linux/kernel/sched.c
Peter Zijlstra da8d5089da sched: fix possible recursive rq->lock
Vaidyanathan Srinivasan reported:

 > =============================================
 > [ INFO: possible recursive locking detected ]
 > 2.6.28-autotest-tip-sv #1
 > ---------------------------------------------
 > klogd/5062 is trying to acquire lock:
 >  (&rq->lock){++..}, at: [<ffffffff8022aca2>] task_rq_lock+0x45/0x7e
 >
 > but task is already holding lock:
 >  (&rq->lock){++..}, at: [<ffffffff805f7354>] schedule+0x158/0xa31

With sched_mc at 2. (it is default-off)

Strictly speaking we'll not deadlock, because ttwu will not be able to
place the migration task on our rq, but since the code can deal with
both rqs getting unlocked, this seems the easiest way out.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-01-07 16:10:54 +01:00

9588 lines
232 KiB
C

/*
* kernel/sched.c
*
* Kernel scheduler and related syscalls
*
* Copyright (C) 1991-2002 Linus Torvalds
*
* 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
* make semaphores SMP safe
* 1998-11-19 Implemented schedule_timeout() and related stuff
* by Andrea Arcangeli
* 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
* hybrid priority-list and round-robin design with
* an array-switch method of distributing timeslices
* and per-CPU runqueues. Cleanups and useful suggestions
* by Davide Libenzi, preemptible kernel bits by Robert Love.
* 2003-09-03 Interactivity tuning by Con Kolivas.
* 2004-04-02 Scheduler domains code by Nick Piggin
* 2007-04-15 Work begun on replacing all interactivity tuning with a
* fair scheduling design by Con Kolivas.
* 2007-05-05 Load balancing (smp-nice) and other improvements
* by Peter Williams
* 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
* 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
* 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
* Thomas Gleixner, Mike Kravetz
*/
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
#include <linux/uaccess.h>
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
#include <linux/capability.h>
#include <linux/completion.h>
#include <linux/kernel_stat.h>
#include <linux/debug_locks.h>
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
#include <linux/freezer.h>
#include <linux/vmalloc.h>
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/pid_namespace.h>
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/sysctl.h>
#include <linux/syscalls.h>
#include <linux/times.h>
#include <linux/tsacct_kern.h>
#include <linux/kprobes.h>
#include <linux/delayacct.h>
#include <linux/reciprocal_div.h>
#include <linux/unistd.h>
#include <linux/pagemap.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/bootmem.h>
#include <linux/debugfs.h>
#include <linux/ctype.h>
#include <linux/ftrace.h>
#include <trace/sched.h>
#include <asm/tlb.h>
#include <asm/irq_regs.h>
#include "sched_cpupri.h"
/*
* Convert user-nice values [ -20 ... 0 ... 19 ]
* to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
* and back.
*/
#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
/*
* 'User priority' is the nice value converted to something we
* can work with better when scaling various scheduler parameters,
* it's a [ 0 ... 39 ] range.
*/
#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
/*
* Helpers for converting nanosecond timing to jiffy resolution
*/
#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
#define NICE_0_LOAD SCHED_LOAD_SCALE
#define NICE_0_SHIFT SCHED_LOAD_SHIFT
/*
* These are the 'tuning knobs' of the scheduler:
*
* default timeslice is 100 msecs (used only for SCHED_RR tasks).
* Timeslices get refilled after they expire.
*/
#define DEF_TIMESLICE (100 * HZ / 1000)
/*
* single value that denotes runtime == period, ie unlimited time.
*/
#define RUNTIME_INF ((u64)~0ULL)
DEFINE_TRACE(sched_wait_task);
DEFINE_TRACE(sched_wakeup);
DEFINE_TRACE(sched_wakeup_new);
DEFINE_TRACE(sched_switch);
DEFINE_TRACE(sched_migrate_task);
#ifdef CONFIG_SMP
/*
* Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
* Since cpu_power is a 'constant', we can use a reciprocal divide.
*/
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
return reciprocal_divide(load, sg->reciprocal_cpu_power);
}
/*
* Each time a sched group cpu_power is changed,
* we must compute its reciprocal value
*/
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
sg->__cpu_power += val;
sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif
static inline int rt_policy(int policy)
{
if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
return 1;
return 0;
}
static inline int task_has_rt_policy(struct task_struct *p)
{
return rt_policy(p->policy);
}
/*
* This is the priority-queue data structure of the RT scheduling class:
*/
struct rt_prio_array {
DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
struct list_head queue[MAX_RT_PRIO];
};
struct rt_bandwidth {
/* nests inside the rq lock: */
spinlock_t rt_runtime_lock;
ktime_t rt_period;
u64 rt_runtime;
struct hrtimer rt_period_timer;
};
static struct rt_bandwidth def_rt_bandwidth;
static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
struct rt_bandwidth *rt_b =
container_of(timer, struct rt_bandwidth, rt_period_timer);
ktime_t now;
int overrun;
int idle = 0;
for (;;) {
now = hrtimer_cb_get_time(timer);
overrun = hrtimer_forward(timer, now, rt_b->rt_period);
if (!overrun)
break;
idle = do_sched_rt_period_timer(rt_b, overrun);
}
return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}
static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
rt_b->rt_period = ns_to_ktime(period);
rt_b->rt_runtime = runtime;
spin_lock_init(&rt_b->rt_runtime_lock);
hrtimer_init(&rt_b->rt_period_timer,
CLOCK_MONOTONIC, HRTIMER_MODE_REL);
rt_b->rt_period_timer.function = sched_rt_period_timer;
}
static inline int rt_bandwidth_enabled(void)
{
return sysctl_sched_rt_runtime >= 0;
}
static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
ktime_t now;
if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
return;
if (hrtimer_active(&rt_b->rt_period_timer))
return;
spin_lock(&rt_b->rt_runtime_lock);
for (;;) {
if (hrtimer_active(&rt_b->rt_period_timer))
break;
now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
hrtimer_start_expires(&rt_b->rt_period_timer,
HRTIMER_MODE_ABS);
}
spin_unlock(&rt_b->rt_runtime_lock);
}
#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif
/*
* sched_domains_mutex serializes calls to arch_init_sched_domains,
* detach_destroy_domains and partition_sched_domains.
*/
static DEFINE_MUTEX(sched_domains_mutex);
#ifdef CONFIG_GROUP_SCHED
#include <linux/cgroup.h>
struct cfs_rq;
static LIST_HEAD(task_groups);
/* task group related information */
struct task_group {
#ifdef CONFIG_CGROUP_SCHED
struct cgroup_subsys_state css;
#endif
#ifdef CONFIG_USER_SCHED
uid_t uid;
#endif
#ifdef CONFIG_FAIR_GROUP_SCHED
/* schedulable entities of this group on each cpu */
struct sched_entity **se;
/* runqueue "owned" by this group on each cpu */
struct cfs_rq **cfs_rq;
unsigned long shares;
#endif
#ifdef CONFIG_RT_GROUP_SCHED
struct sched_rt_entity **rt_se;
struct rt_rq **rt_rq;
struct rt_bandwidth rt_bandwidth;
#endif
struct rcu_head rcu;
struct list_head list;
struct task_group *parent;
struct list_head siblings;
struct list_head children;
};
#ifdef CONFIG_USER_SCHED
/* Helper function to pass uid information to create_sched_user() */
void set_tg_uid(struct user_struct *user)
{
user->tg->uid = user->uid;
}
/*
* Root task group.
* Every UID task group (including init_task_group aka UID-0) will
* be a child to this group.
*/
struct task_group root_task_group;
#ifdef CONFIG_FAIR_GROUP_SCHED
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
#endif /* CONFIG_FAIR_GROUP_SCHED */
#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
#endif /* CONFIG_RT_GROUP_SCHED */
#else /* !CONFIG_USER_SCHED */
#define root_task_group init_task_group
#endif /* CONFIG_USER_SCHED */
/* task_group_lock serializes add/remove of task groups and also changes to
* a task group's cpu shares.
*/
static DEFINE_SPINLOCK(task_group_lock);
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
#else /* !CONFIG_USER_SCHED */
# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
#endif /* CONFIG_USER_SCHED */
/*
* A weight of 0 or 1 can cause arithmetics problems.
* A weight of a cfs_rq is the sum of weights of which entities
* are queued on this cfs_rq, so a weight of a entity should not be
* too large, so as the shares value of a task group.
* (The default weight is 1024 - so there's no practical
* limitation from this.)
*/
#define MIN_SHARES 2
#define MAX_SHARES (1UL << 18)
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif
/* Default task group.
* Every task in system belong to this group at bootup.
*/
struct task_group init_task_group;
/* return group to which a task belongs */
static inline struct task_group *task_group(struct task_struct *p)
{
struct task_group *tg;
#ifdef CONFIG_USER_SCHED
rcu_read_lock();
tg = __task_cred(p)->user->tg;
rcu_read_unlock();
#elif defined(CONFIG_CGROUP_SCHED)
tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
struct task_group, css);
#else
tg = &init_task_group;
#endif
return tg;
}
/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
{
#ifdef CONFIG_FAIR_GROUP_SCHED
p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
p->se.parent = task_group(p)->se[cpu];
#endif
#ifdef CONFIG_RT_GROUP_SCHED
p->rt.rt_rq = task_group(p)->rt_rq[cpu];
p->rt.parent = task_group(p)->rt_se[cpu];
#endif
}
#else
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
static inline struct task_group *task_group(struct task_struct *p)
{
return NULL;
}
#endif /* CONFIG_GROUP_SCHED */
/* CFS-related fields in a runqueue */
struct cfs_rq {
struct load_weight load;
unsigned long nr_running;
u64 exec_clock;
u64 min_vruntime;
struct rb_root tasks_timeline;
struct rb_node *rb_leftmost;
struct list_head tasks;
struct list_head *balance_iterator;
/*
* 'curr' points to currently running entity on this cfs_rq.
* It is set to NULL otherwise (i.e when none are currently running).
*/
struct sched_entity *curr, *next, *last;
unsigned int nr_spread_over;
#ifdef CONFIG_FAIR_GROUP_SCHED
struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
/*
* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
* a hierarchy). Non-leaf lrqs hold other higher schedulable entities
* (like users, containers etc.)
*
* leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
* list is used during load balance.
*/
struct list_head leaf_cfs_rq_list;
struct task_group *tg; /* group that "owns" this runqueue */
#ifdef CONFIG_SMP
/*
* the part of load.weight contributed by tasks
*/
unsigned long task_weight;
/*
* h_load = weight * f(tg)
*
* Where f(tg) is the recursive weight fraction assigned to
* this group.
*/
unsigned long h_load;
/*
* this cpu's part of tg->shares
*/
unsigned long shares;
/*
* load.weight at the time we set shares
*/
unsigned long rq_weight;
#endif
#endif
};
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
struct rt_prio_array active;
unsigned long rt_nr_running;
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
int highest_prio; /* highest queued rt task prio */
#endif
#ifdef CONFIG_SMP
unsigned long rt_nr_migratory;
int overloaded;
#endif
int rt_throttled;
u64 rt_time;
u64 rt_runtime;
/* Nests inside the rq lock: */
spinlock_t rt_runtime_lock;
#ifdef CONFIG_RT_GROUP_SCHED
unsigned long rt_nr_boosted;
struct rq *rq;
struct list_head leaf_rt_rq_list;
struct task_group *tg;
struct sched_rt_entity *rt_se;
#endif
};
#ifdef CONFIG_SMP
/*
* We add the notion of a root-domain which will be used to define per-domain
* variables. Each exclusive cpuset essentially defines an island domain by
* fully partitioning the member cpus from any other cpuset. Whenever a new
* exclusive cpuset is created, we also create and attach a new root-domain
* object.
*
*/
struct root_domain {
atomic_t refcount;
cpumask_var_t span;
cpumask_var_t online;
/*
* The "RT overload" flag: it gets set if a CPU has more than
* one runnable RT task.
*/
cpumask_var_t rto_mask;
atomic_t rto_count;
#ifdef CONFIG_SMP
struct cpupri cpupri;
#endif
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
/*
* Preferred wake up cpu nominated by sched_mc balance that will be
* used when most cpus are idle in the system indicating overall very
* low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
*/
unsigned int sched_mc_preferred_wakeup_cpu;
#endif
};
/*
* By default the system creates a single root-domain with all cpus as
* members (mimicking the global state we have today).
*/
static struct root_domain def_root_domain;
#endif
/*
* This is the main, per-CPU runqueue data structure.
*
* Locking rule: those places that want to lock multiple runqueues
* (such as the load balancing or the thread migration code), lock
* acquire operations must be ordered by ascending &runqueue.
*/
struct rq {
/* runqueue lock: */
spinlock_t lock;
/*
* nr_running and cpu_load should be in the same cacheline because
* remote CPUs use both these fields when doing load calculation.
*/
unsigned long nr_running;
#define CPU_LOAD_IDX_MAX 5
unsigned long cpu_load[CPU_LOAD_IDX_MAX];
unsigned char idle_at_tick;
#ifdef CONFIG_NO_HZ
unsigned long last_tick_seen;
unsigned char in_nohz_recently;
#endif
/* capture load from *all* tasks on this cpu: */
struct load_weight load;
unsigned long nr_load_updates;
u64 nr_switches;
struct cfs_rq cfs;
struct rt_rq rt;
#ifdef CONFIG_FAIR_GROUP_SCHED
/* list of leaf cfs_rq on this cpu: */
struct list_head leaf_cfs_rq_list;
#endif
#ifdef CONFIG_RT_GROUP_SCHED
struct list_head leaf_rt_rq_list;
#endif
/*
* This is part of a global counter where only the total sum
* over all CPUs matters. A task can increase this counter on
* one CPU and if it got migrated afterwards it may decrease
* it on another CPU. Always updated under the runqueue lock:
*/
unsigned long nr_uninterruptible;
struct task_struct *curr, *idle;
unsigned long next_balance;
struct mm_struct *prev_mm;
u64 clock;
atomic_t nr_iowait;
#ifdef CONFIG_SMP
struct root_domain *rd;
struct sched_domain *sd;
/* For active balancing */
int active_balance;
int push_cpu;
/* cpu of this runqueue: */
int cpu;
int online;
unsigned long avg_load_per_task;
struct task_struct *migration_thread;
struct list_head migration_queue;
#endif
#ifdef CONFIG_SCHED_HRTICK
#ifdef CONFIG_SMP
int hrtick_csd_pending;
struct call_single_data hrtick_csd;
#endif
struct hrtimer hrtick_timer;
#endif
#ifdef CONFIG_SCHEDSTATS
/* latency stats */
struct sched_info rq_sched_info;
unsigned long long rq_cpu_time;
/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
/* sys_sched_yield() stats */
unsigned int yld_exp_empty;
unsigned int yld_act_empty;
unsigned int yld_both_empty;
unsigned int yld_count;
/* schedule() stats */
unsigned int sched_switch;
unsigned int sched_count;
unsigned int sched_goidle;
/* try_to_wake_up() stats */
unsigned int ttwu_count;
unsigned int ttwu_local;
/* BKL stats */
unsigned int bkl_count;
#endif
};
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
{
rq->curr->sched_class->check_preempt_curr(rq, p, sync);
}
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
return rq->cpu;
#else
return 0;
#endif
}
/*
* The domain tree (rq->sd) is protected by RCU's quiescent state transition.
* See detach_destroy_domains: synchronize_sched for details.
*
* The domain tree of any CPU may only be accessed from within
* preempt-disabled sections.
*/
#define for_each_domain(cpu, __sd) \
for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
#define this_rq() (&__get_cpu_var(runqueues))
#define task_rq(p) cpu_rq(task_cpu(p))
#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
static inline void update_rq_clock(struct rq *rq)
{
rq->clock = sched_clock_cpu(cpu_of(rq));
}
/*
* Tunables that become constants when CONFIG_SCHED_DEBUG is off:
*/
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif
/**
* runqueue_is_locked
*
* Returns true if the current cpu runqueue is locked.
* This interface allows printk to be called with the runqueue lock
* held and know whether or not it is OK to wake up the klogd.
*/
int runqueue_is_locked(void)
{
int cpu = get_cpu();
struct rq *rq = cpu_rq(cpu);
int ret;
ret = spin_is_locked(&rq->lock);
put_cpu();
return ret;
}
/*
* Debugging: various feature bits
*/
#define SCHED_FEAT(name, enabled) \
__SCHED_FEAT_##name ,
enum {
#include "sched_features.h"
};
#undef SCHED_FEAT
#define SCHED_FEAT(name, enabled) \
(1UL << __SCHED_FEAT_##name) * enabled |
const_debug unsigned int sysctl_sched_features =
#include "sched_features.h"
0;
#undef SCHED_FEAT
#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled) \
#name ,
static __read_mostly char *sched_feat_names[] = {
#include "sched_features.h"
NULL
};
#undef SCHED_FEAT
static int sched_feat_show(struct seq_file *m, void *v)
{
int i;
for (i = 0; sched_feat_names[i]; i++) {
if (!(sysctl_sched_features & (1UL << i)))
seq_puts(m, "NO_");
seq_printf(m, "%s ", sched_feat_names[i]);
}
seq_puts(m, "\n");
return 0;
}
static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
size_t cnt, loff_t *ppos)
{
char buf[64];
char *cmp = buf;
int neg = 0;
int i;
if (cnt > 63)
cnt = 63;
if (copy_from_user(&buf, ubuf, cnt))
return -EFAULT;
buf[cnt] = 0;
if (strncmp(buf, "NO_", 3) == 0) {
neg = 1;
cmp += 3;
}
for (i = 0; sched_feat_names[i]; i++) {
int len = strlen(sched_feat_names[i]);
if (strncmp(cmp, sched_feat_names[i], len) == 0) {
if (neg)
sysctl_sched_features &= ~(1UL << i);
else
sysctl_sched_features |= (1UL << i);
break;
}
}
if (!sched_feat_names[i])
return -EINVAL;
filp->f_pos += cnt;
return cnt;
}
static int sched_feat_open(struct inode *inode, struct file *filp)
{
return single_open(filp, sched_feat_show, NULL);
}
static struct file_operations sched_feat_fops = {
.open = sched_feat_open,
.write = sched_feat_write,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static __init int sched_init_debug(void)
{
debugfs_create_file("sched_features", 0644, NULL, NULL,
&sched_feat_fops);
return 0;
}
late_initcall(sched_init_debug);
#endif
#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
/*
* Number of tasks to iterate in a single balance run.
* Limited because this is done with IRQs disabled.
*/
const_debug unsigned int sysctl_sched_nr_migrate = 32;
/*
* ratelimit for updating the group shares.
* default: 0.25ms
*/
unsigned int sysctl_sched_shares_ratelimit = 250000;
/*
* Inject some fuzzyness into changing the per-cpu group shares
* this avoids remote rq-locks at the expense of fairness.
* default: 4
*/
unsigned int sysctl_sched_shares_thresh = 4;
/*
* period over which we measure -rt task cpu usage in us.
* default: 1s
*/
unsigned int sysctl_sched_rt_period = 1000000;
static __read_mostly int scheduler_running;
/*
* part of the period that we allow rt tasks to run in us.
* default: 0.95s
*/
int sysctl_sched_rt_runtime = 950000;
static inline u64 global_rt_period(void)
{
return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}
static inline u64 global_rt_runtime(void)
{
if (sysctl_sched_rt_runtime < 0)
return RUNTIME_INF;
return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
#ifndef prepare_arch_switch
# define prepare_arch_switch(next) do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev) do { } while (0)
#endif
static inline int task_current(struct rq *rq, struct task_struct *p)
{
return rq->curr == p;
}
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
static inline int task_running(struct rq *rq, struct task_struct *p)
{
return task_current(rq, p);
}
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
{
}
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
{
#ifdef CONFIG_DEBUG_SPINLOCK
/* this is a valid case when another task releases the spinlock */
rq->lock.owner = current;
#endif
/*
* If we are tracking spinlock dependencies then we have to
* fix up the runqueue lock - which gets 'carried over' from
* prev into current:
*/
spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
spin_unlock_irq(&rq->lock);
}
#else /* __ARCH_WANT_UNLOCKED_CTXSW */
static inline int task_running(struct rq *rq, struct task_struct *p)
{
#ifdef CONFIG_SMP
return p->oncpu;
#else
return task_current(rq, p);
#endif
}
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
{
#ifdef CONFIG_SMP
/*
* We can optimise this out completely for !SMP, because the
* SMP rebalancing from interrupt is the only thing that cares
* here.
*/
next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
spin_unlock_irq(&rq->lock);
#else
spin_unlock(&rq->lock);
#endif
}
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
{
#ifdef CONFIG_SMP
/*
* After ->oncpu is cleared, the task can be moved to a different CPU.
* We must ensure this doesn't happen until the switch is completely
* finished.
*/
smp_wmb();
prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
local_irq_enable();
#endif
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
/*
* __task_rq_lock - lock the runqueue a given task resides on.
* Must be called interrupts disabled.
*/
static inline struct rq *__task_rq_lock(struct task_struct *p)
__acquires(rq->lock)
{
for (;;) {
struct rq *rq = task_rq(p);
spin_lock(&rq->lock);
if (likely(rq == task_rq(p)))
return rq;
spin_unlock(&rq->lock);
}
}
/*
* task_rq_lock - lock the runqueue a given task resides on and disable
* interrupts. Note the ordering: we can safely lookup the task_rq without
* explicitly disabling preemption.
*/
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
__acquires(rq->lock)
{
struct rq *rq;
for (;;) {
local_irq_save(*flags);
rq = task_rq(p);
spin_lock(&rq->lock);
if (likely(rq == task_rq(p)))
return rq;
spin_unlock_irqrestore(&rq->lock, *flags);
}
}
void task_rq_unlock_wait(struct task_struct *p)
{
struct rq *rq = task_rq(p);
smp_mb(); /* spin-unlock-wait is not a full memory barrier */
spin_unlock_wait(&rq->lock);
}
static void __task_rq_unlock(struct rq *rq)
__releases(rq->lock)
{
spin_unlock(&rq->lock);
}
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
__releases(rq->lock)
{
spin_unlock_irqrestore(&rq->lock, *flags);
}
/*
* this_rq_lock - lock this runqueue and disable interrupts.
*/
static struct rq *this_rq_lock(void)
__acquires(rq->lock)
{
struct rq *rq;
local_irq_disable();
rq = this_rq();
spin_lock(&rq->lock);
return rq;
}
#ifdef CONFIG_SCHED_HRTICK
/*
* Use HR-timers to deliver accurate preemption points.
*
* Its all a bit involved since we cannot program an hrt while holding the
* rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
* reschedule event.
*
* When we get rescheduled we reprogram the hrtick_timer outside of the
* rq->lock.
*/
/*
* Use hrtick when:
* - enabled by features
* - hrtimer is actually high res
*/
static inline int hrtick_enabled(struct rq *rq)
{
if (!sched_feat(HRTICK))
return 0;
if (!cpu_active(cpu_of(rq)))
return 0;
return hrtimer_is_hres_active(&rq->hrtick_timer);
}
static void hrtick_clear(struct rq *rq)
{
if (hrtimer_active(&rq->hrtick_timer))
hrtimer_cancel(&rq->hrtick_timer);
}
/*
* High-resolution timer tick.
* Runs from hardirq context with interrupts disabled.
*/
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
struct rq *rq = container_of(timer, struct rq, hrtick_timer);
WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
spin_lock(&rq->lock);
update_rq_clock(rq);
rq->curr->sched_class->task_tick(rq, rq->curr, 1);
spin_unlock(&rq->lock);
return HRTIMER_NORESTART;
}
#ifdef CONFIG_SMP
/*
* called from hardirq (IPI) context
*/
static void __hrtick_start(void *arg)
{
struct rq *rq = arg;
spin_lock(&rq->lock);
hrtimer_restart(&rq->hrtick_timer);
rq->hrtick_csd_pending = 0;
spin_unlock(&rq->lock);
}
/*
* Called to set the hrtick timer state.
*
* called with rq->lock held and irqs disabled
*/
static void hrtick_start(struct rq *rq, u64 delay)
{
struct hrtimer *timer = &rq->hrtick_timer;
ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
hrtimer_set_expires(timer, time);
if (rq == this_rq()) {
hrtimer_restart(timer);
} else if (!rq->hrtick_csd_pending) {
__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
rq->hrtick_csd_pending = 1;
}
}
static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
int cpu = (int)(long)hcpu;
switch (action) {
case CPU_UP_CANCELED:
case CPU_UP_CANCELED_FROZEN:
case CPU_DOWN_PREPARE:
case CPU_DOWN_PREPARE_FROZEN:
case CPU_DEAD:
case CPU_DEAD_FROZEN:
hrtick_clear(cpu_rq(cpu));
return NOTIFY_OK;
}
return NOTIFY_DONE;
}
static __init void init_hrtick(void)
{
hotcpu_notifier(hotplug_hrtick, 0);
}
#else
/*
* Called to set the hrtick timer state.
*
* called with rq->lock held and irqs disabled
*/
static void hrtick_start(struct rq *rq, u64 delay)
{
hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
}
static inline void init_hrtick(void)
{
}
#endif /* CONFIG_SMP */
static void init_rq_hrtick(struct rq *rq)
{
#ifdef CONFIG_SMP
rq->hrtick_csd_pending = 0;
rq->hrtick_csd.flags = 0;
rq->hrtick_csd.func = __hrtick_start;
rq->hrtick_csd.info = rq;
#endif
hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
rq->hrtick_timer.function = hrtick;
}
#else /* CONFIG_SCHED_HRTICK */
static inline void hrtick_clear(struct rq *rq)
{
}
static inline void init_rq_hrtick(struct rq *rq)
{
}
static inline void init_hrtick(void)
{
}
#endif /* CONFIG_SCHED_HRTICK */
/*
* resched_task - mark a task 'to be rescheduled now'.
*
* On UP this means the setting of the need_resched flag, on SMP it
* might also involve a cross-CPU call to trigger the scheduler on
* the target CPU.
*/
#ifdef CONFIG_SMP
#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif
static void resched_task(struct task_struct *p)
{
int cpu;
assert_spin_locked(&task_rq(p)->lock);
if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
return;
set_tsk_thread_flag(p, TIF_NEED_RESCHED);
cpu = task_cpu(p);
if (cpu == smp_processor_id())
return;
/* NEED_RESCHED must be visible before we test polling */
smp_mb();
if (!tsk_is_polling(p))
smp_send_reschedule(cpu);
}
static void resched_cpu(int cpu)
{
struct rq *rq = cpu_rq(cpu);
unsigned long flags;
if (!spin_trylock_irqsave(&rq->lock, flags))
return;
resched_task(cpu_curr(cpu));
spin_unlock_irqrestore(&rq->lock, flags);
}
#ifdef CONFIG_NO_HZ
/*
* When add_timer_on() enqueues a timer into the timer wheel of an
* idle CPU then this timer might expire before the next timer event
* which is scheduled to wake up that CPU. In case of a completely
* idle system the next event might even be infinite time into the
* future. wake_up_idle_cpu() ensures that the CPU is woken up and
* leaves the inner idle loop so the newly added timer is taken into
* account when the CPU goes back to idle and evaluates the timer
* wheel for the next timer event.
*/
void wake_up_idle_cpu(int cpu)
{
struct rq *rq = cpu_rq(cpu);
if (cpu == smp_processor_id())
return;
/*
* This is safe, as this function is called with the timer
* wheel base lock of (cpu) held. When the CPU is on the way
* to idle and has not yet set rq->curr to idle then it will
* be serialized on the timer wheel base lock and take the new
* timer into account automatically.
*/
if (rq->curr != rq->idle)
return;
/*
* We can set TIF_RESCHED on the idle task of the other CPU
* lockless. The worst case is that the other CPU runs the
* idle task through an additional NOOP schedule()
*/
set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
/* NEED_RESCHED must be visible before we test polling */
smp_mb();
if (!tsk_is_polling(rq->idle))
smp_send_reschedule(cpu);
}
#endif /* CONFIG_NO_HZ */
#else /* !CONFIG_SMP */
static void resched_task(struct task_struct *p)
{
assert_spin_locked(&task_rq(p)->lock);
set_tsk_need_resched(p);
}
#endif /* CONFIG_SMP */
#if BITS_PER_LONG == 32
# define WMULT_CONST (~0UL)
#else
# define WMULT_CONST (1UL << 32)
#endif
#define WMULT_SHIFT 32
/*
* Shift right and round:
*/
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
/*
* delta *= weight / lw
*/
static unsigned long
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
struct load_weight *lw)
{
u64 tmp;
if (!lw->inv_weight) {
if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
lw->inv_weight = 1;
else
lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
/ (lw->weight+1);
}
tmp = (u64)delta_exec * weight;
/*
* Check whether we'd overflow the 64-bit multiplication:
*/
if (unlikely(tmp > WMULT_CONST))
tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
WMULT_SHIFT/2);
else
tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
}
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
{
lw->weight += inc;
lw->inv_weight = 0;
}
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
{
lw->weight -= dec;
lw->inv_weight = 0;
}
/*
* To aid in avoiding the subversion of "niceness" due to uneven distribution
* of tasks with abnormal "nice" values across CPUs the contribution that
* each task makes to its run queue's load is weighted according to its
* scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
* scaled version of the new time slice allocation that they receive on time
* slice expiry etc.
*/
#define WEIGHT_IDLEPRIO 2
#define WMULT_IDLEPRIO (1 << 31)
/*
* Nice levels are multiplicative, with a gentle 10% change for every
* nice level changed. I.e. when a CPU-bound task goes from nice 0 to
* nice 1, it will get ~10% less CPU time than another CPU-bound task
* that remained on nice 0.
*
* The "10% effect" is relative and cumulative: from _any_ nice level,
* if you go up 1 level, it's -10% CPU usage, if you go down 1 level
* it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
* If a task goes up by ~10% and another task goes down by ~10% then
* the relative distance between them is ~25%.)
*/
static const int prio_to_weight[40] = {
/* -20 */ 88761, 71755, 56483, 46273, 36291,
/* -15 */ 29154, 23254, 18705, 14949, 11916,
/* -10 */ 9548, 7620, 6100, 4904, 3906,
/* -5 */ 3121, 2501, 1991, 1586, 1277,
/* 0 */ 1024, 820, 655, 526, 423,
/* 5 */ 335, 272, 215, 172, 137,
/* 10 */ 110, 87, 70, 56, 45,
/* 15 */ 36, 29, 23, 18, 15,
};
/*
* Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
*
* In cases where the weight does not change often, we can use the
* precalculated inverse to speed up arithmetics by turning divisions
* into multiplications:
*/
static const u32 prio_to_wmult[40] = {
/* -20 */ 48388, 59856, 76040, 92818, 118348,
/* -15 */ 147320, 184698, 229616, 287308, 360437,
/* -10 */ 449829, 563644, 704093, 875809, 1099582,
/* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
/* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
/* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
/* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
/* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
};
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
/*
* runqueue iterator, to support SMP load-balancing between different
* scheduling classes, without having to expose their internal data
* structures to the load-balancing proper:
*/
struct rq_iterator {
void *arg;
struct task_struct *(*start)(void *);
struct task_struct *(*next)(void *);
};
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
unsigned long max_load_move, struct sched_domain *sd,
enum cpu_idle_type idle, int *all_pinned,
int *this_best_prio, struct rq_iterator *iterator);
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
struct sched_domain *sd, enum cpu_idle_type idle,
struct rq_iterator *iterator);
#endif
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
#endif
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
update_load_add(&rq->load, load);
}
static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
update_load_sub(&rq->load, load);
}
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
typedef int (*tg_visitor)(struct task_group *, void *);
/*
* Iterate the full tree, calling @down when first entering a node and @up when
* leaving it for the final time.
*/
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
{
struct task_group *parent, *child;
int ret;
rcu_read_lock();
parent = &root_task_group;
down:
ret = (*down)(parent, data);
if (ret)
goto out_unlock;
list_for_each_entry_rcu(child, &parent->children, siblings) {
parent = child;
goto down;
up:
continue;
}
ret = (*up)(parent, data);
if (ret)
goto out_unlock;
child = parent;
parent = parent->parent;
if (parent)
goto up;
out_unlock:
rcu_read_unlock();
return ret;
}
static int tg_nop(struct task_group *tg, void *data)
{
return 0;
}
#endif
#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
static unsigned long cpu_avg_load_per_task(int cpu)
{
struct rq *rq = cpu_rq(cpu);
unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
if (nr_running)
rq->avg_load_per_task = rq->load.weight / nr_running;
else
rq->avg_load_per_task = 0;
return rq->avg_load_per_task;
}
#ifdef CONFIG_FAIR_GROUP_SCHED
static void __set_se_shares(struct sched_entity *se, unsigned long shares);
/*
* Calculate and set the cpu's group shares.
*/
static void
update_group_shares_cpu(struct task_group *tg, int cpu,
unsigned long sd_shares, unsigned long sd_rq_weight)
{
unsigned long shares;
unsigned long rq_weight;
if (!tg->se[cpu])
return;
rq_weight = tg->cfs_rq[cpu]->rq_weight;
/*
* \Sum shares * rq_weight
* shares = -----------------------
* \Sum rq_weight
*
*/
shares = (sd_shares * rq_weight) / sd_rq_weight;
shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
if (abs(shares - tg->se[cpu]->load.weight) >
sysctl_sched_shares_thresh) {
struct rq *rq = cpu_rq(cpu);
unsigned long flags;
spin_lock_irqsave(&rq->lock, flags);
tg->cfs_rq[cpu]->shares = shares;
__set_se_shares(tg->se[cpu], shares);
spin_unlock_irqrestore(&rq->lock, flags);
}
}
/*
* Re-compute the task group their per cpu shares over the given domain.
* This needs to be done in a bottom-up fashion because the rq weight of a
* parent group depends on the shares of its child groups.
*/
static int tg_shares_up(struct task_group *tg, void *data)
{
unsigned long weight, rq_weight = 0;
unsigned long shares = 0;
struct sched_domain *sd = data;
int i;
for_each_cpu(i, sched_domain_span(sd)) {
/*
* If there are currently no tasks on the cpu pretend there
* is one of average load so that when a new task gets to
* run here it will not get delayed by group starvation.
*/
weight = tg->cfs_rq[i]->load.weight;
if (!weight)
weight = NICE_0_LOAD;
tg->cfs_rq[i]->rq_weight = weight;
rq_weight += weight;
shares += tg->cfs_rq[i]->shares;
}
if ((!shares && rq_weight) || shares > tg->shares)
shares = tg->shares;
if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
shares = tg->shares;
for_each_cpu(i, sched_domain_span(sd))
update_group_shares_cpu(tg, i, shares, rq_weight);
return 0;
}
/*
* Compute the cpu's hierarchical load factor for each task group.
* This needs to be done in a top-down fashion because the load of a child
* group is a fraction of its parents load.
*/
static int tg_load_down(struct task_group *tg, void *data)
{
unsigned long load;
long cpu = (long)data;
if (!tg->parent) {
load = cpu_rq(cpu)->load.weight;
} else {
load = tg->parent->cfs_rq[cpu]->h_load;
load *= tg->cfs_rq[cpu]->shares;
load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
}
tg->cfs_rq[cpu]->h_load = load;
return 0;
}
static void update_shares(struct sched_domain *sd)
{
u64 now = cpu_clock(raw_smp_processor_id());
s64 elapsed = now - sd->last_update;
if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
sd->last_update = now;
walk_tg_tree(tg_nop, tg_shares_up, sd);
}
}
static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
spin_unlock(&rq->lock);
update_shares(sd);
spin_lock(&rq->lock);
}
static void update_h_load(long cpu)
{
walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
}
#else
static inline void update_shares(struct sched_domain *sd)
{
}
static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
}
#endif
/*
* double_lock_balance - lock the busiest runqueue, this_rq is locked already.
*/
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
__releases(this_rq->lock)
__acquires(busiest->lock)
__acquires(this_rq->lock)
{
int ret = 0;
if (unlikely(!irqs_disabled())) {
/* printk() doesn't work good under rq->lock */
spin_unlock(&this_rq->lock);
BUG_ON(1);
}
if (unlikely(!spin_trylock(&busiest->lock))) {
if (busiest < this_rq) {
spin_unlock(&this_rq->lock);
spin_lock(&busiest->lock);
spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
ret = 1;
} else
spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
}
return ret;
}
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
__releases(busiest->lock)
{
spin_unlock(&busiest->lock);
lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
#endif
#ifdef CONFIG_FAIR_GROUP_SCHED
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
#ifdef CONFIG_SMP
cfs_rq->shares = shares;
#endif
}
#endif
#include "sched_stats.h"
#include "sched_idletask.c"
#include "sched_fair.c"
#include "sched_rt.c"
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif
#define sched_class_highest (&rt_sched_class)
#define for_each_class(class) \
for (class = sched_class_highest; class; class = class->next)
static void inc_nr_running(struct rq *rq)
{
rq->nr_running++;
}
static void dec_nr_running(struct rq *rq)
{
rq->nr_running--;
}
static void set_load_weight(struct task_struct *p)
{
if (task_has_rt_policy(p)) {
p->se.load.weight = prio_to_weight[0] * 2;
p->se.load.inv_weight = prio_to_wmult[0] >> 1;
return;
}
/*
* SCHED_IDLE tasks get minimal weight:
*/
if (p->policy == SCHED_IDLE) {
p->se.load.weight = WEIGHT_IDLEPRIO;
p->se.load.inv_weight = WMULT_IDLEPRIO;
return;
}
p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
}
static void update_avg(u64 *avg, u64 sample)
{
s64 diff = sample - *avg;
*avg += diff >> 3;
}
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
{
sched_info_queued(p);
p->sched_class->enqueue_task(rq, p, wakeup);
p->se.on_rq = 1;
}
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
{
if (sleep && p->se.last_wakeup) {
update_avg(&p->se.avg_overlap,
p->se.sum_exec_runtime - p->se.last_wakeup);
p->se.last_wakeup = 0;
}
sched_info_dequeued(p);
p->sched_class->dequeue_task(rq, p, sleep);
p->se.on_rq = 0;
}
/*
* __normal_prio - return the priority that is based on the static prio
*/
static inline int __normal_prio(struct task_struct *p)
{
return p->static_prio;
}
/*
* Calculate the expected normal priority: i.e. priority
* without taking RT-inheritance into account. Might be
* boosted by interactivity modifiers. Changes upon fork,
* setprio syscalls, and whenever the interactivity
* estimator recalculates.
*/
static inline int normal_prio(struct task_struct *p)
{
int prio;
if (task_has_rt_policy(p))
prio = MAX_RT_PRIO-1 - p->rt_priority;
else
prio = __normal_prio(p);
return prio;
}
/*
* Calculate the current priority, i.e. the priority
* taken into account by the scheduler. This value might
* be boosted by RT tasks, or might be boosted by
* interactivity modifiers. Will be RT if the task got
* RT-boosted. If not then it returns p->normal_prio.
*/
static int effective_prio(struct task_struct *p)
{
p->normal_prio = normal_prio(p);
/*
* If we are RT tasks or we were boosted to RT priority,
* keep the priority unchanged. Otherwise, update priority
* to the normal priority:
*/
if (!rt_prio(p->prio))
return p->normal_prio;
return p->prio;
}
/*
* activate_task - move a task to the runqueue.
*/
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
{
if (task_contributes_to_load(p))
rq->nr_uninterruptible--;
enqueue_task(rq, p, wakeup);
inc_nr_running(rq);
}
/*
* deactivate_task - remove a task from the runqueue.
*/
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
{
if (task_contributes_to_load(p))
rq->nr_uninterruptible++;
dequeue_task(rq, p, sleep);
dec_nr_running(rq);
}
/**
* task_curr - is this task currently executing on a CPU?
* @p: the task in question.
*/
inline int task_curr(const struct task_struct *p)
{
return cpu_curr(task_cpu(p)) == p;
}
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
set_task_rq(p, cpu);
#ifdef CONFIG_SMP
/*
* After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
* successfuly executed on another CPU. We must ensure that updates of
* per-task data have been completed by this moment.
*/
smp_wmb();
task_thread_info(p)->cpu = cpu;
#endif
}
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
const struct sched_class *prev_class,
int oldprio, int running)
{
if (prev_class != p->sched_class) {
if (prev_class->switched_from)
prev_class->switched_from(rq, p, running);
p->sched_class->switched_to(rq, p, running);
} else
p->sched_class->prio_changed(rq, p, oldprio, running);
}
#ifdef CONFIG_SMP
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
return cpu_rq(cpu)->load.weight;
}
/*
* Is this task likely cache-hot:
*/
static int
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
s64 delta;
/*
* Buddy candidates are cache hot:
*/
if (sched_feat(CACHE_HOT_BUDDY) &&
(&p->se == cfs_rq_of(&p->se)->next ||
&p->se == cfs_rq_of(&p->se)->last))
return 1;
if (p->sched_class != &fair_sched_class)
return 0;
if (sysctl_sched_migration_cost == -1)
return 1;
if (sysctl_sched_migration_cost == 0)
return 0;
delta = now - p->se.exec_start;
return delta < (s64)sysctl_sched_migration_cost;
}
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
{
int old_cpu = task_cpu(p);
struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
struct cfs_rq *old_cfsrq = task_cfs_rq(p),
*new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
u64 clock_offset;
clock_offset = old_rq->clock - new_rq->clock;
trace_sched_migrate_task(p, task_cpu(p), new_cpu);
#ifdef CONFIG_SCHEDSTATS
if (p->se.wait_start)
p->se.wait_start -= clock_offset;
if (p->se.sleep_start)
p->se.sleep_start -= clock_offset;
if (p->se.block_start)
p->se.block_start -= clock_offset;
if (old_cpu != new_cpu) {
schedstat_inc(p, se.nr_migrations);
if (task_hot(p, old_rq->clock, NULL))
schedstat_inc(p, se.nr_forced2_migrations);
}
#endif
p->se.vruntime -= old_cfsrq->min_vruntime -
new_cfsrq->min_vruntime;
__set_task_cpu(p, new_cpu);
}
struct migration_req {
struct list_head list;
struct task_struct *task;
int dest_cpu;
struct completion done;
};
/*
* The task's runqueue lock must be held.
* Returns true if you have to wait for migration thread.
*/
static int
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
{
struct rq *rq = task_rq(p);
/*
* If the task is not on a runqueue (and not running), then
* it is sufficient to simply update the task's cpu field.
*/
if (!p->se.on_rq && !task_running(rq, p)) {
set_task_cpu(p, dest_cpu);
return 0;
}
init_completion(&req->done);
req->task = p;
req->dest_cpu = dest_cpu;
list_add(&req->list, &rq->migration_queue);
return 1;
}
/*
* wait_task_inactive - wait for a thread to unschedule.
*
* If @match_state is nonzero, it's the @p->state value just checked and
* not expected to change. If it changes, i.e. @p might have woken up,
* then return zero. When we succeed in waiting for @p to be off its CPU,
* we return a positive number (its total switch count). If a second call
* a short while later returns the same number, the caller can be sure that
* @p has remained unscheduled the whole time.
*
* The caller must ensure that the task *will* unschedule sometime soon,
* else this function might spin for a *long* time. This function can't
* be called with interrupts off, or it may introduce deadlock with
* smp_call_function() if an IPI is sent by the same process we are
* waiting to become inactive.
*/
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
{
unsigned long flags;
int running, on_rq;
unsigned long ncsw;
struct rq *rq;
for (;;) {
/*
* We do the initial early heuristics without holding
* any task-queue locks at all. We'll only try to get
* the runqueue lock when things look like they will
* work out!
*/
rq = task_rq(p);
/*
* If the task is actively running on another CPU
* still, just relax and busy-wait without holding
* any locks.
*
* NOTE! Since we don't hold any locks, it's not
* even sure that "rq" stays as the right runqueue!
* But we don't care, since "task_running()" will
* return false if the runqueue has changed and p
* is actually now running somewhere else!
*/
while (task_running(rq, p)) {
if (match_state && unlikely(p->state != match_state))
return 0;
cpu_relax();
}
/*
* Ok, time to look more closely! We need the rq
* lock now, to be *sure*. If we're wrong, we'll
* just go back and repeat.
*/
rq = task_rq_lock(p, &flags);
trace_sched_wait_task(rq, p);
running = task_running(rq, p);
on_rq = p->se.on_rq;
ncsw = 0;
if (!match_state || p->state == match_state)
ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
task_rq_unlock(rq, &flags);
/*
* If it changed from the expected state, bail out now.
*/
if (unlikely(!ncsw))
break;
/*
* Was it really running after all now that we
* checked with the proper locks actually held?
*
* Oops. Go back and try again..
*/
if (unlikely(running)) {
cpu_relax();
continue;
}
/*
* It's not enough that it's not actively running,
* it must be off the runqueue _entirely_, and not
* preempted!
*
* So if it wa still runnable (but just not actively
* running right now), it's preempted, and we should
* yield - it could be a while.
*/
if (unlikely(on_rq)) {
schedule_timeout_uninterruptible(1);
continue;
}
/*
* Ahh, all good. It wasn't running, and it wasn't
* runnable, which means that it will never become
* running in the future either. We're all done!
*/
break;
}
return ncsw;
}
/***
* kick_process - kick a running thread to enter/exit the kernel
* @p: the to-be-kicked thread
*
* Cause a process which is running on another CPU to enter
* kernel-mode, without any delay. (to get signals handled.)
*
* NOTE: this function doesnt have to take the runqueue lock,
* because all it wants to ensure is that the remote task enters
* the kernel. If the IPI races and the task has been migrated
* to another CPU then no harm is done and the purpose has been
* achieved as well.
*/
void kick_process(struct task_struct *p)
{
int cpu;
preempt_disable();
cpu = task_cpu(p);
if ((cpu != smp_processor_id()) && task_curr(p))
smp_send_reschedule(cpu);
preempt_enable();
}
/*
* Return a low guess at the load of a migration-source cpu weighted
* according to the scheduling class and "nice" value.
*
* We want to under-estimate the load of migration sources, to
* balance conservatively.
*/
static unsigned long source_load(int cpu, int type)
{
struct rq *rq = cpu_rq(cpu);
unsigned long total = weighted_cpuload(cpu);
if (type == 0 || !sched_feat(LB_BIAS))
return total;
return min(rq->cpu_load[type-1], total);
}
/*
* Return a high guess at the load of a migration-target cpu weighted
* according to the scheduling class and "nice" value.
*/
static unsigned long target_load(int cpu, int type)
{
struct rq *rq = cpu_rq(cpu);
unsigned long total = weighted_cpuload(cpu);
if (type == 0 || !sched_feat(LB_BIAS))
return total;
return max(rq->cpu_load[type-1], total);
}
/*
* find_idlest_group finds and returns the least busy CPU group within the
* domain.
*/
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
unsigned long min_load = ULONG_MAX, this_load = 0;
int load_idx = sd->forkexec_idx;
int imbalance = 100 + (sd->imbalance_pct-100)/2;
do {
unsigned long load, avg_load;
int local_group;
int i;
/* Skip over this group if it has no CPUs allowed */
if (!cpumask_intersects(sched_group_cpus(group),
&p->cpus_allowed))
continue;
local_group = cpumask_test_cpu(this_cpu,
sched_group_cpus(group));
/* Tally up the load of all CPUs in the group */
avg_load = 0;
for_each_cpu(i, sched_group_cpus(group)) {
/* Bias balancing toward cpus of our domain */
if (local_group)
load = source_load(i, load_idx);
else
load = target_load(i, load_idx);
avg_load += load;
}
/* Adjust by relative CPU power of the group */
avg_load = sg_div_cpu_power(group,
avg_load * SCHED_LOAD_SCALE);
if (local_group) {
this_load = avg_load;
this = group;
} else if (avg_load < min_load) {
min_load = avg_load;
idlest = group;
}
} while (group = group->next, group != sd->groups);
if (!idlest || 100*this_load < imbalance*min_load)
return NULL;
return idlest;
}
/*
* find_idlest_cpu - find the idlest cpu among the cpus in group.
*/
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
{
unsigned long load, min_load = ULONG_MAX;
int idlest = -1;
int i;
/* Traverse only the allowed CPUs */
for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
load = weighted_cpuload(i);
if (load < min_load || (load == min_load && i == this_cpu)) {
min_load = load;
idlest = i;
}
}
return idlest;
}
/*
* sched_balance_self: balance the current task (running on cpu) in domains
* that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
* SD_BALANCE_EXEC.
*
* Balance, ie. select the least loaded group.
*
* Returns the target CPU number, or the same CPU if no balancing is needed.
*
* preempt must be disabled.
*/
static int sched_balance_self(int cpu, int flag)
{
struct task_struct *t = current;
struct sched_domain *tmp, *sd = NULL;
for_each_domain(cpu, tmp) {
/*
* If power savings logic is enabled for a domain, stop there.
*/
if (tmp->flags & SD_POWERSAVINGS_BALANCE)
break;
if (tmp->flags & flag)
sd = tmp;
}
if (sd)
update_shares(sd);
while (sd) {
struct sched_group *group;
int new_cpu, weight;
if (!(sd->flags & flag)) {
sd = sd->child;
continue;
}
group = find_idlest_group(sd, t, cpu);
if (!group) {
sd = sd->child;
continue;
}
new_cpu = find_idlest_cpu(group, t, cpu);
if (new_cpu == -1 || new_cpu == cpu) {
/* Now try balancing at a lower domain level of cpu */
sd = sd->child;
continue;
}
/* Now try balancing at a lower domain level of new_cpu */
cpu = new_cpu;
weight = cpumask_weight(sched_domain_span(sd));
sd = NULL;
for_each_domain(cpu, tmp) {
if (weight <= cpumask_weight(sched_domain_span(tmp)))
break;
if (tmp->flags & flag)
sd = tmp;
}
/* while loop will break here if sd == NULL */
}
return cpu;
}
#endif /* CONFIG_SMP */
/***
* try_to_wake_up - wake up a thread
* @p: the to-be-woken-up thread
* @state: the mask of task states that can be woken
* @sync: do a synchronous wakeup?
*
* Put it on the run-queue if it's not already there. The "current"
* thread is always on the run-queue (except when the actual
* re-schedule is in progress), and as such you're allowed to do
* the simpler "current->state = TASK_RUNNING" to mark yourself
* runnable without the overhead of this.
*
* returns failure only if the task is already active.
*/
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
{
int cpu, orig_cpu, this_cpu, success = 0;
unsigned long flags;
long old_state;
struct rq *rq;
if (!sched_feat(SYNC_WAKEUPS))
sync = 0;
#ifdef CONFIG_SMP
if (sched_feat(LB_WAKEUP_UPDATE)) {
struct sched_domain *sd;
this_cpu = raw_smp_processor_id();
cpu = task_cpu(p);
for_each_domain(this_cpu, sd) {
if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
update_shares(sd);
break;
}
}
}
#endif
smp_wmb();
rq = task_rq_lock(p, &flags);
update_rq_clock(rq);
old_state = p->state;
if (!(old_state & state))
goto out;
if (p->se.on_rq)
goto out_running;
cpu = task_cpu(p);
orig_cpu = cpu;
this_cpu = smp_processor_id();
#ifdef CONFIG_SMP
if (unlikely(task_running(rq, p)))
goto out_activate;
cpu = p->sched_class->select_task_rq(p, sync);
if (cpu != orig_cpu) {
set_task_cpu(p, cpu);
task_rq_unlock(rq, &flags);
/* might preempt at this point */
rq = task_rq_lock(p, &flags);
old_state = p->state;
if (!(old_state & state))
goto out;
if (p->se.on_rq)
goto out_running;
this_cpu = smp_processor_id();
cpu = task_cpu(p);
}
#ifdef CONFIG_SCHEDSTATS
schedstat_inc(rq, ttwu_count);
if (cpu == this_cpu)
schedstat_inc(rq, ttwu_local);
else {
struct sched_domain *sd;
for_each_domain(this_cpu, sd) {
if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
schedstat_inc(sd, ttwu_wake_remote);
break;
}
}
}
#endif /* CONFIG_SCHEDSTATS */
out_activate:
#endif /* CONFIG_SMP */
schedstat_inc(p, se.nr_wakeups);
if (sync)
schedstat_inc(p, se.nr_wakeups_sync);
if (orig_cpu != cpu)
schedstat_inc(p, se.nr_wakeups_migrate);
if (cpu == this_cpu)
schedstat_inc(p, se.nr_wakeups_local);
else
schedstat_inc(p, se.nr_wakeups_remote);
activate_task(rq, p, 1);
success = 1;
out_running:
trace_sched_wakeup(rq, p, success);
check_preempt_curr(rq, p, sync);
p->state = TASK_RUNNING;
#ifdef CONFIG_SMP
if (p->sched_class->task_wake_up)
p->sched_class->task_wake_up(rq, p);
#endif
out:
current->se.last_wakeup = current->se.sum_exec_runtime;
task_rq_unlock(rq, &flags);
return success;
}
int wake_up_process(struct task_struct *p)
{
return try_to_wake_up(p, TASK_ALL, 0);
}
EXPORT_SYMBOL(wake_up_process);
int wake_up_state(struct task_struct *p, unsigned int state)
{
return try_to_wake_up(p, state, 0);
}
/*
* Perform scheduler related setup for a newly forked process p.
* p is forked by current.
*
* __sched_fork() is basic setup used by init_idle() too:
*/
static void __sched_fork(struct task_struct *p)
{
p->se.exec_start = 0;
p->se.sum_exec_runtime = 0;
p->se.prev_sum_exec_runtime = 0;
p->se.last_wakeup = 0;
p->se.avg_overlap = 0;
#ifdef CONFIG_SCHEDSTATS
p->se.wait_start = 0;
p->se.sum_sleep_runtime = 0;
p->se.sleep_start = 0;
p->se.block_start = 0;
p->se.sleep_max = 0;
p->se.block_max = 0;
p->se.exec_max = 0;
p->se.slice_max = 0;
p->se.wait_max = 0;
#endif
INIT_LIST_HEAD(&p->rt.run_list);
p->se.on_rq = 0;
INIT_LIST_HEAD(&p->se.group_node);
#ifdef CONFIG_PREEMPT_NOTIFIERS
INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
/*
* We mark the process as running here, but have not actually
* inserted it onto the runqueue yet. This guarantees that
* nobody will actually run it, and a signal or other external
* event cannot wake it up and insert it on the runqueue either.
*/
p->state = TASK_RUNNING;
}
/*
* fork()/clone()-time setup:
*/
void sched_fork(struct task_struct *p, int clone_flags)
{
int cpu = get_cpu();
__sched_fork(p);
#ifdef CONFIG_SMP
cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
set_task_cpu(p, cpu);
/*
* Make sure we do not leak PI boosting priority to the child:
*/
p->prio = current->normal_prio;
if (!rt_prio(p->prio))
p->sched_class = &fair_sched_class;
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
if (likely(sched_info_on()))
memset(&p->sched_info, 0, sizeof(p->sched_info));
#endif
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
p->oncpu = 0;
#endif
#ifdef CONFIG_PREEMPT
/* Want to start with kernel preemption disabled. */
task_thread_info(p)->preempt_count = 1;
#endif
put_cpu();
}
/*
* wake_up_new_task - wake up a newly created task for the first time.
*
* This function will do some initial scheduler statistics housekeeping
* that must be done for every newly created context, then puts the task
* on the runqueue and wakes it.
*/
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
{
unsigned long flags;
struct rq *rq;
rq = task_rq_lock(p, &flags);
BUG_ON(p->state != TASK_RUNNING);
update_rq_clock(rq);
p->prio = effective_prio(p);
if (!p->sched_class->task_new || !current->se.on_rq) {
activate_task(rq, p, 0);
} else {
/*
* Let the scheduling class do new task startup
* management (if any):
*/
p->sched_class->task_new(rq, p);
inc_nr_running(rq);
}
trace_sched_wakeup_new(rq, p, 1);
check_preempt_curr(rq, p, 0);
#ifdef CONFIG_SMP
if (p->sched_class->task_wake_up)
p->sched_class->task_wake_up(rq, p);
#endif
task_rq_unlock(rq, &flags);
}
#ifdef CONFIG_PREEMPT_NOTIFIERS
/**
* preempt_notifier_register - tell me when current is being being preempted & rescheduled
* @notifier: notifier struct to register
*/
void preempt_notifier_register(struct preempt_notifier *notifier)
{
hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);
/**
* preempt_notifier_unregister - no longer interested in preemption notifications
* @notifier: notifier struct to unregister
*
* This is safe to call from within a preemption notifier.
*/
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
struct preempt_notifier *notifier;
struct hlist_node *node;
hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
notifier->ops->sched_in(notifier, raw_smp_processor_id());
}
static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
struct task_struct *next)
{
struct preempt_notifier *notifier;
struct hlist_node *node;
hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
notifier->ops->sched_out(notifier, next);
}
#else /* !CONFIG_PREEMPT_NOTIFIERS */
static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}
static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
struct task_struct *next)
{
}
#endif /* CONFIG_PREEMPT_NOTIFIERS */
/**
* prepare_task_switch - prepare to switch tasks
* @rq: the runqueue preparing to switch
* @prev: the current task that is being switched out
* @next: the task we are going to switch to.
*
* This is called with the rq lock held and interrupts off. It must
* be paired with a subsequent finish_task_switch after the context
* switch.
*
* prepare_task_switch sets up locking and calls architecture specific
* hooks.
*/
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
struct task_struct *next)
{
fire_sched_out_preempt_notifiers(prev, next);
prepare_lock_switch(rq, next);
prepare_arch_switch(next);
}
/**
* finish_task_switch - clean up after a task-switch
* @rq: runqueue associated with task-switch
* @prev: the thread we just switched away from.
*
* finish_task_switch must be called after the context switch, paired
* with a prepare_task_switch call before the context switch.
* finish_task_switch will reconcile locking set up by prepare_task_switch,
* and do any other architecture-specific cleanup actions.
*
* Note that we may have delayed dropping an mm in context_switch(). If
* so, we finish that here outside of the runqueue lock. (Doing it
* with the lock held can cause deadlocks; see schedule() for
* details.)
*/
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
__releases(rq->lock)
{
struct mm_struct *mm = rq->prev_mm;
long prev_state;
rq->prev_mm = NULL;
/*
* A task struct has one reference for the use as "current".
* If a task dies, then it sets TASK_DEAD in tsk->state and calls
* schedule one last time. The schedule call will never return, and
* the scheduled task must drop that reference.
* The test for TASK_DEAD must occur while the runqueue locks are
* still held, otherwise prev could be scheduled on another cpu, die
* there before we look at prev->state, and then the reference would
* be dropped twice.
* Manfred Spraul <manfred@colorfullife.com>
*/
prev_state = prev->state;
finish_arch_switch(prev);
finish_lock_switch(rq, prev);
#ifdef CONFIG_SMP
if (current->sched_class->post_schedule)
current->sched_class->post_schedule(rq);
#endif
fire_sched_in_preempt_notifiers(current);
if (mm)
mmdrop(mm);
if (unlikely(prev_state == TASK_DEAD)) {
/*
* Remove function-return probe instances associated with this
* task and put them back on the free list.
*/
kprobe_flush_task(prev);
put_task_struct(prev);
}
}
/**
* schedule_tail - first thing a freshly forked thread must call.
* @prev: the thread we just switched away from.
*/
asmlinkage void schedule_tail(struct task_struct *prev)
__releases(rq->lock)
{
struct rq *rq = this_rq();
finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
/* In this case, finish_task_switch does not reenable preemption */
preempt_enable();
#endif
if (current->set_child_tid)
put_user(task_pid_vnr(current), current->set_child_tid);
}
/*
* context_switch - switch to the new MM and the new
* thread's register state.
*/
static inline void
context_switch(struct rq *rq, struct task_struct *prev,
struct task_struct *next)
{
struct mm_struct *mm, *oldmm;
prepare_task_switch(rq, prev, next);
trace_sched_switch(rq, prev, next);
mm = next->mm;
oldmm = prev->active_mm;
/*
* For paravirt, this is coupled with an exit in switch_to to
* combine the page table reload and the switch backend into
* one hypercall.
*/
arch_enter_lazy_cpu_mode();
if (unlikely(!mm)) {
next->active_mm = oldmm;
atomic_inc(&oldmm->mm_count);
enter_lazy_tlb(oldmm, next);
} else
switch_mm(oldmm, mm, next);
if (unlikely(!prev->mm)) {
prev->active_mm = NULL;
rq->prev_mm = oldmm;
}
/*
* Since the runqueue lock will be released by the next
* task (which is an invalid locking op but in the case
* of the scheduler it's an obvious special-case), so we
* do an early lockdep release here:
*/
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
#endif
/* Here we just switch the register state and the stack. */
switch_to(prev, next, prev);
barrier();
/*
* this_rq must be evaluated again because prev may have moved
* CPUs since it called schedule(), thus the 'rq' on its stack
* frame will be invalid.
*/
finish_task_switch(this_rq(), prev);
}
/*
* nr_running, nr_uninterruptible and nr_context_switches:
*
* externally visible scheduler statistics: current number of runnable
* threads, current number of uninterruptible-sleeping threads, total
* number of context switches performed since bootup.
*/
unsigned long nr_running(void)
{
unsigned long i, sum = 0;
for_each_online_cpu(i)
sum += cpu_rq(i)->nr_running;
return sum;
}
unsigned long nr_uninterruptible(void)
{
unsigned long i, sum = 0;
for_each_possible_cpu(i)
sum += cpu_rq(i)->nr_uninterruptible;
/*
* Since we read the counters lockless, it might be slightly
* inaccurate. Do not allow it to go below zero though:
*/
if (unlikely((long)sum < 0))
sum = 0;
return sum;
}
unsigned long long nr_context_switches(void)
{
int i;
unsigned long long sum = 0;
for_each_possible_cpu(i)
sum += cpu_rq(i)->nr_switches;
return sum;
}
unsigned long nr_iowait(void)
{
unsigned long i, sum = 0;
for_each_possible_cpu(i)
sum += atomic_read(&cpu_rq(i)->nr_iowait);
return sum;
}
unsigned long nr_active(void)
{
unsigned long i, running = 0, uninterruptible = 0;
for_each_online_cpu(i) {
running += cpu_rq(i)->nr_running;
uninterruptible += cpu_rq(i)->nr_uninterruptible;
}
if (unlikely((long)uninterruptible < 0))
uninterruptible = 0;
return running + uninterruptible;
}
/*
* Update rq->cpu_load[] statistics. This function is usually called every
* scheduler tick (TICK_NSEC).
*/
static void update_cpu_load(struct rq *this_rq)
{
unsigned long this_load = this_rq->load.weight;
int i, scale;
this_rq->nr_load_updates++;
/* Update our load: */
for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
unsigned long old_load, new_load;
/* scale is effectively 1 << i now, and >> i divides by scale */
old_load = this_rq->cpu_load[i];
new_load = this_load;
/*
* Round up the averaging division if load is increasing. This
* prevents us from getting stuck on 9 if the load is 10, for
* example.
*/
if (new_load > old_load)
new_load += scale-1;
this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
}
}
#ifdef CONFIG_SMP
/*
* double_rq_lock - safely lock two runqueues
*
* Note this does not disable interrupts like task_rq_lock,
* you need to do so manually before calling.
*/
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
__acquires(rq1->lock)
__acquires(rq2->lock)
{
BUG_ON(!irqs_disabled());
if (rq1 == rq2) {
spin_lock(&rq1->lock);
__acquire(rq2->lock); /* Fake it out ;) */
} else {
if (rq1 < rq2) {
spin_lock(&rq1->lock);
spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
} else {
spin_lock(&rq2->lock);
spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
}
}
update_rq_clock(rq1);
update_rq_clock(rq2);
}
/*
* double_rq_unlock - safely unlock two runqueues
*
* Note this does not restore interrupts like task_rq_unlock,
* you need to do so manually after calling.
*/
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
__releases(rq1->lock)
__releases(rq2->lock)
{
spin_unlock(&rq1->lock);
if (rq1 != rq2)
spin_unlock(&rq2->lock);
else
__release(rq2->lock);
}
/*
* If dest_cpu is allowed for this process, migrate the task to it.
* This is accomplished by forcing the cpu_allowed mask to only
* allow dest_cpu, which will force the cpu onto dest_cpu. Then
* the cpu_allowed mask is restored.
*/
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
{
struct migration_req req;
unsigned long flags;
struct rq *rq;
rq = task_rq_lock(p, &flags);
if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
|| unlikely(!cpu_active(dest_cpu)))
goto out;
/* force the process onto the specified CPU */
if (migrate_task(p, dest_cpu, &req)) {
/* Need to wait for migration thread (might exit: take ref). */
struct task_struct *mt = rq->migration_thread;
get_task_struct(mt);
task_rq_unlock(rq, &flags);
wake_up_process(mt);
put_task_struct(mt);
wait_for_completion(&req.done);
return;
}
out:
task_rq_unlock(rq, &flags);
}
/*
* sched_exec - execve() is a valuable balancing opportunity, because at
* this point the task has the smallest effective memory and cache footprint.
*/
void sched_exec(void)
{
int new_cpu, this_cpu = get_cpu();
new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
put_cpu();
if (new_cpu != this_cpu)
sched_migrate_task(current, new_cpu);
}
/*
* pull_task - move a task from a remote runqueue to the local runqueue.
* Both runqueues must be locked.
*/
static void pull_task(struct rq *src_rq, struct task_struct *p,
struct rq *this_rq, int this_cpu)
{
deactivate_task(src_rq, p, 0);
set_task_cpu(p, this_cpu);
activate_task(this_rq, p, 0);
/*
* Note that idle threads have a prio of MAX_PRIO, for this test
* to be always true for them.
*/
check_preempt_curr(this_rq, p, 0);
}
/*
* can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
*/
static
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
struct sched_domain *sd, enum cpu_idle_type idle,
int *all_pinned)
{
/*
* We do not migrate tasks that are:
* 1) running (obviously), or
* 2) cannot be migrated to this CPU due to cpus_allowed, or
* 3) are cache-hot on their current CPU.
*/
if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
schedstat_inc(p, se.nr_failed_migrations_affine);
return 0;
}
*all_pinned = 0;
if (task_running(rq, p)) {
schedstat_inc(p, se.nr_failed_migrations_running);
return 0;
}
/*
* Aggressive migration if:
* 1) task is cache cold, or
* 2) too many balance attempts have failed.
*/
if (!task_hot(p, rq->clock, sd) ||
sd->nr_balance_failed > sd->cache_nice_tries) {
#ifdef CONFIG_SCHEDSTATS
if (task_hot(p, rq->clock, sd)) {
schedstat_inc(sd, lb_hot_gained[idle]);
schedstat_inc(p, se.nr_forced_migrations);
}
#endif
return 1;
}
if (task_hot(p, rq->clock, sd)) {
schedstat_inc(p, se.nr_failed_migrations_hot);
return 0;
}
return 1;
}
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
unsigned long max_load_move, struct sched_domain *sd,
enum cpu_idle_type idle, int *all_pinned,
int *this_best_prio, struct rq_iterator *iterator)
{
int loops = 0, pulled = 0, pinned = 0;
struct task_struct *p;
long rem_load_move = max_load_move;
if (max_load_move == 0)
goto out;
pinned = 1;
/*
* Start the load-balancing iterator:
*/
p = iterator->start(iterator->arg);
next:
if (!p || loops++ > sysctl_sched_nr_migrate)
goto out;
if ((p->se.load.weight >> 1) > rem_load_move ||
!can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
p = iterator->next(iterator->arg);
goto next;
}
pull_task(busiest, p, this_rq, this_cpu);
pulled++;
rem_load_move -= p->se.load.weight;
/*
* We only want to steal up to the prescribed amount of weighted load.
*/
if (rem_load_move > 0) {
if (p->prio < *this_best_prio)
*this_best_prio = p->prio;
p = iterator->next(iterator->arg);
goto next;
}
out:
/*
* Right now, this is one of only two places pull_task() is called,
* so we can safely collect pull_task() stats here rather than
* inside pull_task().
*/
schedstat_add(sd, lb_gained[idle], pulled);
if (all_pinned)
*all_pinned = pinned;
return max_load_move - rem_load_move;
}
/*
* move_tasks tries to move up to max_load_move weighted load from busiest to
* this_rq, as part of a balancing operation within domain "sd".
* Returns 1 if successful and 0 otherwise.
*
* Called with both runqueues locked.
*/
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
unsigned long max_load_move,
struct sched_domain *sd, enum cpu_idle_type idle,
int *all_pinned)
{
const struct sched_class *class = sched_class_highest;
unsigned long total_load_moved = 0;
int this_best_prio = this_rq->curr->prio;
do {
total_load_moved +=
class->load_balance(this_rq, this_cpu, busiest,
max_load_move - total_load_moved,
sd, idle, all_pinned, &this_best_prio);
class = class->next;
if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
break;
} while (class && max_load_move > total_load_moved);
return total_load_moved > 0;
}
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
struct sched_domain *sd, enum cpu_idle_type idle,
struct rq_iterator *iterator)
{
struct task_struct *p = iterator->start(iterator->arg);
int pinned = 0;
while (p) {
if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
pull_task(busiest, p, this_rq, this_cpu);
/*
* Right now, this is only the second place pull_task()
* is called, so we can safely collect pull_task()
* stats here rather than inside pull_task().
*/
schedstat_inc(sd, lb_gained[idle]);
return 1;
}
p = iterator->next(iterator->arg);
}
return 0;
}
/*
* move_one_task tries to move exactly one task from busiest to this_rq, as
* part of active balancing operations within "domain".
* Returns 1 if successful and 0 otherwise.
*
* Called with both runqueues locked.
*/
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
struct sched_domain *sd, enum cpu_idle_type idle)
{
const struct sched_class *class;
for (class = sched_class_highest; class; class = class->next)
if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
return 1;
return 0;
}
/*
* find_busiest_group finds and returns the busiest CPU group within the
* domain. It calculates and returns the amount of weighted load which
* should be moved to restore balance via the imbalance parameter.
*/
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
unsigned long *imbalance, enum cpu_idle_type idle,
int *sd_idle, const struct cpumask *cpus, int *balance)
{
struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
unsigned long max_load, avg_load, total_load, this_load, total_pwr;
unsigned long max_pull;
unsigned long busiest_load_per_task, busiest_nr_running;
unsigned long this_load_per_task, this_nr_running;
int load_idx, group_imb = 0;
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
int power_savings_balance = 1;
unsigned long leader_nr_running = 0, min_load_per_task = 0;
unsigned long min_nr_running = ULONG_MAX;
struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
max_load = this_load = total_load = total_pwr = 0;
busiest_load_per_task = busiest_nr_running = 0;
this_load_per_task = this_nr_running = 0;
if (idle == CPU_NOT_IDLE)
load_idx = sd->busy_idx;
else if (idle == CPU_NEWLY_IDLE)
load_idx = sd->newidle_idx;
else
load_idx = sd->idle_idx;
do {
unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
int local_group;
int i;
int __group_imb = 0;
unsigned int balance_cpu = -1, first_idle_cpu = 0;
unsigned long sum_nr_running, sum_weighted_load;
unsigned long sum_avg_load_per_task;
unsigned long avg_load_per_task;
local_group = cpumask_test_cpu(this_cpu,
sched_group_cpus(group));
if (local_group)
balance_cpu = cpumask_first(sched_group_cpus(group));
/* Tally up the load of all CPUs in the group */
sum_weighted_load = sum_nr_running = avg_load = 0;
sum_avg_load_per_task = avg_load_per_task = 0;
max_cpu_load = 0;
min_cpu_load = ~0UL;
for_each_cpu_and(i, sched_group_cpus(group), cpus) {
struct rq *rq = cpu_rq(i);
if (*sd_idle && rq->nr_running)
*sd_idle = 0;
/* Bias balancing toward cpus of our domain */
if (local_group) {
if (idle_cpu(i) && !first_idle_cpu) {
first_idle_cpu = 1;
balance_cpu = i;
}
load = target_load(i, load_idx);
} else {
load = source_load(i, load_idx);
if (load > max_cpu_load)
max_cpu_load = load;
if (min_cpu_load > load)
min_cpu_load = load;
}
avg_load += load;
sum_nr_running += rq->nr_running;
sum_weighted_load += weighted_cpuload(i);
sum_avg_load_per_task += cpu_avg_load_per_task(i);
}
/*
* First idle cpu or the first cpu(busiest) in this sched group
* is eligible for doing load balancing at this and above
* domains. In the newly idle case, we will allow all the cpu's
* to do the newly idle load balance.
*/
if (idle != CPU_NEWLY_IDLE && local_group &&
balance_cpu != this_cpu && balance) {
*balance = 0;
goto ret;
}
total_load += avg_load;
total_pwr += group->__cpu_power;
/* Adjust by relative CPU power of the group */
avg_load = sg_div_cpu_power(group,
avg_load * SCHED_LOAD_SCALE);
/*
* Consider the group unbalanced when the imbalance is larger
* than the average weight of two tasks.
*
* APZ: with cgroup the avg task weight can vary wildly and
* might not be a suitable number - should we keep a
* normalized nr_running number somewhere that negates
* the hierarchy?
*/
avg_load_per_task = sg_div_cpu_power(group,
sum_avg_load_per_task * SCHED_LOAD_SCALE);
if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
__group_imb = 1;
group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
if (local_group) {
this_load = avg_load;
this = group;
this_nr_running = sum_nr_running;
this_load_per_task = sum_weighted_load;
} else if (avg_load > max_load &&
(sum_nr_running > group_capacity || __group_imb)) {
max_load = avg_load;
busiest = group;
busiest_nr_running = sum_nr_running;
busiest_load_per_task = sum_weighted_load;
group_imb = __group_imb;
}
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
/*
* Busy processors will not participate in power savings
* balance.
*/
if (idle == CPU_NOT_IDLE ||
!(sd->flags & SD_POWERSAVINGS_BALANCE))
goto group_next;
/*
* If the local group is idle or completely loaded
* no need to do power savings balance at this domain
*/
if (local_group && (this_nr_running >= group_capacity ||
!this_nr_running))
power_savings_balance = 0;
/*
* If a group is already running at full capacity or idle,
* don't include that group in power savings calculations
*/
if (!power_savings_balance || sum_nr_running >= group_capacity
|| !sum_nr_running)
goto group_next;
/*
* Calculate the group which has the least non-idle load.
* This is the group from where we need to pick up the load
* for saving power
*/
if ((sum_nr_running < min_nr_running) ||
(sum_nr_running == min_nr_running &&
cpumask_first(sched_group_cpus(group)) >
cpumask_first(sched_group_cpus(group_min)))) {
group_min = group;
min_nr_running = sum_nr_running;
min_load_per_task = sum_weighted_load /
sum_nr_running;
}
/*
* Calculate the group which is almost near its
* capacity but still has some space to pick up some load
* from other group and save more power
*/
if (sum_nr_running <= group_capacity - 1) {
if (sum_nr_running > leader_nr_running ||
(sum_nr_running == leader_nr_running &&
cpumask_first(sched_group_cpus(group)) <
cpumask_first(sched_group_cpus(group_leader)))) {
group_leader = group;
leader_nr_running = sum_nr_running;
}
}
group_next:
#endif
group = group->next;
} while (group != sd->groups);
if (!busiest || this_load >= max_load || busiest_nr_running == 0)
goto out_balanced;
avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
if (this_load >= avg_load ||
100*max_load <= sd->imbalance_pct*this_load)
goto out_balanced;
busiest_load_per_task /= busiest_nr_running;
if (group_imb)
busiest_load_per_task = min(busiest_load_per_task, avg_load);
/*
* We're trying to get all the cpus to the average_load, so we don't
* want to push ourselves above the average load, nor do we wish to
* reduce the max loaded cpu below the average load, as either of these
* actions would just result in more rebalancing later, and ping-pong
* tasks around. Thus we look for the minimum possible imbalance.
* Negative imbalances (*we* are more loaded than anyone else) will
* be counted as no imbalance for these purposes -- we can't fix that
* by pulling tasks to us. Be careful of negative numbers as they'll
* appear as very large values with unsigned longs.
*/
if (max_load <= busiest_load_per_task)
goto out_balanced;
/*
* In the presence of smp nice balancing, certain scenarios can have
* max load less than avg load(as we skip the groups at or below
* its cpu_power, while calculating max_load..)
*/
if (max_load < avg_load) {
*imbalance = 0;
goto small_imbalance;
}
/* Don't want to pull so many tasks that a group would go idle */
max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
/* How much load to actually move to equalise the imbalance */
*imbalance = min(max_pull * busiest->__cpu_power,
(avg_load - this_load) * this->__cpu_power)
/ SCHED_LOAD_SCALE;
/*
* if *imbalance is less than the average load per runnable task
* there is no gaurantee that any tasks will be moved so we'll have
* a think about bumping its value to force at least one task to be
* moved
*/
if (*imbalance < busiest_load_per_task) {
unsigned long tmp, pwr_now, pwr_move;
unsigned int imbn;
small_imbalance:
pwr_move = pwr_now = 0;
imbn = 2;
if (this_nr_running) {
this_load_per_task /= this_nr_running;
if (busiest_load_per_task > this_load_per_task)
imbn = 1;
} else
this_load_per_task = cpu_avg_load_per_task(this_cpu);
if (max_load - this_load + busiest_load_per_task >=
busiest_load_per_task * imbn) {
*imbalance = busiest_load_per_task;
return busiest;
}
/*
* OK, we don't have enough imbalance to justify moving tasks,
* however we may be able to increase total CPU power used by
* moving them.
*/
pwr_now += busiest->__cpu_power *
min(busiest_load_per_task, max_load);
pwr_now += this->__cpu_power *
min(this_load_per_task, this_load);
pwr_now /= SCHED_LOAD_SCALE;
/* Amount of load we'd subtract */
tmp = sg_div_cpu_power(busiest,
busiest_load_per_task * SCHED_LOAD_SCALE);
if (max_load > tmp)
pwr_move += busiest->__cpu_power *
min(busiest_load_per_task, max_load - tmp);
/* Amount of load we'd add */
if (max_load * busiest->__cpu_power <
busiest_load_per_task * SCHED_LOAD_SCALE)
tmp = sg_div_cpu_power(this,
max_load * busiest->__cpu_power);
else
tmp = sg_div_cpu_power(this,
busiest_load_per_task * SCHED_LOAD_SCALE);
pwr_move += this->__cpu_power *
min(this_load_per_task, this_load + tmp);
pwr_move /= SCHED_LOAD_SCALE;
/* Move if we gain throughput */
if (pwr_move > pwr_now)
*imbalance = busiest_load_per_task;
}
return busiest;
out_balanced:
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
goto ret;
if (this == group_leader && group_leader != group_min) {
*imbalance = min_load_per_task;
if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
cpumask_first(sched_group_cpus(group_leader));
}
return group_min;
}
#endif
ret:
*imbalance = 0;
return NULL;
}
/*
* find_busiest_queue - find the busiest runqueue among the cpus in group.
*/
static struct rq *
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
unsigned long imbalance, const struct cpumask *cpus)
{
struct rq *busiest = NULL, *rq;
unsigned long max_load = 0;
int i;
for_each_cpu(i, sched_group_cpus(group)) {
unsigned long wl;
if (!cpumask_test_cpu(i, cpus))
continue;
rq = cpu_rq(i);
wl = weighted_cpuload(i);
if (rq->nr_running == 1 && wl > imbalance)
continue;
if (wl > max_load) {
max_load = wl;
busiest = rq;
}
}
return busiest;
}
/*
* Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
* so long as it is large enough.
*/
#define MAX_PINNED_INTERVAL 512
/*
* Check this_cpu to ensure it is balanced within domain. Attempt to move
* tasks if there is an imbalance.
*/
static int load_balance(int this_cpu, struct rq *this_rq,
struct sched_domain *sd, enum cpu_idle_type idle,
int *balance, struct cpumask *cpus)
{
int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
struct sched_group *group;
unsigned long imbalance;
struct rq *busiest;
unsigned long flags;
cpumask_setall(cpus);
/*
* When power savings policy is enabled for the parent domain, idle
* sibling can pick up load irrespective of busy siblings. In this case,
* let the state of idle sibling percolate up as CPU_IDLE, instead of
* portraying it as CPU_NOT_IDLE.
*/
if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
!test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
sd_idle = 1;
schedstat_inc(sd, lb_count[idle]);
redo:
update_shares(sd);
group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
cpus, balance);
if (*balance == 0)
goto out_balanced;
if (!group) {
schedstat_inc(sd, lb_nobusyg[idle]);
goto out_balanced;
}
busiest = find_busiest_queue(group, idle, imbalance, cpus);
if (!busiest) {
schedstat_inc(sd, lb_nobusyq[idle]);
goto out_balanced;
}
BUG_ON(busiest == this_rq);
schedstat_add(sd, lb_imbalance[idle], imbalance);
ld_moved = 0;
if (busiest->nr_running > 1) {
/*
* Attempt to move tasks. If find_busiest_group has found
* an imbalance but busiest->nr_running <= 1, the group is
* still unbalanced. ld_moved simply stays zero, so it is
* correctly treated as an imbalance.
*/
local_irq_save(flags);
double_rq_lock(this_rq, busiest);
ld_moved = move_tasks(this_rq, this_cpu, busiest,
imbalance, sd, idle, &all_pinned);
double_rq_unlock(this_rq, busiest);
local_irq_restore(flags);
/*
* some other cpu did the load balance for us.
*/
if (ld_moved && this_cpu != smp_processor_id())
resched_cpu(this_cpu);
/* All tasks on this runqueue were pinned by CPU affinity */
if (unlikely(all_pinned)) {
cpumask_clear_cpu(cpu_of(busiest), cpus);
if (!cpumask_empty(cpus))
goto redo;
goto out_balanced;
}
}
if (!ld_moved) {
schedstat_inc(sd, lb_failed[idle]);
sd->nr_balance_failed++;
if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
spin_lock_irqsave(&busiest->lock, flags);
/* don't kick the migration_thread, if the curr
* task on busiest cpu can't be moved to this_cpu
*/
if (!cpumask_test_cpu(this_cpu,
&busiest->curr->cpus_allowed)) {
spin_unlock_irqrestore(&busiest->lock, flags);
all_pinned = 1;
goto out_one_pinned;
}
if (!busiest->active_balance) {
busiest->active_balance = 1;
busiest->push_cpu = this_cpu;
active_balance = 1;
}
spin_unlock_irqrestore(&busiest->lock, flags);
if (active_balance)
wake_up_process(busiest->migration_thread);
/*
* We've kicked active balancing, reset the failure
* counter.
*/
sd->nr_balance_failed = sd->cache_nice_tries+1;
}
} else
sd->nr_balance_failed = 0;
if (likely(!active_balance)) {
/* We were unbalanced, so reset the balancing interval */
sd->balance_interval = sd->min_interval;
} else {
/*
* If we've begun active balancing, start to back off. This
* case may not be covered by the all_pinned logic if there
* is only 1 task on the busy runqueue (because we don't call
* move_tasks).
*/
if (sd->balance_interval < sd->max_interval)
sd->balance_interval *= 2;
}
if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
!test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
ld_moved = -1;
goto out;
out_balanced:
schedstat_inc(sd, lb_balanced[idle]);
sd->nr_balance_failed = 0;
out_one_pinned:
/* tune up the balancing interval */
if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
(sd->balance_interval < sd->max_interval))
sd->balance_interval *= 2;
if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
!test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
ld_moved = -1;
else
ld_moved = 0;
out:
if (ld_moved)
update_shares(sd);
return ld_moved;
}
/*
* Check this_cpu to ensure it is balanced within domain. Attempt to move
* tasks if there is an imbalance.
*
* Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
* this_rq is locked.
*/
static int
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
struct cpumask *cpus)
{
struct sched_group *group;
struct rq *busiest = NULL;
unsigned long imbalance;
int ld_moved = 0;
int sd_idle = 0;
int all_pinned = 0;
cpumask_setall(cpus);
/*
* When power savings policy is enabled for the parent domain, idle
* sibling can pick up load irrespective of busy siblings. In this case,
* let the state of idle sibling percolate up as IDLE, instead of
* portraying it as CPU_NOT_IDLE.
*/
if (sd->flags & SD_SHARE_CPUPOWER &&
!test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
sd_idle = 1;
schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
redo:
update_shares_locked(this_rq, sd);
group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
&sd_idle, cpus, NULL);
if (!group) {
schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
goto out_balanced;
}
busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
if (!busiest) {
schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
goto out_balanced;
}
BUG_ON(busiest == this_rq);
schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
ld_moved = 0;
if (busiest->nr_running > 1) {
/* Attempt to move tasks */
double_lock_balance(this_rq, busiest);
/* this_rq->clock is already updated */
update_rq_clock(busiest);
ld_moved = move_tasks(this_rq, this_cpu, busiest,
imbalance, sd, CPU_NEWLY_IDLE,
&all_pinned);
double_unlock_balance(this_rq, busiest);
if (unlikely(all_pinned)) {
cpumask_clear_cpu(cpu_of(busiest), cpus);
if (!cpumask_empty(cpus))
goto redo;
}
}
if (!ld_moved) {
int active_balance = 0;
schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
!test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
return -1;
if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
return -1;
if (sd->nr_balance_failed++ < 2)
return -1;
/*
* The only task running in a non-idle cpu can be moved to this
* cpu in an attempt to completely freeup the other CPU
* package. The same method used to move task in load_balance()
* have been extended for load_balance_newidle() to speedup
* consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
*
* The package power saving logic comes from
* find_busiest_group(). If there are no imbalance, then
* f_b_g() will return NULL. However when sched_mc={1,2} then
* f_b_g() will select a group from which a running task may be
* pulled to this cpu in order to make the other package idle.
* If there is no opportunity to make a package idle and if
* there are no imbalance, then f_b_g() will return NULL and no
* action will be taken in load_balance_newidle().
*
* Under normal task pull operation due to imbalance, there
* will be more than one task in the source run queue and
* move_tasks() will succeed. ld_moved will be true and this
* active balance code will not be triggered.
*/
/* Lock busiest in correct order while this_rq is held */
double_lock_balance(this_rq, busiest);
/*
* don't kick the migration_thread, if the curr
* task on busiest cpu can't be moved to this_cpu
*/
if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
double_unlock_balance(this_rq, busiest);
all_pinned = 1;
return ld_moved;
}
if (!busiest->active_balance) {
busiest->active_balance = 1;
busiest->push_cpu = this_cpu;
active_balance = 1;
}
double_unlock_balance(this_rq, busiest);
/*
* Should not call ttwu while holding a rq->lock
*/
spin_unlock(&this_rq->lock);
if (active_balance)
wake_up_process(busiest->migration_thread);
spin_lock(&this_rq->lock);
} else
sd->nr_balance_failed = 0;
update_shares_locked(this_rq, sd);
return ld_moved;
out_balanced:
schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
!test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
return -1;
sd->nr_balance_failed = 0;
return 0;
}
/*
* idle_balance is called by schedule() if this_cpu is about to become
* idle. Attempts to pull tasks from other CPUs.
*/
static void idle_balance(int this_cpu, struct rq *this_rq)
{
struct sched_domain *sd;
int pulled_task = 0;
unsigned long next_balance = jiffies + HZ;
cpumask_var_t tmpmask;
if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
return;
for_each_domain(this_cpu, sd) {
unsigned long interval;
if (!(sd->flags & SD_LOAD_BALANCE))
continue;
if (sd->flags & SD_BALANCE_NEWIDLE)
/* If we've pulled tasks over stop searching: */
pulled_task = load_balance_newidle(this_cpu, this_rq,
sd, tmpmask);
interval = msecs_to_jiffies(sd->balance_interval);
if (time_after(next_balance, sd->last_balance + interval))
next_balance = sd->last_balance + interval;
if (pulled_task)
break;
}
if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
/*
* We are going idle. next_balance may be set based on
* a busy processor. So reset next_balance.
*/
this_rq->next_balance = next_balance;
}
free_cpumask_var(tmpmask);
}
/*
* active_load_balance is run by migration threads. It pushes running tasks
* off the busiest CPU onto idle CPUs. It requires at least 1 task to be
* running on each physical CPU where possible, and avoids physical /
* logical imbalances.
*
* Called with busiest_rq locked.
*/
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
{
int target_cpu = busiest_rq->push_cpu;
struct sched_domain *sd;
struct rq *target_rq;
/* Is there any task to move? */
if (busiest_rq->nr_running <= 1)
return;
target_rq = cpu_rq(target_cpu);
/*
* This condition is "impossible", if it occurs
* we need to fix it. Originally reported by
* Bjorn Helgaas on a 128-cpu setup.
*/
BUG_ON(busiest_rq == target_rq);
/* move a task from busiest_rq to target_rq */
double_lock_balance(busiest_rq, target_rq);
update_rq_clock(busiest_rq);
update_rq_clock(target_rq);
/* Search for an sd spanning us and the target CPU. */
for_each_domain(target_cpu, sd) {
if ((sd->flags & SD_LOAD_BALANCE) &&
cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
break;
}
if (likely(sd)) {
schedstat_inc(sd, alb_count);
if (move_one_task(target_rq, target_cpu, busiest_rq,
sd, CPU_IDLE))
schedstat_inc(sd, alb_pushed);
else
schedstat_inc(sd, alb_failed);
}
double_unlock_balance(busiest_rq, target_rq);
}
#ifdef CONFIG_NO_HZ
static struct {
atomic_t load_balancer;
cpumask_var_t cpu_mask;
} nohz ____cacheline_aligned = {
.load_balancer = ATOMIC_INIT(-1),
};
/*
* This routine will try to nominate the ilb (idle load balancing)
* owner among the cpus whose ticks are stopped. ilb owner will do the idle
* load balancing on behalf of all those cpus. If all the cpus in the system
* go into this tickless mode, then there will be no ilb owner (as there is
* no need for one) and all the cpus will sleep till the next wakeup event
* arrives...
*
* For the ilb owner, tick is not stopped. And this tick will be used
* for idle load balancing. ilb owner will still be part of
* nohz.cpu_mask..
*
* While stopping the tick, this cpu will become the ilb owner if there
* is no other owner. And will be the owner till that cpu becomes busy
* or if all cpus in the system stop their ticks at which point
* there is no need for ilb owner.
*
* When the ilb owner becomes busy, it nominates another owner, during the
* next busy scheduler_tick()
*/
int select_nohz_load_balancer(int stop_tick)
{
int cpu = smp_processor_id();
if (stop_tick) {
cpumask_set_cpu(cpu, nohz.cpu_mask);
cpu_rq(cpu)->in_nohz_recently = 1;
/*
* If we are going offline and still the leader, give up!
*/
if (!cpu_active(cpu) &&
atomic_read(&nohz.load_balancer) == cpu) {
if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
BUG();
return 0;
}
/* time for ilb owner also to sleep */
if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
if (atomic_read(&nohz.load_balancer) == cpu)
atomic_set(&nohz.load_balancer, -1);
return 0;
}
if (atomic_read(&nohz.load_balancer) == -1) {
/* make me the ilb owner */
if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
return 1;
} else if (atomic_read(&nohz.load_balancer) == cpu)
return 1;
} else {
if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
return 0;
cpumask_clear_cpu(cpu, nohz.cpu_mask);
if (atomic_read(&nohz.load_balancer) == cpu)
if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
BUG();
}
return 0;
}
#endif
static DEFINE_SPINLOCK(balancing);
/*
* It checks each scheduling domain to see if it is due to be balanced,
* and initiates a balancing operation if so.
*
* Balancing parameters are set up in arch_init_sched_domains.
*/
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
{
int balance = 1;
struct rq *rq = cpu_rq(cpu);
unsigned long interval;
struct sched_domain *sd;
/* Earliest time when we have to do rebalance again */
unsigned long next_balance = jiffies + 60*HZ;
int update_next_balance = 0;
int need_serialize;
cpumask_var_t tmp;
/* Fails alloc? Rebalancing probably not a priority right now. */
if (!alloc_cpumask_var(&tmp, GFP_ATOMIC))
return;
for_each_domain(cpu, sd) {
if (!(sd->flags & SD_LOAD_BALANCE))
continue;
interval = sd->balance_interval;
if (idle != CPU_IDLE)
interval *= sd->busy_factor;
/* scale ms to jiffies */
interval = msecs_to_jiffies(interval);
if (unlikely(!interval))
interval = 1;
if (interval > HZ*NR_CPUS/10)
interval = HZ*NR_CPUS/10;
need_serialize = sd->flags & SD_SERIALIZE;
if (need_serialize) {
if (!spin_trylock(&balancing))
goto out;
}
if (time_after_eq(jiffies, sd->last_balance + interval)) {
if (load_balance(cpu, rq, sd, idle, &balance, tmp)) {
/*
* We've pulled tasks over so either we're no
* longer idle, or one of our SMT siblings is
* not idle.
*/
idle = CPU_NOT_IDLE;
}
sd->last_balance = jiffies;
}
if (need_serialize)
spin_unlock(&balancing);
out:
if (time_after(next_balance, sd->last_balance + interval)) {
next_balance = sd->last_balance + interval;
update_next_balance = 1;
}
/*
* Stop the load balance at this level. There is another
* CPU in our sched group which is doing load balancing more
* actively.
*/
if (!balance)
break;
}
/*
* next_balance will be updated only when there is a need.
* When the cpu is attached to null domain for ex, it will not be
* updated.
*/
if (likely(update_next_balance))
rq->next_balance = next_balance;
free_cpumask_var(tmp);
}
/*
* run_rebalance_domains is triggered when needed from the scheduler tick.
* In CONFIG_NO_HZ case, the idle load balance owner will do the
* rebalancing for all the cpus for whom scheduler ticks are stopped.
*/
static void run_rebalance_domains(struct softirq_action *h)
{
int this_cpu = smp_processor_id();
struct rq *this_rq = cpu_rq(this_cpu);
enum cpu_idle_type idle = this_rq->idle_at_tick ?
CPU_IDLE : CPU_NOT_IDLE;
rebalance_domains(this_cpu, idle);
#ifdef CONFIG_NO_HZ
/*
* If this cpu is the owner for idle load balancing, then do the
* balancing on behalf of the other idle cpus whose ticks are
* stopped.
*/
if (this_rq->idle_at_tick &&
atomic_read(&nohz.load_balancer) == this_cpu) {
struct rq *rq;
int balance_cpu;
for_each_cpu(balance_cpu, nohz.cpu_mask) {
if (balance_cpu == this_cpu)
continue;
/*
* If this cpu gets work to do, stop the load balancing
* work being done for other cpus. Next load
* balancing owner will pick it up.
*/
if (need_resched())
break;
rebalance_domains(balance_cpu, CPU_IDLE);
rq = cpu_rq(balance_cpu);
if (time_after(this_rq->next_balance, rq->next_balance))
this_rq->next_balance = rq->next_balance;
}
}
#endif
}
/*
* Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
*
* In case of CONFIG_NO_HZ, this is the place where we nominate a new
* idle load balancing owner or decide to stop the periodic load balancing,
* if the whole system is idle.
*/
static inline void trigger_load_balance(struct rq *rq, int cpu)
{
#ifdef CONFIG_NO_HZ
/*
* If we were in the nohz mode recently and busy at the current
* scheduler tick, then check if we need to nominate new idle
* load balancer.
*/
if (rq->in_nohz_recently && !rq->idle_at_tick) {
rq->in_nohz_recently = 0;
if (atomic_read(&nohz.load_balancer) == cpu) {
cpumask_clear_cpu(cpu, nohz.cpu_mask);
atomic_set(&nohz.load_balancer, -1);
}
if (atomic_read(&nohz.load_balancer) == -1) {
/*
* simple selection for now: Nominate the
* first cpu in the nohz list to be the next
* ilb owner.
*
* TBD: Traverse the sched domains and nominate
* the nearest cpu in the nohz.cpu_mask.
*/
int ilb = cpumask_first(nohz.cpu_mask);
if (ilb < nr_cpu_ids)
resched_cpu(ilb);
}
}
/*
* If this cpu is idle and doing idle load balancing for all the
* cpus with ticks stopped, is it time for that to stop?
*/
if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
resched_cpu(cpu);
return;
}
/*
* If this cpu is idle and the idle load balancing is done by
* someone else, then no need raise the SCHED_SOFTIRQ
*/
if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
cpumask_test_cpu(cpu, nohz.cpu_mask))
return;
#endif
if (time_after_eq(jiffies, rq->next_balance))
raise_softirq(SCHED_SOFTIRQ);
}
#else /* CONFIG_SMP */
/*
* on UP we do not need to balance between CPUs:
*/
static inline void idle_balance(int cpu, struct rq *rq)
{
}
#endif
DEFINE_PER_CPU(struct kernel_stat, kstat);
EXPORT_PER_CPU_SYMBOL(kstat);
/*
* Return any ns on the sched_clock that have not yet been banked in
* @p in case that task is currently running.
*/
unsigned long long task_delta_exec(struct task_struct *p)
{
unsigned long flags;
struct rq *rq;
u64 ns = 0;
rq = task_rq_lock(p, &flags);
if (task_current(rq, p)) {
u64 delta_exec;
update_rq_clock(rq);
delta_exec = rq->clock - p->se.exec_start;
if ((s64)delta_exec > 0)
ns = delta_exec;
}
task_rq_unlock(rq, &flags);
return ns;
}
/*
* Account user cpu time to a process.
* @p: the process that the cpu time gets accounted to
* @cputime: the cpu time spent in user space since the last update
* @cputime_scaled: cputime scaled by cpu frequency
*/
void account_user_time(struct task_struct *p, cputime_t cputime,
cputime_t cputime_scaled)
{
struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
cputime64_t tmp;
/* Add user time to process. */
p->utime = cputime_add(p->utime, cputime);
p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
account_group_user_time(p, cputime);
/* Add user time to cpustat. */
tmp = cputime_to_cputime64(cputime);
if (TASK_NICE(p) > 0)
cpustat->nice = cputime64_add(cpustat->nice, tmp);
else
cpustat->user = cputime64_add(cpustat->user, tmp);
/* Account for user time used */
acct_update_integrals(p);
}
/*
* Account guest cpu time to a process.
* @p: the process that the cpu time gets accounted to
* @cputime: the cpu time spent in virtual machine since the last update
* @cputime_scaled: cputime scaled by cpu frequency
*/
static void account_guest_time(struct task_struct *p, cputime_t cputime,
cputime_t cputime_scaled)
{
cputime64_t tmp;
struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
tmp = cputime_to_cputime64(cputime);
/* Add guest time to process. */
p->utime = cputime_add(p->utime, cputime);
p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
account_group_user_time(p, cputime);
p->gtime = cputime_add(p->gtime, cputime);
/* Add guest time to cpustat. */
cpustat->user = cputime64_add(cpustat->user, tmp);
cpustat->guest = cputime64_add(cpustat->guest, tmp);
}
/*
* Account system cpu time to a process.
* @p: the process that the cpu time gets accounted to
* @hardirq_offset: the offset to subtract from hardirq_count()
* @cputime: the cpu time spent in kernel space since the last update
* @cputime_scaled: cputime scaled by cpu frequency
*/
void account_system_time(struct task_struct *p, int hardirq_offset,
cputime_t cputime, cputime_t cputime_scaled)
{
struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
cputime64_t tmp;
if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
account_guest_time(p, cputime, cputime_scaled);
return;
}
/* Add system time to process. */
p->stime = cputime_add(p->stime, cputime);
p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
account_group_system_time(p, cputime);
/* Add system time to cpustat. */
tmp = cputime_to_cputime64(cputime);
if (hardirq_count() - hardirq_offset)
cpustat->irq = cputime64_add(cpustat->irq, tmp);
else if (softirq_count())
cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
else
cpustat->system = cputime64_add(cpustat->system, tmp);
/* Account for system time used */
acct_update_integrals(p);
}
/*
* Account for involuntary wait time.
* @steal: the cpu time spent in involuntary wait
*/
void account_steal_time(cputime_t cputime)
{
struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
cputime64_t cputime64 = cputime_to_cputime64(cputime);
cpustat->steal = cputime64_add(cpustat->steal, cputime64);
}
/*
* Account for idle time.
* @cputime: the cpu time spent in idle wait
*/
void account_idle_time(cputime_t cputime)
{
struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
cputime64_t cputime64 = cputime_to_cputime64(cputime);
struct rq *rq = this_rq();
if (atomic_read(&rq->nr_iowait) > 0)
cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
else
cpustat->idle = cputime64_add(cpustat->idle, cputime64);
}
#ifndef CONFIG_VIRT_CPU_ACCOUNTING
/*
* Account a single tick of cpu time.
* @p: the process that the cpu time gets accounted to
* @user_tick: indicates if the tick is a user or a system tick
*/
void account_process_tick(struct task_struct *p, int user_tick)
{
cputime_t one_jiffy = jiffies_to_cputime(1);
cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
struct rq *rq = this_rq();
if (user_tick)
account_user_time(p, one_jiffy, one_jiffy_scaled);
else if (p != rq->idle)
account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
one_jiffy_scaled);
else
account_idle_time(one_jiffy);
}
/*
* Account multiple ticks of steal time.
* @p: the process from which the cpu time has been stolen
* @ticks: number of stolen ticks
*/
void account_steal_ticks(unsigned long ticks)
{
account_steal_time(jiffies_to_cputime(ticks));
}
/*
* Account multiple ticks of idle time.
* @ticks: number of stolen ticks
*/
void account_idle_ticks(unsigned long ticks)
{
account_idle_time(jiffies_to_cputime(ticks));
}
#endif
/*
* Use precise platform statistics if available:
*/
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
cputime_t task_utime(struct task_struct *p)
{
return p->utime;
}
cputime_t task_stime(struct task_struct *p)
{
return p->stime;
}
#else
cputime_t task_utime(struct task_struct *p)
{
clock_t utime = cputime_to_clock_t(p->utime),
total = utime + cputime_to_clock_t(p->stime);
u64 temp;
/*
* Use CFS's precise accounting:
*/
temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
if (total) {
temp *= utime;
do_div(temp, total);
}
utime = (clock_t)temp;
p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
return p->prev_utime;
}
cputime_t task_stime(struct task_struct *p)
{
clock_t stime;
/*
* Use CFS's precise accounting. (we subtract utime from
* the total, to make sure the total observed by userspace
* grows monotonically - apps rely on that):
*/
stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
cputime_to_clock_t(task_utime(p));
if (stime >= 0)
p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
return p->prev_stime;
}
#endif
inline cputime_t task_gtime(struct task_struct *p)
{
return p->gtime;
}
/*
* This function gets called by the timer code, with HZ frequency.
* We call it with interrupts disabled.
*
* It also gets called by the fork code, when changing the parent's
* timeslices.
*/
void scheduler_tick(void)
{
int cpu = smp_processor_id();
struct rq *rq = cpu_rq(cpu);
struct task_struct *curr = rq->curr;
sched_clock_tick();
spin_lock(&rq->lock);
update_rq_clock(rq);
update_cpu_load(rq);
curr->sched_class->task_tick(rq, curr, 0);
spin_unlock(&rq->lock);
#ifdef CONFIG_SMP
rq->idle_at_tick = idle_cpu(cpu);
trigger_load_balance(rq, cpu);
#endif
}
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
defined(CONFIG_PREEMPT_TRACER))
static inline unsigned long get_parent_ip(unsigned long addr)
{
if (in_lock_functions(addr)) {
addr = CALLER_ADDR2;
if (in_lock_functions(addr))
addr = CALLER_ADDR3;
}
return addr;
}
void __kprobes add_preempt_count(int val)
{
#ifdef CONFIG_DEBUG_PREEMPT
/*
* Underflow?
*/
if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
return;
#endif
preempt_count() += val;
#ifdef CONFIG_DEBUG_PREEMPT
/*
* Spinlock count overflowing soon?
*/
DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
PREEMPT_MASK - 10);
#endif
if (preempt_count() == val)
trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
}
EXPORT_SYMBOL(add_preempt_count);
void __kprobes sub_preempt_count(int val)
{
#ifdef CONFIG_DEBUG_PREEMPT
/*
* Underflow?
*/
if (DEBUG_LOCKS_WARN_ON(val > preempt_count() - (!!kernel_locked())))
return;
/*
* Is the spinlock portion underflowing?
*/
if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
!(preempt_count() & PREEMPT_MASK)))
return;
#endif
if (preempt_count() == val)
trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);
#endif
/*
* Print scheduling while atomic bug:
*/
static noinline void __schedule_bug(struct task_struct *prev)
{
struct pt_regs *regs = get_irq_regs();
printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
prev->comm, prev->pid, preempt_count());
debug_show_held_locks(prev);
print_modules();
if (irqs_disabled())
print_irqtrace_events(prev);
if (regs)
show_regs(regs);
else
dump_stack();
}
/*
* Various schedule()-time debugging checks and statistics:
*/
static inline void schedule_debug(struct task_struct *prev)
{
/*
* Test if we are atomic. Since do_exit() needs to call into
* schedule() atomically, we ignore that path for now.
* Otherwise, whine if we are scheduling when we should not be.
*/
if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
__schedule_bug(prev);
profile_hit(SCHED_PROFILING, __builtin_return_address(0));
schedstat_inc(this_rq(), sched_count);
#ifdef CONFIG_SCHEDSTATS
if (unlikely(prev->lock_depth >= 0)) {
schedstat_inc(this_rq(), bkl_count);
schedstat_inc(prev, sched_info.bkl_count);
}
#endif
}
/*
* Pick up the highest-prio task:
*/
static inline struct task_struct *
pick_next_task(struct rq *rq, struct task_struct *prev)
{
const struct sched_class *class;
struct task_struct *p;
/*
* Optimization: we know that if all tasks are in
* the fair class we can call that function directly:
*/
if (likely(rq->nr_running == rq->cfs.nr_running)) {
p = fair_sched_class.pick_next_task(rq);
if (likely(p))
return p;
}
class = sched_class_highest;
for ( ; ; ) {
p = class->pick_next_task(rq);
if (p)
return p;
/*
* Will never be NULL as the idle class always
* returns a non-NULL p:
*/
class = class->next;
}
}
/*
* schedule() is the main scheduler function.
*/
asmlinkage void __sched schedule(void)
{
struct task_struct *prev, *next;
unsigned long *switch_count;
struct rq *rq;
int cpu;
need_resched:
preempt_disable();
cpu = smp_processor_id();
rq = cpu_rq(cpu);
rcu_qsctr_inc(cpu);
prev = rq->curr;
switch_count = &prev->nivcsw;
release_kernel_lock(prev);
need_resched_nonpreemptible:
schedule_debug(prev);
if (sched_feat(HRTICK))
hrtick_clear(rq);
spin_lock_irq(&rq->lock);
update_rq_clock(rq);
clear_tsk_need_resched(prev);
if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
if (unlikely(signal_pending_state(prev->state, prev)))
prev->state = TASK_RUNNING;
else
deactivate_task(rq, prev, 1);
switch_count = &prev->nvcsw;
}
#ifdef CONFIG_SMP
if (prev->sched_class->pre_schedule)
prev->sched_class->pre_schedule(rq, prev);
#endif
if (unlikely(!rq->nr_running))
idle_balance(cpu, rq);
prev->sched_class->put_prev_task(rq, prev);
next = pick_next_task(rq, prev);
if (likely(prev != next)) {
sched_info_switch(prev, next);
rq->nr_switches++;
rq->curr = next;
++*switch_count;
context_switch(rq, prev, next); /* unlocks the rq */
/*
* the context switch might have flipped the stack from under
* us, hence refresh the local variables.
*/
cpu = smp_processor_id();
rq = cpu_rq(cpu);
} else
spin_unlock_irq(&rq->lock);
if (unlikely(reacquire_kernel_lock(current) < 0))
goto need_resched_nonpreemptible;
preempt_enable_no_resched();
if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
goto need_resched;
}
EXPORT_SYMBOL(schedule);
#ifdef CONFIG_PREEMPT
/*
* this is the entry point to schedule() from in-kernel preemption
* off of preempt_enable. Kernel preemptions off return from interrupt
* occur there and call schedule directly.
*/
asmlinkage void __sched preempt_schedule(void)
{
struct thread_info *ti = current_thread_info();
/*
* If there is a non-zero preempt_count or interrupts are disabled,
* we do not want to preempt the current task. Just return..
*/
if (likely(ti->preempt_count || irqs_disabled()))
return;
do {
add_preempt_count(PREEMPT_ACTIVE);
schedule();
sub_preempt_count(PREEMPT_ACTIVE);
/*
* Check again in case we missed a preemption opportunity
* between schedule and now.
*/
barrier();
} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
}
EXPORT_SYMBOL(preempt_schedule);
/*
* this is the entry point to schedule() from kernel preemption
* off of irq context.
* Note, that this is called and return with irqs disabled. This will
* protect us against recursive calling from irq.
*/
asmlinkage void __sched preempt_schedule_irq(void)
{
struct thread_info *ti = current_thread_info();
/* Catch callers which need to be fixed */
BUG_ON(ti->preempt_count || !irqs_disabled());
do {
add_preempt_count(PREEMPT_ACTIVE);
local_irq_enable();
schedule();
local_irq_disable();
sub_preempt_count(PREEMPT_ACTIVE);
/*
* Check again in case we missed a preemption opportunity
* between schedule and now.
*/
barrier();
} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
}
#endif /* CONFIG_PREEMPT */
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
void *key)
{
return try_to_wake_up(curr->private, mode, sync);
}
EXPORT_SYMBOL(default_wake_function);
/*
* The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
* wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
* number) then we wake all the non-exclusive tasks and one exclusive task.
*
* There are circumstances in which we can try to wake a task which has already
* started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
* zero in this (rare) case, and we handle it by continuing to scan the queue.
*/
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
int nr_exclusive, int sync, void *key)
{
wait_queue_t *curr, *next;
list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
unsigned flags = curr->flags;
if (curr->func(curr, mode, sync, key) &&
(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
break;
}
}
/**
* __wake_up - wake up threads blocked on a waitqueue.
* @q: the waitqueue
* @mode: which threads
* @nr_exclusive: how many wake-one or wake-many threads to wake up
* @key: is directly passed to the wakeup function
*/
void __wake_up(wait_queue_head_t *q, unsigned int mode,
int nr_exclusive, void *key)
{
unsigned long flags;
spin_lock_irqsave(&q->lock, flags);
__wake_up_common(q, mode, nr_exclusive, 0, key);
spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);
/*
* Same as __wake_up but called with the spinlock in wait_queue_head_t held.
*/
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
{
__wake_up_common(q, mode, 1, 0, NULL);
}
/**
* __wake_up_sync - wake up threads blocked on a waitqueue.
* @q: the waitqueue
* @mode: which threads
* @nr_exclusive: how many wake-one or wake-many threads to wake up
*
* The sync wakeup differs that the waker knows that it will schedule
* away soon, so while the target thread will be woken up, it will not
* be migrated to another CPU - ie. the two threads are 'synchronized'
* with each other. This can prevent needless bouncing between CPUs.
*
* On UP it can prevent extra preemption.
*/
void
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
unsigned long flags;
int sync = 1;
if (unlikely(!q))
return;
if (unlikely(!nr_exclusive))
sync = 0;
spin_lock_irqsave(&q->lock, flags);
__wake_up_common(q, mode, nr_exclusive, sync, NULL);
spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
/**
* complete: - signals a single thread waiting on this completion
* @x: holds the state of this particular completion
*
* This will wake up a single thread waiting on this completion. Threads will be
* awakened in the same order in which they were queued.
*
* See also complete_all(), wait_for_completion() and related routines.
*/
void complete(struct completion *x)
{
unsigned long flags;
spin_lock_irqsave(&x->wait.lock, flags);
x->done++;
__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);
/**
* complete_all: - signals all threads waiting on this completion
* @x: holds the state of this particular completion
*
* This will wake up all threads waiting on this particular completion event.
*/
void complete_all(struct completion *x)
{
unsigned long flags;
spin_lock_irqsave(&x->wait.lock, flags);
x->done += UINT_MAX/2;
__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
{
if (!x->done) {
DECLARE_WAITQUEUE(wait, current);
wait.flags |= WQ_FLAG_EXCLUSIVE;
__add_wait_queue_tail(&x->wait, &wait);
do {
if (signal_pending_state(state, current)) {
timeout = -ERESTARTSYS;
break;
}
__set_current_state(state);
spin_unlock_irq(&x->wait.lock);
timeout = schedule_timeout(timeout);
spin_lock_irq(&x->wait.lock);
} while (!x->done && timeout);
__remove_wait_queue(&x->wait, &wait);
if (!x->done)
return timeout;
}
x->done--;
return timeout ?: 1;
}
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
{
might_sleep();
spin_lock_irq(&x->wait.lock);
timeout = do_wait_for_common(x, timeout, state);
spin_unlock_irq(&x->wait.lock);
return timeout;
}
/**
* wait_for_completion: - waits for completion of a task
* @x: holds the state of this particular completion
*
* This waits to be signaled for completion of a specific task. It is NOT
* interruptible and there is no timeout.
*
* See also similar routines (i.e. wait_for_completion_timeout()) with timeout
* and interrupt capability. Also see complete().
*/
void __sched wait_for_completion(struct completion *x)
{
wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
}
EXPORT_SYMBOL(wait_for_completion);
/**
* wait_for_completion_timeout: - waits for completion of a task (w/timeout)
* @x: holds the state of this particular completion
* @timeout: timeout value in jiffies
*
* This waits for either a completion of a specific task to be signaled or for a
* specified timeout to expire. The timeout is in jiffies. It is not
* interruptible.
*/
unsigned long __sched
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
{
return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
}
EXPORT_SYMBOL(wait_for_completion_timeout);
/**
* wait_for_completion_interruptible: - waits for completion of a task (w/intr)
* @x: holds the state of this particular completion
*
* This waits for completion of a specific task to be signaled. It is
* interruptible.
*/
int __sched wait_for_completion_interruptible(struct completion *x)
{
long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
if (t == -ERESTARTSYS)
return t;
return 0;
}
EXPORT_SYMBOL(wait_for_completion_interruptible);
/**
* wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
* @x: holds the state of this particular completion
* @timeout: timeout value in jiffies
*
* This waits for either a completion of a specific task to be signaled or for a
* specified timeout to expire. It is interruptible. The timeout is in jiffies.
*/
unsigned long __sched
wait_for_completion_interruptible_timeout(struct completion *x,
unsigned long timeout)
{
return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
}
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
/**
* wait_for_completion_killable: - waits for completion of a task (killable)
* @x: holds the state of this particular completion
*
* This waits to be signaled for completion of a specific task. It can be
* interrupted by a kill signal.
*/
int __sched wait_for_completion_killable(struct completion *x)
{
long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
if (t == -ERESTARTSYS)
return t;
return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);
/**
* try_wait_for_completion - try to decrement a completion without blocking
* @x: completion structure
*
* Returns: 0 if a decrement cannot be done without blocking
* 1 if a decrement succeeded.
*
* If a completion is being used as a counting completion,
* attempt to decrement the counter without blocking. This
* enables us to avoid waiting if the resource the completion
* is protecting is not available.
*/
bool try_wait_for_completion(struct completion *x)
{
int ret = 1;
spin_lock_irq(&x->wait.lock);
if (!x->done)
ret = 0;
else
x->done--;
spin_unlock_irq(&x->wait.lock);
return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);
/**
* completion_done - Test to see if a completion has any waiters
* @x: completion structure
*
* Returns: 0 if there are waiters (wait_for_completion() in progress)
* 1 if there are no waiters.
*
*/
bool completion_done(struct completion *x)
{
int ret = 1;
spin_lock_irq(&x->wait.lock);
if (!x->done)
ret = 0;
spin_unlock_irq(&x->wait.lock);
return ret;
}
EXPORT_SYMBOL(completion_done);
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
{
unsigned long flags;
wait_queue_t wait;
init_waitqueue_entry(&wait, current);
__set_current_state(state);
spin_lock_irqsave(&q->lock, flags);
__add_wait_queue(q, &wait);
spin_unlock(&q->lock);
timeout = schedule_timeout(timeout);
spin_lock_irq(&q->lock);
__remove_wait_queue(q, &wait);
spin_unlock_irqrestore(&q->lock, flags);
return timeout;
}
void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
}
EXPORT_SYMBOL(interruptible_sleep_on);
long __sched
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
{
return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);
void __sched sleep_on(wait_queue_head_t *q)
{
sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
}
EXPORT_SYMBOL(sleep_on);
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
{
return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
}
EXPORT_SYMBOL(sleep_on_timeout);
#ifdef CONFIG_RT_MUTEXES
/*
* rt_mutex_setprio - set the current priority of a task
* @p: task
* @prio: prio value (kernel-internal form)
*
* This function changes the 'effective' priority of a task. It does
* not touch ->normal_prio like __setscheduler().
*
* Used by the rt_mutex code to implement priority inheritance logic.
*/
void rt_mutex_setprio(struct task_struct *p, int prio)
{
unsigned long flags;
int oldprio, on_rq, running;
struct rq *rq;
const struct sched_class *prev_class = p->sched_class;
BUG_ON(prio < 0 || prio > MAX_PRIO);
rq = task_rq_lock(p, &flags);
update_rq_clock(rq);
oldprio = p->prio;
on_rq = p->se.on_rq;
running = task_current(rq, p);
if (on_rq)
dequeue_task(rq, p, 0);
if (running)
p->sched_class->put_prev_task(rq, p);
if (rt_prio(prio))
p->sched_class = &rt_sched_class;
else
p->sched_class = &fair_sched_class;
p->prio = prio;
if (running)
p->sched_class->set_curr_task(rq);
if (on_rq) {
enqueue_task(rq, p, 0);
check_class_changed(rq, p, prev_class, oldprio, running);
}
task_rq_unlock(rq, &flags);
}
#endif
void set_user_nice(struct task_struct *p, long nice)
{
int old_prio, delta, on_rq;
unsigned long flags;
struct rq *rq;
if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
return;
/*
* We have to be careful, if called from sys_setpriority(),
* the task might be in the middle of scheduling on another CPU.
*/
rq = task_rq_lock(p, &flags);
update_rq_clock(rq);
/*
* The RT priorities are set via sched_setscheduler(), but we still
* allow the 'normal' nice value to be set - but as expected
* it wont have any effect on scheduling until the task is
* SCHED_FIFO/SCHED_RR:
*/
if (task_has_rt_policy(p)) {
p->static_prio = NICE_TO_PRIO(nice);
goto out_unlock;
}
on_rq = p->se.on_rq;
if (on_rq)
dequeue_task(rq, p, 0);
p->static_prio = NICE_TO_PRIO(nice);
set_load_weight(p);
old_prio = p->prio;
p->prio = effective_prio(p);
delta = p->prio - old_prio;
if (on_rq) {
enqueue_task(rq, p, 0);
/*
* If the task increased its priority or is running and
* lowered its priority, then reschedule its CPU:
*/
if (delta < 0 || (delta > 0 && task_running(rq, p)))
resched_task(rq->curr);
}
out_unlock:
task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);
/*
* can_nice - check if a task can reduce its nice value
* @p: task
* @nice: nice value
*/
int can_nice(const struct task_struct *p, const int nice)
{
/* convert nice value [19,-20] to rlimit style value [1,40] */
int nice_rlim = 20 - nice;
return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
capable(CAP_SYS_NICE));
}
#ifdef __ARCH_WANT_SYS_NICE
/*
* sys_nice - change the priority of the current process.
* @increment: priority increment
*
* sys_setpriority is a more generic, but much slower function that
* does similar things.
*/
asmlinkage long sys_nice(int increment)
{
long nice, retval;
/*
* Setpriority might change our priority at the same moment.
* We don't have to worry. Conceptually one call occurs first
* and we have a single winner.
*/
if (increment < -40)
increment = -40;
if (increment > 40)
increment = 40;
nice = PRIO_TO_NICE(current->static_prio) + increment;
if (nice < -20)
nice = -20;
if (nice > 19)
nice = 19;
if (increment < 0 && !can_nice(current, nice))
return -EPERM;
retval = security_task_setnice(current, nice);
if (retval)
return retval;
set_user_nice(current, nice);
return 0;
}
#endif
/**
* task_prio - return the priority value of a given task.
* @p: the task in question.
*
* This is the priority value as seen by users in /proc.
* RT tasks are offset by -200. Normal tasks are centered
* around 0, value goes from -16 to +15.
*/
int task_prio(const struct task_struct *p)
{
return p->prio - MAX_RT_PRIO;
}
/**
* task_nice - return the nice value of a given task.
* @p: the task in question.
*/
int task_nice(const struct task_struct *p)
{
return TASK_NICE(p);
}
EXPORT_SYMBOL(task_nice);
/**
* idle_cpu - is a given cpu idle currently?
* @cpu: the processor in question.
*/
int idle_cpu(int cpu)
{
return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}
/**
* idle_task - return the idle task for a given cpu.
* @cpu: the processor in question.
*/
struct task_struct *idle_task(int cpu)
{
return cpu_rq(cpu)->idle;
}
/**
* find_process_by_pid - find a process with a matching PID value.
* @pid: the pid in question.
*/
static struct task_struct *find_process_by_pid(pid_t pid)
{
return pid ? find_task_by_vpid(pid) : current;
}
/* Actually do priority change: must hold rq lock. */
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
{
BUG_ON(p->se.on_rq);
p->policy = policy;
switch (p->policy) {
case SCHED_NORMAL:
case SCHED_BATCH:
case SCHED_IDLE:
p->sched_class = &fair_sched_class;
break;
case SCHED_FIFO:
case SCHED_RR:
p->sched_class = &rt_sched_class;
break;
}
p->rt_priority = prio;
p->normal_prio = normal_prio(p);
/* we are holding p->pi_lock already */
p->prio = rt_mutex_getprio(p);
set_load_weight(p);
}
/*
* check the target process has a UID that matches the current process's
*/
static bool check_same_owner(struct task_struct *p)
{
const struct cred *cred = current_cred(), *pcred;
bool match;
rcu_read_lock();
pcred = __task_cred(p);
match = (cred->euid == pcred->euid ||
cred->euid == pcred->uid);
rcu_read_unlock();
return match;
}
static int __sched_setscheduler(struct task_struct *p, int policy,
struct sched_param *param, bool user)
{
int retval, oldprio, oldpolicy = -1, on_rq, running;
unsigned long flags;
const struct sched_class *prev_class = p->sched_class;
struct rq *rq;
/* may grab non-irq protected spin_locks */
BUG_ON(in_interrupt());
recheck:
/* double check policy once rq lock held */
if (policy < 0)
policy = oldpolicy = p->policy;
else if (policy != SCHED_FIFO && policy != SCHED_RR &&
policy != SCHED_NORMAL && policy != SCHED_BATCH &&
policy != SCHED_IDLE)
return -EINVAL;
/*
* Valid priorities for SCHED_FIFO and SCHED_RR are
* 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
* SCHED_BATCH and SCHED_IDLE is 0.
*/
if (param->sched_priority < 0 ||
(p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
(!p->mm && param->sched_priority > MAX_RT_PRIO-1))
return -EINVAL;
if (rt_policy(policy) != (param->sched_priority != 0))
return -EINVAL;
/*
* Allow unprivileged RT tasks to decrease priority:
*/
if (user && !capable(CAP_SYS_NICE)) {
if (rt_policy(policy)) {
unsigned long rlim_rtprio;
if (!lock_task_sighand(p, &flags))
return -ESRCH;
rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
unlock_task_sighand(p, &flags);
/* can't set/change the rt policy */
if (policy != p->policy && !rlim_rtprio)
return -EPERM;
/* can't increase priority */
if (param->sched_priority > p->rt_priority &&
param->sched_priority > rlim_rtprio)
return -EPERM;
}
/*
* Like positive nice levels, dont allow tasks to
* move out of SCHED_IDLE either:
*/
if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
return -EPERM;
/* can't change other user's priorities */
if (!check_same_owner(p))
return -EPERM;
}
if (user) {
#ifdef CONFIG_RT_GROUP_SCHED
/*
* Do not allow realtime tasks into groups that have no runtime
* assigned.
*/
if (rt_bandwidth_enabled() && rt_policy(policy) &&
task_group(p)->rt_bandwidth.rt_runtime == 0)
return -EPERM;
#endif
retval = security_task_setscheduler(p, policy, param);
if (retval)
return retval;
}
/*
* make sure no PI-waiters arrive (or leave) while we are
* changing the priority of the task:
*/
spin_lock_irqsave(&p->pi_lock, flags);
/*
* To be able to change p->policy safely, the apropriate
* runqueue lock must be held.
*/
rq = __task_rq_lock(p);
/* recheck policy now with rq lock held */
if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
policy = oldpolicy = -1;
__task_rq_unlock(rq);
spin_unlock_irqrestore(&p->pi_lock, flags);
goto recheck;
}
update_rq_clock(rq);
on_rq = p->se.on_rq;
running = task_current(rq, p);
if (on_rq)
deactivate_task(rq, p, 0);
if (running)
p->sched_class->put_prev_task(rq, p);
oldprio = p->prio;
__setscheduler(rq, p, policy, param->sched_priority);
if (running)
p->sched_class->set_curr_task(rq);
if (on_rq) {
activate_task(rq, p, 0);
check_class_changed(rq, p, prev_class, oldprio, running);
}
__task_rq_unlock(rq);
spin_unlock_irqrestore(&p->pi_lock, flags);
rt_mutex_adjust_pi(p);
return 0;
}
/**
* sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
* @p: the task in question.
* @policy: new policy.
* @param: structure containing the new RT priority.
*
* NOTE that the task may be already dead.
*/
int sched_setscheduler(struct task_struct *p, int policy,
struct sched_param *param)
{
return __sched_setscheduler(p, policy, param, true);
}
EXPORT_SYMBOL_GPL(sched_setscheduler);
/**
* sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
* @p: the task in question.
* @policy: new policy.
* @param: structure containing the new RT priority.
*
* Just like sched_setscheduler, only don't bother checking if the
* current context has permission. For example, this is needed in
* stop_machine(): we create temporary high priority worker threads,
* but our caller might not have that capability.
*/
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
struct sched_param *param)
{
return __sched_setscheduler(p, policy, param, false);
}
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
{
struct sched_param lparam;
struct task_struct *p;
int retval;
if (!param || pid < 0)
return -EINVAL;
if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
return -EFAULT;
rcu_read_lock();
retval = -ESRCH;
p = find_process_by_pid(pid);
if (p != NULL)
retval = sched_setscheduler(p, policy, &lparam);
rcu_read_unlock();
return retval;
}
/**
* sys_sched_setscheduler - set/change the scheduler policy and RT priority
* @pid: the pid in question.
* @policy: new policy.
* @param: structure containing the new RT priority.
*/
asmlinkage long
sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
{
/* negative values for policy are not valid */
if (policy < 0)
return -EINVAL;
return do_sched_setscheduler(pid, policy, param);
}
/**
* sys_sched_setparam - set/change the RT priority of a thread
* @pid: the pid in question.
* @param: structure containing the new RT priority.
*/
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
return do_sched_setscheduler(pid, -1, param);
}
/**
* sys_sched_getscheduler - get the policy (scheduling class) of a thread
* @pid: the pid in question.
*/
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
struct task_struct *p;
int retval;
if (pid < 0)
return -EINVAL;
retval = -ESRCH;
read_lock(&tasklist_lock);
p = find_process_by_pid(pid);
if (p) {
retval = security_task_getscheduler(p);
if (!retval)
retval = p->policy;
}
read_unlock(&tasklist_lock);
return retval;
}
/**
* sys_sched_getscheduler - get the RT priority of a thread
* @pid: the pid in question.
* @param: structure containing the RT priority.
*/
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
struct sched_param lp;
struct task_struct *p;
int retval;
if (!param || pid < 0)
return -EINVAL;
read_lock(&tasklist_lock);
p = find_process_by_pid(pid);
retval = -ESRCH;
if (!p)
goto out_unlock;
retval = security_task_getscheduler(p);
if (retval)
goto out_unlock;
lp.sched_priority = p->rt_priority;
read_unlock(&tasklist_lock);
/*
* This one might sleep, we cannot do it with a spinlock held ...
*/
retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
return retval;
out_unlock:
read_unlock(&tasklist_lock);
return retval;
}
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
{
cpumask_var_t cpus_allowed, new_mask;
struct task_struct *p;
int retval;
get_online_cpus();
read_lock(&tasklist_lock);
p = find_process_by_pid(pid);
if (!p) {
read_unlock(&tasklist_lock);
put_online_cpus();
return -ESRCH;
}
/*
* It is not safe to call set_cpus_allowed with the
* tasklist_lock held. We will bump the task_struct's
* usage count and then drop tasklist_lock.
*/
get_task_struct(p);
read_unlock(&tasklist_lock);
if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
retval = -ENOMEM;
goto out_put_task;
}
if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
retval = -ENOMEM;
goto out_free_cpus_allowed;
}
retval = -EPERM;
if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
goto out_unlock;
retval = security_task_setscheduler(p, 0, NULL);
if (retval)
goto out_unlock;
cpuset_cpus_allowed(p, cpus_allowed);
cpumask_and(new_mask, in_mask, cpus_allowed);
again:
retval = set_cpus_allowed_ptr(p, new_mask);
if (!retval) {
cpuset_cpus_allowed(p, cpus_allowed);
if (!cpumask_subset(new_mask, cpus_allowed)) {
/*
* We must have raced with a concurrent cpuset
* update. Just reset the cpus_allowed to the
* cpuset's cpus_allowed
*/
cpumask_copy(new_mask, cpus_allowed);
goto again;
}
}
out_unlock:
free_cpumask_var(new_mask);
out_free_cpus_allowed:
free_cpumask_var(cpus_allowed);
out_put_task:
put_task_struct(p);
put_online_cpus();
return retval;
}
static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
struct cpumask *new_mask)
{
if (len < cpumask_size())
cpumask_clear(new_mask);
else if (len > cpumask_size())
len = cpumask_size();
return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}
/**
* sys_sched_setaffinity - set the cpu affinity of a process
* @pid: pid of the process
* @len: length in bytes of the bitmask pointed to by user_mask_ptr
* @user_mask_ptr: user-space pointer to the new cpu mask
*/
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
unsigned long __user *user_mask_ptr)
{
cpumask_var_t new_mask;
int retval;
if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
return -ENOMEM;
retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
if (retval == 0)
retval = sched_setaffinity(pid, new_mask);
free_cpumask_var(new_mask);
return retval;
}
long sched_getaffinity(pid_t pid, struct cpumask *mask)
{
struct task_struct *p;
int retval;
get_online_cpus();
read_lock(&tasklist_lock);
retval = -ESRCH;
p = find_process_by_pid(pid);
if (!p)
goto out_unlock;
retval = security_task_getscheduler(p);
if (retval)
goto out_unlock;
cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
out_unlock:
read_unlock(&tasklist_lock);
put_online_cpus();
return retval;
}
/**
* sys_sched_getaffinity - get the cpu affinity of a process
* @pid: pid of the process
* @len: length in bytes of the bitmask pointed to by user_mask_ptr
* @user_mask_ptr: user-space pointer to hold the current cpu mask
*/
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
unsigned long __user *user_mask_ptr)
{
int ret;
cpumask_var_t mask;
if (len < cpumask_size())
return -EINVAL;
if (!alloc_cpumask_var(&mask, GFP_KERNEL))
return -ENOMEM;
ret = sched_getaffinity(pid, mask);
if (ret == 0) {
if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
ret = -EFAULT;
else
ret = cpumask_size();
}
free_cpumask_var(mask);
return ret;
}
/**
* sys_sched_yield - yield the current processor to other threads.
*
* This function yields the current CPU to other tasks. If there are no
* other threads running on this CPU then this function will return.
*/
asmlinkage long sys_sched_yield(void)
{
struct rq *rq = this_rq_lock();
schedstat_inc(rq, yld_count);
current->sched_class->yield_task(rq);
/*
* Since we are going to call schedule() anyway, there's
* no need to preempt or enable interrupts:
*/
__release(rq->lock);
spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
_raw_spin_unlock(&rq->lock);
preempt_enable_no_resched();
schedule();
return 0;
}
static void __cond_resched(void)
{
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
__might_sleep(__FILE__, __LINE__);
#endif
/*
* The BKS might be reacquired before we have dropped
* PREEMPT_ACTIVE, which could trigger a second
* cond_resched() call.
*/
do {
add_preempt_count(PREEMPT_ACTIVE);
schedule();
sub_preempt_count(PREEMPT_ACTIVE);
} while (need_resched());
}
int __sched _cond_resched(void)
{
if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
system_state == SYSTEM_RUNNING) {
__cond_resched();
return 1;
}
return 0;
}
EXPORT_SYMBOL(_cond_resched);
/*
* cond_resched_lock() - if a reschedule is pending, drop the given lock,
* call schedule, and on return reacquire the lock.
*
* This works OK both with and without CONFIG_PREEMPT. We do strange low-level
* operations here to prevent schedule() from being called twice (once via
* spin_unlock(), once by hand).
*/
int cond_resched_lock(spinlock_t *lock)
{
int resched = need_resched() && system_state == SYSTEM_RUNNING;
int ret = 0;
if (spin_needbreak(lock) || resched) {
spin_unlock(lock);
if (resched && need_resched())
__cond_resched();
else
cpu_relax();
ret = 1;
spin_lock(lock);
}
return ret;
}
EXPORT_SYMBOL(cond_resched_lock);
int __sched cond_resched_softirq(void)
{
BUG_ON(!in_softirq());
if (need_resched() && system_state == SYSTEM_RUNNING) {
local_bh_enable();
__cond_resched();
local_bh_disable();
return 1;
}
return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);
/**
* yield - yield the current processor to other threads.
*
* This is a shortcut for kernel-space yielding - it marks the
* thread runnable and calls sys_sched_yield().
*/
void __sched yield(void)
{
set_current_state(TASK_RUNNING);
sys_sched_yield();
}
EXPORT_SYMBOL(yield);
/*
* This task is about to go to sleep on IO. Increment rq->nr_iowait so
* that process accounting knows that this is a task in IO wait state.
*
* But don't do that if it is a deliberate, throttling IO wait (this task
* has set its backing_dev_info: the queue against which it should throttle)
*/
void __sched io_schedule(void)
{
struct rq *rq = &__raw_get_cpu_var(runqueues);
delayacct_blkio_start();
atomic_inc(&rq->nr_iowait);
schedule();
atomic_dec(&rq->nr_iowait);
delayacct_blkio_end();
}
EXPORT_SYMBOL(io_schedule);
long __sched io_schedule_timeout(long timeout)
{
struct rq *rq = &__raw_get_cpu_var(runqueues);
long ret;
delayacct_blkio_start();
atomic_inc(&rq->nr_iowait);
ret = schedule_timeout(timeout);
atomic_dec(&rq->nr_iowait);
delayacct_blkio_end();
return ret;
}
/**
* sys_sched_get_priority_max - return maximum RT priority.
* @policy: scheduling class.
*
* this syscall returns the maximum rt_priority that can be used
* by a given scheduling class.
*/
asmlinkage long sys_sched_get_priority_max(int policy)
{
int ret = -EINVAL;
switch (policy) {
case SCHED_FIFO:
case SCHED_RR:
ret = MAX_USER_RT_PRIO-1;
break;
case SCHED_NORMAL:
case SCHED_BATCH:
case SCHED_IDLE:
ret = 0;
break;
}
return ret;
}
/**
* sys_sched_get_priority_min - return minimum RT priority.
* @policy: scheduling class.
*
* this syscall returns the minimum rt_priority that can be used
* by a given scheduling class.
*/
asmlinkage long sys_sched_get_priority_min(int policy)
{
int ret = -EINVAL;
switch (policy) {
case SCHED_FIFO:
case SCHED_RR:
ret = 1;
break;
case SCHED_NORMAL:
case SCHED_BATCH:
case SCHED_IDLE:
ret = 0;
}
return ret;
}
/**
* sys_sched_rr_get_interval - return the default timeslice of a process.
* @pid: pid of the process.
* @interval: userspace pointer to the timeslice value.
*
* this syscall writes the default timeslice value of a given process
* into the user-space timespec buffer. A value of '0' means infinity.
*/
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
struct task_struct *p;
unsigned int time_slice;
int retval;
struct timespec t;
if (pid < 0)
return -EINVAL;
retval = -ESRCH;
read_lock(&tasklist_lock);
p = find_process_by_pid(pid);
if (!p)
goto out_unlock;
retval = security_task_getscheduler(p);
if (retval)
goto out_unlock;
/*
* Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
* tasks that are on an otherwise idle runqueue:
*/
time_slice = 0;
if (p->policy == SCHED_RR) {
time_slice = DEF_TIMESLICE;
} else if (p->policy != SCHED_FIFO) {
struct sched_entity *se = &p->se;
unsigned long flags;
struct rq *rq;
rq = task_rq_lock(p, &flags);
if (rq->cfs.load.weight)
time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
task_rq_unlock(rq, &flags);
}
read_unlock(&tasklist_lock);
jiffies_to_timespec(time_slice, &t);
retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
return retval;
out_unlock:
read_unlock(&tasklist_lock);
return retval;
}
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
void sched_show_task(struct task_struct *p)
{
unsigned long free = 0;
unsigned state;
state = p->state ? __ffs(p->state) + 1 : 0;
printk(KERN_INFO "%-13.13s %c", p->comm,
state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
#if BITS_PER_LONG == 32
if (state == TASK_RUNNING)
printk(KERN_CONT " running ");
else
printk(KERN_CONT " %08lx ", thread_saved_pc(p));
#else
if (state == TASK_RUNNING)
printk(KERN_CONT " running task ");
else
printk(KERN_CONT " %016lx ", thread_saved_pc(p));
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
{
unsigned long *n = end_of_stack(p);
while (!*n)
n++;
free = (unsigned long)n - (unsigned long)end_of_stack(p);
}
#endif
printk(KERN_CONT "%5lu %5d %6d\n", free,
task_pid_nr(p), task_pid_nr(p->real_parent));
show_stack(p, NULL);
}
void show_state_filter(unsigned long state_filter)
{
struct task_struct *g, *p;
#if BITS_PER_LONG == 32
printk(KERN_INFO
" task PC stack pid father\n");
#else
printk(KERN_INFO
" task PC stack pid father\n");
#endif
read_lock(&tasklist_lock);
do_each_thread(g, p) {
/*
* reset the NMI-timeout, listing all files on a slow
* console might take alot of time:
*/
touch_nmi_watchdog();
if (!state_filter || (p->state & state_filter))
sched_show_task(p);
} while_each_thread(g, p);
touch_all_softlockup_watchdogs();
#ifdef CONFIG_SCHED_DEBUG
sysrq_sched_debug_show();
#endif
read_unlock(&tasklist_lock);
/*
* Only show locks if all tasks are dumped:
*/
if (state_filter == -1)
debug_show_all_locks();
}
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
idle->sched_class = &idle_sched_class;
}
/**
* init_idle - set up an idle thread for a given CPU
* @idle: task in question
* @cpu: cpu the idle task belongs to
*
* NOTE: this function does not set the idle thread's NEED_RESCHED
* flag, to make booting more robust.
*/
void __cpuinit init_idle(struct task_struct *idle, int cpu)
{
struct rq *rq = cpu_rq(cpu);
unsigned long flags;
spin_lock_irqsave(&rq->lock, flags);
__sched_fork(idle);
idle->se.exec_start = sched_clock();
idle->prio = idle->normal_prio = MAX_PRIO;
cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
__set_task_cpu(idle, cpu);
rq->curr = rq->idle = idle;
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
idle->oncpu = 1;
#endif
spin_unlock_irqrestore(&rq->lock, flags);
/* Set the preempt count _outside_ the spinlocks! */
#if defined(CONFIG_PREEMPT)
task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
task_thread_info(idle)->preempt_count = 0;
#endif
/*
* The idle tasks have their own, simple scheduling class:
*/
idle->sched_class = &idle_sched_class;
ftrace_graph_init_task(idle);
}
/*
* In a system that switches off the HZ timer nohz_cpu_mask
* indicates which cpus entered this state. This is used
* in the rcu update to wait only for active cpus. For system
* which do not switch off the HZ timer nohz_cpu_mask should
* always be CPU_BITS_NONE.
*/
cpumask_var_t nohz_cpu_mask;
/*
* Increase the granularity value when there are more CPUs,
* because with more CPUs the 'effective latency' as visible
* to users decreases. But the relationship is not linear,
* so pick a second-best guess by going with the log2 of the
* number of CPUs.
*
* This idea comes from the SD scheduler of Con Kolivas:
*/
static inline void sched_init_granularity(void)
{
unsigned int factor = 1 + ilog2(num_online_cpus());
const unsigned long limit = 200000000;
sysctl_sched_min_granularity *= factor;
if (sysctl_sched_min_granularity > limit)
sysctl_sched_min_granularity = limit;
sysctl_sched_latency *= factor;
if (sysctl_sched_latency > limit)
sysctl_sched_latency = limit;
sysctl_sched_wakeup_granularity *= factor;
sysctl_sched_shares_ratelimit *= factor;
}
#ifdef CONFIG_SMP
/*
* This is how migration works:
*
* 1) we queue a struct migration_req structure in the source CPU's
* runqueue and wake up that CPU's migration thread.
* 2) we down() the locked semaphore => thread blocks.
* 3) migration thread wakes up (implicitly it forces the migrated
* thread off the CPU)
* 4) it gets the migration request and checks whether the migrated
* task is still in the wrong runqueue.
* 5) if it's in the wrong runqueue then the migration thread removes
* it and puts it into the right queue.
* 6) migration thread up()s the semaphore.
* 7) we wake up and the migration is done.
*/
/*
* Change a given task's CPU affinity. Migrate the thread to a
* proper CPU and schedule it away if the CPU it's executing on
* is removed from the allowed bitmask.
*
* NOTE: the caller must have a valid reference to the task, the
* task must not exit() & deallocate itself prematurely. The
* call is not atomic; no spinlocks may be held.
*/
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
{
struct migration_req req;
unsigned long flags;
struct rq *rq;
int ret = 0;
rq = task_rq_lock(p, &flags);
if (!cpumask_intersects(new_mask, cpu_online_mask)) {
ret = -EINVAL;
goto out;
}
if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
!cpumask_equal(&p->cpus_allowed, new_mask))) {
ret = -EINVAL;
goto out;
}
if (p->sched_class->set_cpus_allowed)
p->sched_class->set_cpus_allowed(p, new_mask);
else {
cpumask_copy(&p->cpus_allowed, new_mask);
p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
}
/* Can the task run on the task's current CPU? If so, we're done */
if (cpumask_test_cpu(task_cpu(p), new_mask))
goto out;
if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
/* Need help from migration thread: drop lock and wait. */
task_rq_unlock(rq, &flags);
wake_up_process(rq->migration_thread);
wait_for_completion(&req.done);
tlb_migrate_finish(p->mm);
return 0;
}
out:
task_rq_unlock(rq, &flags);
return ret;
}
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
/*
* Move (not current) task off this cpu, onto dest cpu. We're doing
* this because either it can't run here any more (set_cpus_allowed()
* away from this CPU, or CPU going down), or because we're
* attempting to rebalance this task on exec (sched_exec).
*
* So we race with normal scheduler movements, but that's OK, as long
* as the task is no longer on this CPU.
*
* Returns non-zero if task was successfully migrated.
*/
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
{
struct rq *rq_dest, *rq_src;
int ret = 0, on_rq;
if (unlikely(!cpu_active(dest_cpu)))
return ret;
rq_src = cpu_rq(src_cpu);
rq_dest = cpu_rq(dest_cpu);
double_rq_lock(rq_src, rq_dest);
/* Already moved. */
if (task_cpu(p) != src_cpu)
goto done;
/* Affinity changed (again). */
if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
goto fail;
on_rq = p->se.on_rq;
if (on_rq)
deactivate_task(rq_src, p, 0);
set_task_cpu(p, dest_cpu);
if (on_rq) {
activate_task(rq_dest, p, 0);
check_preempt_curr(rq_dest, p, 0);
}
done:
ret = 1;
fail:
double_rq_unlock(rq_src, rq_dest);
return ret;
}
/*
* migration_thread - this is a highprio system thread that performs
* thread migration by bumping thread off CPU then 'pushing' onto
* another runqueue.
*/
static int migration_thread(void *data)
{
int cpu = (long)data;
struct rq *rq;
rq = cpu_rq(cpu);
BUG_ON(rq->migration_thread != current);
set_current_state(TASK_INTERRUPTIBLE);
while (!kthread_should_stop()) {
struct migration_req *req;
struct list_head *head;
spin_lock_irq(&rq->lock);
if (cpu_is_offline(cpu)) {
spin_unlock_irq(&rq->lock);
goto wait_to_die;
}
if (rq->active_balance) {
active_load_balance(rq, cpu);
rq->active_balance = 0;
}
head = &rq->migration_queue;
if (list_empty(head)) {
spin_unlock_irq(&rq->lock);
schedule();
set_current_state(TASK_INTERRUPTIBLE);
continue;
}
req = list_entry(head->next, struct migration_req, list);
list_del_init(head->next);
spin_unlock(&rq->lock);
__migrate_task(req->task, cpu, req->dest_cpu);
local_irq_enable();
complete(&req->done);
}
__set_current_state(TASK_RUNNING);
return 0;
wait_to_die:
/* Wait for kthread_stop */
set_current_state(TASK_INTERRUPTIBLE);
while (!kthread_should_stop()) {
schedule();
set_current_state(TASK_INTERRUPTIBLE);
}
__set_current_state(TASK_RUNNING);
return 0;
}
#ifdef CONFIG_HOTPLUG_CPU
static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
int ret;
local_irq_disable();
ret = __migrate_task(p, src_cpu, dest_cpu);
local_irq_enable();
return ret;
}
/*
* Figure out where task on dead CPU should go, use force if necessary.
*/
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
{
int dest_cpu;
const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
again:
/* Look for allowed, online CPU in same node. */
for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
goto move;
/* Any allowed, online CPU? */
dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
if (dest_cpu < nr_cpu_ids)
goto move;
/* No more Mr. Nice Guy. */
if (dest_cpu >= nr_cpu_ids) {
cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
/*
* Don't tell them about moving exiting tasks or
* kernel threads (both mm NULL), since they never
* leave kernel.
*/
if (p->mm && printk_ratelimit()) {
printk(KERN_INFO "process %d (%s) no "
"longer affine to cpu%d\n",
task_pid_nr(p), p->comm, dead_cpu);
}
}
move:
/* It can have affinity changed while we were choosing. */
if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
goto again;
}
/*
* While a dead CPU has no uninterruptible tasks queued at this point,
* it might still have a nonzero ->nr_uninterruptible counter, because
* for performance reasons the counter is not stricly tracking tasks to
* their home CPUs. So we just add the counter to another CPU's counter,
* to keep the global sum constant after CPU-down:
*/
static void migrate_nr_uninterruptible(struct rq *rq_src)
{
struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
unsigned long flags;
local_irq_save(flags);
double_rq_lock(rq_src, rq_dest);
rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
rq_src->nr_uninterruptible = 0;
double_rq_unlock(rq_src, rq_dest);
local_irq_restore(flags);
}
/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
struct task_struct *p, *t;
read_lock(&tasklist_lock);
do_each_thread(t, p) {
if (p == current)
continue;
if (task_cpu(p) == src_cpu)
move_task_off_dead_cpu(src_cpu, p);
} while_each_thread(t, p);
read_unlock(&tasklist_lock);
}
/*
* Schedules idle task to be the next runnable task on current CPU.
* It does so by boosting its priority to highest possible.
* Used by CPU offline code.
*/
void sched_idle_next(void)
{
int this_cpu = smp_processor_id();
struct rq *rq = cpu_rq(this_cpu);
struct task_struct *p = rq->idle;
unsigned long flags;
/* cpu has to be offline */
BUG_ON(cpu_online(this_cpu));
/*
* Strictly not necessary since rest of the CPUs are stopped by now
* and interrupts disabled on the current cpu.
*/
spin_lock_irqsave(&rq->lock, flags);
__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
update_rq_clock(rq);
activate_task(rq, p, 0);
spin_unlock_irqrestore(&rq->lock, flags);
}
/*
* Ensures that the idle task is using init_mm right before its cpu goes
* offline.
*/
void idle_task_exit(void)
{
struct mm_struct *mm = current->active_mm;
BUG_ON(cpu_online(smp_processor_id()));
if (mm != &init_mm)
switch_mm(mm, &init_mm, current);
mmdrop(mm);
}
/* called under rq->lock with disabled interrupts */
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
{
struct rq *rq = cpu_rq(dead_cpu);
/* Must be exiting, otherwise would be on tasklist. */
BUG_ON(!p->exit_state);
/* Cannot have done final schedule yet: would have vanished. */
BUG_ON(p->state == TASK_DEAD);
get_task_struct(p);
/*
* Drop lock around migration; if someone else moves it,
* that's OK. No task can be added to this CPU, so iteration is
* fine.
*/
spin_unlock_irq(&rq->lock);
move_task_off_dead_cpu(dead_cpu, p);
spin_lock_irq(&rq->lock);
put_task_struct(p);
}
/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
struct rq *rq = cpu_rq(dead_cpu);
struct task_struct *next;
for ( ; ; ) {
if (!rq->nr_running)
break;
update_rq_clock(rq);
next = pick_next_task(rq, rq->curr);
if (!next)
break;
next->sched_class->put_prev_task(rq, next);
migrate_dead(dead_cpu, next);
}
}
#endif /* CONFIG_HOTPLUG_CPU */
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
static struct ctl_table sd_ctl_dir[] = {
{
.procname = "sched_domain",
.mode = 0555,
},
{0, },
};
static struct ctl_table sd_ctl_root[] = {
{
.ctl_name = CTL_KERN,
.procname = "kernel",
.mode = 0555,
.child = sd_ctl_dir,
},
{0, },
};
static struct ctl_table *sd_alloc_ctl_entry(int n)
{
struct ctl_table *entry =
kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
return entry;
}
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
struct ctl_table *entry;
/*
* In the intermediate directories, both the child directory and
* procname are dynamically allocated and could fail but the mode
* will always be set. In the lowest directory the names are
* static strings and all have proc handlers.
*/
for (entry = *tablep; entry->mode; entry++) {
if (entry->child)
sd_free_ctl_entry(&entry->child);
if (entry->proc_handler == NULL)
kfree(entry->procname);
}
kfree(*tablep);
*tablep = NULL;
}
static void
set_table_entry(struct ctl_table *entry,
const char *procname, void *data, int maxlen,
mode_t mode, proc_handler *proc_handler)
{
entry->procname = procname;
entry->data = data;
entry->maxlen = maxlen;
entry->mode = mode;
entry->proc_handler = proc_handler;
}
static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
struct ctl_table *table = sd_alloc_ctl_entry(13);
if (table == NULL)
return NULL;
set_table_entry(&table[0], "min_interval", &sd->min_interval,
sizeof(long), 0644, proc_doulongvec_minmax);
set_table_entry(&table[1], "max_interval", &sd->max_interval,
sizeof(long), 0644, proc_doulongvec_minmax);
set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
sizeof(int), 0644, proc_dointvec_minmax);
set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
sizeof(int), 0644, proc_dointvec_minmax);
set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
sizeof(int), 0644, proc_dointvec_minmax);
set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
sizeof(int), 0644, proc_dointvec_minmax);
set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
sizeof(int), 0644, proc_dointvec_minmax);
set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
sizeof(int), 0644, proc_dointvec_minmax);
set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
sizeof(int), 0644, proc_dointvec_minmax);
set_table_entry(&table[9], "cache_nice_tries",
&sd->cache_nice_tries,
sizeof(int), 0644, proc_dointvec_minmax);
set_table_entry(&table[10], "flags", &sd->flags,
sizeof(int), 0644, proc_dointvec_minmax);
set_table_entry(&table[11], "name", sd->name,
CORENAME_MAX_SIZE, 0444, proc_dostring);
/* &table[12] is terminator */
return table;
}
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
{
struct ctl_table *entry, *table;
struct sched_domain *sd;
int domain_num = 0, i;
char buf[32];
for_each_domain(cpu, sd)
domain_num++;
entry = table = sd_alloc_ctl_entry(domain_num + 1);
if (table == NULL)
return NULL;
i = 0;
for_each_domain(cpu, sd) {
snprintf(buf, 32, "domain%d", i);
entry->procname = kstrdup(buf, GFP_KERNEL);
entry->mode = 0555;
entry->child = sd_alloc_ctl_domain_table(sd);
entry++;
i++;
}
return table;
}
static struct ctl_table_header *sd_sysctl_header;
static void register_sched_domain_sysctl(void)
{
int i, cpu_num = num_online_cpus();
struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
char buf[32];
WARN_ON(sd_ctl_dir[0].child);
sd_ctl_dir[0].child = entry;
if (entry == NULL)
return;
for_each_online_cpu(i) {
snprintf(buf, 32, "cpu%d", i);
entry->procname = kstrdup(buf, GFP_KERNEL);
entry->mode = 0555;
entry->child = sd_alloc_ctl_cpu_table(i);
entry++;
}
WARN_ON(sd_sysctl_header);
sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
/* may be called multiple times per register */
static void unregister_sched_domain_sysctl(void)
{
if (sd_sysctl_header)
unregister_sysctl_table(sd_sysctl_header);
sd_sysctl_header = NULL;
if (sd_ctl_dir[0].child)
sd_free_ctl_entry(&sd_ctl_dir[0].child);
}
#else
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
{
}
#endif
static void set_rq_online(struct rq *rq)
{
if (!rq->online) {
const struct sched_class *class;
cpumask_set_cpu(rq->cpu, rq->rd->online);
rq->online = 1;
for_each_class(class) {
if (class->rq_online)
class->rq_online(rq);
}
}
}
static void set_rq_offline(struct rq *rq)
{
if (rq->online) {
const struct sched_class *class;
for_each_class(class) {
if (class->rq_offline)
class->rq_offline(rq);
}
cpumask_clear_cpu(rq->cpu, rq->rd->online);
rq->online = 0;
}
}
/*
* migration_call - callback that gets triggered when a CPU is added.
* Here we can start up the necessary migration thread for the new CPU.
*/
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
struct task_struct *p;
int cpu = (long)hcpu;
unsigned long flags;
struct rq *rq;
switch (action) {
case CPU_UP_PREPARE:
case CPU_UP_PREPARE_FROZEN:
p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
if (IS_ERR(p))
return NOTIFY_BAD;
kthread_bind(p, cpu);
/* Must be high prio: stop_machine expects to yield to it. */
rq = task_rq_lock(p, &flags);
__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
task_rq_unlock(rq, &flags);
cpu_rq(cpu)->migration_thread = p;
break;
case CPU_ONLINE:
case CPU_ONLINE_FROZEN:
/* Strictly unnecessary, as first user will wake it. */
wake_up_process(cpu_rq(cpu)->migration_thread);
/* Update our root-domain */
rq = cpu_rq(cpu);
spin_lock_irqsave(&rq->lock, flags);
if (rq->rd) {
BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
set_rq_online(rq);
}
spin_unlock_irqrestore(&rq->lock, flags);
break;
#ifdef CONFIG_HOTPLUG_CPU
case CPU_UP_CANCELED:
case CPU_UP_CANCELED_FROZEN:
if (!cpu_rq(cpu)->migration_thread)
break;
/* Unbind it from offline cpu so it can run. Fall thru. */
kthread_bind(cpu_rq(cpu)->migration_thread,
cpumask_any(cpu_online_mask));
kthread_stop(cpu_rq(cpu)->migration_thread);
cpu_rq(cpu)->migration_thread = NULL;
break;
case CPU_DEAD:
case CPU_DEAD_FROZEN:
cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
migrate_live_tasks(cpu);
rq = cpu_rq(cpu);
kthread_stop(rq->migration_thread);
rq->migration_thread = NULL;
/* Idle task back to normal (off runqueue, low prio) */
spin_lock_irq(&rq->lock);
update_rq_clock(rq);
deactivate_task(rq, rq->idle, 0);
rq->idle->static_prio = MAX_PRIO;
__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
rq->idle->sched_class = &idle_sched_class;
migrate_dead_tasks(cpu);
spin_unlock_irq(&rq->lock);
cpuset_unlock();
migrate_nr_uninterruptible(rq);
BUG_ON(rq->nr_running != 0);
/*
* No need to migrate the tasks: it was best-effort if
* they didn't take sched_hotcpu_mutex. Just wake up
* the requestors.
*/
spin_lock_irq(&rq->lock);
while (!list_empty(&rq->migration_queue)) {
struct migration_req *req;
req = list_entry(rq->migration_queue.next,
struct migration_req, list);
list_del_init(&req->list);
spin_unlock_irq(&rq->lock);
complete(&req->done);
spin_lock_irq(&rq->lock);
}
spin_unlock_irq(&rq->lock);
break;
case CPU_DYING:
case CPU_DYING_FROZEN:
/* Update our root-domain */
rq = cpu_rq(cpu);
spin_lock_irqsave(&rq->lock, flags);
if (rq->rd) {
BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
set_rq_offline(rq);
}
spin_unlock_irqrestore(&rq->lock, flags);
break;
#endif
}
return NOTIFY_OK;
}
/* Register at highest priority so that task migration (migrate_all_tasks)
* happens before everything else.
*/
static struct notifier_block __cpuinitdata migration_notifier = {
.notifier_call = migration_call,
.priority = 10
};
static int __init migration_init(void)
{
void *cpu = (void *)(long)smp_processor_id();
int err;
/* Start one for the boot CPU: */
err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
BUG_ON(err == NOTIFY_BAD);
migration_call(&migration_notifier, CPU_ONLINE, cpu);
register_cpu_notifier(&migration_notifier);
return err;
}
early_initcall(migration_init);
#endif
#ifdef CONFIG_SMP
#ifdef CONFIG_SCHED_DEBUG
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
struct cpumask *groupmask)
{
struct sched_group *group = sd->groups;
char str[256];
cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
cpumask_clear(groupmask);
printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
if (!(sd->flags & SD_LOAD_BALANCE)) {
printk("does not load-balance\n");
if (sd->parent)
printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
" has parent");
return -1;
}
printk(KERN_CONT "span %s level %s\n", str, sd->name);
if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
printk(KERN_ERR "ERROR: domain->span does not contain "
"CPU%d\n", cpu);
}
if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
printk(KERN_ERR "ERROR: domain->groups does not contain"
" CPU%d\n", cpu);
}
printk(KERN_DEBUG "%*s groups:", level + 1, "");
do {
if (!group) {
printk("\n");
printk(KERN_ERR "ERROR: group is NULL\n");
break;
}
if (!group->__cpu_power) {
printk(KERN_CONT "\n");
printk(KERN_ERR "ERROR: domain->cpu_power not "
"set\n");
break;
}
if (!cpumask_weight(sched_group_cpus(group))) {
printk(KERN_CONT "\n");
printk(KERN_ERR "ERROR: empty group\n");
break;
}
if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
printk(KERN_CONT "\n");
printk(KERN_ERR "ERROR: repeated CPUs\n");
break;
}
cpumask_or(groupmask, groupmask, sched_group_cpus(group));
cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
printk(KERN_CONT " %s", str);
group = group->next;
} while (group != sd->groups);
printk(KERN_CONT "\n");
if (!cpumask_equal(sched_domain_span(sd), groupmask))
printk(KERN_ERR "ERROR: groups don't span domain->span\n");
if (sd->parent &&
!cpumask_subset(groupmask, sched_domain_span(sd->parent)))
printk(KERN_ERR "ERROR: parent span is not a superset "
"of domain->span\n");
return 0;
}
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
cpumask_var_t groupmask;
int level = 0;
if (!sd) {
printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
return;
}
printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
return;
}
for (;;) {
if (sched_domain_debug_one(sd, cpu, level, groupmask))
break;
level++;
sd = sd->parent;
if (!sd)
break;
}
free_cpumask_var(groupmask);
}
#else /* !CONFIG_SCHED_DEBUG */
# define sched_domain_debug(sd, cpu) do { } while (0)
#endif /* CONFIG_SCHED_DEBUG */
static int sd_degenerate(struct sched_domain *sd)
{
if (cpumask_weight(sched_domain_span(sd)) == 1)
return 1;
/* Following flags need at least 2 groups */
if (sd->flags & (SD_LOAD_BALANCE |
SD_BALANCE_NEWIDLE |
SD_BALANCE_FORK |
SD_BALANCE_EXEC |
SD_SHARE_CPUPOWER |
SD_SHARE_PKG_RESOURCES)) {
if (sd->groups != sd->groups->next)
return 0;
}
/* Following flags don't use groups */
if (sd->flags & (SD_WAKE_IDLE |
SD_WAKE_AFFINE |
SD_WAKE_BALANCE))
return 0;
return 1;
}
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
{
unsigned long cflags = sd->flags, pflags = parent->flags;
if (sd_degenerate(parent))
return 1;
if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
return 0;
/* Does parent contain flags not in child? */
/* WAKE_BALANCE is a subset of WAKE_AFFINE */
if (cflags & SD_WAKE_AFFINE)
pflags &= ~SD_WAKE_BALANCE;
/* Flags needing groups don't count if only 1 group in parent */
if (parent->groups == parent->groups->next) {
pflags &= ~(SD_LOAD_BALANCE |
SD_BALANCE_NEWIDLE |
SD_BALANCE_FORK |
SD_BALANCE_EXEC |
SD_SHARE_CPUPOWER |
SD_SHARE_PKG_RESOURCES);
if (nr_node_ids == 1)
pflags &= ~SD_SERIALIZE;
}
if (~cflags & pflags)
return 0;
return 1;
}
static void free_rootdomain(struct root_domain *rd)
{
cpupri_cleanup(&rd->cpupri);
free_cpumask_var(rd->rto_mask);
free_cpumask_var(rd->online);
free_cpumask_var(rd->span);
kfree(rd);
}
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
unsigned long flags;
spin_lock_irqsave(&rq->lock, flags);
if (rq->rd) {
struct root_domain *old_rd = rq->rd;
if (cpumask_test_cpu(rq->cpu, old_rd->online))
set_rq_offline(rq);
cpumask_clear_cpu(rq->cpu, old_rd->span);
if (atomic_dec_and_test(&old_rd->refcount))
free_rootdomain(old_rd);
}
atomic_inc(&rd->refcount);
rq->rd = rd;
cpumask_set_cpu(rq->cpu, rd->span);
if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
set_rq_online(rq);
spin_unlock_irqrestore(&rq->lock, flags);
}
static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
{
memset(rd, 0, sizeof(*rd));
if (bootmem) {
alloc_bootmem_cpumask_var(&def_root_domain.span);
alloc_bootmem_cpumask_var(&def_root_domain.online);
alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
cpupri_init(&rd->cpupri, true);
return 0;
}
if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
goto out;
if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
goto free_span;
if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
goto free_online;
if (cpupri_init(&rd->cpupri, false) != 0)
goto free_rto_mask;
return 0;
free_rto_mask:
free_cpumask_var(rd->rto_mask);
free_online:
free_cpumask_var(rd->online);
free_span:
free_cpumask_var(rd->span);
out:
return -ENOMEM;
}
static void init_defrootdomain(void)
{
init_rootdomain(&def_root_domain, true);
atomic_set(&def_root_domain.refcount, 1);
}
static struct root_domain *alloc_rootdomain(void)
{
struct root_domain *rd;
rd = kmalloc(sizeof(*rd), GFP_KERNEL);
if (!rd)
return NULL;
if (init_rootdomain(rd, false) != 0) {
kfree(rd);
return NULL;
}
return rd;
}
/*
* Attach the domain 'sd' to 'cpu' as its base domain. Callers must
* hold the hotplug lock.
*/
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
{
struct rq *rq = cpu_rq(cpu);
struct sched_domain *tmp;
/* Remove the sched domains which do not contribute to scheduling. */
for (tmp = sd; tmp; ) {
struct sched_domain *parent = tmp->parent;
if (!parent)
break;
if (sd_parent_degenerate(tmp, parent)) {
tmp->parent = parent->parent;
if (parent->parent)
parent->parent->child = tmp;
} else
tmp = tmp->parent;
}
if (sd && sd_degenerate(sd)) {
sd = sd->parent;
if (sd)
sd->child = NULL;
}
sched_domain_debug(sd, cpu);
rq_attach_root(rq, rd);
rcu_assign_pointer(rq->sd, sd);
}
/* cpus with isolated domains */
static cpumask_var_t cpu_isolated_map;
/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
cpulist_parse(str, cpu_isolated_map);
return 1;
}
__setup("isolcpus=", isolated_cpu_setup);
/*
* init_sched_build_groups takes the cpumask we wish to span, and a pointer
* to a function which identifies what group(along with sched group) a CPU
* belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
* (due to the fact that we keep track of groups covered with a struct cpumask).
*
* init_sched_build_groups will build a circular linked list of the groups
* covered by the given span, and will set each group's ->cpumask correctly,
* and ->cpu_power to 0.
*/
static void
init_sched_build_groups(const struct cpumask *span,
const struct cpumask *cpu_map,
int (*group_fn)(int cpu, const struct cpumask *cpu_map,
struct sched_group **sg,
struct cpumask *tmpmask),
struct cpumask *covered, struct cpumask *tmpmask)
{
struct sched_group *first = NULL, *last = NULL;
int i;
cpumask_clear(covered);
for_each_cpu(i, span) {
struct sched_group *sg;
int group = group_fn(i, cpu_map, &sg, tmpmask);
int j;
if (cpumask_test_cpu(i, covered))
continue;
cpumask_clear(sched_group_cpus(sg));
sg->__cpu_power = 0;
for_each_cpu(j, span) {
if (group_fn(j, cpu_map, NULL, tmpmask) != group)
continue;
cpumask_set_cpu(j, covered);
cpumask_set_cpu(j, sched_group_cpus(sg));
}
if (!first)
first = sg;
if (last)
last->next = sg;
last = sg;
}
last->next = first;
}
#define SD_NODES_PER_DOMAIN 16
#ifdef CONFIG_NUMA
/**
* find_next_best_node - find the next node to include in a sched_domain
* @node: node whose sched_domain we're building
* @used_nodes: nodes already in the sched_domain
*
* Find the next node to include in a given scheduling domain. Simply
* finds the closest node not already in the @used_nodes map.
*
* Should use nodemask_t.
*/
static int find_next_best_node(int node, nodemask_t *used_nodes)
{
int i, n, val, min_val, best_node = 0;
min_val = INT_MAX;
for (i = 0; i < nr_node_ids; i++) {
/* Start at @node */
n = (node + i) % nr_node_ids;
if (!nr_cpus_node(n))
continue;
/* Skip already used nodes */
if (node_isset(n, *used_nodes))
continue;
/* Simple min distance search */
val = node_distance(node, n);
if (val < min_val) {
min_val = val;
best_node = n;
}
}
node_set(best_node, *used_nodes);
return best_node;
}
/**
* sched_domain_node_span - get a cpumask for a node's sched_domain
* @node: node whose cpumask we're constructing
* @span: resulting cpumask
*
* Given a node, construct a good cpumask for its sched_domain to span. It
* should be one that prevents unnecessary balancing, but also spreads tasks
* out optimally.
*/
static void sched_domain_node_span(int node, struct cpumask *span)
{
nodemask_t used_nodes;
int i;
cpumask_clear(span);
nodes_clear(used_nodes);
cpumask_or(span, span, cpumask_of_node(node));
node_set(node, used_nodes);
for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
int next_node = find_next_best_node(node, &used_nodes);
cpumask_or(span, span, cpumask_of_node(next_node));
}
}
#endif /* CONFIG_NUMA */
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
/*
* The cpus mask in sched_group and sched_domain hangs off the end.
* FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
* for nr_cpu_ids < CONFIG_NR_CPUS.
*/
struct static_sched_group {
struct sched_group sg;
DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
};
struct static_sched_domain {
struct sched_domain sd;
DECLARE_BITMAP(span, CONFIG_NR_CPUS);
};
/*
* SMT sched-domains:
*/
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
static int
cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
struct sched_group **sg, struct cpumask *unused)
{
if (sg)
*sg = &per_cpu(sched_group_cpus, cpu).sg;
return cpu;
}
#endif /* CONFIG_SCHED_SMT */
/*
* multi-core sched-domains:
*/
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
#endif /* CONFIG_SCHED_MC */
#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
static int
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
struct sched_group **sg, struct cpumask *mask)
{
int group;
cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
group = cpumask_first(mask);
if (sg)
*sg = &per_cpu(sched_group_core, group).sg;
return group;
}
#elif defined(CONFIG_SCHED_MC)
static int
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
struct sched_group **sg, struct cpumask *unused)
{
if (sg)
*sg = &per_cpu(sched_group_core, cpu).sg;
return cpu;
}
#endif
static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
static int
cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
struct sched_group **sg, struct cpumask *mask)
{
int group;
#ifdef CONFIG_SCHED_MC
cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
group = cpumask_first(mask);
#elif defined(CONFIG_SCHED_SMT)
cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
group = cpumask_first(mask);
#else
group = cpu;
#endif
if (sg)
*sg = &per_cpu(sched_group_phys, group).sg;
return group;
}
#ifdef CONFIG_NUMA
/*
* The init_sched_build_groups can't handle what we want to do with node
* groups, so roll our own. Now each node has its own list of groups which
* gets dynamically allocated.
*/
static DEFINE_PER_CPU(struct sched_domain, node_domains);
static struct sched_group ***sched_group_nodes_bycpu;
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
struct sched_group **sg,
struct cpumask *nodemask)
{
int group;
cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
group = cpumask_first(nodemask);
if (sg)
*sg = &per_cpu(sched_group_allnodes, group).sg;
return group;
}
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
struct sched_group *sg = group_head;
int j;
if (!sg)
return;
do {
for_each_cpu(j, sched_group_cpus(sg)) {
struct sched_domain *sd;
sd = &per_cpu(phys_domains, j).sd;
if (j != cpumask_first(sched_group_cpus(sd->groups))) {
/*
* Only add "power" once for each
* physical package.
*/
continue;
}
sg_inc_cpu_power(sg, sd->groups->__cpu_power);
}
sg = sg->next;
} while (sg != group_head);
}
#endif /* CONFIG_NUMA */
#ifdef CONFIG_NUMA
/* Free memory allocated for various sched_group structures */
static void free_sched_groups(const struct cpumask *cpu_map,
struct cpumask *nodemask)
{
int cpu, i;
for_each_cpu(cpu, cpu_map) {
struct sched_group **sched_group_nodes
= sched_group_nodes_bycpu[cpu];
if (!sched_group_nodes)
continue;
for (i = 0; i < nr_node_ids; i++) {
struct sched_group *oldsg, *sg = sched_group_nodes[i];
cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
if (cpumask_empty(nodemask))
continue;
if (sg == NULL)
continue;
sg = sg->next;
next_sg:
oldsg = sg;
sg = sg->next;
kfree(oldsg);
if (oldsg != sched_group_nodes[i])
goto next_sg;
}
kfree(sched_group_nodes);
sched_group_nodes_bycpu[cpu] = NULL;
}
}
#else /* !CONFIG_NUMA */
static void free_sched_groups(const struct cpumask *cpu_map,
struct cpumask *nodemask)
{
}
#endif /* CONFIG_NUMA */
/*
* Initialize sched groups cpu_power.
*
* cpu_power indicates the capacity of sched group, which is used while
* distributing the load between different sched groups in a sched domain.
* Typically cpu_power for all the groups in a sched domain will be same unless
* there are asymmetries in the topology. If there are asymmetries, group
* having more cpu_power will pickup more load compared to the group having
* less cpu_power.
*
* cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
* the maximum number of tasks a group can handle in the presence of other idle
* or lightly loaded groups in the same sched domain.
*/
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
struct sched_domain *child;
struct sched_group *group;
WARN_ON(!sd || !sd->groups);
if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
return;
child = sd->child;
sd->groups->__cpu_power = 0;
/*
* For perf policy, if the groups in child domain share resources
* (for example cores sharing some portions of the cache hierarchy
* or SMT), then set this domain groups cpu_power such that each group
* can handle only one task, when there are other idle groups in the
* same sched domain.
*/
if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
(child->flags &
(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
return;
}
/*
* add cpu_power of each child group to this groups cpu_power
*/
group = child->groups;
do {
sg_inc_cpu_power(sd->groups, group->__cpu_power);
group = group->next;
} while (group != child->groups);
}
/*
* Initializers for schedule domains
* Non-inlined to reduce accumulated stack pressure in build_sched_domains()
*/
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type) sd->name = #type
#else
# define SD_INIT_NAME(sd, type) do { } while (0)
#endif
#define SD_INIT(sd, type) sd_init_##type(sd)
#define SD_INIT_FUNC(type) \
static noinline void sd_init_##type(struct sched_domain *sd) \
{ \
memset(sd, 0, sizeof(*sd)); \
*sd = SD_##type##_INIT; \
sd->level = SD_LV_##type; \
SD_INIT_NAME(sd, type); \
}
SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
SD_INIT_FUNC(ALLNODES)
SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
SD_INIT_FUNC(MC)
#endif
static int default_relax_domain_level = -1;
static int __init setup_relax_domain_level(char *str)
{
unsigned long val;
val = simple_strtoul(str, NULL, 0);
if (val < SD_LV_MAX)
default_relax_domain_level = val;
return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);
static void set_domain_attribute(struct sched_domain *sd,
struct sched_domain_attr *attr)
{
int request;
if (!attr || attr->relax_domain_level < 0) {
if (default_relax_domain_level < 0)
return;
else
request = default_relax_domain_level;
} else
request = attr->relax_domain_level;
if (request < sd->level) {
/* turn off idle balance on this domain */
sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
} else {
/* turn on idle balance on this domain */
sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
}
}
/*
* Build sched domains for a given set of cpus and attach the sched domains
* to the individual cpus
*/
static int __build_sched_domains(const struct cpumask *cpu_map,
struct sched_domain_attr *attr)
{
int i, err = -ENOMEM;
struct root_domain *rd;
cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
tmpmask;
#ifdef CONFIG_NUMA
cpumask_var_t domainspan, covered, notcovered;
struct sched_group **sched_group_nodes = NULL;
int sd_allnodes = 0;
if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
goto out;
if (!alloc_cpumask_var(&covered, GFP_KERNEL))
goto free_domainspan;
if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
goto free_covered;
#endif
if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
goto free_notcovered;
if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
goto free_nodemask;
if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
goto free_this_sibling_map;
if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
goto free_this_core_map;
if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
goto free_send_covered;
#ifdef CONFIG_NUMA
/*
* Allocate the per-node list of sched groups
*/
sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
GFP_KERNEL);
if (!sched_group_nodes) {
printk(KERN_WARNING "Can not alloc sched group node list\n");
goto free_tmpmask;
}
#endif
rd = alloc_rootdomain();
if (!rd) {
printk(KERN_WARNING "Cannot alloc root domain\n");
goto free_sched_groups;
}
#ifdef CONFIG_NUMA
sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
#endif
/*
* Set up domains for cpus specified by the cpu_map.
*/
for_each_cpu(i, cpu_map) {
struct sched_domain *sd = NULL, *p;
cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
#ifdef CONFIG_NUMA
if (cpumask_weight(cpu_map) >
SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
sd = &per_cpu(allnodes_domains, i);
SD_INIT(sd, ALLNODES);
set_domain_attribute(sd, attr);
cpumask_copy(sched_domain_span(sd), cpu_map);
cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
p = sd;
sd_allnodes = 1;
} else
p = NULL;
sd = &per_cpu(node_domains, i);
SD_INIT(sd, NODE);
set_domain_attribute(sd, attr);
sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
sd->parent = p;
if (p)
p->child = sd;
cpumask_and(sched_domain_span(sd),
sched_domain_span(sd), cpu_map);
#endif
p = sd;
sd = &per_cpu(phys_domains, i).sd;
SD_INIT(sd, CPU);
set_domain_attribute(sd, attr);
cpumask_copy(sched_domain_span(sd), nodemask);
sd->parent = p;
if (p)
p->child = sd;
cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
#ifdef CONFIG_SCHED_MC
p = sd;
sd = &per_cpu(core_domains, i).sd;
SD_INIT(sd, MC);
set_domain_attribute(sd, attr);
cpumask_and(sched_domain_span(sd), cpu_map,
cpu_coregroup_mask(i));
sd->parent = p;
p->child = sd;
cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
#endif
#ifdef CONFIG_SCHED_SMT
p = sd;
sd = &per_cpu(cpu_domains, i).sd;
SD_INIT(sd, SIBLING);
set_domain_attribute(sd, attr);
cpumask_and(sched_domain_span(sd),
&per_cpu(cpu_sibling_map, i), cpu_map);
sd->parent = p;
p->child = sd;
cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
#endif
}
#ifdef CONFIG_SCHED_SMT
/* Set up CPU (sibling) groups */
for_each_cpu(i, cpu_map) {
cpumask_and(this_sibling_map,
&per_cpu(cpu_sibling_map, i), cpu_map);
if (i != cpumask_first(this_sibling_map))
continue;
init_sched_build_groups(this_sibling_map, cpu_map,
&cpu_to_cpu_group,
send_covered, tmpmask);
}
#endif
#ifdef CONFIG_SCHED_MC
/* Set up multi-core groups */
for_each_cpu(i, cpu_map) {
cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
if (i != cpumask_first(this_core_map))
continue;
init_sched_build_groups(this_core_map, cpu_map,
&cpu_to_core_group,
send_covered, tmpmask);
}
#endif
/* Set up physical groups */
for (i = 0; i < nr_node_ids; i++) {
cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
if (cpumask_empty(nodemask))
continue;
init_sched_build_groups(nodemask, cpu_map,
&cpu_to_phys_group,
send_covered, tmpmask);
}
#ifdef CONFIG_NUMA
/* Set up node groups */
if (sd_allnodes) {
init_sched_build_groups(cpu_map, cpu_map,
&cpu_to_allnodes_group,
send_covered, tmpmask);
}
for (i = 0; i < nr_node_ids; i++) {
/* Set up node groups */
struct sched_group *sg, *prev;
int j;
cpumask_clear(covered);
cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
if (cpumask_empty(nodemask)) {
sched_group_nodes[i] = NULL;
continue;
}
sched_domain_node_span(i, domainspan);
cpumask_and(domainspan, domainspan, cpu_map);
sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
GFP_KERNEL, i);
if (!sg) {
printk(KERN_WARNING "Can not alloc domain group for "
"node %d\n", i);
goto error;
}
sched_group_nodes[i] = sg;
for_each_cpu(j, nodemask) {
struct sched_domain *sd;
sd = &per_cpu(node_domains, j);
sd->groups = sg;
}
sg->__cpu_power = 0;
cpumask_copy(sched_group_cpus(sg), nodemask);
sg->next = sg;
cpumask_or(covered, covered, nodemask);
prev = sg;
for (j = 0; j < nr_node_ids; j++) {
int n = (i + j) % nr_node_ids;
cpumask_complement(notcovered, covered);
cpumask_and(tmpmask, notcovered, cpu_map);
cpumask_and(tmpmask, tmpmask, domainspan);
if (cpumask_empty(tmpmask))
break;
cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
if (cpumask_empty(tmpmask))
continue;
sg = kmalloc_node(sizeof(struct sched_group) +
cpumask_size(),
GFP_KERNEL, i);
if (!sg) {
printk(KERN_WARNING
"Can not alloc domain group for node %d\n", j);
goto error;
}
sg->__cpu_power = 0;
cpumask_copy(sched_group_cpus(sg), tmpmask);
sg->next = prev->next;
cpumask_or(covered, covered, tmpmask);
prev->next = sg;
prev = sg;
}
}
#endif
/* Calculate CPU power for physical packages and nodes */
#ifdef CONFIG_SCHED_SMT
for_each_cpu(i, cpu_map) {
struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
init_sched_groups_power(i, sd);
}
#endif
#ifdef CONFIG_SCHED_MC
for_each_cpu(i, cpu_map) {
struct sched_domain *sd = &per_cpu(core_domains, i).sd;
init_sched_groups_power(i, sd);
}
#endif
for_each_cpu(i, cpu_map) {
struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
init_sched_groups_power(i, sd);
}
#ifdef CONFIG_NUMA
for (i = 0; i < nr_node_ids; i++)
init_numa_sched_groups_power(sched_group_nodes[i]);
if (sd_allnodes) {
struct sched_group *sg;
cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
tmpmask);
init_numa_sched_groups_power(sg);
}
#endif
/* Attach the domains */
for_each_cpu(i, cpu_map) {
struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
sd = &per_cpu(cpu_domains, i).sd;
#elif defined(CONFIG_SCHED_MC)
sd = &per_cpu(core_domains, i).sd;
#else
sd = &per_cpu(phys_domains, i).sd;
#endif
cpu_attach_domain(sd, rd, i);
}
err = 0;
free_tmpmask:
free_cpumask_var(tmpmask);
free_send_covered:
free_cpumask_var(send_covered);
free_this_core_map:
free_cpumask_var(this_core_map);
free_this_sibling_map:
free_cpumask_var(this_sibling_map);
free_nodemask:
free_cpumask_var(nodemask);
free_notcovered:
#ifdef CONFIG_NUMA
free_cpumask_var(notcovered);
free_covered:
free_cpumask_var(covered);
free_domainspan:
free_cpumask_var(domainspan);
out:
#endif
return err;
free_sched_groups:
#ifdef CONFIG_NUMA
kfree(sched_group_nodes);
#endif
goto free_tmpmask;
#ifdef CONFIG_NUMA
error:
free_sched_groups(cpu_map, tmpmask);
free_rootdomain(rd);
goto free_tmpmask;
#endif
}
static int build_sched_domains(const struct cpumask *cpu_map)
{
return __build_sched_domains(cpu_map, NULL);
}
static struct cpumask *doms_cur; /* current sched domains */
static int ndoms_cur; /* number of sched domains in 'doms_cur' */
static struct sched_domain_attr *dattr_cur;
/* attribues of custom domains in 'doms_cur' */
/*
* Special case: If a kmalloc of a doms_cur partition (array of
* cpumask) fails, then fallback to a single sched domain,
* as determined by the single cpumask fallback_doms.
*/
static cpumask_var_t fallback_doms;
/*
* arch_update_cpu_topology lets virtualized architectures update the
* cpu core maps. It is supposed to return 1 if the topology changed
* or 0 if it stayed the same.
*/
int __attribute__((weak)) arch_update_cpu_topology(void)
{
return 0;
}
/*
* Set up scheduler domains and groups. Callers must hold the hotplug lock.
* For now this just excludes isolated cpus, but could be used to
* exclude other special cases in the future.
*/
static int arch_init_sched_domains(const struct cpumask *cpu_map)
{
int err;
arch_update_cpu_topology();
ndoms_cur = 1;
doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
if (!doms_cur)
doms_cur = fallback_doms;
cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
dattr_cur = NULL;
err = build_sched_domains(doms_cur);
register_sched_domain_sysctl();
return err;
}
static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
struct cpumask *tmpmask)
{
free_sched_groups(cpu_map, tmpmask);
}
/*
* Detach sched domains from a group of cpus specified in cpu_map
* These cpus will now be attached to the NULL domain
*/
static void detach_destroy_domains(const struct cpumask *cpu_map)
{
/* Save because hotplug lock held. */
static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
int i;
for_each_cpu(i, cpu_map)
cpu_attach_domain(NULL, &def_root_domain, i);
synchronize_sched();
arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
}
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
struct sched_domain_attr *new, int idx_new)
{
struct sched_domain_attr tmp;
/* fast path */
if (!new && !cur)
return 1;
tmp = SD_ATTR_INIT;
return !memcmp(cur ? (cur + idx_cur) : &tmp,
new ? (new + idx_new) : &tmp,
sizeof(struct sched_domain_attr));
}
/*
* Partition sched domains as specified by the 'ndoms_new'
* cpumasks in the array doms_new[] of cpumasks. This compares
* doms_new[] to the current sched domain partitioning, doms_cur[].
* It destroys each deleted domain and builds each new domain.
*
* 'doms_new' is an array of cpumask's of length 'ndoms_new'.
* The masks don't intersect (don't overlap.) We should setup one
* sched domain for each mask. CPUs not in any of the cpumasks will
* not be load balanced. If the same cpumask appears both in the
* current 'doms_cur' domains and in the new 'doms_new', we can leave
* it as it is.
*
* The passed in 'doms_new' should be kmalloc'd. This routine takes
* ownership of it and will kfree it when done with it. If the caller
* failed the kmalloc call, then it can pass in doms_new == NULL &&
* ndoms_new == 1, and partition_sched_domains() will fallback to
* the single partition 'fallback_doms', it also forces the domains
* to be rebuilt.
*
* If doms_new == NULL it will be replaced with cpu_online_mask.
* ndoms_new == 0 is a special case for destroying existing domains,
* and it will not create the default domain.
*
* Call with hotplug lock held
*/
/* FIXME: Change to struct cpumask *doms_new[] */
void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
struct sched_domain_attr *dattr_new)
{
int i, j, n;
int new_topology;
mutex_lock(&sched_domains_mutex);
/* always unregister in case we don't destroy any domains */
unregister_sched_domain_sysctl();
/* Let architecture update cpu core mappings. */
new_topology = arch_update_cpu_topology();
n = doms_new ? ndoms_new : 0;
/* Destroy deleted domains */
for (i = 0; i < ndoms_cur; i++) {
for (j = 0; j < n && !new_topology; j++) {
if (cpumask_equal(&doms_cur[i], &doms_new[j])
&& dattrs_equal(dattr_cur, i, dattr_new, j))
goto match1;
}
/* no match - a current sched domain not in new doms_new[] */
detach_destroy_domains(doms_cur + i);
match1:
;
}
if (doms_new == NULL) {
ndoms_cur = 0;
doms_new = fallback_doms;
cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
WARN_ON_ONCE(dattr_new);
}
/* Build new domains */
for (i = 0; i < ndoms_new; i++) {
for (j = 0; j < ndoms_cur && !new_topology; j++) {
if (cpumask_equal(&doms_new[i], &doms_cur[j])
&& dattrs_equal(dattr_new, i, dattr_cur, j))
goto match2;
}
/* no match - add a new doms_new */
__build_sched_domains(doms_new + i,
dattr_new ? dattr_new + i : NULL);
match2:
;
}
/* Remember the new sched domains */
if (doms_cur != fallback_doms)
kfree(doms_cur);
kfree(dattr_cur); /* kfree(NULL) is safe */
doms_cur = doms_new;
dattr_cur = dattr_new;
ndoms_cur = ndoms_new;
register_sched_domain_sysctl();
mutex_unlock(&sched_domains_mutex);
}
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
static void arch_reinit_sched_domains(void)
{
get_online_cpus();
/* Destroy domains first to force the rebuild */
partition_sched_domains(0, NULL, NULL);
rebuild_sched_domains();
put_online_cpus();
}
static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
unsigned int level = 0;
if (sscanf(buf, "%u", &level) != 1)
return -EINVAL;
/*
* level is always be positive so don't check for
* level < POWERSAVINGS_BALANCE_NONE which is 0
* What happens on 0 or 1 byte write,
* need to check for count as well?
*/
if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
return -EINVAL;
if (smt)
sched_smt_power_savings = level;
else
sched_mc_power_savings = level;
arch_reinit_sched_domains();
return count;
}
#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
char *page)
{
return sprintf(page, "%u\n", sched_mc_power_savings);
}
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
const char *buf, size_t count)
{
return sched_power_savings_store(buf, count, 0);
}
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
sched_mc_power_savings_show,
sched_mc_power_savings_store);
#endif
#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
char *page)
{
return sprintf(page, "%u\n", sched_smt_power_savings);
}
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
const char *buf, size_t count)
{
return sched_power_savings_store(buf, count, 1);
}
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
sched_smt_power_savings_show,
sched_smt_power_savings_store);
#endif
int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
int err = 0;
#ifdef CONFIG_SCHED_SMT
if (smt_capable())
err = sysfs_create_file(&cls->kset.kobj,
&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
if (!err && mc_capable())
err = sysfs_create_file(&cls->kset.kobj,
&attr_sched_mc_power_savings.attr);
#endif
return err;
}
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
#ifndef CONFIG_CPUSETS
/*
* Add online and remove offline CPUs from the scheduler domains.
* When cpusets are enabled they take over this function.
*/
static int update_sched_domains(struct notifier_block *nfb,
unsigned long action, void *hcpu)
{
switch (action) {
case CPU_ONLINE:
case CPU_ONLINE_FROZEN:
case CPU_DEAD:
case CPU_DEAD_FROZEN:
partition_sched_domains(1, NULL, NULL);
return NOTIFY_OK;
default:
return NOTIFY_DONE;
}
}
#endif
static int update_runtime(struct notifier_block *nfb,
unsigned long action, void *hcpu)
{
int cpu = (int)(long)hcpu;
switch (action) {
case CPU_DOWN_PREPARE:
case CPU_DOWN_PREPARE_FROZEN:
disable_runtime(cpu_rq(cpu));
return NOTIFY_OK;
case CPU_DOWN_FAILED:
case CPU_DOWN_FAILED_FROZEN:
case CPU_ONLINE:
case CPU_ONLINE_FROZEN:
enable_runtime(cpu_rq(cpu));
return NOTIFY_OK;
default:
return NOTIFY_DONE;
}
}
void __init sched_init_smp(void)
{
cpumask_var_t non_isolated_cpus;
alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
#if defined(CONFIG_NUMA)
sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
GFP_KERNEL);
BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
get_online_cpus();
mutex_lock(&sched_domains_mutex);
arch_init_sched_domains(cpu_online_mask);
cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
if (cpumask_empty(non_isolated_cpus))
cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
mutex_unlock(&sched_domains_mutex);
put_online_cpus();
#ifndef CONFIG_CPUSETS
/* XXX: Theoretical race here - CPU may be hotplugged now */
hotcpu_notifier(update_sched_domains, 0);
#endif
/* RT runtime code needs to handle some hotplug events */
hotcpu_notifier(update_runtime, 0);
init_hrtick();
/* Move init over to a non-isolated CPU */
if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
BUG();
sched_init_granularity();
free_cpumask_var(non_isolated_cpus);
alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
init_sched_rt_class();
}
#else
void __init sched_init_smp(void)
{
sched_init_granularity();
}
#endif /* CONFIG_SMP */
int in_sched_functions(unsigned long addr)
{
return in_lock_functions(addr) ||
(addr >= (unsigned long)__sched_text_start
&& addr < (unsigned long)__sched_text_end);
}
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
{
cfs_rq->tasks_timeline = RB_ROOT;
INIT_LIST_HEAD(&cfs_rq->tasks);
#ifdef CONFIG_FAIR_GROUP_SCHED
cfs_rq->rq = rq;
#endif
cfs_rq->min_vruntime = (u64)(-(1LL << 20));
}
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
struct rt_prio_array *array;
int i;
array = &rt_rq->active;
for (i = 0; i < MAX_RT_PRIO; i++) {
INIT_LIST_HEAD(array->queue + i);
__clear_bit(i, array->bitmap);
}
/* delimiter for bitsearch: */
__set_bit(MAX_RT_PRIO, array->bitmap);
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
rt_rq->highest_prio = MAX_RT_PRIO;
#endif
#ifdef CONFIG_SMP
rt_rq->rt_nr_migratory = 0;
rt_rq->overloaded = 0;
#endif
rt_rq->rt_time = 0;
rt_rq->rt_throttled = 0;
rt_rq->rt_runtime = 0;
spin_lock_init(&rt_rq->rt_runtime_lock);
#ifdef CONFIG_RT_GROUP_SCHED
rt_rq->rt_nr_boosted = 0;
rt_rq->rq = rq;
#endif
}
#ifdef CONFIG_FAIR_GROUP_SCHED
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
struct sched_entity *se, int cpu, int add,
struct sched_entity *parent)
{
struct rq *rq = cpu_rq(cpu);
tg->cfs_rq[cpu] = cfs_rq;
init_cfs_rq(cfs_rq, rq);
cfs_rq->tg = tg;
if (add)
list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
tg->se[cpu] = se;
/* se could be NULL for init_task_group */
if (!se)
return;
if (!parent)
se->cfs_rq = &rq->cfs;
else
se->cfs_rq = parent->my_q;
se->my_q = cfs_rq;
se->load.weight = tg->shares;
se->load.inv_weight = 0;
se->parent = parent;
}
#endif
#ifdef CONFIG_RT_GROUP_SCHED
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
struct sched_rt_entity *rt_se, int cpu, int add,
struct sched_rt_entity *parent)
{
struct rq *rq = cpu_rq(cpu);
tg->rt_rq[cpu] = rt_rq;
init_rt_rq(rt_rq, rq);
rt_rq->tg = tg;
rt_rq->rt_se = rt_se;
rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
if (add)
list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
tg->rt_se[cpu] = rt_se;
if (!rt_se)
return;
if (!parent)
rt_se->rt_rq = &rq->rt;
else
rt_se->rt_rq = parent->my_q;
rt_se->my_q = rt_rq;
rt_se->parent = parent;
INIT_LIST_HEAD(&rt_se->run_list);
}
#endif
void __init sched_init(void)
{
int i, j;
unsigned long alloc_size = 0, ptr;
#ifdef CONFIG_FAIR_GROUP_SCHED
alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_USER_SCHED
alloc_size *= 2;
#endif
/*
* As sched_init() is called before page_alloc is setup,
* we use alloc_bootmem().
*/
if (alloc_size) {
ptr = (unsigned long)alloc_bootmem(alloc_size);
#ifdef CONFIG_FAIR_GROUP_SCHED
init_task_group.se = (struct sched_entity **)ptr;
ptr += nr_cpu_ids * sizeof(void **);
init_task_group.cfs_rq = (struct cfs_rq **)ptr;
ptr += nr_cpu_ids * sizeof(void **);
#ifdef CONFIG_USER_SCHED
root_task_group.se = (struct sched_entity **)ptr;
ptr += nr_cpu_ids * sizeof(void **);
root_task_group.cfs_rq = (struct cfs_rq **)ptr;
ptr += nr_cpu_ids * sizeof(void **);
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_FAIR_GROUP_SCHED */
#ifdef CONFIG_RT_GROUP_SCHED
init_task_group.rt_se = (struct sched_rt_entity **)ptr;
ptr += nr_cpu_ids * sizeof(void **);
init_task_group.rt_rq = (struct rt_rq **)ptr;
ptr += nr_cpu_ids * sizeof(void **);
#ifdef CONFIG_USER_SCHED
root_task_group.rt_se = (struct sched_rt_entity **)ptr;
ptr += nr_cpu_ids * sizeof(void **);
root_task_group.rt_rq = (struct rt_rq **)ptr;
ptr += nr_cpu_ids * sizeof(void **);
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
}
#ifdef CONFIG_SMP
init_defrootdomain();
#endif
init_rt_bandwidth(&def_rt_bandwidth,
global_rt_period(), global_rt_runtime());
#ifdef CONFIG_RT_GROUP_SCHED
init_rt_bandwidth(&init_task_group.rt_bandwidth,
global_rt_period(), global_rt_runtime());
#ifdef CONFIG_USER_SCHED
init_rt_bandwidth(&root_task_group.rt_bandwidth,
global_rt_period(), RUNTIME_INF);
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
#ifdef CONFIG_GROUP_SCHED
list_add(&init_task_group.list, &task_groups);
INIT_LIST_HEAD(&init_task_group.children);
#ifdef CONFIG_USER_SCHED
INIT_LIST_HEAD(&root_task_group.children);
init_task_group.parent = &root_task_group;
list_add(&init_task_group.siblings, &root_task_group.children);
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_GROUP_SCHED */
for_each_possible_cpu(i) {
struct rq *rq;
rq = cpu_rq(i);
spin_lock_init(&rq->lock);
rq->nr_running = 0;
init_cfs_rq(&rq->cfs, rq);
init_rt_rq(&rq->rt, rq);
#ifdef CONFIG_FAIR_GROUP_SCHED
init_task_group.shares = init_task_group_load;
INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
#ifdef CONFIG_CGROUP_SCHED
/*
* How much cpu bandwidth does init_task_group get?
*
* In case of task-groups formed thr' the cgroup filesystem, it
* gets 100% of the cpu resources in the system. This overall
* system cpu resource is divided among the tasks of
* init_task_group and its child task-groups in a fair manner,
* based on each entity's (task or task-group's) weight
* (se->load.weight).
*
* In other words, if init_task_group has 10 tasks of weight
* 1024) and two child groups A0 and A1 (of weight 1024 each),
* then A0's share of the cpu resource is:
*
* A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
*
* We achieve this by letting init_task_group's tasks sit
* directly in rq->cfs (i.e init_task_group->se[] = NULL).
*/
init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
#elif defined CONFIG_USER_SCHED
root_task_group.shares = NICE_0_LOAD;
init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
/*
* In case of task-groups formed thr' the user id of tasks,
* init_task_group represents tasks belonging to root user.
* Hence it forms a sibling of all subsequent groups formed.
* In this case, init_task_group gets only a fraction of overall
* system cpu resource, based on the weight assigned to root
* user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
* by letting tasks of init_task_group sit in a separate cfs_rq
* (init_cfs_rq) and having one entity represent this group of
* tasks in rq->cfs (i.e init_task_group->se[] != NULL).
*/
init_tg_cfs_entry(&init_task_group,
&per_cpu(init_cfs_rq, i),
&per_cpu(init_sched_entity, i), i, 1,
root_task_group.se[i]);
#endif
#endif /* CONFIG_FAIR_GROUP_SCHED */
rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
#ifdef CONFIG_RT_GROUP_SCHED
INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
#ifdef CONFIG_CGROUP_SCHED
init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
#elif defined CONFIG_USER_SCHED
init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
init_tg_rt_entry(&init_task_group,
&per_cpu(init_rt_rq, i),
&per_cpu(init_sched_rt_entity, i), i, 1,
root_task_group.rt_se[i]);
#endif
#endif
for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
rq->cpu_load[j] = 0;
#ifdef CONFIG_SMP
rq->sd = NULL;
rq->rd = NULL;
rq->active_balance = 0;
rq->next_balance = jiffies;
rq->push_cpu = 0;
rq->cpu = i;
rq->online = 0;
rq->migration_thread = NULL;
INIT_LIST_HEAD(&rq->migration_queue);
rq_attach_root(rq, &def_root_domain);
#endif
init_rq_hrtick(rq);
atomic_set(&rq->nr_iowait, 0);
}
set_load_weight(&init_task);
#ifdef CONFIG_PREEMPT_NOTIFIERS
INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif
#ifdef CONFIG_SMP
open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
#endif
#ifdef CONFIG_RT_MUTEXES
plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif
/*
* The boot idle thread does lazy MMU switching as well:
*/
atomic_inc(&init_mm.mm_count);
enter_lazy_tlb(&init_mm, current);
/*
* Make us the idle thread. Technically, schedule() should not be
* called from this thread, however somewhere below it might be,
* but because we are the idle thread, we just pick up running again
* when this runqueue becomes "idle".
*/
init_idle(current, smp_processor_id());
/*
* During early bootup we pretend to be a normal task:
*/
current->sched_class = &fair_sched_class;
/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
alloc_bootmem_cpumask_var(&nohz_cpu_mask);
#ifdef CONFIG_SMP
#ifdef CONFIG_NO_HZ
alloc_bootmem_cpumask_var(&nohz.cpu_mask);
#endif
alloc_bootmem_cpumask_var(&cpu_isolated_map);
#endif /* SMP */
scheduler_running = 1;
}
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
#ifdef in_atomic
static unsigned long prev_jiffy; /* ratelimiting */
if ((!in_atomic() && !irqs_disabled()) ||
system_state != SYSTEM_RUNNING || oops_in_progress)
return;
if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
return;
prev_jiffy = jiffies;
printk(KERN_ERR
"BUG: sleeping function called from invalid context at %s:%d\n",
file, line);
printk(KERN_ERR
"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
in_atomic(), irqs_disabled(),
current->pid, current->comm);
debug_show_held_locks(current);
if (irqs_disabled())
print_irqtrace_events(current);
dump_stack();
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif
#ifdef CONFIG_MAGIC_SYSRQ
static void normalize_task(struct rq *rq, struct task_struct *p)
{
int on_rq;
update_rq_clock(rq);
on_rq = p->se.on_rq;
if (on_rq)
deactivate_task(rq, p, 0);
__setscheduler(rq, p, SCHED_NORMAL, 0);
if (on_rq) {
activate_task(rq, p, 0);
resched_task(rq->curr);
}
}
void normalize_rt_tasks(void)
{
struct task_struct *g, *p;
unsigned long flags;
struct rq *rq;
read_lock_irqsave(&tasklist_lock, flags);
do_each_thread(g, p) {
/*
* Only normalize user tasks:
*/
if (!p->mm)
continue;
p->se.exec_start = 0;
#ifdef CONFIG_SCHEDSTATS
p->se.wait_start = 0;
p->se.sleep_start = 0;
p->se.block_start = 0;
#endif
if (!rt_task(p)) {
/*
* Renice negative nice level userspace
* tasks back to 0:
*/
if (TASK_NICE(p) < 0 && p->mm)
set_user_nice(p, 0);
continue;
}
spin_lock(&p->pi_lock);
rq = __task_rq_lock(p);
normalize_task(rq, p);
__task_rq_unlock(rq);
spin_unlock(&p->pi_lock);
} while_each_thread(g, p);
read_unlock_irqrestore(&tasklist_lock, flags);
}
#endif /* CONFIG_MAGIC_SYSRQ */
#ifdef CONFIG_IA64
/*
* These functions are only useful for the IA64 MCA handling.
*
* They can only be called when the whole system has been
* stopped - every CPU needs to be quiescent, and no scheduling
* activity can take place. Using them for anything else would
* be a serious bug, and as a result, they aren't even visible
* under any other configuration.
*/
/**
* curr_task - return the current task for a given cpu.
* @cpu: the processor in question.
*
* ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
*/
struct task_struct *curr_task(int cpu)
{
return cpu_curr(cpu);
}
/**
* set_curr_task - set the current task for a given cpu.
* @cpu: the processor in question.
* @p: the task pointer to set.
*
* Description: This function must only be used when non-maskable interrupts
* are serviced on a separate stack. It allows the architecture to switch the
* notion of the current task on a cpu in a non-blocking manner. This function
* must be called with all CPU's synchronized, and interrupts disabled, the
* and caller must save the original value of the current task (see
* curr_task() above) and restore that value before reenabling interrupts and
* re-starting the system.
*
* ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
*/
void set_curr_task(int cpu, struct task_struct *p)
{
cpu_curr(cpu) = p;
}
#endif
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
{
int i;
for_each_possible_cpu(i) {
if (tg->cfs_rq)
kfree(tg->cfs_rq[i]);
if (tg->se)
kfree(tg->se[i]);
}
kfree(tg->cfs_rq);
kfree(tg->se);
}
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
struct cfs_rq *cfs_rq;
struct sched_entity *se;
struct rq *rq;
int i;
tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
if (!tg->cfs_rq)
goto err;
tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
if (!tg->se)
goto err;
tg->shares = NICE_0_LOAD;
for_each_possible_cpu(i) {
rq = cpu_rq(i);
cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
GFP_KERNEL, cpu_to_node(i));
if (!cfs_rq)
goto err;
se = kzalloc_node(sizeof(struct sched_entity),
GFP_KERNEL, cpu_to_node(i));
if (!se)
goto err;
init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
}
return 1;
err:
return 0;
}
static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
&cpu_rq(cpu)->leaf_cfs_rq_list);
}
static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
#else /* !CONFG_FAIR_GROUP_SCHED */
static inline void free_fair_sched_group(struct task_group *tg)
{
}
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
return 1;
}
static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}
static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
#endif /* CONFIG_FAIR_GROUP_SCHED */
#ifdef CONFIG_RT_GROUP_SCHED
static void free_rt_sched_group(struct task_group *tg)
{
int i;
destroy_rt_bandwidth(&tg->rt_bandwidth);
for_each_possible_cpu(i) {
if (tg->rt_rq)
kfree(tg->rt_rq[i]);
if (tg->rt_se)
kfree(tg->rt_se[i]);
}
kfree(tg->rt_rq);
kfree(tg->rt_se);
}
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
{
struct rt_rq *rt_rq;
struct sched_rt_entity *rt_se;
struct rq *rq;
int i;
tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
if (!tg->rt_rq)
goto err;
tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
if (!tg->rt_se)
goto err;
init_rt_bandwidth(&tg->rt_bandwidth,
ktime_to_ns(def_rt_bandwidth.rt_period), 0);
for_each_possible_cpu(i) {
rq = cpu_rq(i);
rt_rq = kzalloc_node(sizeof(struct rt_rq),
GFP_KERNEL, cpu_to_node(i));
if (!rt_rq)
goto err;
rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
GFP_KERNEL, cpu_to_node(i));
if (!rt_se)
goto err;
init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
}
return 1;
err:
return 0;
}
static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
&cpu_rq(cpu)->leaf_rt_rq_list);
}
static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
#else /* !CONFIG_RT_GROUP_SCHED */
static inline void free_rt_sched_group(struct task_group *tg)
{
}
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
{
return 1;
}
static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}
static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
#endif /* CONFIG_RT_GROUP_SCHED */
#ifdef CONFIG_GROUP_SCHED
static void free_sched_group(struct task_group *tg)
{
free_fair_sched_group(tg);
free_rt_sched_group(tg);
kfree(tg);
}
/* allocate runqueue etc for a new task group */
struct task_group *sched_create_group(struct task_group *parent)
{
struct task_group *tg;
unsigned long flags;
int i;
tg = kzalloc(sizeof(*tg), GFP_KERNEL);
if (!tg)
return ERR_PTR(-ENOMEM);
if (!alloc_fair_sched_group(tg, parent))
goto err;
if (!alloc_rt_sched_group(tg, parent))
goto err;
spin_lock_irqsave(&task_group_lock, flags);
for_each_possible_cpu(i) {
register_fair_sched_group(tg, i);
register_rt_sched_group(tg, i);
}
list_add_rcu(&tg->list, &task_groups);
WARN_ON(!parent); /* root should already exist */
tg->parent = parent;
INIT_LIST_HEAD(&tg->children);
list_add_rcu(&tg->siblings, &parent->children);
spin_unlock_irqrestore(&task_group_lock, flags);
return tg;
err:
free_sched_group(tg);
return ERR_PTR(-ENOMEM);
}
/* rcu callback to free various structures associated with a task group */
static void free_sched_group_rcu(struct rcu_head *rhp)
{
/* now it should be safe to free those cfs_rqs */
free_sched_group(container_of(rhp, struct task_group, rcu));
}
/* Destroy runqueue etc associated with a task group */
void sched_destroy_group(struct task_group *tg)
{
unsigned long flags;
int i;
spin_lock_irqsave(&task_group_lock, flags);
for_each_possible_cpu(i) {
unregister_fair_sched_group(tg, i);
unregister_rt_sched_group(tg, i);
}
list_del_rcu(&tg->list);
list_del_rcu(&tg->siblings);
spin_unlock_irqrestore(&task_group_lock, flags);
/* wait for possible concurrent references to cfs_rqs complete */
call_rcu(&tg->rcu, free_sched_group_rcu);
}
/* change task's runqueue when it moves between groups.
* The caller of this function should have put the task in its new group
* by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
* reflect its new group.
*/
void sched_move_task(struct task_struct *tsk)
{
int on_rq, running;
unsigned long flags;
struct rq *rq;
rq = task_rq_lock(tsk, &flags);
update_rq_clock(rq);
running = task_current(rq, tsk);
on_rq = tsk->se.on_rq;
if (on_rq)
dequeue_task(rq, tsk, 0);
if (unlikely(running))
tsk->sched_class->put_prev_task(rq, tsk);
set_task_rq(tsk, task_cpu(tsk));
#ifdef CONFIG_FAIR_GROUP_SCHED
if (tsk->sched_class->moved_group)
tsk->sched_class->moved_group(tsk);
#endif
if (unlikely(running))
tsk->sched_class->set_curr_task(rq);
if (on_rq)
enqueue_task(rq, tsk, 0);
task_rq_unlock(rq, &flags);
}
#endif /* CONFIG_GROUP_SCHED */
#ifdef CONFIG_FAIR_GROUP_SCHED
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
{
struct cfs_rq *cfs_rq = se->cfs_rq;
int on_rq;
on_rq = se->on_rq;
if (on_rq)
dequeue_entity(cfs_rq, se, 0);
se->load.weight = shares;
se->load.inv_weight = 0;
if (on_rq)
enqueue_entity(cfs_rq, se, 0);
}
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
struct cfs_rq *cfs_rq = se->cfs_rq;
struct rq *rq = cfs_rq->rq;
unsigned long flags;
spin_lock_irqsave(&rq->lock, flags);
__set_se_shares(se, shares);
spin_unlock_irqrestore(&rq->lock, flags);
}
static DEFINE_MUTEX(shares_mutex);
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
{
int i;
unsigned long flags;
/*
* We can't change the weight of the root cgroup.
*/
if (!tg->se[0])
return -EINVAL;
if (shares < MIN_SHARES)
shares = MIN_SHARES;
else if (shares > MAX_SHARES)
shares = MAX_SHARES;
mutex_lock(&shares_mutex);
if (tg->shares == shares)
goto done;
spin_lock_irqsave(&task_group_lock, flags);
for_each_possible_cpu(i)
unregister_fair_sched_group(tg, i);
list_del_rcu(&tg->siblings);
spin_unlock_irqrestore(&task_group_lock, flags);
/* wait for any ongoing reference to this group to finish */
synchronize_sched();
/*
* Now we are free to modify the group's share on each cpu
* w/o tripping rebalance_share or load_balance_fair.
*/
tg->shares = shares;
for_each_possible_cpu(i) {
/*
* force a rebalance
*/
cfs_rq_set_shares(tg->cfs_rq[i], 0);
set_se_shares(tg->se[i], shares);
}
/*
* Enable load balance activity on this group, by inserting it back on
* each cpu's rq->leaf_cfs_rq_list.
*/
spin_lock_irqsave(&task_group_lock, flags);
for_each_possible_cpu(i)
register_fair_sched_group(tg, i);
list_add_rcu(&tg->siblings, &tg->parent->children);
spin_unlock_irqrestore(&task_group_lock, flags);
done:
mutex_unlock(&shares_mutex);
return 0;
}
unsigned long sched_group_shares(struct task_group *tg)
{
return tg->shares;
}
#endif
#ifdef CONFIG_RT_GROUP_SCHED
/*
* Ensure that the real time constraints are schedulable.
*/
static DEFINE_MUTEX(rt_constraints_mutex);
static unsigned long to_ratio(u64 period, u64 runtime)
{
if (runtime == RUNTIME_INF)
return 1ULL << 20;
return div64_u64(runtime << 20, period);
}
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
{
struct task_struct *g, *p;
do_each_thread(g, p) {
if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
return 1;
} while_each_thread(g, p);
return 0;
}
struct rt_schedulable_data {
struct task_group *tg;
u64 rt_period;
u64 rt_runtime;
};
static int tg_schedulable(struct task_group *tg, void *data)
{
struct rt_schedulable_data *d = data;
struct task_group *child;
unsigned long total, sum = 0;
u64 period, runtime;
period = ktime_to_ns(tg->rt_bandwidth.rt_period);
runtime = tg->rt_bandwidth.rt_runtime;
if (tg == d->tg) {
period = d->rt_period;
runtime = d->rt_runtime;
}
/*
* Cannot have more runtime than the period.
*/
if (runtime > period && runtime != RUNTIME_INF)
return -EINVAL;
/*
* Ensure we don't starve existing RT tasks.
*/
if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
return -EBUSY;
total = to_ratio(period, runtime);
/*
* Nobody can have more than the global setting allows.
*/
if (total > to_ratio(global_rt_period(), global_rt_runtime()))
return -EINVAL;
/*
* The sum of our children's runtime should not exceed our own.
*/
list_for_each_entry_rcu(child, &tg->children, siblings) {
period = ktime_to_ns(child->rt_bandwidth.rt_period);
runtime = child->rt_bandwidth.rt_runtime;
if (child == d->tg) {
period = d->rt_period;
runtime = d->rt_runtime;
}
sum += to_ratio(period, runtime);
}
if (sum > total)
return -EINVAL;
return 0;
}
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
{
struct rt_schedulable_data data = {
.tg = tg,
.rt_period = period,
.rt_runtime = runtime,
};
return walk_tg_tree(tg_schedulable, tg_nop, &data);
}
static int tg_set_bandwidth(struct task_group *tg,
u64 rt_period, u64 rt_runtime)
{
int i, err = 0;
mutex_lock(&rt_constraints_mutex);
read_lock(&tasklist_lock);
err = __rt_schedulable(tg, rt_period, rt_runtime);
if (err)
goto unlock;
spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
tg->rt_bandwidth.rt_runtime = rt_runtime;
for_each_possible_cpu(i) {
struct rt_rq *rt_rq = tg->rt_rq[i];
spin_lock(&rt_rq->rt_runtime_lock);
rt_rq->rt_runtime = rt_runtime;
spin_unlock(&rt_rq->rt_runtime_lock);
}
spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
unlock:
read_unlock(&tasklist_lock);
mutex_unlock(&rt_constraints_mutex);
return err;
}
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
u64 rt_runtime, rt_period;
rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
if (rt_runtime_us < 0)
rt_runtime = RUNTIME_INF;
return tg_set_bandwidth(tg, rt_period, rt_runtime);
}
long sched_group_rt_runtime(struct task_group *tg)
{
u64 rt_runtime_us;
if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
return -1;
rt_runtime_us = tg->rt_bandwidth.rt_runtime;
do_div(rt_runtime_us, NSEC_PER_USEC);
return rt_runtime_us;
}
int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
u64 rt_runtime, rt_period;
rt_period = (u64)rt_period_us * NSEC_PER_USEC;
rt_runtime = tg->rt_bandwidth.rt_runtime;
if (rt_period == 0)
return -EINVAL;
return tg_set_bandwidth(tg, rt_period, rt_runtime);
}
long sched_group_rt_period(struct task_group *tg)
{
u64 rt_period_us;
rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
do_div(rt_period_us, NSEC_PER_USEC);
return rt_period_us;
}
static int sched_rt_global_constraints(void)
{
u64 runtime, period;
int ret = 0;
if (sysctl_sched_rt_period <= 0)
return -EINVAL;
runtime = global_rt_runtime();
period = global_rt_period();
/*
* Sanity check on the sysctl variables.
*/
if (runtime > period && runtime != RUNTIME_INF)
return -EINVAL;
mutex_lock(&rt_constraints_mutex);
read_lock(&tasklist_lock);
ret = __rt_schedulable(NULL, 0, 0);
read_unlock(&tasklist_lock);
mutex_unlock(&rt_constraints_mutex);
return ret;
}
#else /* !CONFIG_RT_GROUP_SCHED */
static int sched_rt_global_constraints(void)
{
unsigned long flags;
int i;
if (sysctl_sched_rt_period <= 0)
return -EINVAL;
spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
for_each_possible_cpu(i) {
struct rt_rq *rt_rq = &cpu_rq(i)->rt;
spin_lock(&rt_rq->rt_runtime_lock);
rt_rq->rt_runtime = global_rt_runtime();
spin_unlock(&rt_rq->rt_runtime_lock);
}
spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
return 0;
}
#endif /* CONFIG_RT_GROUP_SCHED */
int sched_rt_handler(struct ctl_table *table, int write,
struct file *filp, void __user *buffer, size_t *lenp,
loff_t *ppos)
{
int ret;
int old_period, old_runtime;
static DEFINE_MUTEX(mutex);
mutex_lock(&mutex);
old_period = sysctl_sched_rt_period;
old_runtime = sysctl_sched_rt_runtime;
ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
if (!ret && write) {
ret = sched_rt_global_constraints();
if (ret) {
sysctl_sched_rt_period = old_period;
sysctl_sched_rt_runtime = old_runtime;
} else {
def_rt_bandwidth.rt_runtime = global_rt_runtime();
def_rt_bandwidth.rt_period =
ns_to_ktime(global_rt_period());
}
}
mutex_unlock(&mutex);
return ret;
}
#ifdef CONFIG_CGROUP_SCHED
/* return corresponding task_group object of a cgroup */
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
{
return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
struct task_group, css);
}
static struct cgroup_subsys_state *
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
{
struct task_group *tg, *parent;
if (!cgrp->parent) {
/* This is early initialization for the top cgroup */
return &init_task_group.css;
}
parent = cgroup_tg(cgrp->parent);
tg = sched_create_group(parent);
if (IS_ERR(tg))
return ERR_PTR(-ENOMEM);
return &tg->css;
}
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
{
struct task_group *tg = cgroup_tg(cgrp);
sched_destroy_group(tg);
}
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
struct task_struct *tsk)
{
#ifdef CONFIG_RT_GROUP_SCHED
/* Don't accept realtime tasks when there is no way for them to run */
if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
return -EINVAL;
#else
/* We don't support RT-tasks being in separate groups */
if (tsk->sched_class != &fair_sched_class)
return -EINVAL;
#endif
return 0;
}
static void
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
struct cgroup *old_cont, struct task_struct *tsk)
{
sched_move_task(tsk);
}
#ifdef CONFIG_FAIR_GROUP_SCHED
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
u64 shareval)
{
return sched_group_set_shares(cgroup_tg(cgrp), shareval);
}
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
{
struct task_group *tg = cgroup_tg(cgrp);
return (u64) tg->shares;
}
#endif /* CONFIG_FAIR_GROUP_SCHED */
#ifdef CONFIG_RT_GROUP_SCHED
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
s64 val)
{
return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
}
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
{
return sched_group_rt_runtime(cgroup_tg(cgrp));
}
static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
u64 rt_period_us)
{
return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}
static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
return sched_group_rt_period(cgroup_tg(cgrp));
}
#endif /* CONFIG_RT_GROUP_SCHED */
static struct cftype cpu_files[] = {
#ifdef CONFIG_FAIR_GROUP_SCHED
{
.name = "shares",
.read_u64 = cpu_shares_read_u64,
.write_u64 = cpu_shares_write_u64,
},
#endif
#ifdef CONFIG_RT_GROUP_SCHED
{
.name = "rt_runtime_us",
.read_s64 = cpu_rt_runtime_read,
.write_s64 = cpu_rt_runtime_write,
},
{
.name = "rt_period_us",
.read_u64 = cpu_rt_period_read_uint,
.write_u64 = cpu_rt_period_write_uint,
},
#endif
};
static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
}
struct cgroup_subsys cpu_cgroup_subsys = {
.name = "cpu",
.create = cpu_cgroup_create,
.destroy = cpu_cgroup_destroy,
.can_attach = cpu_cgroup_can_attach,
.attach = cpu_cgroup_attach,
.populate = cpu_cgroup_populate,
.subsys_id = cpu_cgroup_subsys_id,
.early_init = 1,
};
#endif /* CONFIG_CGROUP_SCHED */
#ifdef CONFIG_CGROUP_CPUACCT
/*
* CPU accounting code for task groups.
*
* Based on the work by Paul Menage (menage@google.com) and Balbir Singh
* (balbir@in.ibm.com).
*/
/* track cpu usage of a group of tasks and its child groups */
struct cpuacct {
struct cgroup_subsys_state css;
/* cpuusage holds pointer to a u64-type object on every cpu */
u64 *cpuusage;
struct cpuacct *parent;
};
struct cgroup_subsys cpuacct_subsys;
/* return cpu accounting group corresponding to this container */
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
{
return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
struct cpuacct, css);
}
/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
struct cpuacct, css);
}
/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
struct cgroup_subsys *ss, struct cgroup *cgrp)
{
struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
if (!ca)
return ERR_PTR(-ENOMEM);
ca->cpuusage = alloc_percpu(u64);
if (!ca->cpuusage) {
kfree(ca);
return ERR_PTR(-ENOMEM);
}
if (cgrp->parent)
ca->parent = cgroup_ca(cgrp->parent);
return &ca->css;
}
/* destroy an existing cpu accounting group */
static void
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
{
struct cpuacct *ca = cgroup_ca(cgrp);
free_percpu(ca->cpuusage);
kfree(ca);
}
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
u64 data;
#ifndef CONFIG_64BIT
/*
* Take rq->lock to make 64-bit read safe on 32-bit platforms.
*/
spin_lock_irq(&cpu_rq(cpu)->lock);
data = *cpuusage;
spin_unlock_irq(&cpu_rq(cpu)->lock);
#else
data = *cpuusage;
#endif
return data;
}
static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
#ifndef CONFIG_64BIT
/*
* Take rq->lock to make 64-bit write safe on 32-bit platforms.
*/
spin_lock_irq(&cpu_rq(cpu)->lock);
*cpuusage = val;
spin_unlock_irq(&cpu_rq(cpu)->lock);
#else
*cpuusage = val;
#endif
}
/* return total cpu usage (in nanoseconds) of a group */
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
{
struct cpuacct *ca = cgroup_ca(cgrp);
u64 totalcpuusage = 0;
int i;
for_each_present_cpu(i)
totalcpuusage += cpuacct_cpuusage_read(ca, i);
return totalcpuusage;
}
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
u64 reset)
{
struct cpuacct *ca = cgroup_ca(cgrp);
int err = 0;
int i;
if (reset) {
err = -EINVAL;
goto out;
}
for_each_present_cpu(i)
cpuacct_cpuusage_write(ca, i, 0);
out:
return err;
}
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
struct seq_file *m)
{
struct cpuacct *ca = cgroup_ca(cgroup);
u64 percpu;
int i;
for_each_present_cpu(i) {
percpu = cpuacct_cpuusage_read(ca, i);
seq_printf(m, "%llu ", (unsigned long long) percpu);
}
seq_printf(m, "\n");
return 0;
}
static struct cftype files[] = {
{
.name = "usage",
.read_u64 = cpuusage_read,
.write_u64 = cpuusage_write,
},
{
.name = "usage_percpu",
.read_seq_string = cpuacct_percpu_seq_read,
},
};
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
{
return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
}
/*
* charge this task's execution time to its accounting group.
*
* called with rq->lock held.
*/
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
struct cpuacct *ca;
int cpu;
if (!cpuacct_subsys.active)
return;
cpu = task_cpu(tsk);
ca = task_ca(tsk);
for (; ca; ca = ca->parent) {
u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
*cpuusage += cputime;
}
}
struct cgroup_subsys cpuacct_subsys = {
.name = "cpuacct",
.create = cpuacct_create,
.destroy = cpuacct_destroy,
.populate = cpuacct_populate,
.subsys_id = cpuacct_subsys_id,
};
#endif /* CONFIG_CGROUP_CPUACCT */