linux/net/ipv4/tcp.c
Eric Dumazet b0de0cf4f5 tcp: autocork: take MSG_EOR hint into consideration
tcp_should_autocork() is evaluating if it makes senses
to not immediately send current skb, hoping that
user space will add more payload on it by the
time TCP stack reacts to upcoming TX completions.

If current skb got MSG_EOR mark, then we know
that no further data will be added, it is therefore
futile to wait.

SOF_TIMESTAMPING_TX_ACK will become a bit more accurate,
if prior packets are still in qdisc/device queues.

Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Martin KaFai Lau <kafai@fb.com>
Cc: Willem de Bruijn <willemb@google.com>
Acked-by: Soheil Hassas Yeganeh <soheil@google.com>
Link: https://lore.kernel.org/r/20220309054706.2857266-1-eric.dumazet@gmail.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2022-03-09 20:05:20 -08:00

4694 lines
123 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* INET An implementation of the TCP/IP protocol suite for the LINUX
* operating system. INET is implemented using the BSD Socket
* interface as the means of communication with the user level.
*
* Implementation of the Transmission Control Protocol(TCP).
*
* Authors: Ross Biro
* Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
* Mark Evans, <evansmp@uhura.aston.ac.uk>
* Corey Minyard <wf-rch!minyard@relay.EU.net>
* Florian La Roche, <flla@stud.uni-sb.de>
* Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
* Linus Torvalds, <torvalds@cs.helsinki.fi>
* Alan Cox, <gw4pts@gw4pts.ampr.org>
* Matthew Dillon, <dillon@apollo.west.oic.com>
* Arnt Gulbrandsen, <agulbra@nvg.unit.no>
* Jorge Cwik, <jorge@laser.satlink.net>
*
* Fixes:
* Alan Cox : Numerous verify_area() calls
* Alan Cox : Set the ACK bit on a reset
* Alan Cox : Stopped it crashing if it closed while
* sk->inuse=1 and was trying to connect
* (tcp_err()).
* Alan Cox : All icmp error handling was broken
* pointers passed where wrong and the
* socket was looked up backwards. Nobody
* tested any icmp error code obviously.
* Alan Cox : tcp_err() now handled properly. It
* wakes people on errors. poll
* behaves and the icmp error race
* has gone by moving it into sock.c
* Alan Cox : tcp_send_reset() fixed to work for
* everything not just packets for
* unknown sockets.
* Alan Cox : tcp option processing.
* Alan Cox : Reset tweaked (still not 100%) [Had
* syn rule wrong]
* Herp Rosmanith : More reset fixes
* Alan Cox : No longer acks invalid rst frames.
* Acking any kind of RST is right out.
* Alan Cox : Sets an ignore me flag on an rst
* receive otherwise odd bits of prattle
* escape still
* Alan Cox : Fixed another acking RST frame bug.
* Should stop LAN workplace lockups.
* Alan Cox : Some tidyups using the new skb list
* facilities
* Alan Cox : sk->keepopen now seems to work
* Alan Cox : Pulls options out correctly on accepts
* Alan Cox : Fixed assorted sk->rqueue->next errors
* Alan Cox : PSH doesn't end a TCP read. Switched a
* bit to skb ops.
* Alan Cox : Tidied tcp_data to avoid a potential
* nasty.
* Alan Cox : Added some better commenting, as the
* tcp is hard to follow
* Alan Cox : Removed incorrect check for 20 * psh
* Michael O'Reilly : ack < copied bug fix.
* Johannes Stille : Misc tcp fixes (not all in yet).
* Alan Cox : FIN with no memory -> CRASH
* Alan Cox : Added socket option proto entries.
* Also added awareness of them to accept.
* Alan Cox : Added TCP options (SOL_TCP)
* Alan Cox : Switched wakeup calls to callbacks,
* so the kernel can layer network
* sockets.
* Alan Cox : Use ip_tos/ip_ttl settings.
* Alan Cox : Handle FIN (more) properly (we hope).
* Alan Cox : RST frames sent on unsynchronised
* state ack error.
* Alan Cox : Put in missing check for SYN bit.
* Alan Cox : Added tcp_select_window() aka NET2E
* window non shrink trick.
* Alan Cox : Added a couple of small NET2E timer
* fixes
* Charles Hedrick : TCP fixes
* Toomas Tamm : TCP window fixes
* Alan Cox : Small URG fix to rlogin ^C ack fight
* Charles Hedrick : Rewrote most of it to actually work
* Linus : Rewrote tcp_read() and URG handling
* completely
* Gerhard Koerting: Fixed some missing timer handling
* Matthew Dillon : Reworked TCP machine states as per RFC
* Gerhard Koerting: PC/TCP workarounds
* Adam Caldwell : Assorted timer/timing errors
* Matthew Dillon : Fixed another RST bug
* Alan Cox : Move to kernel side addressing changes.
* Alan Cox : Beginning work on TCP fastpathing
* (not yet usable)
* Arnt Gulbrandsen: Turbocharged tcp_check() routine.
* Alan Cox : TCP fast path debugging
* Alan Cox : Window clamping
* Michael Riepe : Bug in tcp_check()
* Matt Dillon : More TCP improvements and RST bug fixes
* Matt Dillon : Yet more small nasties remove from the
* TCP code (Be very nice to this man if
* tcp finally works 100%) 8)
* Alan Cox : BSD accept semantics.
* Alan Cox : Reset on closedown bug.
* Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
* Michael Pall : Handle poll() after URG properly in
* all cases.
* Michael Pall : Undo the last fix in tcp_read_urg()
* (multi URG PUSH broke rlogin).
* Michael Pall : Fix the multi URG PUSH problem in
* tcp_readable(), poll() after URG
* works now.
* Michael Pall : recv(...,MSG_OOB) never blocks in the
* BSD api.
* Alan Cox : Changed the semantics of sk->socket to
* fix a race and a signal problem with
* accept() and async I/O.
* Alan Cox : Relaxed the rules on tcp_sendto().
* Yury Shevchuk : Really fixed accept() blocking problem.
* Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
* clients/servers which listen in on
* fixed ports.
* Alan Cox : Cleaned the above up and shrank it to
* a sensible code size.
* Alan Cox : Self connect lockup fix.
* Alan Cox : No connect to multicast.
* Ross Biro : Close unaccepted children on master
* socket close.
* Alan Cox : Reset tracing code.
* Alan Cox : Spurious resets on shutdown.
* Alan Cox : Giant 15 minute/60 second timer error
* Alan Cox : Small whoops in polling before an
* accept.
* Alan Cox : Kept the state trace facility since
* it's handy for debugging.
* Alan Cox : More reset handler fixes.
* Alan Cox : Started rewriting the code based on
* the RFC's for other useful protocol
* references see: Comer, KA9Q NOS, and
* for a reference on the difference
* between specifications and how BSD
* works see the 4.4lite source.
* A.N.Kuznetsov : Don't time wait on completion of tidy
* close.
* Linus Torvalds : Fin/Shutdown & copied_seq changes.
* Linus Torvalds : Fixed BSD port reuse to work first syn
* Alan Cox : Reimplemented timers as per the RFC
* and using multiple timers for sanity.
* Alan Cox : Small bug fixes, and a lot of new
* comments.
* Alan Cox : Fixed dual reader crash by locking
* the buffers (much like datagram.c)
* Alan Cox : Fixed stuck sockets in probe. A probe
* now gets fed up of retrying without
* (even a no space) answer.
* Alan Cox : Extracted closing code better
* Alan Cox : Fixed the closing state machine to
* resemble the RFC.
* Alan Cox : More 'per spec' fixes.
* Jorge Cwik : Even faster checksumming.
* Alan Cox : tcp_data() doesn't ack illegal PSH
* only frames. At least one pc tcp stack
* generates them.
* Alan Cox : Cache last socket.
* Alan Cox : Per route irtt.
* Matt Day : poll()->select() match BSD precisely on error
* Alan Cox : New buffers
* Marc Tamsky : Various sk->prot->retransmits and
* sk->retransmits misupdating fixed.
* Fixed tcp_write_timeout: stuck close,
* and TCP syn retries gets used now.
* Mark Yarvis : In tcp_read_wakeup(), don't send an
* ack if state is TCP_CLOSED.
* Alan Cox : Look up device on a retransmit - routes may
* change. Doesn't yet cope with MSS shrink right
* but it's a start!
* Marc Tamsky : Closing in closing fixes.
* Mike Shaver : RFC1122 verifications.
* Alan Cox : rcv_saddr errors.
* Alan Cox : Block double connect().
* Alan Cox : Small hooks for enSKIP.
* Alexey Kuznetsov: Path MTU discovery.
* Alan Cox : Support soft errors.
* Alan Cox : Fix MTU discovery pathological case
* when the remote claims no mtu!
* Marc Tamsky : TCP_CLOSE fix.
* Colin (G3TNE) : Send a reset on syn ack replies in
* window but wrong (fixes NT lpd problems)
* Pedro Roque : Better TCP window handling, delayed ack.
* Joerg Reuter : No modification of locked buffers in
* tcp_do_retransmit()
* Eric Schenk : Changed receiver side silly window
* avoidance algorithm to BSD style
* algorithm. This doubles throughput
* against machines running Solaris,
* and seems to result in general
* improvement.
* Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
* Willy Konynenberg : Transparent proxying support.
* Mike McLagan : Routing by source
* Keith Owens : Do proper merging with partial SKB's in
* tcp_do_sendmsg to avoid burstiness.
* Eric Schenk : Fix fast close down bug with
* shutdown() followed by close().
* Andi Kleen : Make poll agree with SIGIO
* Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
* lingertime == 0 (RFC 793 ABORT Call)
* Hirokazu Takahashi : Use copy_from_user() instead of
* csum_and_copy_from_user() if possible.
*
* Description of States:
*
* TCP_SYN_SENT sent a connection request, waiting for ack
*
* TCP_SYN_RECV received a connection request, sent ack,
* waiting for final ack in three-way handshake.
*
* TCP_ESTABLISHED connection established
*
* TCP_FIN_WAIT1 our side has shutdown, waiting to complete
* transmission of remaining buffered data
*
* TCP_FIN_WAIT2 all buffered data sent, waiting for remote
* to shutdown
*
* TCP_CLOSING both sides have shutdown but we still have
* data we have to finish sending
*
* TCP_TIME_WAIT timeout to catch resent junk before entering
* closed, can only be entered from FIN_WAIT2
* or CLOSING. Required because the other end
* may not have gotten our last ACK causing it
* to retransmit the data packet (which we ignore)
*
* TCP_CLOSE_WAIT remote side has shutdown and is waiting for
* us to finish writing our data and to shutdown
* (we have to close() to move on to LAST_ACK)
*
* TCP_LAST_ACK out side has shutdown after remote has
* shutdown. There may still be data in our
* buffer that we have to finish sending
*
* TCP_CLOSE socket is finished
*/
#define pr_fmt(fmt) "TCP: " fmt
#include <crypto/hash.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/fcntl.h>
#include <linux/poll.h>
#include <linux/inet_diag.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/skbuff.h>
#include <linux/scatterlist.h>
#include <linux/splice.h>
#include <linux/net.h>
#include <linux/socket.h>
#include <linux/random.h>
#include <linux/memblock.h>
#include <linux/highmem.h>
#include <linux/cache.h>
#include <linux/err.h>
#include <linux/time.h>
#include <linux/slab.h>
#include <linux/errqueue.h>
#include <linux/static_key.h>
#include <linux/btf.h>
#include <net/icmp.h>
#include <net/inet_common.h>
#include <net/tcp.h>
#include <net/mptcp.h>
#include <net/xfrm.h>
#include <net/ip.h>
#include <net/sock.h>
#include <linux/uaccess.h>
#include <asm/ioctls.h>
#include <net/busy_poll.h>
/* Track pending CMSGs. */
enum {
TCP_CMSG_INQ = 1,
TCP_CMSG_TS = 2
};
DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
long sysctl_tcp_mem[3] __read_mostly;
EXPORT_SYMBOL(sysctl_tcp_mem);
atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp; /* Current allocated memory. */
EXPORT_SYMBOL(tcp_memory_allocated);
#if IS_ENABLED(CONFIG_SMC)
DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
EXPORT_SYMBOL(tcp_have_smc);
#endif
/*
* Current number of TCP sockets.
*/
struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp;
EXPORT_SYMBOL(tcp_sockets_allocated);
/*
* TCP splice context
*/
struct tcp_splice_state {
struct pipe_inode_info *pipe;
size_t len;
unsigned int flags;
};
/*
* Pressure flag: try to collapse.
* Technical note: it is used by multiple contexts non atomically.
* All the __sk_mem_schedule() is of this nature: accounting
* is strict, actions are advisory and have some latency.
*/
unsigned long tcp_memory_pressure __read_mostly;
EXPORT_SYMBOL_GPL(tcp_memory_pressure);
void tcp_enter_memory_pressure(struct sock *sk)
{
unsigned long val;
if (READ_ONCE(tcp_memory_pressure))
return;
val = jiffies;
if (!val)
val--;
if (!cmpxchg(&tcp_memory_pressure, 0, val))
NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
}
EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
void tcp_leave_memory_pressure(struct sock *sk)
{
unsigned long val;
if (!READ_ONCE(tcp_memory_pressure))
return;
val = xchg(&tcp_memory_pressure, 0);
if (val)
NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
jiffies_to_msecs(jiffies - val));
}
EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
/* Convert seconds to retransmits based on initial and max timeout */
static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
{
u8 res = 0;
if (seconds > 0) {
int period = timeout;
res = 1;
while (seconds > period && res < 255) {
res++;
timeout <<= 1;
if (timeout > rto_max)
timeout = rto_max;
period += timeout;
}
}
return res;
}
/* Convert retransmits to seconds based on initial and max timeout */
static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
{
int period = 0;
if (retrans > 0) {
period = timeout;
while (--retrans) {
timeout <<= 1;
if (timeout > rto_max)
timeout = rto_max;
period += timeout;
}
}
return period;
}
static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
{
u32 rate = READ_ONCE(tp->rate_delivered);
u32 intv = READ_ONCE(tp->rate_interval_us);
u64 rate64 = 0;
if (rate && intv) {
rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
do_div(rate64, intv);
}
return rate64;
}
/* Address-family independent initialization for a tcp_sock.
*
* NOTE: A lot of things set to zero explicitly by call to
* sk_alloc() so need not be done here.
*/
void tcp_init_sock(struct sock *sk)
{
struct inet_connection_sock *icsk = inet_csk(sk);
struct tcp_sock *tp = tcp_sk(sk);
tp->out_of_order_queue = RB_ROOT;
sk->tcp_rtx_queue = RB_ROOT;
tcp_init_xmit_timers(sk);
INIT_LIST_HEAD(&tp->tsq_node);
INIT_LIST_HEAD(&tp->tsorted_sent_queue);
icsk->icsk_rto = TCP_TIMEOUT_INIT;
icsk->icsk_rto_min = TCP_RTO_MIN;
icsk->icsk_delack_max = TCP_DELACK_MAX;
tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
/* So many TCP implementations out there (incorrectly) count the
* initial SYN frame in their delayed-ACK and congestion control
* algorithms that we must have the following bandaid to talk
* efficiently to them. -DaveM
*/
tp->snd_cwnd = TCP_INIT_CWND;
/* There's a bubble in the pipe until at least the first ACK. */
tp->app_limited = ~0U;
/* See draft-stevens-tcpca-spec-01 for discussion of the
* initialization of these values.
*/
tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
tp->snd_cwnd_clamp = ~0;
tp->mss_cache = TCP_MSS_DEFAULT;
tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
tcp_assign_congestion_control(sk);
tp->tsoffset = 0;
tp->rack.reo_wnd_steps = 1;
sk->sk_write_space = sk_stream_write_space;
sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
icsk->icsk_sync_mss = tcp_sync_mss;
WRITE_ONCE(sk->sk_sndbuf, sock_net(sk)->ipv4.sysctl_tcp_wmem[1]);
WRITE_ONCE(sk->sk_rcvbuf, sock_net(sk)->ipv4.sysctl_tcp_rmem[1]);
sk_sockets_allocated_inc(sk);
}
EXPORT_SYMBOL(tcp_init_sock);
static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
{
struct sk_buff *skb = tcp_write_queue_tail(sk);
if (tsflags && skb) {
struct skb_shared_info *shinfo = skb_shinfo(skb);
struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
if (tsflags & SOF_TIMESTAMPING_TX_ACK)
tcb->txstamp_ack = 1;
if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
}
}
static bool tcp_stream_is_readable(struct sock *sk, int target)
{
if (tcp_epollin_ready(sk, target))
return true;
return sk_is_readable(sk);
}
/*
* Wait for a TCP event.
*
* Note that we don't need to lock the socket, as the upper poll layers
* take care of normal races (between the test and the event) and we don't
* go look at any of the socket buffers directly.
*/
__poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
{
__poll_t mask;
struct sock *sk = sock->sk;
const struct tcp_sock *tp = tcp_sk(sk);
int state;
sock_poll_wait(file, sock, wait);
state = inet_sk_state_load(sk);
if (state == TCP_LISTEN)
return inet_csk_listen_poll(sk);
/* Socket is not locked. We are protected from async events
* by poll logic and correct handling of state changes
* made by other threads is impossible in any case.
*/
mask = 0;
/*
* EPOLLHUP is certainly not done right. But poll() doesn't
* have a notion of HUP in just one direction, and for a
* socket the read side is more interesting.
*
* Some poll() documentation says that EPOLLHUP is incompatible
* with the EPOLLOUT/POLLWR flags, so somebody should check this
* all. But careful, it tends to be safer to return too many
* bits than too few, and you can easily break real applications
* if you don't tell them that something has hung up!
*
* Check-me.
*
* Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
* our fs/select.c). It means that after we received EOF,
* poll always returns immediately, making impossible poll() on write()
* in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
* if and only if shutdown has been made in both directions.
* Actually, it is interesting to look how Solaris and DUX
* solve this dilemma. I would prefer, if EPOLLHUP were maskable,
* then we could set it on SND_SHUTDOWN. BTW examples given
* in Stevens' books assume exactly this behaviour, it explains
* why EPOLLHUP is incompatible with EPOLLOUT. --ANK
*
* NOTE. Check for TCP_CLOSE is added. The goal is to prevent
* blocking on fresh not-connected or disconnected socket. --ANK
*/
if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
mask |= EPOLLHUP;
if (sk->sk_shutdown & RCV_SHUTDOWN)
mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
/* Connected or passive Fast Open socket? */
if (state != TCP_SYN_SENT &&
(state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
int target = sock_rcvlowat(sk, 0, INT_MAX);
u16 urg_data = READ_ONCE(tp->urg_data);
if (unlikely(urg_data) &&
READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
!sock_flag(sk, SOCK_URGINLINE))
target++;
if (tcp_stream_is_readable(sk, target))
mask |= EPOLLIN | EPOLLRDNORM;
if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
if (__sk_stream_is_writeable(sk, 1)) {
mask |= EPOLLOUT | EPOLLWRNORM;
} else { /* send SIGIO later */
sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
/* Race breaker. If space is freed after
* wspace test but before the flags are set,
* IO signal will be lost. Memory barrier
* pairs with the input side.
*/
smp_mb__after_atomic();
if (__sk_stream_is_writeable(sk, 1))
mask |= EPOLLOUT | EPOLLWRNORM;
}
} else
mask |= EPOLLOUT | EPOLLWRNORM;
if (urg_data & TCP_URG_VALID)
mask |= EPOLLPRI;
} else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
/* Active TCP fastopen socket with defer_connect
* Return EPOLLOUT so application can call write()
* in order for kernel to generate SYN+data
*/
mask |= EPOLLOUT | EPOLLWRNORM;
}
/* This barrier is coupled with smp_wmb() in tcp_reset() */
smp_rmb();
if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
mask |= EPOLLERR;
return mask;
}
EXPORT_SYMBOL(tcp_poll);
int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
{
struct tcp_sock *tp = tcp_sk(sk);
int answ;
bool slow;
switch (cmd) {
case SIOCINQ:
if (sk->sk_state == TCP_LISTEN)
return -EINVAL;
slow = lock_sock_fast(sk);
answ = tcp_inq(sk);
unlock_sock_fast(sk, slow);
break;
case SIOCATMARK:
answ = READ_ONCE(tp->urg_data) &&
READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
break;
case SIOCOUTQ:
if (sk->sk_state == TCP_LISTEN)
return -EINVAL;
if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
answ = 0;
else
answ = READ_ONCE(tp->write_seq) - tp->snd_una;
break;
case SIOCOUTQNSD:
if (sk->sk_state == TCP_LISTEN)
return -EINVAL;
if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
answ = 0;
else
answ = READ_ONCE(tp->write_seq) -
READ_ONCE(tp->snd_nxt);
break;
default:
return -ENOIOCTLCMD;
}
return put_user(answ, (int __user *)arg);
}
EXPORT_SYMBOL(tcp_ioctl);
void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
{
TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
tp->pushed_seq = tp->write_seq;
}
static inline bool forced_push(const struct tcp_sock *tp)
{
return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
}
void tcp_skb_entail(struct sock *sk, struct sk_buff *skb)
{
struct tcp_sock *tp = tcp_sk(sk);
struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
tcb->seq = tcb->end_seq = tp->write_seq;
tcb->tcp_flags = TCPHDR_ACK;
__skb_header_release(skb);
tcp_add_write_queue_tail(sk, skb);
sk_wmem_queued_add(sk, skb->truesize);
sk_mem_charge(sk, skb->truesize);
if (tp->nonagle & TCP_NAGLE_PUSH)
tp->nonagle &= ~TCP_NAGLE_PUSH;
tcp_slow_start_after_idle_check(sk);
}
static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
{
if (flags & MSG_OOB)
tp->snd_up = tp->write_seq;
}
/* If a not yet filled skb is pushed, do not send it if
* we have data packets in Qdisc or NIC queues :
* Because TX completion will happen shortly, it gives a chance
* to coalesce future sendmsg() payload into this skb, without
* need for a timer, and with no latency trade off.
* As packets containing data payload have a bigger truesize
* than pure acks (dataless) packets, the last checks prevent
* autocorking if we only have an ACK in Qdisc/NIC queues,
* or if TX completion was delayed after we processed ACK packet.
*/
static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
int size_goal)
{
return skb->len < size_goal &&
sock_net(sk)->ipv4.sysctl_tcp_autocorking &&
!tcp_rtx_queue_empty(sk) &&
refcount_read(&sk->sk_wmem_alloc) > skb->truesize &&
tcp_skb_can_collapse_to(skb);
}
void tcp_push(struct sock *sk, int flags, int mss_now,
int nonagle, int size_goal)
{
struct tcp_sock *tp = tcp_sk(sk);
struct sk_buff *skb;
skb = tcp_write_queue_tail(sk);
if (!skb)
return;
if (!(flags & MSG_MORE) || forced_push(tp))
tcp_mark_push(tp, skb);
tcp_mark_urg(tp, flags);
if (tcp_should_autocork(sk, skb, size_goal)) {
/* avoid atomic op if TSQ_THROTTLED bit is already set */
if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
}
/* It is possible TX completion already happened
* before we set TSQ_THROTTLED.
*/
if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
return;
}
if (flags & MSG_MORE)
nonagle = TCP_NAGLE_CORK;
__tcp_push_pending_frames(sk, mss_now, nonagle);
}
static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
unsigned int offset, size_t len)
{
struct tcp_splice_state *tss = rd_desc->arg.data;
int ret;
ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
min(rd_desc->count, len), tss->flags);
if (ret > 0)
rd_desc->count -= ret;
return ret;
}
static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
{
/* Store TCP splice context information in read_descriptor_t. */
read_descriptor_t rd_desc = {
.arg.data = tss,
.count = tss->len,
};
return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
}
/**
* tcp_splice_read - splice data from TCP socket to a pipe
* @sock: socket to splice from
* @ppos: position (not valid)
* @pipe: pipe to splice to
* @len: number of bytes to splice
* @flags: splice modifier flags
*
* Description:
* Will read pages from given socket and fill them into a pipe.
*
**/
ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
struct pipe_inode_info *pipe, size_t len,
unsigned int flags)
{
struct sock *sk = sock->sk;
struct tcp_splice_state tss = {
.pipe = pipe,
.len = len,
.flags = flags,
};
long timeo;
ssize_t spliced;
int ret;
sock_rps_record_flow(sk);
/*
* We can't seek on a socket input
*/
if (unlikely(*ppos))
return -ESPIPE;
ret = spliced = 0;
lock_sock(sk);
timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
while (tss.len) {
ret = __tcp_splice_read(sk, &tss);
if (ret < 0)
break;
else if (!ret) {
if (spliced)
break;
if (sock_flag(sk, SOCK_DONE))
break;
if (sk->sk_err) {
ret = sock_error(sk);
break;
}
if (sk->sk_shutdown & RCV_SHUTDOWN)
break;
if (sk->sk_state == TCP_CLOSE) {
/*
* This occurs when user tries to read
* from never connected socket.
*/
ret = -ENOTCONN;
break;
}
if (!timeo) {
ret = -EAGAIN;
break;
}
/* if __tcp_splice_read() got nothing while we have
* an skb in receive queue, we do not want to loop.
* This might happen with URG data.
*/
if (!skb_queue_empty(&sk->sk_receive_queue))
break;
sk_wait_data(sk, &timeo, NULL);
if (signal_pending(current)) {
ret = sock_intr_errno(timeo);
break;
}
continue;
}
tss.len -= ret;
spliced += ret;
if (!timeo)
break;
release_sock(sk);
lock_sock(sk);
if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
(sk->sk_shutdown & RCV_SHUTDOWN) ||
signal_pending(current))
break;
}
release_sock(sk);
sk_defer_free_flush(sk);
if (spliced)
return spliced;
return ret;
}
EXPORT_SYMBOL(tcp_splice_read);
struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
bool force_schedule)
{
struct sk_buff *skb;
if (unlikely(tcp_under_memory_pressure(sk)))
sk_mem_reclaim_partial(sk);
skb = alloc_skb_fclone(size + MAX_TCP_HEADER, gfp);
if (likely(skb)) {
bool mem_scheduled;
skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
if (force_schedule) {
mem_scheduled = true;
sk_forced_mem_schedule(sk, skb->truesize);
} else {
mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
}
if (likely(mem_scheduled)) {
skb_reserve(skb, MAX_TCP_HEADER);
skb->ip_summed = CHECKSUM_PARTIAL;
INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
return skb;
}
__kfree_skb(skb);
} else {
sk->sk_prot->enter_memory_pressure(sk);
sk_stream_moderate_sndbuf(sk);
}
return NULL;
}
static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
int large_allowed)
{
struct tcp_sock *tp = tcp_sk(sk);
u32 new_size_goal, size_goal;
if (!large_allowed)
return mss_now;
/* Note : tcp_tso_autosize() will eventually split this later */
new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size);
/* We try hard to avoid divides here */
size_goal = tp->gso_segs * mss_now;
if (unlikely(new_size_goal < size_goal ||
new_size_goal >= size_goal + mss_now)) {
tp->gso_segs = min_t(u16, new_size_goal / mss_now,
sk->sk_gso_max_segs);
size_goal = tp->gso_segs * mss_now;
}
return max(size_goal, mss_now);
}
int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
{
int mss_now;
mss_now = tcp_current_mss(sk);
*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
return mss_now;
}
/* In some cases, both sendpage() and sendmsg() could have added
* an skb to the write queue, but failed adding payload on it.
* We need to remove it to consume less memory, but more
* importantly be able to generate EPOLLOUT for Edge Trigger epoll()
* users.
*/
void tcp_remove_empty_skb(struct sock *sk)
{
struct sk_buff *skb = tcp_write_queue_tail(sk);
if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
tcp_unlink_write_queue(skb, sk);
if (tcp_write_queue_empty(sk))
tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
tcp_wmem_free_skb(sk, skb);
}
}
/* skb changing from pure zc to mixed, must charge zc */
static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb)
{
if (unlikely(skb_zcopy_pure(skb))) {
u32 extra = skb->truesize -
SKB_TRUESIZE(skb_end_offset(skb));
if (!sk_wmem_schedule(sk, extra))
return -ENOMEM;
sk_mem_charge(sk, extra);
skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY;
}
return 0;
}
static struct sk_buff *tcp_build_frag(struct sock *sk, int size_goal, int flags,
struct page *page, int offset, size_t *size)
{
struct sk_buff *skb = tcp_write_queue_tail(sk);
struct tcp_sock *tp = tcp_sk(sk);
bool can_coalesce;
int copy, i;
if (!skb || (copy = size_goal - skb->len) <= 0 ||
!tcp_skb_can_collapse_to(skb)) {
new_segment:
if (!sk_stream_memory_free(sk))
return NULL;
skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation,
tcp_rtx_and_write_queues_empty(sk));
if (!skb)
return NULL;
#ifdef CONFIG_TLS_DEVICE
skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
#endif
tcp_skb_entail(sk, skb);
copy = size_goal;
}
if (copy > *size)
copy = *size;
i = skb_shinfo(skb)->nr_frags;
can_coalesce = skb_can_coalesce(skb, i, page, offset);
if (!can_coalesce && i >= sysctl_max_skb_frags) {
tcp_mark_push(tp, skb);
goto new_segment;
}
if (tcp_downgrade_zcopy_pure(sk, skb) || !sk_wmem_schedule(sk, copy))
return NULL;
if (can_coalesce) {
skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
} else {
get_page(page);
skb_fill_page_desc(skb, i, page, offset, copy);
}
if (!(flags & MSG_NO_SHARED_FRAGS))
skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
skb->len += copy;
skb->data_len += copy;
skb->truesize += copy;
sk_wmem_queued_add(sk, copy);
sk_mem_charge(sk, copy);
WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
TCP_SKB_CB(skb)->end_seq += copy;
tcp_skb_pcount_set(skb, 0);
*size = copy;
return skb;
}
ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
size_t size, int flags)
{
struct tcp_sock *tp = tcp_sk(sk);
int mss_now, size_goal;
int err;
ssize_t copied;
long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
if (IS_ENABLED(CONFIG_DEBUG_VM) &&
WARN_ONCE(!sendpage_ok(page),
"page must not be a Slab one and have page_count > 0"))
return -EINVAL;
/* Wait for a connection to finish. One exception is TCP Fast Open
* (passive side) where data is allowed to be sent before a connection
* is fully established.
*/
if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
!tcp_passive_fastopen(sk)) {
err = sk_stream_wait_connect(sk, &timeo);
if (err != 0)
goto out_err;
}
sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
mss_now = tcp_send_mss(sk, &size_goal, flags);
copied = 0;
err = -EPIPE;
if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
goto out_err;
while (size > 0) {
struct sk_buff *skb;
size_t copy = size;
skb = tcp_build_frag(sk, size_goal, flags, page, offset, &copy);
if (!skb)
goto wait_for_space;
if (!copied)
TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
copied += copy;
offset += copy;
size -= copy;
if (!size)
goto out;
if (skb->len < size_goal || (flags & MSG_OOB))
continue;
if (forced_push(tp)) {
tcp_mark_push(tp, skb);
__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
} else if (skb == tcp_send_head(sk))
tcp_push_one(sk, mss_now);
continue;
wait_for_space:
set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
tcp_push(sk, flags & ~MSG_MORE, mss_now,
TCP_NAGLE_PUSH, size_goal);
err = sk_stream_wait_memory(sk, &timeo);
if (err != 0)
goto do_error;
mss_now = tcp_send_mss(sk, &size_goal, flags);
}
out:
if (copied) {
tcp_tx_timestamp(sk, sk->sk_tsflags);
if (!(flags & MSG_SENDPAGE_NOTLAST))
tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
}
return copied;
do_error:
tcp_remove_empty_skb(sk);
if (copied)
goto out;
out_err:
/* make sure we wake any epoll edge trigger waiter */
if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
sk->sk_write_space(sk);
tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
}
return sk_stream_error(sk, flags, err);
}
EXPORT_SYMBOL_GPL(do_tcp_sendpages);
int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
size_t size, int flags)
{
if (!(sk->sk_route_caps & NETIF_F_SG))
return sock_no_sendpage_locked(sk, page, offset, size, flags);
tcp_rate_check_app_limited(sk); /* is sending application-limited? */
return do_tcp_sendpages(sk, page, offset, size, flags);
}
EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
int tcp_sendpage(struct sock *sk, struct page *page, int offset,
size_t size, int flags)
{
int ret;
lock_sock(sk);
ret = tcp_sendpage_locked(sk, page, offset, size, flags);
release_sock(sk);
return ret;
}
EXPORT_SYMBOL(tcp_sendpage);
void tcp_free_fastopen_req(struct tcp_sock *tp)
{
if (tp->fastopen_req) {
kfree(tp->fastopen_req);
tp->fastopen_req = NULL;
}
}
static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
int *copied, size_t size,
struct ubuf_info *uarg)
{
struct tcp_sock *tp = tcp_sk(sk);
struct inet_sock *inet = inet_sk(sk);
struct sockaddr *uaddr = msg->msg_name;
int err, flags;
if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) ||
(uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
uaddr->sa_family == AF_UNSPEC))
return -EOPNOTSUPP;
if (tp->fastopen_req)
return -EALREADY; /* Another Fast Open is in progress */
tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
sk->sk_allocation);
if (unlikely(!tp->fastopen_req))
return -ENOBUFS;
tp->fastopen_req->data = msg;
tp->fastopen_req->size = size;
tp->fastopen_req->uarg = uarg;
if (inet->defer_connect) {
err = tcp_connect(sk);
/* Same failure procedure as in tcp_v4/6_connect */
if (err) {
tcp_set_state(sk, TCP_CLOSE);
inet->inet_dport = 0;
sk->sk_route_caps = 0;
}
}
flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
err = __inet_stream_connect(sk->sk_socket, uaddr,
msg->msg_namelen, flags, 1);
/* fastopen_req could already be freed in __inet_stream_connect
* if the connection times out or gets rst
*/
if (tp->fastopen_req) {
*copied = tp->fastopen_req->copied;
tcp_free_fastopen_req(tp);
inet->defer_connect = 0;
}
return err;
}
int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
{
struct tcp_sock *tp = tcp_sk(sk);
struct ubuf_info *uarg = NULL;
struct sk_buff *skb;
struct sockcm_cookie sockc;
int flags, err, copied = 0;
int mss_now = 0, size_goal, copied_syn = 0;
int process_backlog = 0;
bool zc = false;
long timeo;
flags = msg->msg_flags;
if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) {
skb = tcp_write_queue_tail(sk);
uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb));
if (!uarg) {
err = -ENOBUFS;
goto out_err;
}
zc = sk->sk_route_caps & NETIF_F_SG;
if (!zc)
uarg->zerocopy = 0;
}
if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) &&
!tp->repair) {
err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
if (err == -EINPROGRESS && copied_syn > 0)
goto out;
else if (err)
goto out_err;
}
timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
tcp_rate_check_app_limited(sk); /* is sending application-limited? */
/* Wait for a connection to finish. One exception is TCP Fast Open
* (passive side) where data is allowed to be sent before a connection
* is fully established.
*/
if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
!tcp_passive_fastopen(sk)) {
err = sk_stream_wait_connect(sk, &timeo);
if (err != 0)
goto do_error;
}
if (unlikely(tp->repair)) {
if (tp->repair_queue == TCP_RECV_QUEUE) {
copied = tcp_send_rcvq(sk, msg, size);
goto out_nopush;
}
err = -EINVAL;
if (tp->repair_queue == TCP_NO_QUEUE)
goto out_err;
/* 'common' sending to sendq */
}
sockcm_init(&sockc, sk);
if (msg->msg_controllen) {
err = sock_cmsg_send(sk, msg, &sockc);
if (unlikely(err)) {
err = -EINVAL;
goto out_err;
}
}
/* This should be in poll */
sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
/* Ok commence sending. */
copied = 0;
restart:
mss_now = tcp_send_mss(sk, &size_goal, flags);
err = -EPIPE;
if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
goto do_error;
while (msg_data_left(msg)) {
int copy = 0;
skb = tcp_write_queue_tail(sk);
if (skb)
copy = size_goal - skb->len;
if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
bool first_skb;
new_segment:
if (!sk_stream_memory_free(sk))
goto wait_for_space;
if (unlikely(process_backlog >= 16)) {
process_backlog = 0;
if (sk_flush_backlog(sk))
goto restart;
}
first_skb = tcp_rtx_and_write_queues_empty(sk);
skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation,
first_skb);
if (!skb)
goto wait_for_space;
process_backlog++;
tcp_skb_entail(sk, skb);
copy = size_goal;
/* All packets are restored as if they have
* already been sent. skb_mstamp_ns isn't set to
* avoid wrong rtt estimation.
*/
if (tp->repair)
TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
}
/* Try to append data to the end of skb. */
if (copy > msg_data_left(msg))
copy = msg_data_left(msg);
if (!zc) {
bool merge = true;
int i = skb_shinfo(skb)->nr_frags;
struct page_frag *pfrag = sk_page_frag(sk);
if (!sk_page_frag_refill(sk, pfrag))
goto wait_for_space;
if (!skb_can_coalesce(skb, i, pfrag->page,
pfrag->offset)) {
if (i >= sysctl_max_skb_frags) {
tcp_mark_push(tp, skb);
goto new_segment;
}
merge = false;
}
copy = min_t(int, copy, pfrag->size - pfrag->offset);
if (tcp_downgrade_zcopy_pure(sk, skb) ||
!sk_wmem_schedule(sk, copy))
goto wait_for_space;
err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
pfrag->page,
pfrag->offset,
copy);
if (err)
goto do_error;
/* Update the skb. */
if (merge) {
skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
} else {
skb_fill_page_desc(skb, i, pfrag->page,
pfrag->offset, copy);
page_ref_inc(pfrag->page);
}
pfrag->offset += copy;
} else {
/* First append to a fragless skb builds initial
* pure zerocopy skb
*/
if (!skb->len)
skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY;
if (!skb_zcopy_pure(skb)) {
if (!sk_wmem_schedule(sk, copy))
goto wait_for_space;
}
err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
if (err == -EMSGSIZE || err == -EEXIST) {
tcp_mark_push(tp, skb);
goto new_segment;
}
if (err < 0)
goto do_error;
copy = err;
}
if (!copied)
TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
TCP_SKB_CB(skb)->end_seq += copy;
tcp_skb_pcount_set(skb, 0);
copied += copy;
if (!msg_data_left(msg)) {
if (unlikely(flags & MSG_EOR))
TCP_SKB_CB(skb)->eor = 1;
goto out;
}
if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
continue;
if (forced_push(tp)) {
tcp_mark_push(tp, skb);
__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
} else if (skb == tcp_send_head(sk))
tcp_push_one(sk, mss_now);
continue;
wait_for_space:
set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
if (copied)
tcp_push(sk, flags & ~MSG_MORE, mss_now,
TCP_NAGLE_PUSH, size_goal);
err = sk_stream_wait_memory(sk, &timeo);
if (err != 0)
goto do_error;
mss_now = tcp_send_mss(sk, &size_goal, flags);
}
out:
if (copied) {
tcp_tx_timestamp(sk, sockc.tsflags);
tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
}
out_nopush:
net_zcopy_put(uarg);
return copied + copied_syn;
do_error:
tcp_remove_empty_skb(sk);
if (copied + copied_syn)
goto out;
out_err:
net_zcopy_put_abort(uarg, true);
err = sk_stream_error(sk, flags, err);
/* make sure we wake any epoll edge trigger waiter */
if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
sk->sk_write_space(sk);
tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
}
return err;
}
EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
{
int ret;
lock_sock(sk);
ret = tcp_sendmsg_locked(sk, msg, size);
release_sock(sk);
return ret;
}
EXPORT_SYMBOL(tcp_sendmsg);
/*
* Handle reading urgent data. BSD has very simple semantics for
* this, no blocking and very strange errors 8)
*/
static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
{
struct tcp_sock *tp = tcp_sk(sk);
/* No URG data to read. */
if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
tp->urg_data == TCP_URG_READ)
return -EINVAL; /* Yes this is right ! */
if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
return -ENOTCONN;
if (tp->urg_data & TCP_URG_VALID) {
int err = 0;
char c = tp->urg_data;
if (!(flags & MSG_PEEK))
WRITE_ONCE(tp->urg_data, TCP_URG_READ);
/* Read urgent data. */
msg->msg_flags |= MSG_OOB;
if (len > 0) {
if (!(flags & MSG_TRUNC))
err = memcpy_to_msg(msg, &c, 1);
len = 1;
} else
msg->msg_flags |= MSG_TRUNC;
return err ? -EFAULT : len;
}
if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
return 0;
/* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
* the available implementations agree in this case:
* this call should never block, independent of the
* blocking state of the socket.
* Mike <pall@rz.uni-karlsruhe.de>
*/
return -EAGAIN;
}
static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
{
struct sk_buff *skb;
int copied = 0, err = 0;
/* XXX -- need to support SO_PEEK_OFF */
skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
if (err)
return err;
copied += skb->len;
}
skb_queue_walk(&sk->sk_write_queue, skb) {
err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
if (err)
break;
copied += skb->len;
}
return err ?: copied;
}
/* Clean up the receive buffer for full frames taken by the user,
* then send an ACK if necessary. COPIED is the number of bytes
* tcp_recvmsg has given to the user so far, it speeds up the
* calculation of whether or not we must ACK for the sake of
* a window update.
*/
void tcp_cleanup_rbuf(struct sock *sk, int copied)
{
struct tcp_sock *tp = tcp_sk(sk);
bool time_to_ack = false;
struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
"cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
if (inet_csk_ack_scheduled(sk)) {
const struct inet_connection_sock *icsk = inet_csk(sk);
if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
/*
* If this read emptied read buffer, we send ACK, if
* connection is not bidirectional, user drained
* receive buffer and there was a small segment
* in queue.
*/
(copied > 0 &&
((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
!inet_csk_in_pingpong_mode(sk))) &&
!atomic_read(&sk->sk_rmem_alloc)))
time_to_ack = true;
}
/* We send an ACK if we can now advertise a non-zero window
* which has been raised "significantly".
*
* Even if window raised up to infinity, do not send window open ACK
* in states, where we will not receive more. It is useless.
*/
if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
__u32 rcv_window_now = tcp_receive_window(tp);
/* Optimize, __tcp_select_window() is not cheap. */
if (2*rcv_window_now <= tp->window_clamp) {
__u32 new_window = __tcp_select_window(sk);
/* Send ACK now, if this read freed lots of space
* in our buffer. Certainly, new_window is new window.
* We can advertise it now, if it is not less than current one.
* "Lots" means "at least twice" here.
*/
if (new_window && new_window >= 2 * rcv_window_now)
time_to_ack = true;
}
}
if (time_to_ack)
tcp_send_ack(sk);
}
void __sk_defer_free_flush(struct sock *sk)
{
struct llist_node *head;
struct sk_buff *skb, *n;
head = llist_del_all(&sk->defer_list);
llist_for_each_entry_safe(skb, n, head, ll_node) {
prefetch(n);
skb_mark_not_on_list(skb);
__kfree_skb(skb);
}
}
EXPORT_SYMBOL(__sk_defer_free_flush);
static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb)
{
__skb_unlink(skb, &sk->sk_receive_queue);
if (likely(skb->destructor == sock_rfree)) {
sock_rfree(skb);
skb->destructor = NULL;
skb->sk = NULL;
if (!skb_queue_empty(&sk->sk_receive_queue) ||
!llist_empty(&sk->defer_list)) {
llist_add(&skb->ll_node, &sk->defer_list);
return;
}
}
__kfree_skb(skb);
}
static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
{
struct sk_buff *skb;
u32 offset;
while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
offset = seq - TCP_SKB_CB(skb)->seq;
if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
pr_err_once("%s: found a SYN, please report !\n", __func__);
offset--;
}
if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
*off = offset;
return skb;
}
/* This looks weird, but this can happen if TCP collapsing
* splitted a fat GRO packet, while we released socket lock
* in skb_splice_bits()
*/
tcp_eat_recv_skb(sk, skb);
}
return NULL;
}
/*
* This routine provides an alternative to tcp_recvmsg() for routines
* that would like to handle copying from skbuffs directly in 'sendfile'
* fashion.
* Note:
* - It is assumed that the socket was locked by the caller.
* - The routine does not block.
* - At present, there is no support for reading OOB data
* or for 'peeking' the socket using this routine
* (although both would be easy to implement).
*/
int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
sk_read_actor_t recv_actor)
{
struct sk_buff *skb;
struct tcp_sock *tp = tcp_sk(sk);
u32 seq = tp->copied_seq;
u32 offset;
int copied = 0;
if (sk->sk_state == TCP_LISTEN)
return -ENOTCONN;
while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
if (offset < skb->len) {
int used;
size_t len;
len = skb->len - offset;
/* Stop reading if we hit a patch of urgent data */
if (unlikely(tp->urg_data)) {
u32 urg_offset = tp->urg_seq - seq;
if (urg_offset < len)
len = urg_offset;
if (!len)
break;
}
used = recv_actor(desc, skb, offset, len);
if (used <= 0) {
if (!copied)
copied = used;
break;
}
if (WARN_ON_ONCE(used > len))
used = len;
seq += used;
copied += used;
offset += used;
/* If recv_actor drops the lock (e.g. TCP splice
* receive) the skb pointer might be invalid when
* getting here: tcp_collapse might have deleted it
* while aggregating skbs from the socket queue.
*/
skb = tcp_recv_skb(sk, seq - 1, &offset);
if (!skb)
break;
/* TCP coalescing might have appended data to the skb.
* Try to splice more frags
*/
if (offset + 1 != skb->len)
continue;
}
if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
tcp_eat_recv_skb(sk, skb);
++seq;
break;
}
tcp_eat_recv_skb(sk, skb);
if (!desc->count)
break;
WRITE_ONCE(tp->copied_seq, seq);
}
WRITE_ONCE(tp->copied_seq, seq);
tcp_rcv_space_adjust(sk);
/* Clean up data we have read: This will do ACK frames. */
if (copied > 0) {
tcp_recv_skb(sk, seq, &offset);
tcp_cleanup_rbuf(sk, copied);
}
return copied;
}
EXPORT_SYMBOL(tcp_read_sock);
int tcp_peek_len(struct socket *sock)
{
return tcp_inq(sock->sk);
}
EXPORT_SYMBOL(tcp_peek_len);
/* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
int tcp_set_rcvlowat(struct sock *sk, int val)
{
int cap;
if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
cap = sk->sk_rcvbuf >> 1;
else
cap = sock_net(sk)->ipv4.sysctl_tcp_rmem[2] >> 1;
val = min(val, cap);
WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
/* Check if we need to signal EPOLLIN right now */
tcp_data_ready(sk);
if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
return 0;
val <<= 1;
if (val > sk->sk_rcvbuf) {
WRITE_ONCE(sk->sk_rcvbuf, val);
tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val);
}
return 0;
}
EXPORT_SYMBOL(tcp_set_rcvlowat);
void tcp_update_recv_tstamps(struct sk_buff *skb,
struct scm_timestamping_internal *tss)
{
if (skb->tstamp)
tss->ts[0] = ktime_to_timespec64(skb->tstamp);
else
tss->ts[0] = (struct timespec64) {0};
if (skb_hwtstamps(skb)->hwtstamp)
tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
else
tss->ts[2] = (struct timespec64) {0};
}
#ifdef CONFIG_MMU
static const struct vm_operations_struct tcp_vm_ops = {
};
int tcp_mmap(struct file *file, struct socket *sock,
struct vm_area_struct *vma)
{
if (vma->vm_flags & (VM_WRITE | VM_EXEC))
return -EPERM;
vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC);
/* Instruct vm_insert_page() to not mmap_read_lock(mm) */
vma->vm_flags |= VM_MIXEDMAP;
vma->vm_ops = &tcp_vm_ops;
return 0;
}
EXPORT_SYMBOL(tcp_mmap);
static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
u32 *offset_frag)
{
skb_frag_t *frag;
if (unlikely(offset_skb >= skb->len))
return NULL;
offset_skb -= skb_headlen(skb);
if ((int)offset_skb < 0 || skb_has_frag_list(skb))
return NULL;
frag = skb_shinfo(skb)->frags;
while (offset_skb) {
if (skb_frag_size(frag) > offset_skb) {
*offset_frag = offset_skb;
return frag;
}
offset_skb -= skb_frag_size(frag);
++frag;
}
*offset_frag = 0;
return frag;
}
static bool can_map_frag(const skb_frag_t *frag)
{
return skb_frag_size(frag) == PAGE_SIZE && !skb_frag_off(frag);
}
static int find_next_mappable_frag(const skb_frag_t *frag,
int remaining_in_skb)
{
int offset = 0;
if (likely(can_map_frag(frag)))
return 0;
while (offset < remaining_in_skb && !can_map_frag(frag)) {
offset += skb_frag_size(frag);
++frag;
}
return offset;
}
static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
struct tcp_zerocopy_receive *zc,
struct sk_buff *skb, u32 offset)
{
u32 frag_offset, partial_frag_remainder = 0;
int mappable_offset;
skb_frag_t *frag;
/* worst case: skip to next skb. try to improve on this case below */
zc->recv_skip_hint = skb->len - offset;
/* Find the frag containing this offset (and how far into that frag) */
frag = skb_advance_to_frag(skb, offset, &frag_offset);
if (!frag)
return;
if (frag_offset) {
struct skb_shared_info *info = skb_shinfo(skb);
/* We read part of the last frag, must recvmsg() rest of skb. */
if (frag == &info->frags[info->nr_frags - 1])
return;
/* Else, we must at least read the remainder in this frag. */
partial_frag_remainder = skb_frag_size(frag) - frag_offset;
zc->recv_skip_hint -= partial_frag_remainder;
++frag;
}
/* partial_frag_remainder: If part way through a frag, must read rest.
* mappable_offset: Bytes till next mappable frag, *not* counting bytes
* in partial_frag_remainder.
*/
mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint);
zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
}
static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
int nonblock, int flags,
struct scm_timestamping_internal *tss,
int *cmsg_flags);
static int receive_fallback_to_copy(struct sock *sk,
struct tcp_zerocopy_receive *zc, int inq,
struct scm_timestamping_internal *tss)
{
unsigned long copy_address = (unsigned long)zc->copybuf_address;
struct msghdr msg = {};
struct iovec iov;
int err;
zc->length = 0;
zc->recv_skip_hint = 0;
if (copy_address != zc->copybuf_address)
return -EINVAL;
err = import_single_range(READ, (void __user *)copy_address,
inq, &iov, &msg.msg_iter);
if (err)
return err;
err = tcp_recvmsg_locked(sk, &msg, inq, /*nonblock=*/1, /*flags=*/0,
tss, &zc->msg_flags);
if (err < 0)
return err;
zc->copybuf_len = err;
if (likely(zc->copybuf_len)) {
struct sk_buff *skb;
u32 offset;
skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
if (skb)
tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
}
return 0;
}
static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
struct sk_buff *skb, u32 copylen,
u32 *offset, u32 *seq)
{
unsigned long copy_address = (unsigned long)zc->copybuf_address;
struct msghdr msg = {};
struct iovec iov;
int err;
if (copy_address != zc->copybuf_address)
return -EINVAL;
err = import_single_range(READ, (void __user *)copy_address,
copylen, &iov, &msg.msg_iter);
if (err)
return err;
err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
if (err)
return err;
zc->recv_skip_hint -= copylen;
*offset += copylen;
*seq += copylen;
return (__s32)copylen;
}
static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
struct sock *sk,
struct sk_buff *skb,
u32 *seq,
s32 copybuf_len,
struct scm_timestamping_internal *tss)
{
u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
if (!copylen)
return 0;
/* skb is null if inq < PAGE_SIZE. */
if (skb) {
offset = *seq - TCP_SKB_CB(skb)->seq;
} else {
skb = tcp_recv_skb(sk, *seq, &offset);
if (TCP_SKB_CB(skb)->has_rxtstamp) {
tcp_update_recv_tstamps(skb, tss);
zc->msg_flags |= TCP_CMSG_TS;
}
}
zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
seq);
return zc->copybuf_len < 0 ? 0 : copylen;
}
static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
struct page **pending_pages,
unsigned long pages_remaining,
unsigned long *address,
u32 *length,
u32 *seq,
struct tcp_zerocopy_receive *zc,
u32 total_bytes_to_map,
int err)
{
/* At least one page did not map. Try zapping if we skipped earlier. */
if (err == -EBUSY &&
zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
u32 maybe_zap_len;
maybe_zap_len = total_bytes_to_map - /* All bytes to map */
*length + /* Mapped or pending */
(pages_remaining * PAGE_SIZE); /* Failed map. */
zap_page_range(vma, *address, maybe_zap_len);
err = 0;
}
if (!err) {
unsigned long leftover_pages = pages_remaining;
int bytes_mapped;
/* We called zap_page_range, try to reinsert. */
err = vm_insert_pages(vma, *address,
pending_pages,
&pages_remaining);
bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
*seq += bytes_mapped;
*address += bytes_mapped;
}
if (err) {
/* Either we were unable to zap, OR we zapped, retried an
* insert, and still had an issue. Either ways, pages_remaining
* is the number of pages we were unable to map, and we unroll
* some state we speculatively touched before.
*/
const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
*length -= bytes_not_mapped;
zc->recv_skip_hint += bytes_not_mapped;
}
return err;
}
static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
struct page **pages,
unsigned int pages_to_map,
unsigned long *address,
u32 *length,
u32 *seq,
struct tcp_zerocopy_receive *zc,
u32 total_bytes_to_map)
{
unsigned long pages_remaining = pages_to_map;
unsigned int pages_mapped;
unsigned int bytes_mapped;
int err;
err = vm_insert_pages(vma, *address, pages, &pages_remaining);
pages_mapped = pages_to_map - (unsigned int)pages_remaining;
bytes_mapped = PAGE_SIZE * pages_mapped;
/* Even if vm_insert_pages fails, it may have partially succeeded in
* mapping (some but not all of the pages).
*/
*seq += bytes_mapped;
*address += bytes_mapped;
if (likely(!err))
return 0;
/* Error: maybe zap and retry + rollback state for failed inserts. */
return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped,
pages_remaining, address, length, seq, zc, total_bytes_to_map,
err);
}
#define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS)
static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
struct tcp_zerocopy_receive *zc,
struct scm_timestamping_internal *tss)
{
unsigned long msg_control_addr;
struct msghdr cmsg_dummy;
msg_control_addr = (unsigned long)zc->msg_control;
cmsg_dummy.msg_control = (void *)msg_control_addr;
cmsg_dummy.msg_controllen =
(__kernel_size_t)zc->msg_controllen;
cmsg_dummy.msg_flags = in_compat_syscall()
? MSG_CMSG_COMPAT : 0;
cmsg_dummy.msg_control_is_user = true;
zc->msg_flags = 0;
if (zc->msg_control == msg_control_addr &&
zc->msg_controllen == cmsg_dummy.msg_controllen) {
tcp_recv_timestamp(&cmsg_dummy, sk, tss);
zc->msg_control = (__u64)
((uintptr_t)cmsg_dummy.msg_control);
zc->msg_controllen =
(__u64)cmsg_dummy.msg_controllen;
zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
}
}
#define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
static int tcp_zerocopy_receive(struct sock *sk,
struct tcp_zerocopy_receive *zc,
struct scm_timestamping_internal *tss)
{
u32 length = 0, offset, vma_len, avail_len, copylen = 0;
unsigned long address = (unsigned long)zc->address;
struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
s32 copybuf_len = zc->copybuf_len;
struct tcp_sock *tp = tcp_sk(sk);
const skb_frag_t *frags = NULL;
unsigned int pages_to_map = 0;
struct vm_area_struct *vma;
struct sk_buff *skb = NULL;
u32 seq = tp->copied_seq;
u32 total_bytes_to_map;
int inq = tcp_inq(sk);
int ret;
zc->copybuf_len = 0;
zc->msg_flags = 0;
if (address & (PAGE_SIZE - 1) || address != zc->address)
return -EINVAL;
if (sk->sk_state == TCP_LISTEN)
return -ENOTCONN;
sock_rps_record_flow(sk);
if (inq && inq <= copybuf_len)
return receive_fallback_to_copy(sk, zc, inq, tss);
if (inq < PAGE_SIZE) {
zc->length = 0;
zc->recv_skip_hint = inq;
if (!inq && sock_flag(sk, SOCK_DONE))
return -EIO;
return 0;
}
mmap_read_lock(current->mm);
vma = vma_lookup(current->mm, address);
if (!vma || vma->vm_ops != &tcp_vm_ops) {
mmap_read_unlock(current->mm);
return -EINVAL;
}
vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
avail_len = min_t(u32, vma_len, inq);
total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
if (total_bytes_to_map) {
if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
zap_page_range(vma, address, total_bytes_to_map);
zc->length = total_bytes_to_map;
zc->recv_skip_hint = 0;
} else {
zc->length = avail_len;
zc->recv_skip_hint = avail_len;
}
ret = 0;
while (length + PAGE_SIZE <= zc->length) {
int mappable_offset;
struct page *page;
if (zc->recv_skip_hint < PAGE_SIZE) {
u32 offset_frag;
if (skb) {
if (zc->recv_skip_hint > 0)
break;
skb = skb->next;
offset = seq - TCP_SKB_CB(skb)->seq;
} else {
skb = tcp_recv_skb(sk, seq, &offset);
}
if (TCP_SKB_CB(skb)->has_rxtstamp) {
tcp_update_recv_tstamps(skb, tss);
zc->msg_flags |= TCP_CMSG_TS;
}
zc->recv_skip_hint = skb->len - offset;
frags = skb_advance_to_frag(skb, offset, &offset_frag);
if (!frags || offset_frag)
break;
}
mappable_offset = find_next_mappable_frag(frags,
zc->recv_skip_hint);
if (mappable_offset) {
zc->recv_skip_hint = mappable_offset;
break;
}
page = skb_frag_page(frags);
prefetchw(page);
pages[pages_to_map++] = page;
length += PAGE_SIZE;
zc->recv_skip_hint -= PAGE_SIZE;
frags++;
if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
zc->recv_skip_hint < PAGE_SIZE) {
/* Either full batch, or we're about to go to next skb
* (and we cannot unroll failed ops across skbs).
*/
ret = tcp_zerocopy_vm_insert_batch(vma, pages,
pages_to_map,
&address, &length,
&seq, zc,
total_bytes_to_map);
if (ret)
goto out;
pages_to_map = 0;
}
}
if (pages_to_map) {
ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
&address, &length, &seq,
zc, total_bytes_to_map);
}
out:
mmap_read_unlock(current->mm);
/* Try to copy straggler data. */
if (!ret)
copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss);
if (length + copylen) {
WRITE_ONCE(tp->copied_seq, seq);
tcp_rcv_space_adjust(sk);
/* Clean up data we have read: This will do ACK frames. */
tcp_recv_skb(sk, seq, &offset);
tcp_cleanup_rbuf(sk, length + copylen);
ret = 0;
if (length == zc->length)
zc->recv_skip_hint = 0;
} else {
if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
ret = -EIO;
}
zc->length = length;
return ret;
}
#endif
/* Similar to __sock_recv_timestamp, but does not require an skb */
void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
struct scm_timestamping_internal *tss)
{
int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
bool has_timestamping = false;
if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
if (sock_flag(sk, SOCK_RCVTSTAMP)) {
if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
if (new_tstamp) {
struct __kernel_timespec kts = {
.tv_sec = tss->ts[0].tv_sec,
.tv_nsec = tss->ts[0].tv_nsec,
};
put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
sizeof(kts), &kts);
} else {
struct __kernel_old_timespec ts_old = {
.tv_sec = tss->ts[0].tv_sec,
.tv_nsec = tss->ts[0].tv_nsec,
};
put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
sizeof(ts_old), &ts_old);
}
} else {
if (new_tstamp) {
struct __kernel_sock_timeval stv = {
.tv_sec = tss->ts[0].tv_sec,
.tv_usec = tss->ts[0].tv_nsec / 1000,
};
put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
sizeof(stv), &stv);
} else {
struct __kernel_old_timeval tv = {
.tv_sec = tss->ts[0].tv_sec,
.tv_usec = tss->ts[0].tv_nsec / 1000,
};
put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
sizeof(tv), &tv);
}
}
}
if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
has_timestamping = true;
else
tss->ts[0] = (struct timespec64) {0};
}
if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
has_timestamping = true;
else
tss->ts[2] = (struct timespec64) {0};
}
if (has_timestamping) {
tss->ts[1] = (struct timespec64) {0};
if (sock_flag(sk, SOCK_TSTAMP_NEW))
put_cmsg_scm_timestamping64(msg, tss);
else
put_cmsg_scm_timestamping(msg, tss);
}
}
static int tcp_inq_hint(struct sock *sk)
{
const struct tcp_sock *tp = tcp_sk(sk);
u32 copied_seq = READ_ONCE(tp->copied_seq);
u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
int inq;
inq = rcv_nxt - copied_seq;
if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
lock_sock(sk);
inq = tp->rcv_nxt - tp->copied_seq;
release_sock(sk);
}
/* After receiving a FIN, tell the user-space to continue reading
* by returning a non-zero inq.
*/
if (inq == 0 && sock_flag(sk, SOCK_DONE))
inq = 1;
return inq;
}
/*
* This routine copies from a sock struct into the user buffer.
*
* Technical note: in 2.3 we work on _locked_ socket, so that
* tricks with *seq access order and skb->users are not required.
* Probably, code can be easily improved even more.
*/
static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
int nonblock, int flags,
struct scm_timestamping_internal *tss,
int *cmsg_flags)
{
struct tcp_sock *tp = tcp_sk(sk);
int copied = 0;
u32 peek_seq;
u32 *seq;
unsigned long used;
int err;
int target; /* Read at least this many bytes */
long timeo;
struct sk_buff *skb, *last;
u32 urg_hole = 0;
err = -ENOTCONN;
if (sk->sk_state == TCP_LISTEN)
goto out;
if (tp->recvmsg_inq)
*cmsg_flags = TCP_CMSG_INQ;
timeo = sock_rcvtimeo(sk, nonblock);
/* Urgent data needs to be handled specially. */
if (flags & MSG_OOB)
goto recv_urg;
if (unlikely(tp->repair)) {
err = -EPERM;
if (!(flags & MSG_PEEK))
goto out;
if (tp->repair_queue == TCP_SEND_QUEUE)
goto recv_sndq;
err = -EINVAL;
if (tp->repair_queue == TCP_NO_QUEUE)
goto out;
/* 'common' recv queue MSG_PEEK-ing */
}
seq = &tp->copied_seq;
if (flags & MSG_PEEK) {
peek_seq = tp->copied_seq;
seq = &peek_seq;
}
target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
do {
u32 offset;
/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
if (unlikely(tp->urg_data) && tp->urg_seq == *seq) {
if (copied)
break;
if (signal_pending(current)) {
copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
break;
}
}
/* Next get a buffer. */
last = skb_peek_tail(&sk->sk_receive_queue);
skb_queue_walk(&sk->sk_receive_queue, skb) {
last = skb;
/* Now that we have two receive queues this
* shouldn't happen.
*/
if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
"TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
*seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
flags))
break;
offset = *seq - TCP_SKB_CB(skb)->seq;
if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
pr_err_once("%s: found a SYN, please report !\n", __func__);
offset--;
}
if (offset < skb->len)
goto found_ok_skb;
if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
goto found_fin_ok;
WARN(!(flags & MSG_PEEK),
"TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
*seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
}
/* Well, if we have backlog, try to process it now yet. */
if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
break;
if (copied) {
if (!timeo ||
sk->sk_err ||
sk->sk_state == TCP_CLOSE ||
(sk->sk_shutdown & RCV_SHUTDOWN) ||
signal_pending(current))
break;
} else {
if (sock_flag(sk, SOCK_DONE))
break;
if (sk->sk_err) {
copied = sock_error(sk);
break;
}
if (sk->sk_shutdown & RCV_SHUTDOWN)
break;
if (sk->sk_state == TCP_CLOSE) {
/* This occurs when user tries to read
* from never connected socket.
*/
copied = -ENOTCONN;
break;
}
if (!timeo) {
copied = -EAGAIN;
break;
}
if (signal_pending(current)) {
copied = sock_intr_errno(timeo);
break;
}
}
if (copied >= target) {
/* Do not sleep, just process backlog. */
__sk_flush_backlog(sk);
} else {
tcp_cleanup_rbuf(sk, copied);
sk_defer_free_flush(sk);
sk_wait_data(sk, &timeo, last);
}
if ((flags & MSG_PEEK) &&
(peek_seq - copied - urg_hole != tp->copied_seq)) {
net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
current->comm,
task_pid_nr(current));
peek_seq = tp->copied_seq;
}
continue;
found_ok_skb:
/* Ok so how much can we use? */
used = skb->len - offset;
if (len < used)
used = len;
/* Do we have urgent data here? */
if (unlikely(tp->urg_data)) {
u32 urg_offset = tp->urg_seq - *seq;
if (urg_offset < used) {
if (!urg_offset) {
if (!sock_flag(sk, SOCK_URGINLINE)) {
WRITE_ONCE(*seq, *seq + 1);
urg_hole++;
offset++;
used--;
if (!used)
goto skip_copy;
}
} else
used = urg_offset;
}
}
if (!(flags & MSG_TRUNC)) {
err = skb_copy_datagram_msg(skb, offset, msg, used);
if (err) {
/* Exception. Bailout! */
if (!copied)
copied = -EFAULT;
break;
}
}
WRITE_ONCE(*seq, *seq + used);
copied += used;
len -= used;
tcp_rcv_space_adjust(sk);
skip_copy:
if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) {
WRITE_ONCE(tp->urg_data, 0);
tcp_fast_path_check(sk);
}
if (TCP_SKB_CB(skb)->has_rxtstamp) {
tcp_update_recv_tstamps(skb, tss);
*cmsg_flags |= TCP_CMSG_TS;
}
if (used + offset < skb->len)
continue;
if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
goto found_fin_ok;
if (!(flags & MSG_PEEK))
tcp_eat_recv_skb(sk, skb);
continue;
found_fin_ok:
/* Process the FIN. */
WRITE_ONCE(*seq, *seq + 1);
if (!(flags & MSG_PEEK))
tcp_eat_recv_skb(sk, skb);
break;
} while (len > 0);
/* According to UNIX98, msg_name/msg_namelen are ignored
* on connected socket. I was just happy when found this 8) --ANK
*/
/* Clean up data we have read: This will do ACK frames. */
tcp_cleanup_rbuf(sk, copied);
return copied;
out:
return err;
recv_urg:
err = tcp_recv_urg(sk, msg, len, flags);
goto out;
recv_sndq:
err = tcp_peek_sndq(sk, msg, len);
goto out;
}
int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
int flags, int *addr_len)
{
int cmsg_flags = 0, ret, inq;
struct scm_timestamping_internal tss;
if (unlikely(flags & MSG_ERRQUEUE))
return inet_recv_error(sk, msg, len, addr_len);
if (sk_can_busy_loop(sk) &&
skb_queue_empty_lockless(&sk->sk_receive_queue) &&
sk->sk_state == TCP_ESTABLISHED)
sk_busy_loop(sk, nonblock);
lock_sock(sk);
ret = tcp_recvmsg_locked(sk, msg, len, nonblock, flags, &tss,
&cmsg_flags);
release_sock(sk);
sk_defer_free_flush(sk);
if (cmsg_flags && ret >= 0) {
if (cmsg_flags & TCP_CMSG_TS)
tcp_recv_timestamp(msg, sk, &tss);
if (cmsg_flags & TCP_CMSG_INQ) {
inq = tcp_inq_hint(sk);
put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
}
}
return ret;
}
EXPORT_SYMBOL(tcp_recvmsg);
void tcp_set_state(struct sock *sk, int state)
{
int oldstate = sk->sk_state;
/* We defined a new enum for TCP states that are exported in BPF
* so as not force the internal TCP states to be frozen. The
* following checks will detect if an internal state value ever
* differs from the BPF value. If this ever happens, then we will
* need to remap the internal value to the BPF value before calling
* tcp_call_bpf_2arg.
*/
BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
/* bpf uapi header bpf.h defines an anonymous enum with values
* BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
* is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
* But clang built vmlinux does not have this enum in DWARF
* since clang removes the above code before generating IR/debuginfo.
* Let us explicitly emit the type debuginfo to ensure the
* above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
* regardless of which compiler is used.
*/
BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED);
if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
switch (state) {
case TCP_ESTABLISHED:
if (oldstate != TCP_ESTABLISHED)
TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
break;
case TCP_CLOSE:
if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
sk->sk_prot->unhash(sk);
if (inet_csk(sk)->icsk_bind_hash &&
!(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
inet_put_port(sk);
fallthrough;
default:
if (oldstate == TCP_ESTABLISHED)
TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
}
/* Change state AFTER socket is unhashed to avoid closed
* socket sitting in hash tables.
*/
inet_sk_state_store(sk, state);
}
EXPORT_SYMBOL_GPL(tcp_set_state);
/*
* State processing on a close. This implements the state shift for
* sending our FIN frame. Note that we only send a FIN for some
* states. A shutdown() may have already sent the FIN, or we may be
* closed.
*/
static const unsigned char new_state[16] = {
/* current state: new state: action: */
[0 /* (Invalid) */] = TCP_CLOSE,
[TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
[TCP_SYN_SENT] = TCP_CLOSE,
[TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
[TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
[TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
[TCP_TIME_WAIT] = TCP_CLOSE,
[TCP_CLOSE] = TCP_CLOSE,
[TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
[TCP_LAST_ACK] = TCP_LAST_ACK,
[TCP_LISTEN] = TCP_CLOSE,
[TCP_CLOSING] = TCP_CLOSING,
[TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
};
static int tcp_close_state(struct sock *sk)
{
int next = (int)new_state[sk->sk_state];
int ns = next & TCP_STATE_MASK;
tcp_set_state(sk, ns);
return next & TCP_ACTION_FIN;
}
/*
* Shutdown the sending side of a connection. Much like close except
* that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
*/
void tcp_shutdown(struct sock *sk, int how)
{
/* We need to grab some memory, and put together a FIN,
* and then put it into the queue to be sent.
* Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
*/
if (!(how & SEND_SHUTDOWN))
return;
/* If we've already sent a FIN, or it's a closed state, skip this. */
if ((1 << sk->sk_state) &
(TCPF_ESTABLISHED | TCPF_SYN_SENT |
TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
/* Clear out any half completed packets. FIN if needed. */
if (tcp_close_state(sk))
tcp_send_fin(sk);
}
}
EXPORT_SYMBOL(tcp_shutdown);
int tcp_orphan_count_sum(void)
{
int i, total = 0;
for_each_possible_cpu(i)
total += per_cpu(tcp_orphan_count, i);
return max(total, 0);
}
static int tcp_orphan_cache;
static struct timer_list tcp_orphan_timer;
#define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
static void tcp_orphan_update(struct timer_list *unused)
{
WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
}
static bool tcp_too_many_orphans(int shift)
{
return READ_ONCE(tcp_orphan_cache) << shift > sysctl_tcp_max_orphans;
}
bool tcp_check_oom(struct sock *sk, int shift)
{
bool too_many_orphans, out_of_socket_memory;
too_many_orphans = tcp_too_many_orphans(shift);
out_of_socket_memory = tcp_out_of_memory(sk);
if (too_many_orphans)
net_info_ratelimited("too many orphaned sockets\n");
if (out_of_socket_memory)
net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
return too_many_orphans || out_of_socket_memory;
}
void __tcp_close(struct sock *sk, long timeout)
{
struct sk_buff *skb;
int data_was_unread = 0;
int state;
sk->sk_shutdown = SHUTDOWN_MASK;
if (sk->sk_state == TCP_LISTEN) {
tcp_set_state(sk, TCP_CLOSE);
/* Special case. */
inet_csk_listen_stop(sk);
goto adjudge_to_death;
}
/* We need to flush the recv. buffs. We do this only on the
* descriptor close, not protocol-sourced closes, because the
* reader process may not have drained the data yet!
*/
while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
len--;
data_was_unread += len;
__kfree_skb(skb);
}
sk_mem_reclaim(sk);
/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
if (sk->sk_state == TCP_CLOSE)
goto adjudge_to_death;
/* As outlined in RFC 2525, section 2.17, we send a RST here because
* data was lost. To witness the awful effects of the old behavior of
* always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
* GET in an FTP client, suspend the process, wait for the client to
* advertise a zero window, then kill -9 the FTP client, wheee...
* Note: timeout is always zero in such a case.
*/
if (unlikely(tcp_sk(sk)->repair)) {
sk->sk_prot->disconnect(sk, 0);
} else if (data_was_unread) {
/* Unread data was tossed, zap the connection. */
NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
tcp_set_state(sk, TCP_CLOSE);
tcp_send_active_reset(sk, sk->sk_allocation);
} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
/* Check zero linger _after_ checking for unread data. */
sk->sk_prot->disconnect(sk, 0);
NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
} else if (tcp_close_state(sk)) {
/* We FIN if the application ate all the data before
* zapping the connection.
*/
/* RED-PEN. Formally speaking, we have broken TCP state
* machine. State transitions:
*
* TCP_ESTABLISHED -> TCP_FIN_WAIT1
* TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
* TCP_CLOSE_WAIT -> TCP_LAST_ACK
*
* are legal only when FIN has been sent (i.e. in window),
* rather than queued out of window. Purists blame.
*
* F.e. "RFC state" is ESTABLISHED,
* if Linux state is FIN-WAIT-1, but FIN is still not sent.
*
* The visible declinations are that sometimes
* we enter time-wait state, when it is not required really
* (harmless), do not send active resets, when they are
* required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
* they look as CLOSING or LAST_ACK for Linux)
* Probably, I missed some more holelets.
* --ANK
* XXX (TFO) - To start off we don't support SYN+ACK+FIN
* in a single packet! (May consider it later but will
* probably need API support or TCP_CORK SYN-ACK until
* data is written and socket is closed.)
*/
tcp_send_fin(sk);
}
sk_stream_wait_close(sk, timeout);
adjudge_to_death:
state = sk->sk_state;
sock_hold(sk);
sock_orphan(sk);
local_bh_disable();
bh_lock_sock(sk);
/* remove backlog if any, without releasing ownership. */
__release_sock(sk);
this_cpu_inc(tcp_orphan_count);
/* Have we already been destroyed by a softirq or backlog? */
if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
goto out;
/* This is a (useful) BSD violating of the RFC. There is a
* problem with TCP as specified in that the other end could
* keep a socket open forever with no application left this end.
* We use a 1 minute timeout (about the same as BSD) then kill
* our end. If they send after that then tough - BUT: long enough
* that we won't make the old 4*rto = almost no time - whoops
* reset mistake.
*
* Nope, it was not mistake. It is really desired behaviour
* f.e. on http servers, when such sockets are useless, but
* consume significant resources. Let's do it with special
* linger2 option. --ANK
*/
if (sk->sk_state == TCP_FIN_WAIT2) {
struct tcp_sock *tp = tcp_sk(sk);
if (tp->linger2 < 0) {
tcp_set_state(sk, TCP_CLOSE);
tcp_send_active_reset(sk, GFP_ATOMIC);
__NET_INC_STATS(sock_net(sk),
LINUX_MIB_TCPABORTONLINGER);
} else {
const int tmo = tcp_fin_time(sk);
if (tmo > TCP_TIMEWAIT_LEN) {
inet_csk_reset_keepalive_timer(sk,
tmo - TCP_TIMEWAIT_LEN);
} else {
tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
goto out;
}
}
}
if (sk->sk_state != TCP_CLOSE) {
sk_mem_reclaim(sk);
if (tcp_check_oom(sk, 0)) {
tcp_set_state(sk, TCP_CLOSE);
tcp_send_active_reset(sk, GFP_ATOMIC);
__NET_INC_STATS(sock_net(sk),
LINUX_MIB_TCPABORTONMEMORY);
} else if (!check_net(sock_net(sk))) {
/* Not possible to send reset; just close */
tcp_set_state(sk, TCP_CLOSE);
}
}
if (sk->sk_state == TCP_CLOSE) {
struct request_sock *req;
req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
lockdep_sock_is_held(sk));
/* We could get here with a non-NULL req if the socket is
* aborted (e.g., closed with unread data) before 3WHS
* finishes.
*/
if (req)
reqsk_fastopen_remove(sk, req, false);
inet_csk_destroy_sock(sk);
}
/* Otherwise, socket is reprieved until protocol close. */
out:
bh_unlock_sock(sk);
local_bh_enable();
}
void tcp_close(struct sock *sk, long timeout)
{
lock_sock(sk);
__tcp_close(sk, timeout);
release_sock(sk);
sock_put(sk);
}
EXPORT_SYMBOL(tcp_close);
/* These states need RST on ABORT according to RFC793 */
static inline bool tcp_need_reset(int state)
{
return (1 << state) &
(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
}
static void tcp_rtx_queue_purge(struct sock *sk)
{
struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
tcp_sk(sk)->highest_sack = NULL;
while (p) {
struct sk_buff *skb = rb_to_skb(p);
p = rb_next(p);
/* Since we are deleting whole queue, no need to
* list_del(&skb->tcp_tsorted_anchor)
*/
tcp_rtx_queue_unlink(skb, sk);
tcp_wmem_free_skb(sk, skb);
}
}
void tcp_write_queue_purge(struct sock *sk)
{
struct sk_buff *skb;
tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
tcp_skb_tsorted_anchor_cleanup(skb);
tcp_wmem_free_skb(sk, skb);
}
tcp_rtx_queue_purge(sk);
INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
sk_mem_reclaim(sk);
tcp_clear_all_retrans_hints(tcp_sk(sk));
tcp_sk(sk)->packets_out = 0;
inet_csk(sk)->icsk_backoff = 0;
}
int tcp_disconnect(struct sock *sk, int flags)
{
struct inet_sock *inet = inet_sk(sk);
struct inet_connection_sock *icsk = inet_csk(sk);
struct tcp_sock *tp = tcp_sk(sk);
int old_state = sk->sk_state;
u32 seq;
if (old_state != TCP_CLOSE)
tcp_set_state(sk, TCP_CLOSE);
/* ABORT function of RFC793 */
if (old_state == TCP_LISTEN) {
inet_csk_listen_stop(sk);
} else if (unlikely(tp->repair)) {
sk->sk_err = ECONNABORTED;
} else if (tcp_need_reset(old_state) ||
(tp->snd_nxt != tp->write_seq &&
(1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
/* The last check adjusts for discrepancy of Linux wrt. RFC
* states
*/
tcp_send_active_reset(sk, gfp_any());
sk->sk_err = ECONNRESET;
} else if (old_state == TCP_SYN_SENT)
sk->sk_err = ECONNRESET;
tcp_clear_xmit_timers(sk);
__skb_queue_purge(&sk->sk_receive_queue);
WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
WRITE_ONCE(tp->urg_data, 0);
tcp_write_queue_purge(sk);
tcp_fastopen_active_disable_ofo_check(sk);
skb_rbtree_purge(&tp->out_of_order_queue);
inet->inet_dport = 0;
if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
inet_reset_saddr(sk);
sk->sk_shutdown = 0;
sock_reset_flag(sk, SOCK_DONE);
tp->srtt_us = 0;
tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
tp->rcv_rtt_last_tsecr = 0;
seq = tp->write_seq + tp->max_window + 2;
if (!seq)
seq = 1;
WRITE_ONCE(tp->write_seq, seq);
icsk->icsk_backoff = 0;
icsk->icsk_probes_out = 0;
icsk->icsk_probes_tstamp = 0;
icsk->icsk_rto = TCP_TIMEOUT_INIT;
icsk->icsk_rto_min = TCP_RTO_MIN;
icsk->icsk_delack_max = TCP_DELACK_MAX;
tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
tp->snd_cwnd = TCP_INIT_CWND;
tp->snd_cwnd_cnt = 0;
tp->window_clamp = 0;
tp->delivered = 0;
tp->delivered_ce = 0;
if (icsk->icsk_ca_ops->release)
icsk->icsk_ca_ops->release(sk);
memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
icsk->icsk_ca_initialized = 0;
tcp_set_ca_state(sk, TCP_CA_Open);
tp->is_sack_reneg = 0;
tcp_clear_retrans(tp);
tp->total_retrans = 0;
inet_csk_delack_init(sk);
/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
* issue in __tcp_select_window()
*/
icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
__sk_dst_reset(sk);
dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL));
tcp_saved_syn_free(tp);
tp->compressed_ack = 0;
tp->segs_in = 0;
tp->segs_out = 0;
tp->bytes_sent = 0;
tp->bytes_acked = 0;
tp->bytes_received = 0;
tp->bytes_retrans = 0;
tp->data_segs_in = 0;
tp->data_segs_out = 0;
tp->duplicate_sack[0].start_seq = 0;
tp->duplicate_sack[0].end_seq = 0;
tp->dsack_dups = 0;
tp->reord_seen = 0;
tp->retrans_out = 0;
tp->sacked_out = 0;
tp->tlp_high_seq = 0;
tp->last_oow_ack_time = 0;
/* There's a bubble in the pipe until at least the first ACK. */
tp->app_limited = ~0U;
tp->rack.mstamp = 0;
tp->rack.advanced = 0;
tp->rack.reo_wnd_steps = 1;
tp->rack.last_delivered = 0;
tp->rack.reo_wnd_persist = 0;
tp->rack.dsack_seen = 0;
tp->syn_data_acked = 0;
tp->rx_opt.saw_tstamp = 0;
tp->rx_opt.dsack = 0;
tp->rx_opt.num_sacks = 0;
tp->rcv_ooopack = 0;
/* Clean up fastopen related fields */
tcp_free_fastopen_req(tp);
inet->defer_connect = 0;
tp->fastopen_client_fail = 0;
WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
if (sk->sk_frag.page) {
put_page(sk->sk_frag.page);
sk->sk_frag.page = NULL;
sk->sk_frag.offset = 0;
}
sk_defer_free_flush(sk);
sk_error_report(sk);
return 0;
}
EXPORT_SYMBOL(tcp_disconnect);
static inline bool tcp_can_repair_sock(const struct sock *sk)
{
return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
(sk->sk_state != TCP_LISTEN);
}
static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
{
struct tcp_repair_window opt;
if (!tp->repair)
return -EPERM;
if (len != sizeof(opt))
return -EINVAL;
if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
return -EFAULT;
if (opt.max_window < opt.snd_wnd)
return -EINVAL;
if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
return -EINVAL;
if (after(opt.rcv_wup, tp->rcv_nxt))
return -EINVAL;
tp->snd_wl1 = opt.snd_wl1;
tp->snd_wnd = opt.snd_wnd;
tp->max_window = opt.max_window;
tp->rcv_wnd = opt.rcv_wnd;
tp->rcv_wup = opt.rcv_wup;
return 0;
}
static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
unsigned int len)
{
struct tcp_sock *tp = tcp_sk(sk);
struct tcp_repair_opt opt;
size_t offset = 0;
while (len >= sizeof(opt)) {
if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
return -EFAULT;
offset += sizeof(opt);
len -= sizeof(opt);
switch (opt.opt_code) {
case TCPOPT_MSS:
tp->rx_opt.mss_clamp = opt.opt_val;
tcp_mtup_init(sk);
break;
case TCPOPT_WINDOW:
{
u16 snd_wscale = opt.opt_val & 0xFFFF;
u16 rcv_wscale = opt.opt_val >> 16;
if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
return -EFBIG;
tp->rx_opt.snd_wscale = snd_wscale;
tp->rx_opt.rcv_wscale = rcv_wscale;
tp->rx_opt.wscale_ok = 1;
}
break;
case TCPOPT_SACK_PERM:
if (opt.opt_val != 0)
return -EINVAL;
tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
break;
case TCPOPT_TIMESTAMP:
if (opt.opt_val != 0)
return -EINVAL;
tp->rx_opt.tstamp_ok = 1;
break;
}
}
return 0;
}
DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
EXPORT_SYMBOL(tcp_tx_delay_enabled);
static void tcp_enable_tx_delay(void)
{
if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
static int __tcp_tx_delay_enabled = 0;
if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
static_branch_enable(&tcp_tx_delay_enabled);
pr_info("TCP_TX_DELAY enabled\n");
}
}
}
/* When set indicates to always queue non-full frames. Later the user clears
* this option and we transmit any pending partial frames in the queue. This is
* meant to be used alongside sendfile() to get properly filled frames when the
* user (for example) must write out headers with a write() call first and then
* use sendfile to send out the data parts.
*
* TCP_CORK can be set together with TCP_NODELAY and it is stronger than
* TCP_NODELAY.
*/
void __tcp_sock_set_cork(struct sock *sk, bool on)
{
struct tcp_sock *tp = tcp_sk(sk);
if (on) {
tp->nonagle |= TCP_NAGLE_CORK;
} else {
tp->nonagle &= ~TCP_NAGLE_CORK;
if (tp->nonagle & TCP_NAGLE_OFF)
tp->nonagle |= TCP_NAGLE_PUSH;
tcp_push_pending_frames(sk);
}
}
void tcp_sock_set_cork(struct sock *sk, bool on)
{
lock_sock(sk);
__tcp_sock_set_cork(sk, on);
release_sock(sk);
}
EXPORT_SYMBOL(tcp_sock_set_cork);
/* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
* remembered, but it is not activated until cork is cleared.
*
* However, when TCP_NODELAY is set we make an explicit push, which overrides
* even TCP_CORK for currently queued segments.
*/
void __tcp_sock_set_nodelay(struct sock *sk, bool on)
{
if (on) {
tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
tcp_push_pending_frames(sk);
} else {
tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
}
}
void tcp_sock_set_nodelay(struct sock *sk)
{
lock_sock(sk);
__tcp_sock_set_nodelay(sk, true);
release_sock(sk);
}
EXPORT_SYMBOL(tcp_sock_set_nodelay);
static void __tcp_sock_set_quickack(struct sock *sk, int val)
{
if (!val) {
inet_csk_enter_pingpong_mode(sk);
return;
}
inet_csk_exit_pingpong_mode(sk);
if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
inet_csk_ack_scheduled(sk)) {
inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
tcp_cleanup_rbuf(sk, 1);
if (!(val & 1))
inet_csk_enter_pingpong_mode(sk);
}
}
void tcp_sock_set_quickack(struct sock *sk, int val)
{
lock_sock(sk);
__tcp_sock_set_quickack(sk, val);
release_sock(sk);
}
EXPORT_SYMBOL(tcp_sock_set_quickack);
int tcp_sock_set_syncnt(struct sock *sk, int val)
{
if (val < 1 || val > MAX_TCP_SYNCNT)
return -EINVAL;
lock_sock(sk);
inet_csk(sk)->icsk_syn_retries = val;
release_sock(sk);
return 0;
}
EXPORT_SYMBOL(tcp_sock_set_syncnt);
void tcp_sock_set_user_timeout(struct sock *sk, u32 val)
{
lock_sock(sk);
inet_csk(sk)->icsk_user_timeout = val;
release_sock(sk);
}
EXPORT_SYMBOL(tcp_sock_set_user_timeout);
int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
{
struct tcp_sock *tp = tcp_sk(sk);
if (val < 1 || val > MAX_TCP_KEEPIDLE)
return -EINVAL;
tp->keepalive_time = val * HZ;
if (sock_flag(sk, SOCK_KEEPOPEN) &&
!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
u32 elapsed = keepalive_time_elapsed(tp);
if (tp->keepalive_time > elapsed)
elapsed = tp->keepalive_time - elapsed;
else
elapsed = 0;
inet_csk_reset_keepalive_timer(sk, elapsed);
}
return 0;
}
int tcp_sock_set_keepidle(struct sock *sk, int val)
{
int err;
lock_sock(sk);
err = tcp_sock_set_keepidle_locked(sk, val);
release_sock(sk);
return err;
}
EXPORT_SYMBOL(tcp_sock_set_keepidle);
int tcp_sock_set_keepintvl(struct sock *sk, int val)
{
if (val < 1 || val > MAX_TCP_KEEPINTVL)
return -EINVAL;
lock_sock(sk);
tcp_sk(sk)->keepalive_intvl = val * HZ;
release_sock(sk);
return 0;
}
EXPORT_SYMBOL(tcp_sock_set_keepintvl);
int tcp_sock_set_keepcnt(struct sock *sk, int val)
{
if (val < 1 || val > MAX_TCP_KEEPCNT)
return -EINVAL;
lock_sock(sk);
tcp_sk(sk)->keepalive_probes = val;
release_sock(sk);
return 0;
}
EXPORT_SYMBOL(tcp_sock_set_keepcnt);
int tcp_set_window_clamp(struct sock *sk, int val)
{
struct tcp_sock *tp = tcp_sk(sk);
if (!val) {
if (sk->sk_state != TCP_CLOSE)
return -EINVAL;
tp->window_clamp = 0;
} else {
tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
SOCK_MIN_RCVBUF / 2 : val;
tp->rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp);
}
return 0;
}
/*
* Socket option code for TCP.
*/
static int do_tcp_setsockopt(struct sock *sk, int level, int optname,
sockptr_t optval, unsigned int optlen)
{
struct tcp_sock *tp = tcp_sk(sk);
struct inet_connection_sock *icsk = inet_csk(sk);
struct net *net = sock_net(sk);
int val;
int err = 0;
/* These are data/string values, all the others are ints */
switch (optname) {
case TCP_CONGESTION: {
char name[TCP_CA_NAME_MAX];
if (optlen < 1)
return -EINVAL;
val = strncpy_from_sockptr(name, optval,
min_t(long, TCP_CA_NAME_MAX-1, optlen));
if (val < 0)
return -EFAULT;
name[val] = 0;
lock_sock(sk);
err = tcp_set_congestion_control(sk, name, true,
ns_capable(sock_net(sk)->user_ns,
CAP_NET_ADMIN));
release_sock(sk);
return err;
}
case TCP_ULP: {
char name[TCP_ULP_NAME_MAX];
if (optlen < 1)
return -EINVAL;
val = strncpy_from_sockptr(name, optval,
min_t(long, TCP_ULP_NAME_MAX - 1,
optlen));
if (val < 0)
return -EFAULT;
name[val] = 0;
lock_sock(sk);
err = tcp_set_ulp(sk, name);
release_sock(sk);
return err;
}
case TCP_FASTOPEN_KEY: {
__u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
__u8 *backup_key = NULL;
/* Allow a backup key as well to facilitate key rotation
* First key is the active one.
*/
if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
return -EINVAL;
if (copy_from_sockptr(key, optval, optlen))
return -EFAULT;
if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
}
default:
/* fallthru */
break;
}
if (optlen < sizeof(int))
return -EINVAL;
if (copy_from_sockptr(&val, optval, sizeof(val)))
return -EFAULT;
lock_sock(sk);
switch (optname) {
case TCP_MAXSEG:
/* Values greater than interface MTU won't take effect. However
* at the point when this call is done we typically don't yet
* know which interface is going to be used
*/
if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
err = -EINVAL;
break;
}
tp->rx_opt.user_mss = val;
break;
case TCP_NODELAY:
__tcp_sock_set_nodelay(sk, val);
break;
case TCP_THIN_LINEAR_TIMEOUTS:
if (val < 0 || val > 1)
err = -EINVAL;
else
tp->thin_lto = val;
break;
case TCP_THIN_DUPACK:
if (val < 0 || val > 1)
err = -EINVAL;
break;
case TCP_REPAIR:
if (!tcp_can_repair_sock(sk))
err = -EPERM;
else if (val == TCP_REPAIR_ON) {
tp->repair = 1;
sk->sk_reuse = SK_FORCE_REUSE;
tp->repair_queue = TCP_NO_QUEUE;
} else if (val == TCP_REPAIR_OFF) {
tp->repair = 0;
sk->sk_reuse = SK_NO_REUSE;
tcp_send_window_probe(sk);
} else if (val == TCP_REPAIR_OFF_NO_WP) {
tp->repair = 0;
sk->sk_reuse = SK_NO_REUSE;
} else
err = -EINVAL;
break;
case TCP_REPAIR_QUEUE:
if (!tp->repair)
err = -EPERM;
else if ((unsigned int)val < TCP_QUEUES_NR)
tp->repair_queue = val;
else
err = -EINVAL;
break;
case TCP_QUEUE_SEQ:
if (sk->sk_state != TCP_CLOSE) {
err = -EPERM;
} else if (tp->repair_queue == TCP_SEND_QUEUE) {
if (!tcp_rtx_queue_empty(sk))
err = -EPERM;
else
WRITE_ONCE(tp->write_seq, val);
} else if (tp->repair_queue == TCP_RECV_QUEUE) {
if (tp->rcv_nxt != tp->copied_seq) {
err = -EPERM;
} else {
WRITE_ONCE(tp->rcv_nxt, val);
WRITE_ONCE(tp->copied_seq, val);
}
} else {
err = -EINVAL;
}
break;
case TCP_REPAIR_OPTIONS:
if (!tp->repair)
err = -EINVAL;
else if (sk->sk_state == TCP_ESTABLISHED)
err = tcp_repair_options_est(sk, optval, optlen);
else
err = -EPERM;
break;
case TCP_CORK:
__tcp_sock_set_cork(sk, val);
break;
case TCP_KEEPIDLE:
err = tcp_sock_set_keepidle_locked(sk, val);
break;
case TCP_KEEPINTVL:
if (val < 1 || val > MAX_TCP_KEEPINTVL)
err = -EINVAL;
else
tp->keepalive_intvl = val * HZ;
break;
case TCP_KEEPCNT:
if (val < 1 || val > MAX_TCP_KEEPCNT)
err = -EINVAL;
else
tp->keepalive_probes = val;
break;
case TCP_SYNCNT:
if (val < 1 || val > MAX_TCP_SYNCNT)
err = -EINVAL;
else
icsk->icsk_syn_retries = val;
break;
case TCP_SAVE_SYN:
/* 0: disable, 1: enable, 2: start from ether_header */
if (val < 0 || val > 2)
err = -EINVAL;
else
tp->save_syn = val;
break;
case TCP_LINGER2:
if (val < 0)
tp->linger2 = -1;
else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
tp->linger2 = TCP_FIN_TIMEOUT_MAX;
else
tp->linger2 = val * HZ;
break;
case TCP_DEFER_ACCEPT:
/* Translate value in seconds to number of retransmits */
icsk->icsk_accept_queue.rskq_defer_accept =
secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
TCP_RTO_MAX / HZ);
break;
case TCP_WINDOW_CLAMP:
err = tcp_set_window_clamp(sk, val);
break;
case TCP_QUICKACK:
__tcp_sock_set_quickack(sk, val);
break;
#ifdef CONFIG_TCP_MD5SIG
case TCP_MD5SIG:
case TCP_MD5SIG_EXT:
err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
break;
#endif
case TCP_USER_TIMEOUT:
/* Cap the max time in ms TCP will retry or probe the window
* before giving up and aborting (ETIMEDOUT) a connection.
*/
if (val < 0)
err = -EINVAL;
else
icsk->icsk_user_timeout = val;
break;
case TCP_FASTOPEN:
if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
TCPF_LISTEN))) {
tcp_fastopen_init_key_once(net);
fastopen_queue_tune(sk, val);
} else {
err = -EINVAL;
}
break;
case TCP_FASTOPEN_CONNECT:
if (val > 1 || val < 0) {
err = -EINVAL;
} else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) {
if (sk->sk_state == TCP_CLOSE)
tp->fastopen_connect = val;
else
err = -EINVAL;
} else {
err = -EOPNOTSUPP;
}
break;
case TCP_FASTOPEN_NO_COOKIE:
if (val > 1 || val < 0)
err = -EINVAL;
else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
err = -EINVAL;
else
tp->fastopen_no_cookie = val;
break;
case TCP_TIMESTAMP:
if (!tp->repair)
err = -EPERM;
else
tp->tsoffset = val - tcp_time_stamp_raw();
break;
case TCP_REPAIR_WINDOW:
err = tcp_repair_set_window(tp, optval, optlen);
break;
case TCP_NOTSENT_LOWAT:
tp->notsent_lowat = val;
sk->sk_write_space(sk);
break;
case TCP_INQ:
if (val > 1 || val < 0)
err = -EINVAL;
else
tp->recvmsg_inq = val;
break;
case TCP_TX_DELAY:
if (val)
tcp_enable_tx_delay();
tp->tcp_tx_delay = val;
break;
default:
err = -ENOPROTOOPT;
break;
}
release_sock(sk);
return err;
}
int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
unsigned int optlen)
{
const struct inet_connection_sock *icsk = inet_csk(sk);
if (level != SOL_TCP)
return icsk->icsk_af_ops->setsockopt(sk, level, optname,
optval, optlen);
return do_tcp_setsockopt(sk, level, optname, optval, optlen);
}
EXPORT_SYMBOL(tcp_setsockopt);
static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
struct tcp_info *info)
{
u64 stats[__TCP_CHRONO_MAX], total = 0;
enum tcp_chrono i;
for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
stats[i] = tp->chrono_stat[i - 1];
if (i == tp->chrono_type)
stats[i] += tcp_jiffies32 - tp->chrono_start;
stats[i] *= USEC_PER_SEC / HZ;
total += stats[i];
}
info->tcpi_busy_time = total;
info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
}
/* Return information about state of tcp endpoint in API format. */
void tcp_get_info(struct sock *sk, struct tcp_info *info)
{
const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
const struct inet_connection_sock *icsk = inet_csk(sk);
unsigned long rate;
u32 now;
u64 rate64;
bool slow;
memset(info, 0, sizeof(*info));
if (sk->sk_type != SOCK_STREAM)
return;
info->tcpi_state = inet_sk_state_load(sk);
/* Report meaningful fields for all TCP states, including listeners */
rate = READ_ONCE(sk->sk_pacing_rate);
rate64 = (rate != ~0UL) ? rate : ~0ULL;
info->tcpi_pacing_rate = rate64;
rate = READ_ONCE(sk->sk_max_pacing_rate);
rate64 = (rate != ~0UL) ? rate : ~0ULL;
info->tcpi_max_pacing_rate = rate64;
info->tcpi_reordering = tp->reordering;
info->tcpi_snd_cwnd = tp->snd_cwnd;
if (info->tcpi_state == TCP_LISTEN) {
/* listeners aliased fields :
* tcpi_unacked -> Number of children ready for accept()
* tcpi_sacked -> max backlog
*/
info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
return;
}
slow = lock_sock_fast(sk);
info->tcpi_ca_state = icsk->icsk_ca_state;
info->tcpi_retransmits = icsk->icsk_retransmits;
info->tcpi_probes = icsk->icsk_probes_out;
info->tcpi_backoff = icsk->icsk_backoff;
if (tp->rx_opt.tstamp_ok)
info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
if (tcp_is_sack(tp))
info->tcpi_options |= TCPI_OPT_SACK;
if (tp->rx_opt.wscale_ok) {
info->tcpi_options |= TCPI_OPT_WSCALE;
info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
}
if (tp->ecn_flags & TCP_ECN_OK)
info->tcpi_options |= TCPI_OPT_ECN;
if (tp->ecn_flags & TCP_ECN_SEEN)
info->tcpi_options |= TCPI_OPT_ECN_SEEN;
if (tp->syn_data_acked)
info->tcpi_options |= TCPI_OPT_SYN_DATA;
info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
info->tcpi_snd_mss = tp->mss_cache;
info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
info->tcpi_unacked = tp->packets_out;
info->tcpi_sacked = tp->sacked_out;
info->tcpi_lost = tp->lost_out;
info->tcpi_retrans = tp->retrans_out;
now = tcp_jiffies32;
info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
info->tcpi_rtt = tp->srtt_us >> 3;
info->tcpi_rttvar = tp->mdev_us >> 2;
info->tcpi_snd_ssthresh = tp->snd_ssthresh;
info->tcpi_advmss = tp->advmss;
info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
info->tcpi_rcv_space = tp->rcvq_space.space;
info->tcpi_total_retrans = tp->total_retrans;
info->tcpi_bytes_acked = tp->bytes_acked;
info->tcpi_bytes_received = tp->bytes_received;
info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
tcp_get_info_chrono_stats(tp, info);
info->tcpi_segs_out = tp->segs_out;
/* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */
info->tcpi_segs_in = READ_ONCE(tp->segs_in);
info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in);
info->tcpi_min_rtt = tcp_min_rtt(tp);
info->tcpi_data_segs_out = tp->data_segs_out;
info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
rate64 = tcp_compute_delivery_rate(tp);
if (rate64)
info->tcpi_delivery_rate = rate64;
info->tcpi_delivered = tp->delivered;
info->tcpi_delivered_ce = tp->delivered_ce;
info->tcpi_bytes_sent = tp->bytes_sent;
info->tcpi_bytes_retrans = tp->bytes_retrans;
info->tcpi_dsack_dups = tp->dsack_dups;
info->tcpi_reord_seen = tp->reord_seen;
info->tcpi_rcv_ooopack = tp->rcv_ooopack;
info->tcpi_snd_wnd = tp->snd_wnd;
info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
unlock_sock_fast(sk, slow);
}
EXPORT_SYMBOL_GPL(tcp_get_info);
static size_t tcp_opt_stats_get_size(void)
{
return
nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */
0;
}
/* Returns TTL or hop limit of an incoming packet from skb. */
static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
{
if (skb->protocol == htons(ETH_P_IP))
return ip_hdr(skb)->ttl;
else if (skb->protocol == htons(ETH_P_IPV6))
return ipv6_hdr(skb)->hop_limit;
else
return 0;
}
struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
const struct sk_buff *orig_skb,
const struct sk_buff *ack_skb)
{
const struct tcp_sock *tp = tcp_sk(sk);
struct sk_buff *stats;
struct tcp_info info;
unsigned long rate;
u64 rate64;
stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
if (!stats)
return NULL;
tcp_get_info_chrono_stats(tp, &info);
nla_put_u64_64bit(stats, TCP_NLA_BUSY,
info.tcpi_busy_time, TCP_NLA_PAD);
nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
info.tcpi_rwnd_limited, TCP_NLA_PAD);
nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
info.tcpi_sndbuf_limited, TCP_NLA_PAD);
nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
tp->data_segs_out, TCP_NLA_PAD);
nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
tp->total_retrans, TCP_NLA_PAD);
rate = READ_ONCE(sk->sk_pacing_rate);
rate64 = (rate != ~0UL) ? rate : ~0ULL;
nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
rate64 = tcp_compute_delivery_rate(tp);
nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd);
nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
TCP_NLA_PAD);
nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
TCP_NLA_PAD);
nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
max_t(int, 0, tp->write_seq - tp->snd_nxt));
nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
TCP_NLA_PAD);
if (ack_skb)
nla_put_u8(stats, TCP_NLA_TTL,
tcp_skb_ttl_or_hop_limit(ack_skb));
return stats;
}
static int do_tcp_getsockopt(struct sock *sk, int level,
int optname, char __user *optval, int __user *optlen)
{
struct inet_connection_sock *icsk = inet_csk(sk);
struct tcp_sock *tp = tcp_sk(sk);
struct net *net = sock_net(sk);
int val, len;
if (get_user(len, optlen))
return -EFAULT;
len = min_t(unsigned int, len, sizeof(int));
if (len < 0)
return -EINVAL;
switch (optname) {
case TCP_MAXSEG:
val = tp->mss_cache;
if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
val = tp->rx_opt.user_mss;
if (tp->repair)
val = tp->rx_opt.mss_clamp;
break;
case TCP_NODELAY:
val = !!(tp->nonagle&TCP_NAGLE_OFF);
break;
case TCP_CORK:
val = !!(tp->nonagle&TCP_NAGLE_CORK);
break;
case TCP_KEEPIDLE:
val = keepalive_time_when(tp) / HZ;
break;
case TCP_KEEPINTVL:
val = keepalive_intvl_when(tp) / HZ;
break;
case TCP_KEEPCNT:
val = keepalive_probes(tp);
break;
case TCP_SYNCNT:
val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
break;
case TCP_LINGER2:
val = tp->linger2;
if (val >= 0)
val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ;
break;
case TCP_DEFER_ACCEPT:
val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
break;
case TCP_WINDOW_CLAMP:
val = tp->window_clamp;
break;
case TCP_INFO: {
struct tcp_info info;
if (get_user(len, optlen))
return -EFAULT;
tcp_get_info(sk, &info);
len = min_t(unsigned int, len, sizeof(info));
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(optval, &info, len))
return -EFAULT;
return 0;
}
case TCP_CC_INFO: {
const struct tcp_congestion_ops *ca_ops;
union tcp_cc_info info;
size_t sz = 0;
int attr;
if (get_user(len, optlen))
return -EFAULT;
ca_ops = icsk->icsk_ca_ops;
if (ca_ops && ca_ops->get_info)
sz = ca_ops->get_info(sk, ~0U, &attr, &info);
len = min_t(unsigned int, len, sz);
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(optval, &info, len))
return -EFAULT;
return 0;
}
case TCP_QUICKACK:
val = !inet_csk_in_pingpong_mode(sk);
break;
case TCP_CONGESTION:
if (get_user(len, optlen))
return -EFAULT;
len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
return -EFAULT;
return 0;
case TCP_ULP:
if (get_user(len, optlen))
return -EFAULT;
len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
if (!icsk->icsk_ulp_ops) {
if (put_user(0, optlen))
return -EFAULT;
return 0;
}
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len))
return -EFAULT;
return 0;
case TCP_FASTOPEN_KEY: {
u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
unsigned int key_len;
if (get_user(len, optlen))
return -EFAULT;
key_len = tcp_fastopen_get_cipher(net, icsk, key) *
TCP_FASTOPEN_KEY_LENGTH;
len = min_t(unsigned int, len, key_len);
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(optval, key, len))
return -EFAULT;
return 0;
}
case TCP_THIN_LINEAR_TIMEOUTS:
val = tp->thin_lto;
break;
case TCP_THIN_DUPACK:
val = 0;
break;
case TCP_REPAIR:
val = tp->repair;
break;
case TCP_REPAIR_QUEUE:
if (tp->repair)
val = tp->repair_queue;
else
return -EINVAL;
break;
case TCP_REPAIR_WINDOW: {
struct tcp_repair_window opt;
if (get_user(len, optlen))
return -EFAULT;
if (len != sizeof(opt))
return -EINVAL;
if (!tp->repair)
return -EPERM;
opt.snd_wl1 = tp->snd_wl1;
opt.snd_wnd = tp->snd_wnd;
opt.max_window = tp->max_window;
opt.rcv_wnd = tp->rcv_wnd;
opt.rcv_wup = tp->rcv_wup;
if (copy_to_user(optval, &opt, len))
return -EFAULT;
return 0;
}
case TCP_QUEUE_SEQ:
if (tp->repair_queue == TCP_SEND_QUEUE)
val = tp->write_seq;
else if (tp->repair_queue == TCP_RECV_QUEUE)
val = tp->rcv_nxt;
else
return -EINVAL;
break;
case TCP_USER_TIMEOUT:
val = icsk->icsk_user_timeout;
break;
case TCP_FASTOPEN:
val = icsk->icsk_accept_queue.fastopenq.max_qlen;
break;
case TCP_FASTOPEN_CONNECT:
val = tp->fastopen_connect;
break;
case TCP_FASTOPEN_NO_COOKIE:
val = tp->fastopen_no_cookie;
break;
case TCP_TX_DELAY:
val = tp->tcp_tx_delay;
break;
case TCP_TIMESTAMP:
val = tcp_time_stamp_raw() + tp->tsoffset;
break;
case TCP_NOTSENT_LOWAT:
val = tp->notsent_lowat;
break;
case TCP_INQ:
val = tp->recvmsg_inq;
break;
case TCP_SAVE_SYN:
val = tp->save_syn;
break;
case TCP_SAVED_SYN: {
if (get_user(len, optlen))
return -EFAULT;
lock_sock(sk);
if (tp->saved_syn) {
if (len < tcp_saved_syn_len(tp->saved_syn)) {
if (put_user(tcp_saved_syn_len(tp->saved_syn),
optlen)) {
release_sock(sk);
return -EFAULT;
}
release_sock(sk);
return -EINVAL;
}
len = tcp_saved_syn_len(tp->saved_syn);
if (put_user(len, optlen)) {
release_sock(sk);
return -EFAULT;
}
if (copy_to_user(optval, tp->saved_syn->data, len)) {
release_sock(sk);
return -EFAULT;
}
tcp_saved_syn_free(tp);
release_sock(sk);
} else {
release_sock(sk);
len = 0;
if (put_user(len, optlen))
return -EFAULT;
}
return 0;
}
#ifdef CONFIG_MMU
case TCP_ZEROCOPY_RECEIVE: {
struct scm_timestamping_internal tss;
struct tcp_zerocopy_receive zc = {};
int err;
if (get_user(len, optlen))
return -EFAULT;
if (len < 0 ||
len < offsetofend(struct tcp_zerocopy_receive, length))
return -EINVAL;
if (unlikely(len > sizeof(zc))) {
err = check_zeroed_user(optval + sizeof(zc),
len - sizeof(zc));
if (err < 1)
return err == 0 ? -EINVAL : err;
len = sizeof(zc);
if (put_user(len, optlen))
return -EFAULT;
}
if (copy_from_user(&zc, optval, len))
return -EFAULT;
if (zc.reserved)
return -EINVAL;
if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS))
return -EINVAL;
lock_sock(sk);
err = tcp_zerocopy_receive(sk, &zc, &tss);
err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
&zc, &len, err);
release_sock(sk);
sk_defer_free_flush(sk);
if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
goto zerocopy_rcv_cmsg;
switch (len) {
case offsetofend(struct tcp_zerocopy_receive, msg_flags):
goto zerocopy_rcv_cmsg;
case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
case offsetofend(struct tcp_zerocopy_receive, msg_control):
case offsetofend(struct tcp_zerocopy_receive, flags):
case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
case offsetofend(struct tcp_zerocopy_receive, err):
goto zerocopy_rcv_sk_err;
case offsetofend(struct tcp_zerocopy_receive, inq):
goto zerocopy_rcv_inq;
case offsetofend(struct tcp_zerocopy_receive, length):
default:
goto zerocopy_rcv_out;
}
zerocopy_rcv_cmsg:
if (zc.msg_flags & TCP_CMSG_TS)
tcp_zc_finalize_rx_tstamp(sk, &zc, &tss);
else
zc.msg_flags = 0;
zerocopy_rcv_sk_err:
if (!err)
zc.err = sock_error(sk);
zerocopy_rcv_inq:
zc.inq = tcp_inq_hint(sk);
zerocopy_rcv_out:
if (!err && copy_to_user(optval, &zc, len))
err = -EFAULT;
return err;
}
#endif
default:
return -ENOPROTOOPT;
}
if (put_user(len, optlen))
return -EFAULT;
if (copy_to_user(optval, &val, len))
return -EFAULT;
return 0;
}
bool tcp_bpf_bypass_getsockopt(int level, int optname)
{
/* TCP do_tcp_getsockopt has optimized getsockopt implementation
* to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
*/
if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
return true;
return false;
}
EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt);
int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
int __user *optlen)
{
struct inet_connection_sock *icsk = inet_csk(sk);
if (level != SOL_TCP)
return icsk->icsk_af_ops->getsockopt(sk, level, optname,
optval, optlen);
return do_tcp_getsockopt(sk, level, optname, optval, optlen);
}
EXPORT_SYMBOL(tcp_getsockopt);
#ifdef CONFIG_TCP_MD5SIG
static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
static DEFINE_MUTEX(tcp_md5sig_mutex);
static bool tcp_md5sig_pool_populated = false;
static void __tcp_alloc_md5sig_pool(void)
{
struct crypto_ahash *hash;
int cpu;
hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
if (IS_ERR(hash))
return;
for_each_possible_cpu(cpu) {
void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
struct ahash_request *req;
if (!scratch) {
scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
sizeof(struct tcphdr),
GFP_KERNEL,
cpu_to_node(cpu));
if (!scratch)
return;
per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
}
if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
continue;
req = ahash_request_alloc(hash, GFP_KERNEL);
if (!req)
return;
ahash_request_set_callback(req, 0, NULL, NULL);
per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
}
/* before setting tcp_md5sig_pool_populated, we must commit all writes
* to memory. See smp_rmb() in tcp_get_md5sig_pool()
*/
smp_wmb();
tcp_md5sig_pool_populated = true;
}
bool tcp_alloc_md5sig_pool(void)
{
if (unlikely(!tcp_md5sig_pool_populated)) {
mutex_lock(&tcp_md5sig_mutex);
if (!tcp_md5sig_pool_populated) {
__tcp_alloc_md5sig_pool();
if (tcp_md5sig_pool_populated)
static_branch_inc(&tcp_md5_needed);
}
mutex_unlock(&tcp_md5sig_mutex);
}
return tcp_md5sig_pool_populated;
}
EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
/**
* tcp_get_md5sig_pool - get md5sig_pool for this user
*
* We use percpu structure, so if we succeed, we exit with preemption
* and BH disabled, to make sure another thread or softirq handling
* wont try to get same context.
*/
struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
{
local_bh_disable();
if (tcp_md5sig_pool_populated) {
/* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
smp_rmb();
return this_cpu_ptr(&tcp_md5sig_pool);
}
local_bh_enable();
return NULL;
}
EXPORT_SYMBOL(tcp_get_md5sig_pool);
int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
const struct sk_buff *skb, unsigned int header_len)
{
struct scatterlist sg;
const struct tcphdr *tp = tcp_hdr(skb);
struct ahash_request *req = hp->md5_req;
unsigned int i;
const unsigned int head_data_len = skb_headlen(skb) > header_len ?
skb_headlen(skb) - header_len : 0;
const struct skb_shared_info *shi = skb_shinfo(skb);
struct sk_buff *frag_iter;
sg_init_table(&sg, 1);
sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
ahash_request_set_crypt(req, &sg, NULL, head_data_len);
if (crypto_ahash_update(req))
return 1;
for (i = 0; i < shi->nr_frags; ++i) {
const skb_frag_t *f = &shi->frags[i];
unsigned int offset = skb_frag_off(f);
struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
sg_set_page(&sg, page, skb_frag_size(f),
offset_in_page(offset));
ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
if (crypto_ahash_update(req))
return 1;
}
skb_walk_frags(skb, frag_iter)
if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
return 1;
return 0;
}
EXPORT_SYMBOL(tcp_md5_hash_skb_data);
int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
{
u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
struct scatterlist sg;
sg_init_one(&sg, key->key, keylen);
ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen);
/* We use data_race() because tcp_md5_do_add() might change key->key under us */
return data_race(crypto_ahash_update(hp->md5_req));
}
EXPORT_SYMBOL(tcp_md5_hash_key);
/* Called with rcu_read_lock() */
enum skb_drop_reason
tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
const void *saddr, const void *daddr,
int family, int dif, int sdif)
{
/*
* This gets called for each TCP segment that arrives
* so we want to be efficient.
* We have 3 drop cases:
* o No MD5 hash and one expected.
* o MD5 hash and we're not expecting one.
* o MD5 hash and its wrong.
*/
const __u8 *hash_location = NULL;
struct tcp_md5sig_key *hash_expected;
const struct tcphdr *th = tcp_hdr(skb);
struct tcp_sock *tp = tcp_sk(sk);
int genhash, l3index;
u8 newhash[16];
/* sdif set, means packet ingressed via a device
* in an L3 domain and dif is set to the l3mdev
*/
l3index = sdif ? dif : 0;
hash_expected = tcp_md5_do_lookup(sk, l3index, saddr, family);
hash_location = tcp_parse_md5sig_option(th);
/* We've parsed the options - do we have a hash? */
if (!hash_expected && !hash_location)
return SKB_NOT_DROPPED_YET;
if (hash_expected && !hash_location) {
NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
return SKB_DROP_REASON_TCP_MD5NOTFOUND;
}
if (!hash_expected && hash_location) {
NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
return SKB_DROP_REASON_TCP_MD5UNEXPECTED;
}
/* check the signature */
genhash = tp->af_specific->calc_md5_hash(newhash, hash_expected,
NULL, skb);
if (genhash || memcmp(hash_location, newhash, 16) != 0) {
NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
if (family == AF_INET) {
net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s L3 index %d\n",
saddr, ntohs(th->source),
daddr, ntohs(th->dest),
genhash ? " tcp_v4_calc_md5_hash failed"
: "", l3index);
} else {
net_info_ratelimited("MD5 Hash %s for [%pI6c]:%u->[%pI6c]:%u L3 index %d\n",
genhash ? "failed" : "mismatch",
saddr, ntohs(th->source),
daddr, ntohs(th->dest), l3index);
}
return SKB_DROP_REASON_TCP_MD5FAILURE;
}
return SKB_NOT_DROPPED_YET;
}
EXPORT_SYMBOL(tcp_inbound_md5_hash);
#endif
void tcp_done(struct sock *sk)
{
struct request_sock *req;
/* We might be called with a new socket, after
* inet_csk_prepare_forced_close() has been called
* so we can not use lockdep_sock_is_held(sk)
*/
req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
tcp_set_state(sk, TCP_CLOSE);
tcp_clear_xmit_timers(sk);
if (req)
reqsk_fastopen_remove(sk, req, false);
sk->sk_shutdown = SHUTDOWN_MASK;
if (!sock_flag(sk, SOCK_DEAD))
sk->sk_state_change(sk);
else
inet_csk_destroy_sock(sk);
}
EXPORT_SYMBOL_GPL(tcp_done);
int tcp_abort(struct sock *sk, int err)
{
if (!sk_fullsock(sk)) {
if (sk->sk_state == TCP_NEW_SYN_RECV) {
struct request_sock *req = inet_reqsk(sk);
local_bh_disable();
inet_csk_reqsk_queue_drop(req->rsk_listener, req);
local_bh_enable();
return 0;
}
return -EOPNOTSUPP;
}
/* Don't race with userspace socket closes such as tcp_close. */
lock_sock(sk);
if (sk->sk_state == TCP_LISTEN) {
tcp_set_state(sk, TCP_CLOSE);
inet_csk_listen_stop(sk);
}
/* Don't race with BH socket closes such as inet_csk_listen_stop. */
local_bh_disable();
bh_lock_sock(sk);
if (!sock_flag(sk, SOCK_DEAD)) {
sk->sk_err = err;
/* This barrier is coupled with smp_rmb() in tcp_poll() */
smp_wmb();
sk_error_report(sk);
if (tcp_need_reset(sk->sk_state))
tcp_send_active_reset(sk, GFP_ATOMIC);
tcp_done(sk);
}
bh_unlock_sock(sk);
local_bh_enable();
tcp_write_queue_purge(sk);
release_sock(sk);
return 0;
}
EXPORT_SYMBOL_GPL(tcp_abort);
extern struct tcp_congestion_ops tcp_reno;
static __initdata unsigned long thash_entries;
static int __init set_thash_entries(char *str)
{
ssize_t ret;
if (!str)
return 0;
ret = kstrtoul(str, 0, &thash_entries);
if (ret)
return 0;
return 1;
}
__setup("thash_entries=", set_thash_entries);
static void __init tcp_init_mem(void)
{
unsigned long limit = nr_free_buffer_pages() / 16;
limit = max(limit, 128UL);
sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */
sysctl_tcp_mem[1] = limit; /* 6.25 % */
sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */
}
void __init tcp_init(void)
{
int max_rshare, max_wshare, cnt;
unsigned long limit;
unsigned int i;
BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
sizeof_field(struct sk_buff, cb));
percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
inet_hashinfo_init(&tcp_hashinfo);
inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
thash_entries, 21, /* one slot per 2 MB*/
0, 64 * 1024);
tcp_hashinfo.bind_bucket_cachep =
kmem_cache_create("tcp_bind_bucket",
sizeof(struct inet_bind_bucket), 0,
SLAB_HWCACHE_ALIGN | SLAB_PANIC |
SLAB_ACCOUNT,
NULL);
/* Size and allocate the main established and bind bucket
* hash tables.
*
* The methodology is similar to that of the buffer cache.
*/
tcp_hashinfo.ehash =
alloc_large_system_hash("TCP established",
sizeof(struct inet_ehash_bucket),
thash_entries,
17, /* one slot per 128 KB of memory */
0,
NULL,
&tcp_hashinfo.ehash_mask,
0,
thash_entries ? 0 : 512 * 1024);
for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
if (inet_ehash_locks_alloc(&tcp_hashinfo))
panic("TCP: failed to alloc ehash_locks");
tcp_hashinfo.bhash =
alloc_large_system_hash("TCP bind",
sizeof(struct inet_bind_hashbucket),
tcp_hashinfo.ehash_mask + 1,
17, /* one slot per 128 KB of memory */
0,
&tcp_hashinfo.bhash_size,
NULL,
0,
64 * 1024);
tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
spin_lock_init(&tcp_hashinfo.bhash[i].lock);
INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
}
cnt = tcp_hashinfo.ehash_mask + 1;
sysctl_tcp_max_orphans = cnt / 2;
tcp_init_mem();
/* Set per-socket limits to no more than 1/128 the pressure threshold */
limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
max_wshare = min(4UL*1024*1024, limit);
max_rshare = min(6UL*1024*1024, limit);
init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
pr_info("Hash tables configured (established %u bind %u)\n",
tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
tcp_v4_init();
tcp_metrics_init();
BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
tcp_tasklet_init();
mptcp_init();
}