of skbs for this flow : first skb */
|
|
union {
|
|
struct sk_buff *tail; /* last skb in the list */
|
|
unsigned long age; /* jiffies when flow was emptied, for gc */
|
|
};
|
|
struct rb_node fq_node; /* anchor in fq_root[] trees */
|
|
struct sock *sk;
|
|
int qlen; /* number of packets in flow queue */
|
|
int credit;
|
|
u32 socket_hash; /* sk_hash */
|
|
struct fq_flow *next; /* next pointer in RR lists, or &detached */
|
|
|
|
struct rb_node rate_node; /* anchor in q->delayed tree */
|
|
u64 time_next_packet;
|
|
};
|
|
|
|
struct fq_flow_head {
|
|
struct fq_flow *first;
|
|
struct fq_flow *last;
|
|
};
|
|
|
|
struct fq_sched_data {
|
|
struct fq_flow_head new_flows;
|
|
|
|
struct fq_flow_head old_flows;
|
|
|
|
struct rb_root delayed; /* for rate limited flows */
|
|
u64 time_next_delayed_flow;
|
|
|
|
struct fq_flow internal; /* for non classified or high prio packets */
|
|
u32 quantum;
|
|
u32 initial_quantum;
|
|
u32 flow_refill_delay;
|
|
u32 flow_max_rate; /* optional max rate per flow */
|
|
u32 flow_plimit; /* max packets per flow */
|
|
u32 orphan_mask; /* mask for orphaned skb */
|
|
struct rb_root *fq_root;
|
|
u8 rate_enable;
|
|
u8 fq_trees_log;
|
|
|
|
u32 flows;
|
|
u32 inactive_flows;
|
|
u32 throttled_flows;
|
|
|
|
u64 stat_gc_flows;
|
|
u64 stat_internal_packets;
|
|
u64 stat_tcp_retrans;
|
|
u64 stat_throttled;
|
|
u64 stat_flows_plimit;
|
|
u64 stat_pkts_too_long;
|
|
u64 stat_allocation_errors;
|
|
struct qdisc_watchdog watchdog;
|
|
};
|
|
|
|
/* special value to mark a detached flow (not on old/new list) */
|
|
static struct fq_flow detached, throttled;
|
|
|
|
static void fq_flow_set_detached(struct fq_flow *f)
|
|
{
|
|
f->next = &detached;
|
|
f->age = jiffies;
|
|
}
|
|
|
|
static bool fq_flow_is_detached(const struct fq_flow *f)
|
|
{
|
|
return f->next == &detached;
|
|
}
|
|
|
|
static void fq_flow_set_throttled(struct fq_sched_data *q, struct fq_flow *f)
|
|
{
|
|
struct rb_node **p = &q->delayed.rb_node, *parent = NULL;
|
|
|
|
while (*p) {
|
|
struct fq_flow *aux;
|
|
|
|
parent = *p;
|
|
aux = container_of(parent, struct fq_flow, rate_node);
|
|
if (f->time_next_packet >= aux->time_next_packet)
|
|
p = &parent->rb_right;
|
|
else
|
|
p = &parent->rb_left;
|
|
}
|
|
rb_link_node(&f->rate_node, parent, p);
|
|
rb_insert_color(&f->rate_node, &q->delayed);
|
|
q->throttled_flows++;
|
|
q->stat_throttled++;
|
|
|
|
f->next = &throttled;
|
|
if (q->time_next_delayed_flow > f->time_next_packet)
|
|
q->time_next_delayed_flow = f->time_next_packet;
|
|
}
|
|
|
|
|
|
static struct kmem_cache *fq_flow_cachep __read_mostly;
|
|
|
|
static void fq_flow_add_tail(struct fq_flow_head *head, struct fq_flow *flow)
|
|
{
|
|
if (head->first)
|
|
head->last->next = flow;
|
|
else
|
|
head->first = flow;
|
|
head->last = flow;
|
|
flow->next = NULL;
|
|
}
|
|
|
|
/* limit number of collected flows per round */
|
|
#define FQ_GC_MAX 8
|
|
#define FQ_GC_AGE (3*HZ)
|
|
|
|
static bool fq_gc_candidate(const struct fq_flow *f)
|
|
{
|
|
return fq_flow_is_detached(f) &&
|
|
time_after(jiffies, f->age + FQ_GC_AGE);
|
|
}
|
|
|
|
static void fq_gc(struct fq_sched_data *q,
|
|
struct rb_root *root,
|
|
struct sock *sk)
|
|
{
|
|
struct fq_flow *f, *tofree[FQ_GC_MAX];
|
|
struct rb_node **p, *parent;
|
|
int fcnt = 0;
|
|
|
|
p = &root->rb_node;
|
|
parent = NULL;
|
|
while (*p) {
|
|
parent = *p;
|
|
|
|
f = container_of(parent, struct fq_flow, fq_node);
|
|
if (f->sk == sk)
|
|
break;
|
|
|
|
if (fq_gc_candidate(f)) {
|
|
tofree[fcnt++] = f;
|
|
if (fcnt == FQ_GC_MAX)
|
|
break;
|
|
}
|
|
|
|
if (f->sk > sk)
|
|
p = &parent->rb_right;
|
|
else
|
|
p = &parent->rb_left;
|
|
}
|
|
|
|
q->flows -= fcnt;
|
|
q->inactive_flows -= fcnt;
|
|
q->stat_gc_flows += fcnt;
|
|
while (fcnt) {
|
|
struct fq_flow *f = tofree[--fcnt];
|
|
|
|
rb_erase(&f->fq_node, root);
|
|
kmem_cache_free(fq_flow_cachep, f);
|
|
}
|
|
}
|
|
|
|
static struct fq_flow *fq_classify(struct sk_buff *skb, struct fq_sched_data *q)
|
|
{
|
|
struct rb_node **p, *parent;
|
|
struct sock *sk = skb->sk;
|
|
struct rb_root *root;
|
|
struct fq_flow *f;
|
|
|
|
/* warning: no starvation prevention... */
|
|
if (unlikely((skb->priority & TC_PRIO_MAX) == TC_PRIO_CONTROL))
|
|
return &q->internal;
|
|
|
|
/* SYNACK messages are attached to a TCP_NEW_SYN_RECV request socket
|
|
* or a listener (SYNCOOKIE mode)
|
|
* 1) request sockets are not full blown,
|
|
* they do not contain sk_pacing_rate
|
|
* 2) They are not part of a 'flow' yet
|
|
* 3) We do not want to rate limit them (eg SYNFLOOD attack),
|
|
* especially if the listener set SO_MAX_PACING_RATE
|
|
* 4) We pretend they are orphaned
|
|
*/
|
|
if (!sk || sk_listener(sk)) {
|
|
unsigned long hash = skb_get_hash(skb) & q->orphan_mask;
|
|
|
|
/* By forcing low order bit to 1, we make sure to not
|
|
* collide with a local flow (socket pointers are word aligned)
|
|
*/
|
|
sk = (struct sock *)((hash << 1) | 1UL);
|
|
skb_orphan(skb);
|
|
}
|
|
|
|
root = &q->fq_root[hash_32((u32)(long)sk, q->fq_trees_log)];
|
|
|
|
if (q->flows >= (2U << q->fq_trees_log) &&
|
|
q->inactive_flows > q->flows/2)
|
|
fq_gc(q, root, sk);
|
|
|
|
p = &root->rb_node;
|
|
parent = NULL;
|
|
while (*p) {
|
|
parent = *p;
|
|
|
|
f = container_of(parent, struct fq_flow, fq_node);
|
|
if (f->sk == sk) {
|
|
/* socket might have been reallocated, so check
|
|
* if its sk_hash is the same.
|
|
* It not, we need to refill credit with
|
|
* initial quantum
|
|
*/
|
|
if (unlikely(skb->sk &&
|
|
f->socket_hash != sk->sk_hash)) {
|
|
f->credit = q->initial_quantum;
|
|
f->socket_hash = sk->sk_hash;
|
|
f->time_next_packet = 0ULL;
|
|
}
|
|
return f;
|
|
}
|
|
if (f->sk > sk)
|
|
p = &parent->rb_right;
|
|
else
|
|
p = &parent->rb_left;
|
|
}
|
|
|
|
f = kmem_cache_zalloc(fq_flow_cachep, GFP_ATOMIC | __GFP_NOWARN);
|
|
if (unlikely(!f)) {
|
|
q->stat_allocation_errors++;
|
|
return &q->internal;
|
|
}
|
|
fq_flow_set_detached(f);
|
|
f->sk = sk;
|
|
if (skb->sk)
|
|
f->socket_hash = sk->sk_hash;
|
|
f->credit = q->initial_quantum;
|
|
|
|
rb_link_node(&f->fq_node, parent, p);
|
|
rb_insert_color(&f->fq_node, root);
|
|
|
|
q->flows++;
|
|
q->inactive_flows++;
|
|
return f;
|
|
}
|
|
|
|
|
|
/* remove one skb from head of flow queue */
|
|
static struct sk_buff *fq_dequeue_head(struct Qdisc *sch, struct fq_flow *flow)
|
|
{
|
|
struct sk_buff *skb = flow->head;
|
|
|
|
if (skb) {
|
|
flow->head = skb->next;
|
|
skb->next = NULL;
|
|
flow->qlen--;
|
|
qdisc_qstats_backlog_dec(sch, skb);
|
|
sch->q.qlen--;
|
|
}
|
|
return skb;
|
|
}
|
|
|
|
/* We might add in the future detection of retransmits
|
|
* For the time being, just return false
|
|
*/
|
|
static bool skb_is_retransmit(struct sk_buff *skb)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
/* add skb to flow queue
|
|
* flow queue is a linked list, kind of FIFO, except for TCP retransmits
|
|
* We special case tcp retransmits to be transmitted before other packets.
|
|
* We rely on fact that TCP retransmits are unlikely, so we do not waste
|
|
* a separate queue or a pointer.
|
|
* head-> [retrans pkt 1]
|
|
* [retrans pkt 2]
|
|
* [ normal pkt 1]
|
|
* [ normal pkt 2]
|
|
* [ normal pkt 3]
|
|
* tail-> [ normal pkt 4]
|
|
*/
|
|
static void flow_queue_add(struct fq_flow *flow, struct sk_buff *skb)
|
|
{
|
|
struct sk_buff *prev, *head = flow->head;
|
|
|
|
skb->next = NULL;
|
|
if (!head) {
|
|
flow->head = skb;
|
|
flow->tail = skb;
|
|
return;
|
|
}
|
|
if (likely(!skb_is_retransmit(skb))) {
|
|
flow->tail->next = skb;
|
|
flow->tail = skb;
|
|
return;
|
|
}
|
|
|
|
/* This skb is a tcp retransmit,
|
|
* find the last retrans packet in the queue
|
|
*/
|
|
prev = NULL;
|
|
while (skb_is_retransmit(head)) {
|
|
prev = head;
|
|
head = head->next;
|
|
if (!head)
|
|
break;
|
|
}
|
|
if (!prev) { /* no rtx packet in queue, become the new head */
|
|
skb->next = flow->head;
|
|
flow->head = skb;
|
|
} else {
|
|
if (prev == flow->tail)
|
|
flow->tail = skb;
|
|
else
|
|
skb->next = prev->next;
|
|
prev->next = skb;
|
|
}
|
|
}
|
|
|
|
static int fq_enqueue(struct sk_buff *skb, struct Qdisc *sch,
|
|
struct sk_buff **to_free)
|
|
{
|
|
struct fq_sched_data *q = qdisc_priv(sch);
|
|
struct fq_flow *f;
|
|
|
|
if (unlikely(sch->q.qlen >= sch->limit))
|
|
return qdisc_drop(skb, sch, to_free);
|
|
|
|
f = fq_classify(skb, q);
|
|
if (unlikely(f->qlen >= q->flow_plimit && f != &q->internal)) {
|
|
q->stat_flows_plimit++;
|
|
return qdisc_drop(skb, sch, to_free);
|
|
}
|
|
|
|
f->qlen++;
|
|
if (skb_is_retransmit(skb))
|
|
q->stat_tcp_retrans++;
|
|
qdisc_qstats_backlog_inc(sch, skb);
|
|
if (fq_flow_is_detached(f)) {
|
|
fq_flow_add_tail(&q->new_flows, f);
|
|
if (time_after(jiffies, f->age + q->flow_refill_delay))
|
|
f->credit = max_t(u32, f->credit, q->quantum);
|
|
q->inactive_flows--;
|
|
}
|
|
|
|
/* Note: this overwrites f->age */
|
|
flow_queue_add(f, skb);
|
|
|
|
if (unlikely(f == &q->internal)) {
|
|
q->stat_internal_packets++;
|
|
}
|
|
sch->q.qlen++;
|
|
|
|
return NET_XMIT_SUCCESS;
|
|
}
|
|
|
|
static void fq_check_throttled(struct fq_sched_data *q, u64 now)
|
|
{
|
|
struct rb_node *p;
|
|
|
|
if (q->time_next_delayed_flow > now)
|
|
return;
|
|
|
|
q->time_next_delayed_flow = ~0ULL;
|
|
while ((p = rb_first(&q->delayed)) != NULL) {
|
|
struct fq_flow *f = container_of(p, struct fq_flow, rate_node);
|
|
|
|
if (f->time_next_packet > now) {
|
|
q->time_next_delayed_flow = f->time_next_packet;
|
|
break;
|
|
}
|
|
rb_erase(p, &q->delayed);
|
|
q->throttled_flows--;
|
|
fq_flow_add_tail(&q->old_flows, f);
|
|
}
|
|
}
|
|
|
|
static struct sk_buff *fq_dequeue(struct Qdisc *sch)
|
|
{
|
|
struct fq_sched_data *q = qdisc_priv(sch);
|
|
u64 now = ktime_get_ns();
|
|
struct fq_flow_head *head;
|
|
struct sk_buff *skb;
|
|
struct fq_flow *f;
|
|
u32 rate;
|
|
|
|
skb = fq_dequeue_head(sch, &q->internal);
|
|
if (skb)
|
|
goto out;
|
|
fq_check_throttled(q, now);
|
|
begin:
|
|
head = &q->new_flows;
|
|
if (!head->first) {
|
|
head = &q->old_flows;
|
|
if (!head->first) {
|
|
if (q->time_next_delayed_flow != ~0ULL)
|
|
qdisc_watchdog_schedule_ns(&q->watchdog,
|
|
q->time_next_delayed_flow);
|
|
return NULL;
|
|
}
|
|
}
|
|
f = head->first;
|
|
|
|
if (f->credit <= 0) {
|
|
f->credit += q->quantum;
|
|
head->first = f->next;
|
|
fq_flow_add_tail(&q->old_flows, f);
|
|
goto begin;
|
|
}
|
|
|
|
skb = f->head;
|
|
if (unlikely(skb && now < f->time_next_packet &&
|
|
!skb_is_tcp_pure_ack(skb))) {
|
|
head->first = f->next;
|
|
fq_flow_set_throttled(q, f);
|
|
goto begin;
|
|
}
|
|
|
|
skb = fq_dequeue_head(sch, f);
|
|
if (!skb) {
|
|
head->first = f->next;
|
|
/* force a pass through old_flows to prevent starvation */
|
|
if ((head == &q->new_flows) && q->old_flows.first) {
|
|
fq_flow_add_tail(&q->old_flows, f);
|
|
} else {
|
|
fq_flow_set_detached(f);
|
|
q->inactive_flows++;
|
|
}
|
|
goto begin;
|
|
}
|
|
prefetch(&skb->end);
|
|
f->credit -= qdisc_pkt_len(skb);
|
|
|
|
if (f->credit > 0 || !q->rate_enable)
|
|
goto out;
|
|
|
|
/* Do not pace locally generated ack packets */
|
|
if (skb_is_tcp_pure_ack(skb))
|
|
goto out;
|
|
|
|
rate = q->flow_max_rate;
|
|
if (skb->sk)
|
|
rate = min(skb->sk->sk_pacing_rate, rate);
|
|
|
|
if (rate != ~0U) {
|
|
u32 plen = max(qdisc_pkt_len(skb), q->quantum);
|
|
u64 len = (u64)plen * NSEC_PER_SEC;
|
|
|
|
if (likely(rate))
|
|
do_div(len, rate);
|
|
/* Since socket rate can change later,
|
|
* clamp the delay to 1 second.
|
|
* Really, providers of too big packets should be fixed !
|
|
*/
|
|
if (unlikely(len > NSEC_PER_SEC)) {
|
|
len = NSEC_PER_SEC;
|
|
q->stat_pkts_too_long++;
|
|
}
|
|
|
|
f->time_next_packet = now + len;
|
|
}
|
|
out:
|
|
qdisc_bstats_update(sch, skb);
|
|
return skb;
|
|
}
|
|
|
|
static void fq_flow_purge(struct fq_flow *flow)
|
|
{
|
|
rtnl_kfree_skbs(flow->head, flow->tail);
|
|
flow->head = NULL;
|
|
flow->qlen = 0;
|
|
}
|
|
|
|
static void fq_reset(struct Qdisc *sch)
|
|
{
|
|
struct fq_sched_data *q = qdisc_priv(sch);
|
|
struct rb_root *root;
|
|
struct rb_node *p;
|
|
struct fq_flow *f;
|
|
unsigned int idx;
|
|
|
|
sch->q.qlen = 0;
|
|
sch->qstats.backlog = 0;
|
|
|
|
fq_flow_purge(&q->internal);
|
|
|
|
if (!q->fq_root)
|
|
return;
|
|
|
|
for (idx = 0; idx < (1U << q->fq_trees_log); idx++) {
|
|
root = &q->fq_root[idx];
|
|
while ((p = rb_first(root)) != NULL) {
|
|
f = container_of(p, struct fq_flow, fq_node);
|
|
rb_erase(p, root);
|
|
|
|
fq_flow_purge(f);
|
|
|
|
kmem_cache_free(fq_flow_cachep, f);
|
|
}
|
|
}
|
|
q->new_flows.first = NULL;
|
|
q->old_flows.first = NULL;
|
|
q->delayed = RB_ROOT;
|
|
q->flows = 0;
|
|
q->inactive_flows = 0;
|
|
q->throttled_flows = 0;
|
|
}
|
|
|
|
static void fq_rehash(struct fq_sched_data *q,
|
|
struct rb_root *old_array, u32 old_log,
|
|
struct rb_root *new_array, u32 new_log)
|
|
{
|
|
struct rb_node *op, **np, *parent;
|
|
struct rb_root *oroot, *nroot;
|
|
struct fq_flow *of, *nf;
|
|
int fcnt = 0;
|
|
u32 idx;
|
|
|
|
for (idx = 0; idx < (1U << old_log); idx++) {
|
|
oroot = &old_array[idx];
|
|
while ((op = rb_first(oroot)) != NULL) {
|
|
rb_erase(op, oroot);
|
|
of = container_of(op, struct fq_flow, fq_node);
|
|
if (fq_gc_candidate(of)) {
|
|
fcnt++;
|
|
kmem_cache_free(fq_flow_cachep, of);
|
|
continue;
|
|
}
|
|
nroot = &new_array[hash_32((u32)(long)of->sk, new_log)];
|
|
|
|
np = &nroot->rb_node;
|
|
parent = NULL;
|
|
while (*np) {
|
|
parent = *np;
|
|
|
|
nf = container_of(parent, struct fq_flow, fq_node);
|
|
BUG_ON(nf->sk == of->sk);
|
|
|
|
if (nf->sk > of->sk)
|
|
np = &parent->rb_right;
|
|
else
|
|
np = &parent->rb_left;
|
|
}
|
|
|
|
rb_link_node(&of->fq_node, parent, np);
|
|
rb_insert_color(&of->fq_node, nroot);
|
|
}
|
|
}
|
|
q->flows -= fcnt;
|
|
q->inactive_flows -= fcnt;
|
|
q->stat_gc_flows += fcnt;
|
|
}
|
|
|
|
static void *fq_alloc_node(size_t sz, int node)
|
|
{
|
|
void *ptr;
|
|
|
|
ptr = kmalloc_node(sz, GFP_KERNEL | __GFP_REPEAT | __GFP_NOWARN, node);
|
|
if (!ptr)
|
|
ptr = vmalloc_node(sz, node);
|
|
return ptr;
|
|
}
|
|
|
|
static void fq_free(void *addr)
|
|
{
|
|
kvfree(addr);
|
|
}
|
|
|
|
static int fq_resize(struct Qdisc *sch, u32 log)
|
|
{
|
|
struct fq_sched_data *q = qdisc_priv(sch);
|
|
struct rb_root *array;
|
|
void *old_fq_root;
|
|
u32 idx;
|
|
|
|
if (q->fq_root && log == q->fq_trees_log)
|
|
return 0;
|
|
|
|
/* If XPS was setup, we can allocate memory on right NUMA node */
|
|
array = fq_alloc_node(sizeof(struct rb_root) << log,
|
|
netdev_queue_numa_node_read(sch->dev_queue));
|
|
if (!array)
|
|
return -ENOMEM;
|
|
|
|
for (idx = 0; idx < (1U << log); idx++)
|
|
array[idx] = RB_ROOT;
|
|
|
|
sch_tree_lock(sch);
|
|
|
|
old_fq_root = q->fq_root;
|
|
if (old_fq_root)
|
|
fq_rehash(q, old_fq_root, q->fq_trees_log, array, log);
|
|
|
|
q->fq_root = array;
|
|
q->fq_trees_log = log;
|
|
|
|
sch_tree_unlock(sch);
|
|
|
|
fq_free(old_fq_root);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct nla_policy fq_policy[TCA_FQ_MAX + 1] = {
|
|
[TCA_FQ_PLIMIT] = { .type = NLA_U32 },
|
|
[TCA_FQ_FLOW_PLIMIT] = { .type = NLA_U32 },
|
|
[TCA_FQ_QUANTUM] = { .type = NLA_U32 },
|
|
[TCA_FQ_INITIAL_QUANTUM] = { .type = NLA_U32 },
|
|
[TCA_FQ_RATE_ENABLE] = { .type = NLA_U32 },
|
|
[TCA_FQ_FLOW_DEFAULT_RATE] = { .type = NLA_U32 },
|
|
[TCA_FQ_FLOW_MAX_RATE] = { .type = NLA_U32 },
|
|
[TCA_FQ_BUCKETS_LOG] = { .type = NLA_U32 },
|
|
[TCA_FQ_FLOW_REFILL_DELAY] = { .type = NLA_U32 },
|
|
};
|
|
|
|
static int fq_change(struct Qdisc *sch, struct nlattr *opt)
|
|
{
|
|
struct fq_sched_data *q = qdisc_priv(sch);
|
|
struct nlattr *tb[TCA_FQ_MAX + 1];
|
|
int err, drop_count = 0;
|
|
unsigned drop_len = 0;
|
|
u32 fq_log;
|
|
|
|
if (!opt)
|
|
return -EINVAL;
|
|
|
|
err = nla_parse_nested(tb, TCA_FQ_MAX, opt, fq_policy);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
sch_tree_lock(sch);
|
|
|
|
fq_log = q->fq_trees_log;
|
|
|
|
if (tb[TCA_FQ_BUCKETS_LOG]) {
|
|
u32 nval = nla_get_u32(tb[TCA_FQ_BUCKETS_LOG]);
|
|
|
|
if (nval >= 1 && nval <= ilog2(256*1024))
|
|
fq_log = nval;
|
|
else
|
|
err = -EINVAL;
|
|
}
|
|
if (tb[TCA_FQ_PLIMIT])
|
|
sch->limit = nla_get_u32(tb[TCA_FQ_PLIMIT]);
|
|
|
|
if (tb[TCA_FQ_FLOW_PLIMIT])
|
|
q->flow_plimit = nla_get_u32(tb[TCA_FQ_FLOW_PLIMIT]);
|
|
|
|
if (tb[TCA_FQ_QUANTUM]) {
|
|
u32 quantum = nla_get_u32(tb[TCA_FQ_QUANTUM]);
|
|
|
|
if (quantum > 0)
|
|
q->quantum = quantum;
|
|
else
|
|
err = -EINVAL;
|
|
}
|
|
|
|
if (tb[TCA_FQ_INITIAL_QUANTUM])
|
|
q->initial_quantum = nla_get_u32(tb[TCA_FQ_INITIAL_QUANTUM]);
|
|
|
|
if (tb[TCA_FQ_FLOW_DEFAULT_RATE])
|
|
pr_warn_ratelimited("sch_fq: defrate %u ignored.\n",
|
|
nla_get_u32(tb[TCA_FQ_FLOW_DEFAULT_RATE]));
|
|
|
|
if (tb[TCA_FQ_FLOW_MAX_RATE])
|
|
q->flow_max_rate = nla_get_u32(tb[TCA_FQ_FLOW_MAX_RATE]);
|
|
|
|
if (tb[TCA_FQ_RATE_ENABLE]) {
|
|
u32 enable = nla_get_u32(tb[TCA_FQ_RATE_ENABLE]);
|
|
|
|
if (enable <= 1)
|
|
q->rate_enable = enable;
|
|
else
|
|
err = -EINVAL;
|
|
}
|
|
|
|
if (tb[TCA_FQ_FLOW_REFILL_DELAY]) {
|
|
u32 usecs_delay = nla_get_u32(tb[TCA_FQ_FLOW_REFILL_DELAY]) ;
|
|
|
|
q->flow_refill_delay = usecs_to_jiffies(usecs_delay);
|
|
}
|
|
|
|
if (tb[TCA_FQ_ORPHAN_MASK])
|
|
q->orphan_mask = nla_get_u32(tb[TCA_FQ_ORPHAN_MASK]);
|
|
|
|
if (!err) {
|
|
sch_tree_unlock(sch);
|
|
err = fq_resize(sch, fq_log);
|
|
sch_tree_lock(sch);
|
|
}
|
|
while (sch->q.qlen > sch->limit) {
|
|
struct sk_buff *skb = fq_dequeue(sch);
|
|
|
|
if (!skb)
|
|
break;
|
|
drop_len += qdisc_pkt_len(skb);
|
|
rtnl_kfree_skbs(skb, skb);
|
|
drop_count++;
|
|
}
|
|
qdisc_tree_reduce_backlog(sch, drop_count, drop_len);
|
|
|
|
sch_tree_unlock(sch);
|
|
return err;
|
|
}
|
|
|
|
static void fq_destroy(struct Qdisc *sch)
|
|
{
|
|
struct fq_sched_data *q = qdisc_priv(sch);
|
|
|
|
fq_reset(sch);
|
|
fq_free(q->fq_root);
|
|
qdisc_watchdog_cancel(&q->watchdog);
|
|
}
|
|
|
|
static int fq_init(struct Qdisc *sch, struct nlattr *opt)
|
|
{
|
|
struct fq_sched_data *q = qdisc_priv(sch);
|
|
int err;
|
|
|
|
sch->limit = 10000;
|
|
q->flow_plimit = 100;
|
|
q->quantum = 2 * psched_mtu(qdisc_dev(sch));
|
|
q->initial_quantum = 10 * psched_mtu(qdisc_dev(sch));
|
|
q->flow_refill_delay = msecs_to_jiffies(40);
|
|
q->flow_max_rate = ~0U;
|
|
q->rate_enable = 1;
|
|
q->new_flows.first = NULL;
|
|
q->old_flows.first = NULL;
|
|
q->delayed = RB_ROOT;
|
|
q->fq_root = NULL;
|
|
q->fq_trees_log = ilog2(1024);
|
|
q->orphan_mask = 1024 - 1;
|
|
qdisc_watchdog_init(&q->watchdog, sch);
|
|
|
|
if (opt)
|
|
err = fq_change(sch, opt);
|
|
else
|
|
err = fq_resize(sch, q->fq_trees_log);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int fq_dump(struct Qdisc *sch, struct sk_buff *skb)
|
|
{
|
|
struct fq_sched_data *q = qdisc_priv(sch);
|
|
struct nlattr *opts;
|
|
|
|
opts = nla_nest_start(skb, TCA_OPTIONS);
|
|
if (opts == NULL)
|
|
goto nla_put_failure;
|
|
|
|
/* TCA_FQ_FLOW_DEFAULT_RATE is not used anymore */
|
|
|
|
if (nla_put_u32(skb, TCA_FQ_PLIMIT, sch->limit) ||
|
|
nla_put_u32(skb, TCA_FQ_FLOW_PLIMIT, q->flow_plimit) ||
|
|
nla_put_u32(skb, TCA_FQ_QUANTUM, q->quantum) ||
|
|
nla_put_u32(skb, TCA_FQ_INITIAL_QUANTUM, q->initial_quantum) ||
|
|
nla_put_u32(skb, TCA_FQ_RATE_ENABLE, q->rate_enable) ||
|
|
nla_put_u32(skb, TCA_FQ_FLOW_MAX_RATE, q->flow_max_rate) ||
|
|
nla_put_u32(skb, TCA_FQ_FLOW_REFILL_DELAY,
|
|
jiffies_to_usecs(q->flow_refill_delay)) ||
|
|
nla_put_u32(skb, TCA_FQ_ORPHAN_MASK, q->orphan_mask) ||
|
|
nla_put_u32(skb, TCA_FQ_BUCKETS_LOG, q->fq_trees_log))
|
|
goto nla_put_failure;
|
|
|
|
return nla_nest_end(skb, opts);
|
|
|
|
nla_put_failure:
|
|
return -1;
|
|
}
|
|
|
|
static int fq_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
|
|
{
|
|
struct fq_sched_data *q = qdisc_priv(sch);
|
|
struct tc_fq_qd_stats st;
|
|
|
|
sch_tree_lock(sch);
|
|
|
|
st.gc_flows = q->stat_gc_flows;
|
|
st.highprio_packets = q->stat_internal_packets;
|
|
st.tcp_retrans = q->stat_tcp_retrans;
|
|
st.throttled = q->stat_throttled;
|
|
st.flows_plimit = q->stat_flows_plimit;
|
|
st.pkts_too_long = q->stat_pkts_too_long;
|
|
st.allocation_errors = q->stat_allocation_errors;
|
|
st.time_next_delayed_flow = q->time_next_delayed_flow - ktime_get_ns();
|
|
st.flows = q->flows;
|
|
st.inactive_flows = q->inactive_flows;
|
|
st.throttled_flows = q->throttled_flows;
|
|
st.pad = 0;
|
|
|
|
sch_tree_unlock(sch);
|
|
|
|
return gnet_stats_copy_app(d, &st, sizeof(st));
|
|
}
|
|
|
|
static struct Qdisc_ops fq_qdisc_ops __read_mostly = {
|
|
.id = "fq",
|
|
.priv_size = sizeof(struct fq_sched_data),
|
|
|
|
.enqueue = fq_enqueue,
|
|
.dequeue = fq_dequeue,
|
|
.peek = qdisc_peek_dequeued,
|
|
.init = fq_init,
|
|
.reset = fq_reset,
|
|
.destroy = fq_destroy,
|
|
.change = fq_change,
|
|
.dump = fq_dump,
|
|
.dump_stats = fq_dump_stats,
|
|
.owner = THIS_MODULE,
|
|
};
|
|
|
|
static int __init fq_module_init(void)
|
|
{
|
|
int ret;
|
|
|
|
fq_flow_cachep = kmem_cache_create("fq_flow_cache",
|
|
sizeof(struct fq_flow),
|
|
0, 0, NULL);
|
|
if (!fq_flow_cachep)
|
|
return -ENOMEM;
|
|
|
|
ret = register_qdisc(&fq_qdisc_ops);
|
|
if (ret)
|
|
kmem_cache_destroy(fq_flow_cachep);
|
|
return ret;
|
|
}
|
|
|
|
static void __exit fq_module_exit(void)
|
|
{
|
|
unregister_qdisc(&fq_qdisc_ops);
|
|
kmem_cache_destroy(fq_flow_cachep);
|
|
}
|
|
|
|
module_init(fq_module_init)
|
|
module_exit(fq_module_exit)
|
|
MODULE_AUTHOR("Eric Dumazet");
|
|
MODULE_LICENSE("GPL");
|