linux/tools/perf/util/intel-pt.c
Arnaldo Carvalho de Melo ea49e01cfa perf tools: Move event synthesizing routines to separate header
Those are the only routines using the perf_event__handler_t typedef and
are all related, so move to a separate header to reduce the header
dependency tree, lots of places were getting event.h and even stdio.h,
limits.h indirectly, so fix those as well.

Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Link: https://lkml.kernel.org/n/tip-yvx9u1mf7baq6cu1abfhbqgs@git.kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2019-09-20 09:19:22 -03:00

3310 lines
80 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* intel_pt.c: Intel Processor Trace support
* Copyright (c) 2013-2015, Intel Corporation.
*/
#include <inttypes.h>
#include <stdio.h>
#include <stdbool.h>
#include <errno.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/zalloc.h>
#include "session.h"
#include "machine.h"
#include "memswap.h"
#include "sort.h"
#include "tool.h"
#include "event.h"
#include "evlist.h"
#include "evsel.h"
#include "map.h"
#include "color.h"
#include "thread.h"
#include "thread-stack.h"
#include "symbol.h"
#include "callchain.h"
#include "dso.h"
#include "debug.h"
#include "auxtrace.h"
#include "tsc.h"
#include "intel-pt.h"
#include "config.h"
#include "util/synthetic-events.h"
#include "time-utils.h"
#include "../arch/x86/include/uapi/asm/perf_regs.h"
#include "intel-pt-decoder/intel-pt-log.h"
#include "intel-pt-decoder/intel-pt-decoder.h"
#include "intel-pt-decoder/intel-pt-insn-decoder.h"
#include "intel-pt-decoder/intel-pt-pkt-decoder.h"
#define MAX_TIMESTAMP (~0ULL)
struct range {
u64 start;
u64 end;
};
struct intel_pt {
struct auxtrace auxtrace;
struct auxtrace_queues queues;
struct auxtrace_heap heap;
u32 auxtrace_type;
struct perf_session *session;
struct machine *machine;
struct evsel *switch_evsel;
struct thread *unknown_thread;
bool timeless_decoding;
bool sampling_mode;
bool snapshot_mode;
bool per_cpu_mmaps;
bool have_tsc;
bool data_queued;
bool est_tsc;
bool sync_switch;
bool mispred_all;
int have_sched_switch;
u32 pmu_type;
u64 kernel_start;
u64 switch_ip;
u64 ptss_ip;
struct perf_tsc_conversion tc;
bool cap_user_time_zero;
struct itrace_synth_opts synth_opts;
bool sample_instructions;
u64 instructions_sample_type;
u64 instructions_id;
bool sample_branches;
u32 branches_filter;
u64 branches_sample_type;
u64 branches_id;
bool sample_transactions;
u64 transactions_sample_type;
u64 transactions_id;
bool sample_ptwrites;
u64 ptwrites_sample_type;
u64 ptwrites_id;
bool sample_pwr_events;
u64 pwr_events_sample_type;
u64 mwait_id;
u64 pwre_id;
u64 exstop_id;
u64 pwrx_id;
u64 cbr_id;
bool sample_pebs;
struct evsel *pebs_evsel;
u64 tsc_bit;
u64 mtc_bit;
u64 mtc_freq_bits;
u32 tsc_ctc_ratio_n;
u32 tsc_ctc_ratio_d;
u64 cyc_bit;
u64 noretcomp_bit;
unsigned max_non_turbo_ratio;
unsigned cbr2khz;
unsigned long num_events;
char *filter;
struct addr_filters filts;
struct range *time_ranges;
unsigned int range_cnt;
};
enum switch_state {
INTEL_PT_SS_NOT_TRACING,
INTEL_PT_SS_UNKNOWN,
INTEL_PT_SS_TRACING,
INTEL_PT_SS_EXPECTING_SWITCH_EVENT,
INTEL_PT_SS_EXPECTING_SWITCH_IP,
};
struct intel_pt_queue {
struct intel_pt *pt;
unsigned int queue_nr;
struct auxtrace_buffer *buffer;
struct auxtrace_buffer *old_buffer;
void *decoder;
const struct intel_pt_state *state;
struct ip_callchain *chain;
struct branch_stack *last_branch;
struct branch_stack *last_branch_rb;
size_t last_branch_pos;
union perf_event *event_buf;
bool on_heap;
bool stop;
bool step_through_buffers;
bool use_buffer_pid_tid;
bool sync_switch;
pid_t pid, tid;
int cpu;
int switch_state;
pid_t next_tid;
struct thread *thread;
bool exclude_kernel;
bool have_sample;
u64 time;
u64 timestamp;
u64 sel_timestamp;
bool sel_start;
unsigned int sel_idx;
u32 flags;
u16 insn_len;
u64 last_insn_cnt;
u64 ipc_insn_cnt;
u64 ipc_cyc_cnt;
u64 last_in_insn_cnt;
u64 last_in_cyc_cnt;
u64 last_br_insn_cnt;
u64 last_br_cyc_cnt;
unsigned int cbr_seen;
char insn[INTEL_PT_INSN_BUF_SZ];
};
static void intel_pt_dump(struct intel_pt *pt __maybe_unused,
unsigned char *buf, size_t len)
{
struct intel_pt_pkt packet;
size_t pos = 0;
int ret, pkt_len, i;
char desc[INTEL_PT_PKT_DESC_MAX];
const char *color = PERF_COLOR_BLUE;
enum intel_pt_pkt_ctx ctx = INTEL_PT_NO_CTX;
color_fprintf(stdout, color,
". ... Intel Processor Trace data: size %zu bytes\n",
len);
while (len) {
ret = intel_pt_get_packet(buf, len, &packet, &ctx);
if (ret > 0)
pkt_len = ret;
else
pkt_len = 1;
printf(".");
color_fprintf(stdout, color, " %08x: ", pos);
for (i = 0; i < pkt_len; i++)
color_fprintf(stdout, color, " %02x", buf[i]);
for (; i < 16; i++)
color_fprintf(stdout, color, " ");
if (ret > 0) {
ret = intel_pt_pkt_desc(&packet, desc,
INTEL_PT_PKT_DESC_MAX);
if (ret > 0)
color_fprintf(stdout, color, " %s\n", desc);
} else {
color_fprintf(stdout, color, " Bad packet!\n");
}
pos += pkt_len;
buf += pkt_len;
len -= pkt_len;
}
}
static void intel_pt_dump_event(struct intel_pt *pt, unsigned char *buf,
size_t len)
{
printf(".\n");
intel_pt_dump(pt, buf, len);
}
static void intel_pt_log_event(union perf_event *event)
{
FILE *f = intel_pt_log_fp();
if (!intel_pt_enable_logging || !f)
return;
perf_event__fprintf(event, f);
}
static int intel_pt_do_fix_overlap(struct intel_pt *pt, struct auxtrace_buffer *a,
struct auxtrace_buffer *b)
{
bool consecutive = false;
void *start;
start = intel_pt_find_overlap(a->data, a->size, b->data, b->size,
pt->have_tsc, &consecutive);
if (!start)
return -EINVAL;
b->use_size = b->data + b->size - start;
b->use_data = start;
if (b->use_size && consecutive)
b->consecutive = true;
return 0;
}
static int intel_pt_get_buffer(struct intel_pt_queue *ptq,
struct auxtrace_buffer *buffer,
struct auxtrace_buffer *old_buffer,
struct intel_pt_buffer *b)
{
bool might_overlap;
if (!buffer->data) {
int fd = perf_data__fd(ptq->pt->session->data);
buffer->data = auxtrace_buffer__get_data(buffer, fd);
if (!buffer->data)
return -ENOMEM;
}
might_overlap = ptq->pt->snapshot_mode || ptq->pt->sampling_mode;
if (might_overlap && !buffer->consecutive && old_buffer &&
intel_pt_do_fix_overlap(ptq->pt, old_buffer, buffer))
return -ENOMEM;
if (buffer->use_data) {
b->len = buffer->use_size;
b->buf = buffer->use_data;
} else {
b->len = buffer->size;
b->buf = buffer->data;
}
b->ref_timestamp = buffer->reference;
if (!old_buffer || (might_overlap && !buffer->consecutive)) {
b->consecutive = false;
b->trace_nr = buffer->buffer_nr + 1;
} else {
b->consecutive = true;
}
return 0;
}
/* Do not drop buffers with references - refer intel_pt_get_trace() */
static void intel_pt_lookahead_drop_buffer(struct intel_pt_queue *ptq,
struct auxtrace_buffer *buffer)
{
if (!buffer || buffer == ptq->buffer || buffer == ptq->old_buffer)
return;
auxtrace_buffer__drop_data(buffer);
}
/* Must be serialized with respect to intel_pt_get_trace() */
static int intel_pt_lookahead(void *data, intel_pt_lookahead_cb_t cb,
void *cb_data)
{
struct intel_pt_queue *ptq = data;
struct auxtrace_buffer *buffer = ptq->buffer;
struct auxtrace_buffer *old_buffer = ptq->old_buffer;
struct auxtrace_queue *queue;
int err = 0;
queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
while (1) {
struct intel_pt_buffer b = { .len = 0 };
buffer = auxtrace_buffer__next(queue, buffer);
if (!buffer)
break;
err = intel_pt_get_buffer(ptq, buffer, old_buffer, &b);
if (err)
break;
if (b.len) {
intel_pt_lookahead_drop_buffer(ptq, old_buffer);
old_buffer = buffer;
} else {
intel_pt_lookahead_drop_buffer(ptq, buffer);
continue;
}
err = cb(&b, cb_data);
if (err)
break;
}
if (buffer != old_buffer)
intel_pt_lookahead_drop_buffer(ptq, buffer);
intel_pt_lookahead_drop_buffer(ptq, old_buffer);
return err;
}
/*
* This function assumes data is processed sequentially only.
* Must be serialized with respect to intel_pt_lookahead()
*/
static int intel_pt_get_trace(struct intel_pt_buffer *b, void *data)
{
struct intel_pt_queue *ptq = data;
struct auxtrace_buffer *buffer = ptq->buffer;
struct auxtrace_buffer *old_buffer = ptq->old_buffer;
struct auxtrace_queue *queue;
int err;
if (ptq->stop) {
b->len = 0;
return 0;
}
queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
buffer = auxtrace_buffer__next(queue, buffer);
if (!buffer) {
if (old_buffer)
auxtrace_buffer__drop_data(old_buffer);
b->len = 0;
return 0;
}
ptq->buffer = buffer;
err = intel_pt_get_buffer(ptq, buffer, old_buffer, b);
if (err)
return err;
if (ptq->step_through_buffers)
ptq->stop = true;
if (b->len) {
if (old_buffer)
auxtrace_buffer__drop_data(old_buffer);
ptq->old_buffer = buffer;
} else {
auxtrace_buffer__drop_data(buffer);
return intel_pt_get_trace(b, data);
}
return 0;
}
struct intel_pt_cache_entry {
struct auxtrace_cache_entry entry;
u64 insn_cnt;
u64 byte_cnt;
enum intel_pt_insn_op op;
enum intel_pt_insn_branch branch;
int length;
int32_t rel;
char insn[INTEL_PT_INSN_BUF_SZ];
};
static int intel_pt_config_div(const char *var, const char *value, void *data)
{
int *d = data;
long val;
if (!strcmp(var, "intel-pt.cache-divisor")) {
val = strtol(value, NULL, 0);
if (val > 0 && val <= INT_MAX)
*d = val;
}
return 0;
}
static int intel_pt_cache_divisor(void)
{
static int d;
if (d)
return d;
perf_config(intel_pt_config_div, &d);
if (!d)
d = 64;
return d;
}
static unsigned int intel_pt_cache_size(struct dso *dso,
struct machine *machine)
{
off_t size;
size = dso__data_size(dso, machine);
size /= intel_pt_cache_divisor();
if (size < 1000)
return 10;
if (size > (1 << 21))
return 21;
return 32 - __builtin_clz(size);
}
static struct auxtrace_cache *intel_pt_cache(struct dso *dso,
struct machine *machine)
{
struct auxtrace_cache *c;
unsigned int bits;
if (dso->auxtrace_cache)
return dso->auxtrace_cache;
bits = intel_pt_cache_size(dso, machine);
/* Ignoring cache creation failure */
c = auxtrace_cache__new(bits, sizeof(struct intel_pt_cache_entry), 200);
dso->auxtrace_cache = c;
return c;
}
static int intel_pt_cache_add(struct dso *dso, struct machine *machine,
u64 offset, u64 insn_cnt, u64 byte_cnt,
struct intel_pt_insn *intel_pt_insn)
{
struct auxtrace_cache *c = intel_pt_cache(dso, machine);
struct intel_pt_cache_entry *e;
int err;
if (!c)
return -ENOMEM;
e = auxtrace_cache__alloc_entry(c);
if (!e)
return -ENOMEM;
e->insn_cnt = insn_cnt;
e->byte_cnt = byte_cnt;
e->op = intel_pt_insn->op;
e->branch = intel_pt_insn->branch;
e->length = intel_pt_insn->length;
e->rel = intel_pt_insn->rel;
memcpy(e->insn, intel_pt_insn->buf, INTEL_PT_INSN_BUF_SZ);
err = auxtrace_cache__add(c, offset, &e->entry);
if (err)
auxtrace_cache__free_entry(c, e);
return err;
}
static struct intel_pt_cache_entry *
intel_pt_cache_lookup(struct dso *dso, struct machine *machine, u64 offset)
{
struct auxtrace_cache *c = intel_pt_cache(dso, machine);
if (!c)
return NULL;
return auxtrace_cache__lookup(dso->auxtrace_cache, offset);
}
static inline u8 intel_pt_cpumode(struct intel_pt *pt, uint64_t ip)
{
return ip >= pt->kernel_start ?
PERF_RECORD_MISC_KERNEL :
PERF_RECORD_MISC_USER;
}
static int intel_pt_walk_next_insn(struct intel_pt_insn *intel_pt_insn,
uint64_t *insn_cnt_ptr, uint64_t *ip,
uint64_t to_ip, uint64_t max_insn_cnt,
void *data)
{
struct intel_pt_queue *ptq = data;
struct machine *machine = ptq->pt->machine;
struct thread *thread;
struct addr_location al;
unsigned char buf[INTEL_PT_INSN_BUF_SZ];
ssize_t len;
int x86_64;
u8 cpumode;
u64 offset, start_offset, start_ip;
u64 insn_cnt = 0;
bool one_map = true;
intel_pt_insn->length = 0;
if (to_ip && *ip == to_ip)
goto out_no_cache;
cpumode = intel_pt_cpumode(ptq->pt, *ip);
thread = ptq->thread;
if (!thread) {
if (cpumode != PERF_RECORD_MISC_KERNEL)
return -EINVAL;
thread = ptq->pt->unknown_thread;
}
while (1) {
if (!thread__find_map(thread, cpumode, *ip, &al) || !al.map->dso)
return -EINVAL;
if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
dso__data_status_seen(al.map->dso,
DSO_DATA_STATUS_SEEN_ITRACE))
return -ENOENT;
offset = al.map->map_ip(al.map, *ip);
if (!to_ip && one_map) {
struct intel_pt_cache_entry *e;
e = intel_pt_cache_lookup(al.map->dso, machine, offset);
if (e &&
(!max_insn_cnt || e->insn_cnt <= max_insn_cnt)) {
*insn_cnt_ptr = e->insn_cnt;
*ip += e->byte_cnt;
intel_pt_insn->op = e->op;
intel_pt_insn->branch = e->branch;
intel_pt_insn->length = e->length;
intel_pt_insn->rel = e->rel;
memcpy(intel_pt_insn->buf, e->insn,
INTEL_PT_INSN_BUF_SZ);
intel_pt_log_insn_no_data(intel_pt_insn, *ip);
return 0;
}
}
start_offset = offset;
start_ip = *ip;
/* Load maps to ensure dso->is_64_bit has been updated */
map__load(al.map);
x86_64 = al.map->dso->is_64_bit;
while (1) {
len = dso__data_read_offset(al.map->dso, machine,
offset, buf,
INTEL_PT_INSN_BUF_SZ);
if (len <= 0)
return -EINVAL;
if (intel_pt_get_insn(buf, len, x86_64, intel_pt_insn))
return -EINVAL;
intel_pt_log_insn(intel_pt_insn, *ip);
insn_cnt += 1;
if (intel_pt_insn->branch != INTEL_PT_BR_NO_BRANCH)
goto out;
if (max_insn_cnt && insn_cnt >= max_insn_cnt)
goto out_no_cache;
*ip += intel_pt_insn->length;
if (to_ip && *ip == to_ip)
goto out_no_cache;
if (*ip >= al.map->end)
break;
offset += intel_pt_insn->length;
}
one_map = false;
}
out:
*insn_cnt_ptr = insn_cnt;
if (!one_map)
goto out_no_cache;
/*
* Didn't lookup in the 'to_ip' case, so do it now to prevent duplicate
* entries.
*/
if (to_ip) {
struct intel_pt_cache_entry *e;
e = intel_pt_cache_lookup(al.map->dso, machine, start_offset);
if (e)
return 0;
}
/* Ignore cache errors */
intel_pt_cache_add(al.map->dso, machine, start_offset, insn_cnt,
*ip - start_ip, intel_pt_insn);
return 0;
out_no_cache:
*insn_cnt_ptr = insn_cnt;
return 0;
}
static bool intel_pt_match_pgd_ip(struct intel_pt *pt, uint64_t ip,
uint64_t offset, const char *filename)
{
struct addr_filter *filt;
bool have_filter = false;
bool hit_tracestop = false;
bool hit_filter = false;
list_for_each_entry(filt, &pt->filts.head, list) {
if (filt->start)
have_filter = true;
if ((filename && !filt->filename) ||
(!filename && filt->filename) ||
(filename && strcmp(filename, filt->filename)))
continue;
if (!(offset >= filt->addr && offset < filt->addr + filt->size))
continue;
intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s hit filter: %s offset %#"PRIx64" size %#"PRIx64"\n",
ip, offset, filename ? filename : "[kernel]",
filt->start ? "filter" : "stop",
filt->addr, filt->size);
if (filt->start)
hit_filter = true;
else
hit_tracestop = true;
}
if (!hit_tracestop && !hit_filter)
intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s is not in a filter region\n",
ip, offset, filename ? filename : "[kernel]");
return hit_tracestop || (have_filter && !hit_filter);
}
static int __intel_pt_pgd_ip(uint64_t ip, void *data)
{
struct intel_pt_queue *ptq = data;
struct thread *thread;
struct addr_location al;
u8 cpumode;
u64 offset;
if (ip >= ptq->pt->kernel_start)
return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
cpumode = PERF_RECORD_MISC_USER;
thread = ptq->thread;
if (!thread)
return -EINVAL;
if (!thread__find_map(thread, cpumode, ip, &al) || !al.map->dso)
return -EINVAL;
offset = al.map->map_ip(al.map, ip);
return intel_pt_match_pgd_ip(ptq->pt, ip, offset,
al.map->dso->long_name);
}
static bool intel_pt_pgd_ip(uint64_t ip, void *data)
{
return __intel_pt_pgd_ip(ip, data) > 0;
}
static bool intel_pt_get_config(struct intel_pt *pt,
struct perf_event_attr *attr, u64 *config)
{
if (attr->type == pt->pmu_type) {
if (config)
*config = attr->config;
return true;
}
return false;
}
static bool intel_pt_exclude_kernel(struct intel_pt *pt)
{
struct evsel *evsel;
evlist__for_each_entry(pt->session->evlist, evsel) {
if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
!evsel->core.attr.exclude_kernel)
return false;
}
return true;
}
static bool intel_pt_return_compression(struct intel_pt *pt)
{
struct evsel *evsel;
u64 config;
if (!pt->noretcomp_bit)
return true;
evlist__for_each_entry(pt->session->evlist, evsel) {
if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
(config & pt->noretcomp_bit))
return false;
}
return true;
}
static bool intel_pt_branch_enable(struct intel_pt *pt)
{
struct evsel *evsel;
u64 config;
evlist__for_each_entry(pt->session->evlist, evsel) {
if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
(config & 1) && !(config & 0x2000))
return false;
}
return true;
}
static unsigned int intel_pt_mtc_period(struct intel_pt *pt)
{
struct evsel *evsel;
unsigned int shift;
u64 config;
if (!pt->mtc_freq_bits)
return 0;
for (shift = 0, config = pt->mtc_freq_bits; !(config & 1); shift++)
config >>= 1;
evlist__for_each_entry(pt->session->evlist, evsel) {
if (intel_pt_get_config(pt, &evsel->core.attr, &config))
return (config & pt->mtc_freq_bits) >> shift;
}
return 0;
}
static bool intel_pt_timeless_decoding(struct intel_pt *pt)
{
struct evsel *evsel;
bool timeless_decoding = true;
u64 config;
if (!pt->tsc_bit || !pt->cap_user_time_zero)
return true;
evlist__for_each_entry(pt->session->evlist, evsel) {
if (!(evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
return true;
if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
if (config & pt->tsc_bit)
timeless_decoding = false;
else
return true;
}
}
return timeless_decoding;
}
static bool intel_pt_tracing_kernel(struct intel_pt *pt)
{
struct evsel *evsel;
evlist__for_each_entry(pt->session->evlist, evsel) {
if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
!evsel->core.attr.exclude_kernel)
return true;
}
return false;
}
static bool intel_pt_have_tsc(struct intel_pt *pt)
{
struct evsel *evsel;
bool have_tsc = false;
u64 config;
if (!pt->tsc_bit)
return false;
evlist__for_each_entry(pt->session->evlist, evsel) {
if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
if (config & pt->tsc_bit)
have_tsc = true;
else
return false;
}
}
return have_tsc;
}
static u64 intel_pt_ns_to_ticks(const struct intel_pt *pt, u64 ns)
{
u64 quot, rem;
quot = ns / pt->tc.time_mult;
rem = ns % pt->tc.time_mult;
return (quot << pt->tc.time_shift) + (rem << pt->tc.time_shift) /
pt->tc.time_mult;
}
static struct intel_pt_queue *intel_pt_alloc_queue(struct intel_pt *pt,
unsigned int queue_nr)
{
struct intel_pt_params params = { .get_trace = 0, };
struct perf_env *env = pt->machine->env;
struct intel_pt_queue *ptq;
ptq = zalloc(sizeof(struct intel_pt_queue));
if (!ptq)
return NULL;
if (pt->synth_opts.callchain) {
size_t sz = sizeof(struct ip_callchain);
/* Add 1 to callchain_sz for callchain context */
sz += (pt->synth_opts.callchain_sz + 1) * sizeof(u64);
ptq->chain = zalloc(sz);
if (!ptq->chain)
goto out_free;
}
if (pt->synth_opts.last_branch) {
size_t sz = sizeof(struct branch_stack);
sz += pt->synth_opts.last_branch_sz *
sizeof(struct branch_entry);
ptq->last_branch = zalloc(sz);
if (!ptq->last_branch)
goto out_free;
ptq->last_branch_rb = zalloc(sz);
if (!ptq->last_branch_rb)
goto out_free;
}
ptq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
if (!ptq->event_buf)
goto out_free;
ptq->pt = pt;
ptq->queue_nr = queue_nr;
ptq->exclude_kernel = intel_pt_exclude_kernel(pt);
ptq->pid = -1;
ptq->tid = -1;
ptq->cpu = -1;
ptq->next_tid = -1;
params.get_trace = intel_pt_get_trace;
params.walk_insn = intel_pt_walk_next_insn;
params.lookahead = intel_pt_lookahead;
params.data = ptq;
params.return_compression = intel_pt_return_compression(pt);
params.branch_enable = intel_pt_branch_enable(pt);
params.max_non_turbo_ratio = pt->max_non_turbo_ratio;
params.mtc_period = intel_pt_mtc_period(pt);
params.tsc_ctc_ratio_n = pt->tsc_ctc_ratio_n;
params.tsc_ctc_ratio_d = pt->tsc_ctc_ratio_d;
if (pt->filts.cnt > 0)
params.pgd_ip = intel_pt_pgd_ip;
if (pt->synth_opts.instructions) {
if (pt->synth_opts.period) {
switch (pt->synth_opts.period_type) {
case PERF_ITRACE_PERIOD_INSTRUCTIONS:
params.period_type =
INTEL_PT_PERIOD_INSTRUCTIONS;
params.period = pt->synth_opts.period;
break;
case PERF_ITRACE_PERIOD_TICKS:
params.period_type = INTEL_PT_PERIOD_TICKS;
params.period = pt->synth_opts.period;
break;
case PERF_ITRACE_PERIOD_NANOSECS:
params.period_type = INTEL_PT_PERIOD_TICKS;
params.period = intel_pt_ns_to_ticks(pt,
pt->synth_opts.period);
break;
default:
break;
}
}
if (!params.period) {
params.period_type = INTEL_PT_PERIOD_INSTRUCTIONS;
params.period = 1;
}
}
if (env->cpuid && !strncmp(env->cpuid, "GenuineIntel,6,92,", 18))
params.flags |= INTEL_PT_FUP_WITH_NLIP;
ptq->decoder = intel_pt_decoder_new(&params);
if (!ptq->decoder)
goto out_free;
return ptq;
out_free:
zfree(&ptq->event_buf);
zfree(&ptq->last_branch);
zfree(&ptq->last_branch_rb);
zfree(&ptq->chain);
free(ptq);
return NULL;
}
static void intel_pt_free_queue(void *priv)
{
struct intel_pt_queue *ptq = priv;
if (!ptq)
return;
thread__zput(ptq->thread);
intel_pt_decoder_free(ptq->decoder);
zfree(&ptq->event_buf);
zfree(&ptq->last_branch);
zfree(&ptq->last_branch_rb);
zfree(&ptq->chain);
free(ptq);
}
static void intel_pt_set_pid_tid_cpu(struct intel_pt *pt,
struct auxtrace_queue *queue)
{
struct intel_pt_queue *ptq = queue->priv;
if (queue->tid == -1 || pt->have_sched_switch) {
ptq->tid = machine__get_current_tid(pt->machine, ptq->cpu);
thread__zput(ptq->thread);
}
if (!ptq->thread && ptq->tid != -1)
ptq->thread = machine__find_thread(pt->machine, -1, ptq->tid);
if (ptq->thread) {
ptq->pid = ptq->thread->pid_;
if (queue->cpu == -1)
ptq->cpu = ptq->thread->cpu;
}
}
static void intel_pt_sample_flags(struct intel_pt_queue *ptq)
{
if (ptq->state->flags & INTEL_PT_ABORT_TX) {
ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_TX_ABORT;
} else if (ptq->state->flags & INTEL_PT_ASYNC) {
if (ptq->state->to_ip)
ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
PERF_IP_FLAG_ASYNC |
PERF_IP_FLAG_INTERRUPT;
else
ptq->flags = PERF_IP_FLAG_BRANCH |
PERF_IP_FLAG_TRACE_END;
ptq->insn_len = 0;
} else {
if (ptq->state->from_ip)
ptq->flags = intel_pt_insn_type(ptq->state->insn_op);
else
ptq->flags = PERF_IP_FLAG_BRANCH |
PERF_IP_FLAG_TRACE_BEGIN;
if (ptq->state->flags & INTEL_PT_IN_TX)
ptq->flags |= PERF_IP_FLAG_IN_TX;
ptq->insn_len = ptq->state->insn_len;
memcpy(ptq->insn, ptq->state->insn, INTEL_PT_INSN_BUF_SZ);
}
if (ptq->state->type & INTEL_PT_TRACE_BEGIN)
ptq->flags |= PERF_IP_FLAG_TRACE_BEGIN;
if (ptq->state->type & INTEL_PT_TRACE_END)
ptq->flags |= PERF_IP_FLAG_TRACE_END;
}
static void intel_pt_setup_time_range(struct intel_pt *pt,
struct intel_pt_queue *ptq)
{
if (!pt->range_cnt)
return;
ptq->sel_timestamp = pt->time_ranges[0].start;
ptq->sel_idx = 0;
if (ptq->sel_timestamp) {
ptq->sel_start = true;
} else {
ptq->sel_timestamp = pt->time_ranges[0].end;
ptq->sel_start = false;
}
}
static int intel_pt_setup_queue(struct intel_pt *pt,
struct auxtrace_queue *queue,
unsigned int queue_nr)
{
struct intel_pt_queue *ptq = queue->priv;
if (list_empty(&queue->head))
return 0;
if (!ptq) {
ptq = intel_pt_alloc_queue(pt, queue_nr);
if (!ptq)
return -ENOMEM;
queue->priv = ptq;
if (queue->cpu != -1)
ptq->cpu = queue->cpu;
ptq->tid = queue->tid;
ptq->cbr_seen = UINT_MAX;
if (pt->sampling_mode && !pt->snapshot_mode &&
pt->timeless_decoding)
ptq->step_through_buffers = true;
ptq->sync_switch = pt->sync_switch;
intel_pt_setup_time_range(pt, ptq);
}
if (!ptq->on_heap &&
(!ptq->sync_switch ||
ptq->switch_state != INTEL_PT_SS_EXPECTING_SWITCH_EVENT)) {
const struct intel_pt_state *state;
int ret;
if (pt->timeless_decoding)
return 0;
intel_pt_log("queue %u getting timestamp\n", queue_nr);
intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
queue_nr, ptq->cpu, ptq->pid, ptq->tid);
if (ptq->sel_start && ptq->sel_timestamp) {
ret = intel_pt_fast_forward(ptq->decoder,
ptq->sel_timestamp);
if (ret)
return ret;
}
while (1) {
state = intel_pt_decode(ptq->decoder);
if (state->err) {
if (state->err == INTEL_PT_ERR_NODATA) {
intel_pt_log("queue %u has no timestamp\n",
queue_nr);
return 0;
}
continue;
}
if (state->timestamp)
break;
}
ptq->timestamp = state->timestamp;
intel_pt_log("queue %u timestamp 0x%" PRIx64 "\n",
queue_nr, ptq->timestamp);
ptq->state = state;
ptq->have_sample = true;
if (ptq->sel_start && ptq->sel_timestamp &&
ptq->timestamp < ptq->sel_timestamp)
ptq->have_sample = false;
intel_pt_sample_flags(ptq);
ret = auxtrace_heap__add(&pt->heap, queue_nr, ptq->timestamp);
if (ret)
return ret;
ptq->on_heap = true;
}
return 0;
}
static int intel_pt_setup_queues(struct intel_pt *pt)
{
unsigned int i;
int ret;
for (i = 0; i < pt->queues.nr_queues; i++) {
ret = intel_pt_setup_queue(pt, &pt->queues.queue_array[i], i);
if (ret)
return ret;
}
return 0;
}
static inline void intel_pt_copy_last_branch_rb(struct intel_pt_queue *ptq)
{
struct branch_stack *bs_src = ptq->last_branch_rb;
struct branch_stack *bs_dst = ptq->last_branch;
size_t nr = 0;
bs_dst->nr = bs_src->nr;
if (!bs_src->nr)
return;
nr = ptq->pt->synth_opts.last_branch_sz - ptq->last_branch_pos;
memcpy(&bs_dst->entries[0],
&bs_src->entries[ptq->last_branch_pos],
sizeof(struct branch_entry) * nr);
if (bs_src->nr >= ptq->pt->synth_opts.last_branch_sz) {
memcpy(&bs_dst->entries[nr],
&bs_src->entries[0],
sizeof(struct branch_entry) * ptq->last_branch_pos);
}
}
static inline void intel_pt_reset_last_branch_rb(struct intel_pt_queue *ptq)
{
ptq->last_branch_pos = 0;
ptq->last_branch_rb->nr = 0;
}
static void intel_pt_update_last_branch_rb(struct intel_pt_queue *ptq)
{
const struct intel_pt_state *state = ptq->state;
struct branch_stack *bs = ptq->last_branch_rb;
struct branch_entry *be;
if (!ptq->last_branch_pos)
ptq->last_branch_pos = ptq->pt->synth_opts.last_branch_sz;
ptq->last_branch_pos -= 1;
be = &bs->entries[ptq->last_branch_pos];
be->from = state->from_ip;
be->to = state->to_ip;
be->flags.abort = !!(state->flags & INTEL_PT_ABORT_TX);
be->flags.in_tx = !!(state->flags & INTEL_PT_IN_TX);
/* No support for mispredict */
be->flags.mispred = ptq->pt->mispred_all;
if (bs->nr < ptq->pt->synth_opts.last_branch_sz)
bs->nr += 1;
}
static inline bool intel_pt_skip_event(struct intel_pt *pt)
{
return pt->synth_opts.initial_skip &&
pt->num_events++ < pt->synth_opts.initial_skip;
}
/*
* Cannot count CBR as skipped because it won't go away until cbr == cbr_seen.
* Also ensure CBR is first non-skipped event by allowing for 4 more samples
* from this decoder state.
*/
static inline bool intel_pt_skip_cbr_event(struct intel_pt *pt)
{
return pt->synth_opts.initial_skip &&
pt->num_events + 4 < pt->synth_opts.initial_skip;
}
static void intel_pt_prep_a_sample(struct intel_pt_queue *ptq,
union perf_event *event,
struct perf_sample *sample)
{
event->sample.header.type = PERF_RECORD_SAMPLE;
event->sample.header.size = sizeof(struct perf_event_header);
sample->pid = ptq->pid;
sample->tid = ptq->tid;
sample->cpu = ptq->cpu;
sample->insn_len = ptq->insn_len;
memcpy(sample->insn, ptq->insn, INTEL_PT_INSN_BUF_SZ);
}
static void intel_pt_prep_b_sample(struct intel_pt *pt,
struct intel_pt_queue *ptq,
union perf_event *event,
struct perf_sample *sample)
{
intel_pt_prep_a_sample(ptq, event, sample);
if (!pt->timeless_decoding)
sample->time = tsc_to_perf_time(ptq->timestamp, &pt->tc);
sample->ip = ptq->state->from_ip;
sample->cpumode = intel_pt_cpumode(pt, sample->ip);
sample->addr = ptq->state->to_ip;
sample->period = 1;
sample->flags = ptq->flags;
event->sample.header.misc = sample->cpumode;
}
static int intel_pt_inject_event(union perf_event *event,
struct perf_sample *sample, u64 type)
{
event->header.size = perf_event__sample_event_size(sample, type, 0);
return perf_event__synthesize_sample(event, type, 0, sample);
}
static inline int intel_pt_opt_inject(struct intel_pt *pt,
union perf_event *event,
struct perf_sample *sample, u64 type)
{
if (!pt->synth_opts.inject)
return 0;
return intel_pt_inject_event(event, sample, type);
}
static int intel_pt_deliver_synth_b_event(struct intel_pt *pt,
union perf_event *event,
struct perf_sample *sample, u64 type)
{
int ret;
ret = intel_pt_opt_inject(pt, event, sample, type);
if (ret)
return ret;
ret = perf_session__deliver_synth_event(pt->session, event, sample);
if (ret)
pr_err("Intel PT: failed to deliver event, error %d\n", ret);
return ret;
}
static int intel_pt_synth_branch_sample(struct intel_pt_queue *ptq)
{
struct intel_pt *pt = ptq->pt;
union perf_event *event = ptq->event_buf;
struct perf_sample sample = { .ip = 0, };
struct dummy_branch_stack {
u64 nr;
struct branch_entry entries;
} dummy_bs;
if (pt->branches_filter && !(pt->branches_filter & ptq->flags))
return 0;
if (intel_pt_skip_event(pt))
return 0;
intel_pt_prep_b_sample(pt, ptq, event, &sample);
sample.id = ptq->pt->branches_id;
sample.stream_id = ptq->pt->branches_id;
/*
* perf report cannot handle events without a branch stack when using
* SORT_MODE__BRANCH so make a dummy one.
*/
if (pt->synth_opts.last_branch && sort__mode == SORT_MODE__BRANCH) {
dummy_bs = (struct dummy_branch_stack){
.nr = 1,
.entries = {
.from = sample.ip,
.to = sample.addr,
},
};
sample.branch_stack = (struct branch_stack *)&dummy_bs;
}
sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_br_cyc_cnt;
if (sample.cyc_cnt) {
sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_br_insn_cnt;
ptq->last_br_insn_cnt = ptq->ipc_insn_cnt;
ptq->last_br_cyc_cnt = ptq->ipc_cyc_cnt;
}
return intel_pt_deliver_synth_b_event(pt, event, &sample,
pt->branches_sample_type);
}
static void intel_pt_prep_sample(struct intel_pt *pt,
struct intel_pt_queue *ptq,
union perf_event *event,
struct perf_sample *sample)
{
intel_pt_prep_b_sample(pt, ptq, event, sample);
if (pt->synth_opts.callchain) {
thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
pt->synth_opts.callchain_sz + 1,
sample->ip, pt->kernel_start);
sample->callchain = ptq->chain;
}
if (pt->synth_opts.last_branch) {
intel_pt_copy_last_branch_rb(ptq);
sample->branch_stack = ptq->last_branch;
}
}
static inline int intel_pt_deliver_synth_event(struct intel_pt *pt,
struct intel_pt_queue *ptq,
union perf_event *event,
struct perf_sample *sample,
u64 type)
{
int ret;
ret = intel_pt_deliver_synth_b_event(pt, event, sample, type);
if (pt->synth_opts.last_branch)
intel_pt_reset_last_branch_rb(ptq);
return ret;
}
static int intel_pt_synth_instruction_sample(struct intel_pt_queue *ptq)
{
struct intel_pt *pt = ptq->pt;
union perf_event *event = ptq->event_buf;
struct perf_sample sample = { .ip = 0, };
if (intel_pt_skip_event(pt))
return 0;
intel_pt_prep_sample(pt, ptq, event, &sample);
sample.id = ptq->pt->instructions_id;
sample.stream_id = ptq->pt->instructions_id;
sample.period = ptq->state->tot_insn_cnt - ptq->last_insn_cnt;
sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_in_cyc_cnt;
if (sample.cyc_cnt) {
sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_in_insn_cnt;
ptq->last_in_insn_cnt = ptq->ipc_insn_cnt;
ptq->last_in_cyc_cnt = ptq->ipc_cyc_cnt;
}
ptq->last_insn_cnt = ptq->state->tot_insn_cnt;
return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
pt->instructions_sample_type);
}
static int intel_pt_synth_transaction_sample(struct intel_pt_queue *ptq)
{
struct intel_pt *pt = ptq->pt;
union perf_event *event = ptq->event_buf;
struct perf_sample sample = { .ip = 0, };
if (intel_pt_skip_event(pt))
return 0;
intel_pt_prep_sample(pt, ptq, event, &sample);
sample.id = ptq->pt->transactions_id;
sample.stream_id = ptq->pt->transactions_id;
return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
pt->transactions_sample_type);
}
static void intel_pt_prep_p_sample(struct intel_pt *pt,
struct intel_pt_queue *ptq,
union perf_event *event,
struct perf_sample *sample)
{
intel_pt_prep_sample(pt, ptq, event, sample);
/*
* Zero IP is used to mean "trace start" but that is not the case for
* power or PTWRITE events with no IP, so clear the flags.
*/
if (!sample->ip)
sample->flags = 0;
}
static int intel_pt_synth_ptwrite_sample(struct intel_pt_queue *ptq)
{
struct intel_pt *pt = ptq->pt;
union perf_event *event = ptq->event_buf;
struct perf_sample sample = { .ip = 0, };
struct perf_synth_intel_ptwrite raw;
if (intel_pt_skip_event(pt))
return 0;
intel_pt_prep_p_sample(pt, ptq, event, &sample);
sample.id = ptq->pt->ptwrites_id;
sample.stream_id = ptq->pt->ptwrites_id;
raw.flags = 0;
raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
raw.payload = cpu_to_le64(ptq->state->ptw_payload);
sample.raw_size = perf_synth__raw_size(raw);
sample.raw_data = perf_synth__raw_data(&raw);
return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
pt->ptwrites_sample_type);
}
static int intel_pt_synth_cbr_sample(struct intel_pt_queue *ptq)
{
struct intel_pt *pt = ptq->pt;
union perf_event *event = ptq->event_buf;
struct perf_sample sample = { .ip = 0, };
struct perf_synth_intel_cbr raw;
u32 flags;
if (intel_pt_skip_cbr_event(pt))
return 0;
ptq->cbr_seen = ptq->state->cbr;
intel_pt_prep_p_sample(pt, ptq, event, &sample);
sample.id = ptq->pt->cbr_id;
sample.stream_id = ptq->pt->cbr_id;
flags = (u16)ptq->state->cbr_payload | (pt->max_non_turbo_ratio << 16);
raw.flags = cpu_to_le32(flags);
raw.freq = cpu_to_le32(raw.cbr * pt->cbr2khz);
raw.reserved3 = 0;
sample.raw_size = perf_synth__raw_size(raw);
sample.raw_data = perf_synth__raw_data(&raw);
return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
pt->pwr_events_sample_type);
}
static int intel_pt_synth_mwait_sample(struct intel_pt_queue *ptq)
{
struct intel_pt *pt = ptq->pt;
union perf_event *event = ptq->event_buf;
struct perf_sample sample = { .ip = 0, };
struct perf_synth_intel_mwait raw;
if (intel_pt_skip_event(pt))
return 0;
intel_pt_prep_p_sample(pt, ptq, event, &sample);
sample.id = ptq->pt->mwait_id;
sample.stream_id = ptq->pt->mwait_id;
raw.reserved = 0;
raw.payload = cpu_to_le64(ptq->state->mwait_payload);
sample.raw_size = perf_synth__raw_size(raw);
sample.raw_data = perf_synth__raw_data(&raw);
return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
pt->pwr_events_sample_type);
}
static int intel_pt_synth_pwre_sample(struct intel_pt_queue *ptq)
{
struct intel_pt *pt = ptq->pt;
union perf_event *event = ptq->event_buf;
struct perf_sample sample = { .ip = 0, };
struct perf_synth_intel_pwre raw;
if (intel_pt_skip_event(pt))
return 0;
intel_pt_prep_p_sample(pt, ptq, event, &sample);
sample.id = ptq->pt->pwre_id;
sample.stream_id = ptq->pt->pwre_id;
raw.reserved = 0;
raw.payload = cpu_to_le64(ptq->state->pwre_payload);
sample.raw_size = perf_synth__raw_size(raw);
sample.raw_data = perf_synth__raw_data(&raw);
return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
pt->pwr_events_sample_type);
}
static int intel_pt_synth_exstop_sample(struct intel_pt_queue *ptq)
{
struct intel_pt *pt = ptq->pt;
union perf_event *event = ptq->event_buf;
struct perf_sample sample = { .ip = 0, };
struct perf_synth_intel_exstop raw;
if (intel_pt_skip_event(pt))
return 0;
intel_pt_prep_p_sample(pt, ptq, event, &sample);
sample.id = ptq->pt->exstop_id;
sample.stream_id = ptq->pt->exstop_id;
raw.flags = 0;
raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
sample.raw_size = perf_synth__raw_size(raw);
sample.raw_data = perf_synth__raw_data(&raw);
return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
pt->pwr_events_sample_type);
}
static int intel_pt_synth_pwrx_sample(struct intel_pt_queue *ptq)
{
struct intel_pt *pt = ptq->pt;
union perf_event *event = ptq->event_buf;
struct perf_sample sample = { .ip = 0, };
struct perf_synth_intel_pwrx raw;
if (intel_pt_skip_event(pt))
return 0;
intel_pt_prep_p_sample(pt, ptq, event, &sample);
sample.id = ptq->pt->pwrx_id;
sample.stream_id = ptq->pt->pwrx_id;
raw.reserved = 0;
raw.payload = cpu_to_le64(ptq->state->pwrx_payload);
sample.raw_size = perf_synth__raw_size(raw);
sample.raw_data = perf_synth__raw_data(&raw);
return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
pt->pwr_events_sample_type);
}
/*
* PEBS gp_regs array indexes plus 1 so that 0 means not present. Refer
* intel_pt_add_gp_regs().
*/
static const int pebs_gp_regs[] = {
[PERF_REG_X86_FLAGS] = 1,
[PERF_REG_X86_IP] = 2,
[PERF_REG_X86_AX] = 3,
[PERF_REG_X86_CX] = 4,
[PERF_REG_X86_DX] = 5,
[PERF_REG_X86_BX] = 6,
[PERF_REG_X86_SP] = 7,
[PERF_REG_X86_BP] = 8,
[PERF_REG_X86_SI] = 9,
[PERF_REG_X86_DI] = 10,
[PERF_REG_X86_R8] = 11,
[PERF_REG_X86_R9] = 12,
[PERF_REG_X86_R10] = 13,
[PERF_REG_X86_R11] = 14,
[PERF_REG_X86_R12] = 15,
[PERF_REG_X86_R13] = 16,
[PERF_REG_X86_R14] = 17,
[PERF_REG_X86_R15] = 18,
};
static u64 *intel_pt_add_gp_regs(struct regs_dump *intr_regs, u64 *pos,
const struct intel_pt_blk_items *items,
u64 regs_mask)
{
const u64 *gp_regs = items->val[INTEL_PT_GP_REGS_POS];
u32 mask = items->mask[INTEL_PT_GP_REGS_POS];
u32 bit;
int i;
for (i = 0, bit = 1; i < PERF_REG_X86_64_MAX; i++, bit <<= 1) {
/* Get the PEBS gp_regs array index */
int n = pebs_gp_regs[i] - 1;
if (n < 0)
continue;
/*
* Add only registers that were requested (i.e. 'regs_mask') and
* that were provided (i.e. 'mask'), and update the resulting
* mask (i.e. 'intr_regs->mask') accordingly.
*/
if (mask & 1 << n && regs_mask & bit) {
intr_regs->mask |= bit;
*pos++ = gp_regs[n];
}
}
return pos;
}
#ifndef PERF_REG_X86_XMM0
#define PERF_REG_X86_XMM0 32
#endif
static void intel_pt_add_xmm(struct regs_dump *intr_regs, u64 *pos,
const struct intel_pt_blk_items *items,
u64 regs_mask)
{
u32 mask = items->has_xmm & (regs_mask >> PERF_REG_X86_XMM0);
const u64 *xmm = items->xmm;
/*
* If there are any XMM registers, then there should be all of them.
* Nevertheless, follow the logic to add only registers that were
* requested (i.e. 'regs_mask') and that were provided (i.e. 'mask'),
* and update the resulting mask (i.e. 'intr_regs->mask') accordingly.
*/
intr_regs->mask |= (u64)mask << PERF_REG_X86_XMM0;
for (; mask; mask >>= 1, xmm++) {
if (mask & 1)
*pos++ = *xmm;
}
}
#define LBR_INFO_MISPRED (1ULL << 63)
#define LBR_INFO_IN_TX (1ULL << 62)
#define LBR_INFO_ABORT (1ULL << 61)
#define LBR_INFO_CYCLES 0xffff
/* Refer kernel's intel_pmu_store_pebs_lbrs() */
static u64 intel_pt_lbr_flags(u64 info)
{
union {
struct branch_flags flags;
u64 result;
} u = {
.flags = {
.mispred = !!(info & LBR_INFO_MISPRED),
.predicted = !(info & LBR_INFO_MISPRED),
.in_tx = !!(info & LBR_INFO_IN_TX),
.abort = !!(info & LBR_INFO_ABORT),
.cycles = info & LBR_INFO_CYCLES,
}
};
return u.result;
}
static void intel_pt_add_lbrs(struct branch_stack *br_stack,
const struct intel_pt_blk_items *items)
{
u64 *to;
int i;
br_stack->nr = 0;
to = &br_stack->entries[0].from;
for (i = INTEL_PT_LBR_0_POS; i <= INTEL_PT_LBR_2_POS; i++) {
u32 mask = items->mask[i];
const u64 *from = items->val[i];
for (; mask; mask >>= 3, from += 3) {
if ((mask & 7) == 7) {
*to++ = from[0];
*to++ = from[1];
*to++ = intel_pt_lbr_flags(from[2]);
br_stack->nr += 1;
}
}
}
}
/* INTEL_PT_LBR_0, INTEL_PT_LBR_1 and INTEL_PT_LBR_2 */
#define LBRS_MAX (INTEL_PT_BLK_ITEM_ID_CNT * 3)
static int intel_pt_synth_pebs_sample(struct intel_pt_queue *ptq)
{
const struct intel_pt_blk_items *items = &ptq->state->items;
struct perf_sample sample = { .ip = 0, };
union perf_event *event = ptq->event_buf;
struct intel_pt *pt = ptq->pt;
struct evsel *evsel = pt->pebs_evsel;
u64 sample_type = evsel->core.attr.sample_type;
u64 id = evsel->id[0];
u8 cpumode;
if (intel_pt_skip_event(pt))
return 0;
intel_pt_prep_a_sample(ptq, event, &sample);
sample.id = id;
sample.stream_id = id;
if (!evsel->core.attr.freq)
sample.period = evsel->core.attr.sample_period;
/* No support for non-zero CS base */
if (items->has_ip)
sample.ip = items->ip;
else if (items->has_rip)
sample.ip = items->rip;
else
sample.ip = ptq->state->from_ip;
/* No support for guest mode at this time */
cpumode = sample.ip < ptq->pt->kernel_start ?
PERF_RECORD_MISC_USER :
PERF_RECORD_MISC_KERNEL;
event->sample.header.misc = cpumode | PERF_RECORD_MISC_EXACT_IP;
sample.cpumode = cpumode;
if (sample_type & PERF_SAMPLE_TIME) {
u64 timestamp = 0;
if (items->has_timestamp)
timestamp = items->timestamp;
else if (!pt->timeless_decoding)
timestamp = ptq->timestamp;
if (timestamp)
sample.time = tsc_to_perf_time(timestamp, &pt->tc);
}
if (sample_type & PERF_SAMPLE_CALLCHAIN &&
pt->synth_opts.callchain) {
thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
pt->synth_opts.callchain_sz, sample.ip,
pt->kernel_start);
sample.callchain = ptq->chain;
}
if (sample_type & PERF_SAMPLE_REGS_INTR &&
items->mask[INTEL_PT_GP_REGS_POS]) {
u64 regs[sizeof(sample.intr_regs.mask)];
u64 regs_mask = evsel->core.attr.sample_regs_intr;
u64 *pos;
sample.intr_regs.abi = items->is_32_bit ?
PERF_SAMPLE_REGS_ABI_32 :
PERF_SAMPLE_REGS_ABI_64;
sample.intr_regs.regs = regs;
pos = intel_pt_add_gp_regs(&sample.intr_regs, regs, items, regs_mask);
intel_pt_add_xmm(&sample.intr_regs, pos, items, regs_mask);
}
if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
struct {
struct branch_stack br_stack;
struct branch_entry entries[LBRS_MAX];
} br;
if (items->mask[INTEL_PT_LBR_0_POS] ||
items->mask[INTEL_PT_LBR_1_POS] ||
items->mask[INTEL_PT_LBR_2_POS]) {
intel_pt_add_lbrs(&br.br_stack, items);
sample.branch_stack = &br.br_stack;
} else if (pt->synth_opts.last_branch) {
intel_pt_copy_last_branch_rb(ptq);
sample.branch_stack = ptq->last_branch;
} else {
br.br_stack.nr = 0;
sample.branch_stack = &br.br_stack;
}
}
if (sample_type & PERF_SAMPLE_ADDR && items->has_mem_access_address)
sample.addr = items->mem_access_address;
if (sample_type & PERF_SAMPLE_WEIGHT) {
/*
* Refer kernel's setup_pebs_adaptive_sample_data() and
* intel_hsw_weight().
*/
if (items->has_mem_access_latency)
sample.weight = items->mem_access_latency;
if (!sample.weight && items->has_tsx_aux_info) {
/* Cycles last block */
sample.weight = (u32)items->tsx_aux_info;
}
}
if (sample_type & PERF_SAMPLE_TRANSACTION && items->has_tsx_aux_info) {
u64 ax = items->has_rax ? items->rax : 0;
/* Refer kernel's intel_hsw_transaction() */
u64 txn = (u8)(items->tsx_aux_info >> 32);
/* For RTM XABORTs also log the abort code from AX */
if (txn & PERF_TXN_TRANSACTION && ax & 1)
txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
sample.transaction = txn;
}
return intel_pt_deliver_synth_event(pt, ptq, event, &sample, sample_type);
}
static int intel_pt_synth_error(struct intel_pt *pt, int code, int cpu,
pid_t pid, pid_t tid, u64 ip, u64 timestamp)
{
union perf_event event;
char msg[MAX_AUXTRACE_ERROR_MSG];
int err;
intel_pt__strerror(code, msg, MAX_AUXTRACE_ERROR_MSG);
auxtrace_synth_error(&event.auxtrace_error, PERF_AUXTRACE_ERROR_ITRACE,
code, cpu, pid, tid, ip, msg, timestamp);
err = perf_session__deliver_synth_event(pt->session, &event, NULL);
if (err)
pr_err("Intel Processor Trace: failed to deliver error event, error %d\n",
err);
return err;
}
static int intel_ptq_synth_error(struct intel_pt_queue *ptq,
const struct intel_pt_state *state)
{
struct intel_pt *pt = ptq->pt;
u64 tm = ptq->timestamp;
tm = pt->timeless_decoding ? 0 : tsc_to_perf_time(tm, &pt->tc);
return intel_pt_synth_error(pt, state->err, ptq->cpu, ptq->pid,
ptq->tid, state->from_ip, tm);
}
static int intel_pt_next_tid(struct intel_pt *pt, struct intel_pt_queue *ptq)
{
struct auxtrace_queue *queue;
pid_t tid = ptq->next_tid;
int err;
if (tid == -1)
return 0;
intel_pt_log("switch: cpu %d tid %d\n", ptq->cpu, tid);
err = machine__set_current_tid(pt->machine, ptq->cpu, -1, tid);
queue = &pt->queues.queue_array[ptq->queue_nr];
intel_pt_set_pid_tid_cpu(pt, queue);
ptq->next_tid = -1;
return err;
}
static inline bool intel_pt_is_switch_ip(struct intel_pt_queue *ptq, u64 ip)
{
struct intel_pt *pt = ptq->pt;
return ip == pt->switch_ip &&
(ptq->flags & PERF_IP_FLAG_BRANCH) &&
!(ptq->flags & (PERF_IP_FLAG_CONDITIONAL | PERF_IP_FLAG_ASYNC |
PERF_IP_FLAG_INTERRUPT | PERF_IP_FLAG_TX_ABORT));
}
#define INTEL_PT_PWR_EVT (INTEL_PT_MWAIT_OP | INTEL_PT_PWR_ENTRY | \
INTEL_PT_EX_STOP | INTEL_PT_PWR_EXIT)
static int intel_pt_sample(struct intel_pt_queue *ptq)
{
const struct intel_pt_state *state = ptq->state;
struct intel_pt *pt = ptq->pt;
int err;
if (!ptq->have_sample)
return 0;
ptq->have_sample = false;
if (ptq->state->tot_cyc_cnt > ptq->ipc_cyc_cnt) {
/*
* Cycle count and instruction count only go together to create
* a valid IPC ratio when the cycle count changes.
*/
ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt;
ptq->ipc_cyc_cnt = ptq->state->tot_cyc_cnt;
}
/*
* Do PEBS first to allow for the possibility that the PEBS timestamp
* precedes the current timestamp.
*/
if (pt->sample_pebs && state->type & INTEL_PT_BLK_ITEMS) {
err = intel_pt_synth_pebs_sample(ptq);
if (err)
return err;
}
if (pt->sample_pwr_events) {
if (ptq->state->cbr != ptq->cbr_seen) {
err = intel_pt_synth_cbr_sample(ptq);
if (err)
return err;
}
if (state->type & INTEL_PT_PWR_EVT) {
if (state->type & INTEL_PT_MWAIT_OP) {
err = intel_pt_synth_mwait_sample(ptq);
if (err)
return err;
}
if (state->type & INTEL_PT_PWR_ENTRY) {
err = intel_pt_synth_pwre_sample(ptq);
if (err)
return err;
}
if (state->type & INTEL_PT_EX_STOP) {
err = intel_pt_synth_exstop_sample(ptq);
if (err)
return err;
}
if (state->type & INTEL_PT_PWR_EXIT) {
err = intel_pt_synth_pwrx_sample(ptq);
if (err)
return err;
}
}
}
if (pt->sample_instructions && (state->type & INTEL_PT_INSTRUCTION)) {
err = intel_pt_synth_instruction_sample(ptq);
if (err)
return err;
}
if (pt->sample_transactions && (state->type & INTEL_PT_TRANSACTION)) {
err = intel_pt_synth_transaction_sample(ptq);
if (err)
return err;
}
if (pt->sample_ptwrites && (state->type & INTEL_PT_PTW)) {
err = intel_pt_synth_ptwrite_sample(ptq);
if (err)
return err;
}
if (!(state->type & INTEL_PT_BRANCH))
return 0;
if (pt->synth_opts.callchain || pt->synth_opts.thread_stack)
thread_stack__event(ptq->thread, ptq->cpu, ptq->flags, state->from_ip,
state->to_ip, ptq->insn_len,
state->trace_nr);
else
thread_stack__set_trace_nr(ptq->thread, ptq->cpu, state->trace_nr);
if (pt->sample_branches) {
err = intel_pt_synth_branch_sample(ptq);
if (err)
return err;
}
if (pt->synth_opts.last_branch)
intel_pt_update_last_branch_rb(ptq);
if (!ptq->sync_switch)
return 0;
if (intel_pt_is_switch_ip(ptq, state->to_ip)) {
switch (ptq->switch_state) {
case INTEL_PT_SS_NOT_TRACING:
case INTEL_PT_SS_UNKNOWN:
case INTEL_PT_SS_EXPECTING_SWITCH_IP:
err = intel_pt_next_tid(pt, ptq);
if (err)
return err;
ptq->switch_state = INTEL_PT_SS_TRACING;
break;
default:
ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_EVENT;
return 1;
}
} else if (!state->to_ip) {
ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
} else if (ptq->switch_state == INTEL_PT_SS_NOT_TRACING) {
ptq->switch_state = INTEL_PT_SS_UNKNOWN;
} else if (ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
state->to_ip == pt->ptss_ip &&
(ptq->flags & PERF_IP_FLAG_CALL)) {
ptq->switch_state = INTEL_PT_SS_TRACING;
}
return 0;
}
static u64 intel_pt_switch_ip(struct intel_pt *pt, u64 *ptss_ip)
{
struct machine *machine = pt->machine;
struct map *map;
struct symbol *sym, *start;
u64 ip, switch_ip = 0;
const char *ptss;
if (ptss_ip)
*ptss_ip = 0;
map = machine__kernel_map(machine);
if (!map)
return 0;
if (map__load(map))
return 0;
start = dso__first_symbol(map->dso);
for (sym = start; sym; sym = dso__next_symbol(sym)) {
if (sym->binding == STB_GLOBAL &&
!strcmp(sym->name, "__switch_to")) {
ip = map->unmap_ip(map, sym->start);
if (ip >= map->start && ip < map->end) {
switch_ip = ip;
break;
}
}
}
if (!switch_ip || !ptss_ip)
return 0;
if (pt->have_sched_switch == 1)
ptss = "perf_trace_sched_switch";
else
ptss = "__perf_event_task_sched_out";
for (sym = start; sym; sym = dso__next_symbol(sym)) {
if (!strcmp(sym->name, ptss)) {
ip = map->unmap_ip(map, sym->start);
if (ip >= map->start && ip < map->end) {
*ptss_ip = ip;
break;
}
}
}
return switch_ip;
}
static void intel_pt_enable_sync_switch(struct intel_pt *pt)
{
unsigned int i;
pt->sync_switch = true;
for (i = 0; i < pt->queues.nr_queues; i++) {
struct auxtrace_queue *queue = &pt->queues.queue_array[i];
struct intel_pt_queue *ptq = queue->priv;
if (ptq)
ptq->sync_switch = true;
}
}
/*
* To filter against time ranges, it is only necessary to look at the next start
* or end time.
*/
static bool intel_pt_next_time(struct intel_pt_queue *ptq)
{
struct intel_pt *pt = ptq->pt;
if (ptq->sel_start) {
/* Next time is an end time */
ptq->sel_start = false;
ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].end;
return true;
} else if (ptq->sel_idx + 1 < pt->range_cnt) {
/* Next time is a start time */
ptq->sel_start = true;
ptq->sel_idx += 1;
ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].start;
return true;
}
/* No next time */
return false;
}
static int intel_pt_time_filter(struct intel_pt_queue *ptq, u64 *ff_timestamp)
{
int err;
while (1) {
if (ptq->sel_start) {
if (ptq->timestamp >= ptq->sel_timestamp) {
/* After start time, so consider next time */
intel_pt_next_time(ptq);
if (!ptq->sel_timestamp) {
/* No end time */
return 0;
}
/* Check against end time */
continue;
}
/* Before start time, so fast forward */
ptq->have_sample = false;
if (ptq->sel_timestamp > *ff_timestamp) {
if (ptq->sync_switch) {
intel_pt_next_tid(ptq->pt, ptq);
ptq->switch_state = INTEL_PT_SS_UNKNOWN;
}
*ff_timestamp = ptq->sel_timestamp;
err = intel_pt_fast_forward(ptq->decoder,
ptq->sel_timestamp);
if (err)
return err;
}
return 0;
} else if (ptq->timestamp > ptq->sel_timestamp) {
/* After end time, so consider next time */
if (!intel_pt_next_time(ptq)) {
/* No next time range, so stop decoding */
ptq->have_sample = false;
ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
return 1;
}
/* Check against next start time */
continue;
} else {
/* Before end time */
return 0;
}
}
}
static int intel_pt_run_decoder(struct intel_pt_queue *ptq, u64 *timestamp)
{
const struct intel_pt_state *state = ptq->state;
struct intel_pt *pt = ptq->pt;
u64 ff_timestamp = 0;
int err;
if (!pt->kernel_start) {
pt->kernel_start = machine__kernel_start(pt->machine);
if (pt->per_cpu_mmaps &&
(pt->have_sched_switch == 1 || pt->have_sched_switch == 3) &&
!pt->timeless_decoding && intel_pt_tracing_kernel(pt) &&
!pt->sampling_mode) {
pt->switch_ip = intel_pt_switch_ip(pt, &pt->ptss_ip);
if (pt->switch_ip) {
intel_pt_log("switch_ip: %"PRIx64" ptss_ip: %"PRIx64"\n",
pt->switch_ip, pt->ptss_ip);
intel_pt_enable_sync_switch(pt);
}
}
}
intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
while (1) {
err = intel_pt_sample(ptq);
if (err)
return err;
state = intel_pt_decode(ptq->decoder);
if (state->err) {
if (state->err == INTEL_PT_ERR_NODATA)
return 1;
if (ptq->sync_switch &&
state->from_ip >= pt->kernel_start) {
ptq->sync_switch = false;
intel_pt_next_tid(pt, ptq);
}
if (pt->synth_opts.errors) {
err = intel_ptq_synth_error(ptq, state);
if (err)
return err;
}
continue;
}
ptq->state = state;
ptq->have_sample = true;
intel_pt_sample_flags(ptq);
/* Use estimated TSC upon return to user space */
if (pt->est_tsc &&
(state->from_ip >= pt->kernel_start || !state->from_ip) &&
state->to_ip && state->to_ip < pt->kernel_start) {
intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
state->timestamp, state->est_timestamp);
ptq->timestamp = state->est_timestamp;
/* Use estimated TSC in unknown switch state */
} else if (ptq->sync_switch &&
ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
intel_pt_is_switch_ip(ptq, state->to_ip) &&
ptq->next_tid == -1) {
intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
state->timestamp, state->est_timestamp);
ptq->timestamp = state->est_timestamp;
} else if (state->timestamp > ptq->timestamp) {
ptq->timestamp = state->timestamp;
}
if (ptq->sel_timestamp) {
err = intel_pt_time_filter(ptq, &ff_timestamp);
if (err)
return err;
}
if (!pt->timeless_decoding && ptq->timestamp >= *timestamp) {
*timestamp = ptq->timestamp;
return 0;
}
}
return 0;
}
static inline int intel_pt_update_queues(struct intel_pt *pt)
{
if (pt->queues.new_data) {
pt->queues.new_data = false;
return intel_pt_setup_queues(pt);
}
return 0;
}
static int intel_pt_process_queues(struct intel_pt *pt, u64 timestamp)
{
unsigned int queue_nr;
u64 ts;
int ret;
while (1) {
struct auxtrace_queue *queue;
struct intel_pt_queue *ptq;
if (!pt->heap.heap_cnt)
return 0;
if (pt->heap.heap_array[0].ordinal >= timestamp)
return 0;
queue_nr = pt->heap.heap_array[0].queue_nr;
queue = &pt->queues.queue_array[queue_nr];
ptq = queue->priv;
intel_pt_log("queue %u processing 0x%" PRIx64 " to 0x%" PRIx64 "\n",
queue_nr, pt->heap.heap_array[0].ordinal,
timestamp);
auxtrace_heap__pop(&pt->heap);
if (pt->heap.heap_cnt) {
ts = pt->heap.heap_array[0].ordinal + 1;
if (ts > timestamp)
ts = timestamp;
} else {
ts = timestamp;
}
intel_pt_set_pid_tid_cpu(pt, queue);
ret = intel_pt_run_decoder(ptq, &ts);
if (ret < 0) {
auxtrace_heap__add(&pt->heap, queue_nr, ts);
return ret;
}
if (!ret) {
ret = auxtrace_heap__add(&pt->heap, queue_nr, ts);
if (ret < 0)
return ret;
} else {
ptq->on_heap = false;
}
}
return 0;
}
static int intel_pt_process_timeless_queues(struct intel_pt *pt, pid_t tid,
u64 time_)
{
struct auxtrace_queues *queues = &pt->queues;
unsigned int i;
u64 ts = 0;
for (i = 0; i < queues->nr_queues; i++) {
struct auxtrace_queue *queue = &pt->queues.queue_array[i];
struct intel_pt_queue *ptq = queue->priv;
if (ptq && (tid == -1 || ptq->tid == tid)) {
ptq->time = time_;
intel_pt_set_pid_tid_cpu(pt, queue);
intel_pt_run_decoder(ptq, &ts);
}
}
return 0;
}
static int intel_pt_lost(struct intel_pt *pt, struct perf_sample *sample)
{
return intel_pt_synth_error(pt, INTEL_PT_ERR_LOST, sample->cpu,
sample->pid, sample->tid, 0, sample->time);
}
static struct intel_pt_queue *intel_pt_cpu_to_ptq(struct intel_pt *pt, int cpu)
{
unsigned i, j;
if (cpu < 0 || !pt->queues.nr_queues)
return NULL;
if ((unsigned)cpu >= pt->queues.nr_queues)
i = pt->queues.nr_queues - 1;
else
i = cpu;
if (pt->queues.queue_array[i].cpu == cpu)
return pt->queues.queue_array[i].priv;
for (j = 0; i > 0; j++) {
if (pt->queues.queue_array[--i].cpu == cpu)
return pt->queues.queue_array[i].priv;
}
for (; j < pt->queues.nr_queues; j++) {
if (pt->queues.queue_array[j].cpu == cpu)
return pt->queues.queue_array[j].priv;
}
return NULL;
}
static int intel_pt_sync_switch(struct intel_pt *pt, int cpu, pid_t tid,
u64 timestamp)
{
struct intel_pt_queue *ptq;
int err;
if (!pt->sync_switch)
return 1;
ptq = intel_pt_cpu_to_ptq(pt, cpu);
if (!ptq || !ptq->sync_switch)
return 1;
switch (ptq->switch_state) {
case INTEL_PT_SS_NOT_TRACING:
break;
case INTEL_PT_SS_UNKNOWN:
case INTEL_PT_SS_TRACING:
ptq->next_tid = tid;
ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_IP;
return 0;
case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
if (!ptq->on_heap) {
ptq->timestamp = perf_time_to_tsc(timestamp,
&pt->tc);
err = auxtrace_heap__add(&pt->heap, ptq->queue_nr,
ptq->timestamp);
if (err)
return err;
ptq->on_heap = true;
}
ptq->switch_state = INTEL_PT_SS_TRACING;
break;
case INTEL_PT_SS_EXPECTING_SWITCH_IP:
intel_pt_log("ERROR: cpu %d expecting switch ip\n", cpu);
break;
default:
break;
}
ptq->next_tid = -1;
return 1;
}
static int intel_pt_process_switch(struct intel_pt *pt,
struct perf_sample *sample)
{
struct evsel *evsel;
pid_t tid;
int cpu, ret;
evsel = perf_evlist__id2evsel(pt->session->evlist, sample->id);
if (evsel != pt->switch_evsel)
return 0;
tid = perf_evsel__intval(evsel, sample, "next_pid");
cpu = sample->cpu;
intel_pt_log("sched_switch: cpu %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
cpu, tid, sample->time, perf_time_to_tsc(sample->time,
&pt->tc));
ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
if (ret <= 0)
return ret;
return machine__set_current_tid(pt->machine, cpu, -1, tid);
}
static int intel_pt_context_switch_in(struct intel_pt *pt,
struct perf_sample *sample)
{
pid_t pid = sample->pid;
pid_t tid = sample->tid;
int cpu = sample->cpu;
if (pt->sync_switch) {
struct intel_pt_queue *ptq;
ptq = intel_pt_cpu_to_ptq(pt, cpu);
if (ptq && ptq->sync_switch) {
ptq->next_tid = -1;
switch (ptq->switch_state) {
case INTEL_PT_SS_NOT_TRACING:
case INTEL_PT_SS_UNKNOWN:
case INTEL_PT_SS_TRACING:
break;
case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
case INTEL_PT_SS_EXPECTING_SWITCH_IP:
ptq->switch_state = INTEL_PT_SS_TRACING;
break;
default:
break;
}
}
}
/*
* If the current tid has not been updated yet, ensure it is now that
* a "switch in" event has occurred.
*/
if (machine__get_current_tid(pt->machine, cpu) == tid)
return 0;
return machine__set_current_tid(pt->machine, cpu, pid, tid);
}
static int intel_pt_context_switch(struct intel_pt *pt, union perf_event *event,
struct perf_sample *sample)
{
bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
pid_t pid, tid;
int cpu, ret;
cpu = sample->cpu;
if (pt->have_sched_switch == 3) {
if (!out)
return intel_pt_context_switch_in(pt, sample);
if (event->header.type != PERF_RECORD_SWITCH_CPU_WIDE) {
pr_err("Expecting CPU-wide context switch event\n");
return -EINVAL;
}
pid = event->context_switch.next_prev_pid;
tid = event->context_switch.next_prev_tid;
} else {
if (out)
return 0;
pid = sample->pid;
tid = sample->tid;
}
if (tid == -1) {
pr_err("context_switch event has no tid\n");
return -EINVAL;
}
intel_pt_log("context_switch: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
cpu, pid, tid, sample->time, perf_time_to_tsc(sample->time,
&pt->tc));
ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
if (ret <= 0)
return ret;
return machine__set_current_tid(pt->machine, cpu, pid, tid);
}
static int intel_pt_process_itrace_start(struct intel_pt *pt,
union perf_event *event,
struct perf_sample *sample)
{
if (!pt->per_cpu_mmaps)
return 0;
intel_pt_log("itrace_start: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
sample->cpu, event->itrace_start.pid,
event->itrace_start.tid, sample->time,
perf_time_to_tsc(sample->time, &pt->tc));
return machine__set_current_tid(pt->machine, sample->cpu,
event->itrace_start.pid,
event->itrace_start.tid);
}
static int intel_pt_process_event(struct perf_session *session,
union perf_event *event,
struct perf_sample *sample,
struct perf_tool *tool)
{
struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
auxtrace);
u64 timestamp;
int err = 0;
if (dump_trace)
return 0;
if (!tool->ordered_events) {
pr_err("Intel Processor Trace requires ordered events\n");
return -EINVAL;
}
if (sample->time && sample->time != (u64)-1)
timestamp = perf_time_to_tsc(sample->time, &pt->tc);
else
timestamp = 0;
if (timestamp || pt->timeless_decoding) {
err = intel_pt_update_queues(pt);
if (err)
return err;
}
if (pt->timeless_decoding) {
if (event->header.type == PERF_RECORD_EXIT) {
err = intel_pt_process_timeless_queues(pt,
event->fork.tid,
sample->time);
}
} else if (timestamp) {
err = intel_pt_process_queues(pt, timestamp);
}
if (err)
return err;
if (event->header.type == PERF_RECORD_AUX &&
(event->aux.flags & PERF_AUX_FLAG_TRUNCATED) &&
pt->synth_opts.errors) {
err = intel_pt_lost(pt, sample);
if (err)
return err;
}
if (pt->switch_evsel && event->header.type == PERF_RECORD_SAMPLE)
err = intel_pt_process_switch(pt, sample);
else if (event->header.type == PERF_RECORD_ITRACE_START)
err = intel_pt_process_itrace_start(pt, event, sample);
else if (event->header.type == PERF_RECORD_SWITCH ||
event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
err = intel_pt_context_switch(pt, event, sample);
intel_pt_log("event %u: cpu %d time %"PRIu64" tsc %#"PRIx64" ",
event->header.type, sample->cpu, sample->time, timestamp);
intel_pt_log_event(event);
return err;
}
static int intel_pt_flush(struct perf_session *session, struct perf_tool *tool)
{
struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
auxtrace);
int ret;
if (dump_trace)
return 0;
if (!tool->ordered_events)
return -EINVAL;
ret = intel_pt_update_queues(pt);
if (ret < 0)
return ret;
if (pt->timeless_decoding)
return intel_pt_process_timeless_queues(pt, -1,
MAX_TIMESTAMP - 1);
return intel_pt_process_queues(pt, MAX_TIMESTAMP);
}
static void intel_pt_free_events(struct perf_session *session)
{
struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
auxtrace);
struct auxtrace_queues *queues = &pt->queues;
unsigned int i;
for (i = 0; i < queues->nr_queues; i++) {
intel_pt_free_queue(queues->queue_array[i].priv);
queues->queue_array[i].priv = NULL;
}
intel_pt_log_disable();
auxtrace_queues__free(queues);
}
static void intel_pt_free(struct perf_session *session)
{
struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
auxtrace);
auxtrace_heap__free(&pt->heap);
intel_pt_free_events(session);
session->auxtrace = NULL;
thread__put(pt->unknown_thread);
addr_filters__exit(&pt->filts);
zfree(&pt->filter);
zfree(&pt->time_ranges);
free(pt);
}
static int intel_pt_process_auxtrace_event(struct perf_session *session,
union perf_event *event,
struct perf_tool *tool __maybe_unused)
{
struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
auxtrace);
if (!pt->data_queued) {
struct auxtrace_buffer *buffer;
off_t data_offset;
int fd = perf_data__fd(session->data);
int err;
if (perf_data__is_pipe(session->data)) {
data_offset = 0;
} else {
data_offset = lseek(fd, 0, SEEK_CUR);
if (data_offset == -1)
return -errno;
}
err = auxtrace_queues__add_event(&pt->queues, session, event,
data_offset, &buffer);
if (err)
return err;
/* Dump here now we have copied a piped trace out of the pipe */
if (dump_trace) {
if (auxtrace_buffer__get_data(buffer, fd)) {
intel_pt_dump_event(pt, buffer->data,
buffer->size);
auxtrace_buffer__put_data(buffer);
}
}
}
return 0;
}
struct intel_pt_synth {
struct perf_tool dummy_tool;
struct perf_session *session;
};
static int intel_pt_event_synth(struct perf_tool *tool,
union perf_event *event,
struct perf_sample *sample __maybe_unused,
struct machine *machine __maybe_unused)
{
struct intel_pt_synth *intel_pt_synth =
container_of(tool, struct intel_pt_synth, dummy_tool);
return perf_session__deliver_synth_event(intel_pt_synth->session, event,
NULL);
}
static int intel_pt_synth_event(struct perf_session *session, const char *name,
struct perf_event_attr *attr, u64 id)
{
struct intel_pt_synth intel_pt_synth;
int err;
pr_debug("Synthesizing '%s' event with id %" PRIu64 " sample type %#" PRIx64 "\n",
name, id, (u64)attr->sample_type);
memset(&intel_pt_synth, 0, sizeof(struct intel_pt_synth));
intel_pt_synth.session = session;
err = perf_event__synthesize_attr(&intel_pt_synth.dummy_tool, attr, 1,
&id, intel_pt_event_synth);
if (err)
pr_err("%s: failed to synthesize '%s' event type\n",
__func__, name);
return err;
}
static void intel_pt_set_event_name(struct evlist *evlist, u64 id,
const char *name)
{
struct evsel *evsel;
evlist__for_each_entry(evlist, evsel) {
if (evsel->id && evsel->id[0] == id) {
if (evsel->name)
zfree(&evsel->name);
evsel->name = strdup(name);
break;
}
}
}
static struct evsel *intel_pt_evsel(struct intel_pt *pt,
struct evlist *evlist)
{
struct evsel *evsel;
evlist__for_each_entry(evlist, evsel) {
if (evsel->core.attr.type == pt->pmu_type && evsel->ids)
return evsel;
}
return NULL;
}
static int intel_pt_synth_events(struct intel_pt *pt,
struct perf_session *session)
{
struct evlist *evlist = session->evlist;
struct evsel *evsel = intel_pt_evsel(pt, evlist);
struct perf_event_attr attr;
u64 id;
int err;
if (!evsel) {
pr_debug("There are no selected events with Intel Processor Trace data\n");
return 0;
}
memset(&attr, 0, sizeof(struct perf_event_attr));
attr.size = sizeof(struct perf_event_attr);
attr.type = PERF_TYPE_HARDWARE;
attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
PERF_SAMPLE_PERIOD;
if (pt->timeless_decoding)
attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
else
attr.sample_type |= PERF_SAMPLE_TIME;
if (!pt->per_cpu_mmaps)
attr.sample_type &= ~(u64)PERF_SAMPLE_CPU;
attr.exclude_user = evsel->core.attr.exclude_user;
attr.exclude_kernel = evsel->core.attr.exclude_kernel;
attr.exclude_hv = evsel->core.attr.exclude_hv;
attr.exclude_host = evsel->core.attr.exclude_host;
attr.exclude_guest = evsel->core.attr.exclude_guest;
attr.sample_id_all = evsel->core.attr.sample_id_all;
attr.read_format = evsel->core.attr.read_format;
id = evsel->id[0] + 1000000000;
if (!id)
id = 1;
if (pt->synth_opts.branches) {
attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
attr.sample_period = 1;
attr.sample_type |= PERF_SAMPLE_ADDR;
err = intel_pt_synth_event(session, "branches", &attr, id);
if (err)
return err;
pt->sample_branches = true;
pt->branches_sample_type = attr.sample_type;
pt->branches_id = id;
id += 1;
attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
}
if (pt->synth_opts.callchain)
attr.sample_type |= PERF_SAMPLE_CALLCHAIN;
if (pt->synth_opts.last_branch)
attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
if (pt->synth_opts.instructions) {
attr.config = PERF_COUNT_HW_INSTRUCTIONS;
if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS)
attr.sample_period =
intel_pt_ns_to_ticks(pt, pt->synth_opts.period);
else
attr.sample_period = pt->synth_opts.period;
err = intel_pt_synth_event(session, "instructions", &attr, id);
if (err)
return err;
pt->sample_instructions = true;
pt->instructions_sample_type = attr.sample_type;
pt->instructions_id = id;
id += 1;
}
attr.sample_type &= ~(u64)PERF_SAMPLE_PERIOD;
attr.sample_period = 1;
if (pt->synth_opts.transactions) {
attr.config = PERF_COUNT_HW_INSTRUCTIONS;
err = intel_pt_synth_event(session, "transactions", &attr, id);
if (err)
return err;
pt->sample_transactions = true;
pt->transactions_sample_type = attr.sample_type;
pt->transactions_id = id;
intel_pt_set_event_name(evlist, id, "transactions");
id += 1;
}
attr.type = PERF_TYPE_SYNTH;
attr.sample_type |= PERF_SAMPLE_RAW;
if (pt->synth_opts.ptwrites) {
attr.config = PERF_SYNTH_INTEL_PTWRITE;
err = intel_pt_synth_event(session, "ptwrite", &attr, id);
if (err)
return err;
pt->sample_ptwrites = true;
pt->ptwrites_sample_type = attr.sample_type;
pt->ptwrites_id = id;
intel_pt_set_event_name(evlist, id, "ptwrite");
id += 1;
}
if (pt->synth_opts.pwr_events) {
pt->sample_pwr_events = true;
pt->pwr_events_sample_type = attr.sample_type;
attr.config = PERF_SYNTH_INTEL_CBR;
err = intel_pt_synth_event(session, "cbr", &attr, id);
if (err)
return err;
pt->cbr_id = id;
intel_pt_set_event_name(evlist, id, "cbr");
id += 1;
}
if (pt->synth_opts.pwr_events && (evsel->core.attr.config & 0x10)) {
attr.config = PERF_SYNTH_INTEL_MWAIT;
err = intel_pt_synth_event(session, "mwait", &attr, id);
if (err)
return err;
pt->mwait_id = id;
intel_pt_set_event_name(evlist, id, "mwait");
id += 1;
attr.config = PERF_SYNTH_INTEL_PWRE;
err = intel_pt_synth_event(session, "pwre", &attr, id);
if (err)
return err;
pt->pwre_id = id;
intel_pt_set_event_name(evlist, id, "pwre");
id += 1;
attr.config = PERF_SYNTH_INTEL_EXSTOP;
err = intel_pt_synth_event(session, "exstop", &attr, id);
if (err)
return err;
pt->exstop_id = id;
intel_pt_set_event_name(evlist, id, "exstop");
id += 1;
attr.config = PERF_SYNTH_INTEL_PWRX;
err = intel_pt_synth_event(session, "pwrx", &attr, id);
if (err)
return err;
pt->pwrx_id = id;
intel_pt_set_event_name(evlist, id, "pwrx");
id += 1;
}
return 0;
}
static void intel_pt_setup_pebs_events(struct intel_pt *pt)
{
struct evsel *evsel;
if (!pt->synth_opts.other_events)
return;
evlist__for_each_entry(pt->session->evlist, evsel) {
if (evsel->core.attr.aux_output && evsel->id) {
pt->sample_pebs = true;
pt->pebs_evsel = evsel;
return;
}
}
}
static struct evsel *intel_pt_find_sched_switch(struct evlist *evlist)
{
struct evsel *evsel;
evlist__for_each_entry_reverse(evlist, evsel) {
const char *name = perf_evsel__name(evsel);
if (!strcmp(name, "sched:sched_switch"))
return evsel;
}
return NULL;
}
static bool intel_pt_find_switch(struct evlist *evlist)
{
struct evsel *evsel;
evlist__for_each_entry(evlist, evsel) {
if (evsel->core.attr.context_switch)
return true;
}
return false;
}
static int intel_pt_perf_config(const char *var, const char *value, void *data)
{
struct intel_pt *pt = data;
if (!strcmp(var, "intel-pt.mispred-all"))
pt->mispred_all = perf_config_bool(var, value);
return 0;
}
/* Find least TSC which converts to ns or later */
static u64 intel_pt_tsc_start(u64 ns, struct intel_pt *pt)
{
u64 tsc, tm;
tsc = perf_time_to_tsc(ns, &pt->tc);
while (1) {
tm = tsc_to_perf_time(tsc, &pt->tc);
if (tm < ns)
break;
tsc -= 1;
}
while (tm < ns)
tm = tsc_to_perf_time(++tsc, &pt->tc);
return tsc;
}
/* Find greatest TSC which converts to ns or earlier */
static u64 intel_pt_tsc_end(u64 ns, struct intel_pt *pt)
{
u64 tsc, tm;
tsc = perf_time_to_tsc(ns, &pt->tc);
while (1) {
tm = tsc_to_perf_time(tsc, &pt->tc);
if (tm > ns)
break;
tsc += 1;
}
while (tm > ns)
tm = tsc_to_perf_time(--tsc, &pt->tc);
return tsc;
}
static int intel_pt_setup_time_ranges(struct intel_pt *pt,
struct itrace_synth_opts *opts)
{
struct perf_time_interval *p = opts->ptime_range;
int n = opts->range_num;
int i;
if (!n || !p || pt->timeless_decoding)
return 0;
pt->time_ranges = calloc(n, sizeof(struct range));
if (!pt->time_ranges)
return -ENOMEM;
pt->range_cnt = n;
intel_pt_log("%s: %u range(s)\n", __func__, n);
for (i = 0; i < n; i++) {
struct range *r = &pt->time_ranges[i];
u64 ts = p[i].start;
u64 te = p[i].end;
/*
* Take care to ensure the TSC range matches the perf-time range
* when converted back to perf-time.
*/
r->start = ts ? intel_pt_tsc_start(ts, pt) : 0;
r->end = te ? intel_pt_tsc_end(te, pt) : 0;
intel_pt_log("range %d: perf time interval: %"PRIu64" to %"PRIu64"\n",
i, ts, te);
intel_pt_log("range %d: TSC time interval: %#"PRIx64" to %#"PRIx64"\n",
i, r->start, r->end);
}
return 0;
}
static const char * const intel_pt_info_fmts[] = {
[INTEL_PT_PMU_TYPE] = " PMU Type %"PRId64"\n",
[INTEL_PT_TIME_SHIFT] = " Time Shift %"PRIu64"\n",
[INTEL_PT_TIME_MULT] = " Time Muliplier %"PRIu64"\n",
[INTEL_PT_TIME_ZERO] = " Time Zero %"PRIu64"\n",
[INTEL_PT_CAP_USER_TIME_ZERO] = " Cap Time Zero %"PRId64"\n",
[INTEL_PT_TSC_BIT] = " TSC bit %#"PRIx64"\n",
[INTEL_PT_NORETCOMP_BIT] = " NoRETComp bit %#"PRIx64"\n",
[INTEL_PT_HAVE_SCHED_SWITCH] = " Have sched_switch %"PRId64"\n",
[INTEL_PT_SNAPSHOT_MODE] = " Snapshot mode %"PRId64"\n",
[INTEL_PT_PER_CPU_MMAPS] = " Per-cpu maps %"PRId64"\n",
[INTEL_PT_MTC_BIT] = " MTC bit %#"PRIx64"\n",
[INTEL_PT_TSC_CTC_N] = " TSC:CTC numerator %"PRIu64"\n",
[INTEL_PT_TSC_CTC_D] = " TSC:CTC denominator %"PRIu64"\n",
[INTEL_PT_CYC_BIT] = " CYC bit %#"PRIx64"\n",
[INTEL_PT_MAX_NONTURBO_RATIO] = " Max non-turbo ratio %"PRIu64"\n",
[INTEL_PT_FILTER_STR_LEN] = " Filter string len. %"PRIu64"\n",
};
static void intel_pt_print_info(__u64 *arr, int start, int finish)
{
int i;
if (!dump_trace)
return;
for (i = start; i <= finish; i++)
fprintf(stdout, intel_pt_info_fmts[i], arr[i]);
}
static void intel_pt_print_info_str(const char *name, const char *str)
{
if (!dump_trace)
return;
fprintf(stdout, " %-20s%s\n", name, str ? str : "");
}
static bool intel_pt_has(struct perf_record_auxtrace_info *auxtrace_info, int pos)
{
return auxtrace_info->header.size >=
sizeof(struct perf_record_auxtrace_info) + (sizeof(u64) * (pos + 1));
}
int intel_pt_process_auxtrace_info(union perf_event *event,
struct perf_session *session)
{
struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
size_t min_sz = sizeof(u64) * INTEL_PT_PER_CPU_MMAPS;
struct intel_pt *pt;
void *info_end;
__u64 *info;
int err;
if (auxtrace_info->header.size < sizeof(struct perf_record_auxtrace_info) +
min_sz)
return -EINVAL;
pt = zalloc(sizeof(struct intel_pt));
if (!pt)
return -ENOMEM;
addr_filters__init(&pt->filts);
err = perf_config(intel_pt_perf_config, pt);
if (err)
goto err_free;
err = auxtrace_queues__init(&pt->queues);
if (err)
goto err_free;
intel_pt_log_set_name(INTEL_PT_PMU_NAME);
pt->session = session;
pt->machine = &session->machines.host; /* No kvm support */
pt->auxtrace_type = auxtrace_info->type;
pt->pmu_type = auxtrace_info->priv[INTEL_PT_PMU_TYPE];
pt->tc.time_shift = auxtrace_info->priv[INTEL_PT_TIME_SHIFT];
pt->tc.time_mult = auxtrace_info->priv[INTEL_PT_TIME_MULT];
pt->tc.time_zero = auxtrace_info->priv[INTEL_PT_TIME_ZERO];
pt->cap_user_time_zero = auxtrace_info->priv[INTEL_PT_CAP_USER_TIME_ZERO];
pt->tsc_bit = auxtrace_info->priv[INTEL_PT_TSC_BIT];
pt->noretcomp_bit = auxtrace_info->priv[INTEL_PT_NORETCOMP_BIT];
pt->have_sched_switch = auxtrace_info->priv[INTEL_PT_HAVE_SCHED_SWITCH];
pt->snapshot_mode = auxtrace_info->priv[INTEL_PT_SNAPSHOT_MODE];
pt->per_cpu_mmaps = auxtrace_info->priv[INTEL_PT_PER_CPU_MMAPS];
intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_PMU_TYPE,
INTEL_PT_PER_CPU_MMAPS);
if (intel_pt_has(auxtrace_info, INTEL_PT_CYC_BIT)) {
pt->mtc_bit = auxtrace_info->priv[INTEL_PT_MTC_BIT];
pt->mtc_freq_bits = auxtrace_info->priv[INTEL_PT_MTC_FREQ_BITS];
pt->tsc_ctc_ratio_n = auxtrace_info->priv[INTEL_PT_TSC_CTC_N];
pt->tsc_ctc_ratio_d = auxtrace_info->priv[INTEL_PT_TSC_CTC_D];
pt->cyc_bit = auxtrace_info->priv[INTEL_PT_CYC_BIT];
intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_MTC_BIT,
INTEL_PT_CYC_BIT);
}
if (intel_pt_has(auxtrace_info, INTEL_PT_MAX_NONTURBO_RATIO)) {
pt->max_non_turbo_ratio =
auxtrace_info->priv[INTEL_PT_MAX_NONTURBO_RATIO];
intel_pt_print_info(&auxtrace_info->priv[0],
INTEL_PT_MAX_NONTURBO_RATIO,
INTEL_PT_MAX_NONTURBO_RATIO);
}
info = &auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN] + 1;
info_end = (void *)info + auxtrace_info->header.size;
if (intel_pt_has(auxtrace_info, INTEL_PT_FILTER_STR_LEN)) {
size_t len;
len = auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN];
intel_pt_print_info(&auxtrace_info->priv[0],
INTEL_PT_FILTER_STR_LEN,
INTEL_PT_FILTER_STR_LEN);
if (len) {
const char *filter = (const char *)info;
len = roundup(len + 1, 8);
info += len >> 3;
if ((void *)info > info_end) {
pr_err("%s: bad filter string length\n", __func__);
err = -EINVAL;
goto err_free_queues;
}
pt->filter = memdup(filter, len);
if (!pt->filter) {
err = -ENOMEM;
goto err_free_queues;
}
if (session->header.needs_swap)
mem_bswap_64(pt->filter, len);
if (pt->filter[len - 1]) {
pr_err("%s: filter string not null terminated\n", __func__);
err = -EINVAL;
goto err_free_queues;
}
err = addr_filters__parse_bare_filter(&pt->filts,
filter);
if (err)
goto err_free_queues;
}
intel_pt_print_info_str("Filter string", pt->filter);
}
pt->timeless_decoding = intel_pt_timeless_decoding(pt);
if (pt->timeless_decoding && !pt->tc.time_mult)
pt->tc.time_mult = 1;
pt->have_tsc = intel_pt_have_tsc(pt);
pt->sampling_mode = false;
pt->est_tsc = !pt->timeless_decoding;
pt->unknown_thread = thread__new(999999999, 999999999);
if (!pt->unknown_thread) {
err = -ENOMEM;
goto err_free_queues;
}
/*
* Since this thread will not be kept in any rbtree not in a
* list, initialize its list node so that at thread__put() the
* current thread lifetime assuption is kept and we don't segfault
* at list_del_init().
*/
INIT_LIST_HEAD(&pt->unknown_thread->node);
err = thread__set_comm(pt->unknown_thread, "unknown", 0);
if (err)
goto err_delete_thread;
if (thread__init_map_groups(pt->unknown_thread, pt->machine)) {
err = -ENOMEM;
goto err_delete_thread;
}
pt->auxtrace.process_event = intel_pt_process_event;
pt->auxtrace.process_auxtrace_event = intel_pt_process_auxtrace_event;
pt->auxtrace.flush_events = intel_pt_flush;
pt->auxtrace.free_events = intel_pt_free_events;
pt->auxtrace.free = intel_pt_free;
session->auxtrace = &pt->auxtrace;
if (dump_trace)
return 0;
if (pt->have_sched_switch == 1) {
pt->switch_evsel = intel_pt_find_sched_switch(session->evlist);
if (!pt->switch_evsel) {
pr_err("%s: missing sched_switch event\n", __func__);
err = -EINVAL;
goto err_delete_thread;
}
} else if (pt->have_sched_switch == 2 &&
!intel_pt_find_switch(session->evlist)) {
pr_err("%s: missing context_switch attribute flag\n", __func__);
err = -EINVAL;
goto err_delete_thread;
}
if (session->itrace_synth_opts->set) {
pt->synth_opts = *session->itrace_synth_opts;
} else {
itrace_synth_opts__set_default(&pt->synth_opts,
session->itrace_synth_opts->default_no_sample);
if (!session->itrace_synth_opts->default_no_sample &&
!session->itrace_synth_opts->inject) {
pt->synth_opts.branches = false;
pt->synth_opts.callchain = true;
}
pt->synth_opts.thread_stack =
session->itrace_synth_opts->thread_stack;
}
if (pt->synth_opts.log)
intel_pt_log_enable();
/* Maximum non-turbo ratio is TSC freq / 100 MHz */
if (pt->tc.time_mult) {
u64 tsc_freq = intel_pt_ns_to_ticks(pt, 1000000000);
if (!pt->max_non_turbo_ratio)
pt->max_non_turbo_ratio =
(tsc_freq + 50000000) / 100000000;
intel_pt_log("TSC frequency %"PRIu64"\n", tsc_freq);
intel_pt_log("Maximum non-turbo ratio %u\n",
pt->max_non_turbo_ratio);
pt->cbr2khz = tsc_freq / pt->max_non_turbo_ratio / 1000;
}
err = intel_pt_setup_time_ranges(pt, session->itrace_synth_opts);
if (err)
goto err_delete_thread;
if (pt->synth_opts.calls)
pt->branches_filter |= PERF_IP_FLAG_CALL | PERF_IP_FLAG_ASYNC |
PERF_IP_FLAG_TRACE_END;
if (pt->synth_opts.returns)
pt->branches_filter |= PERF_IP_FLAG_RETURN |
PERF_IP_FLAG_TRACE_BEGIN;
if (pt->synth_opts.callchain && !symbol_conf.use_callchain) {
symbol_conf.use_callchain = true;
if (callchain_register_param(&callchain_param) < 0) {
symbol_conf.use_callchain = false;
pt->synth_opts.callchain = false;
}
}
err = intel_pt_synth_events(pt, session);
if (err)
goto err_delete_thread;
intel_pt_setup_pebs_events(pt);
err = auxtrace_queues__process_index(&pt->queues, session);
if (err)
goto err_delete_thread;
if (pt->queues.populated)
pt->data_queued = true;
if (pt->timeless_decoding)
pr_debug2("Intel PT decoding without timestamps\n");
return 0;
err_delete_thread:
thread__zput(pt->unknown_thread);
err_free_queues:
intel_pt_log_disable();
auxtrace_queues__free(&pt->queues);
session->auxtrace = NULL;
err_free:
addr_filters__exit(&pt->filts);
zfree(&pt->filter);
zfree(&pt->time_ranges);
free(pt);
return err;
}