linux/kernel/sched/cpufreq_schedutil.c
Rafael J. Wysocki e788892ba3 cpufreq: governor: Get rid of governor events
The design of the cpufreq governor API is not very straightforward,
as struct cpufreq_governor provides only one callback to be invoked
from different code paths for different purposes.  The purpose it is
invoked for is determined by its second "event" argument, causing it
to act as a "callback multiplexer" of sorts.

Unfortunately, that leads to extra complexity in governors, some of
which implement the ->governor() callback as a switch statement
that simply checks the event argument and invokes a separate function
to handle that specific event.

That extra complexity can be eliminated by replacing the all-purpose
->governor() callback with a family of callbacks to carry out specific
governor operations: initialization and exit, start and stop and policy
limits updates.  That also turns out to reduce the code size too, so
do it.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-06-02 23:24:15 +02:00

515 lines
13 KiB
C

/*
* CPUFreq governor based on scheduler-provided CPU utilization data.
*
* Copyright (C) 2016, Intel Corporation
* Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/cpufreq.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <trace/events/power.h>
#include "sched.h"
struct sugov_tunables {
struct gov_attr_set attr_set;
unsigned int rate_limit_us;
};
struct sugov_policy {
struct cpufreq_policy *policy;
struct sugov_tunables *tunables;
struct list_head tunables_hook;
raw_spinlock_t update_lock; /* For shared policies */
u64 last_freq_update_time;
s64 freq_update_delay_ns;
unsigned int next_freq;
/* The next fields are only needed if fast switch cannot be used. */
struct irq_work irq_work;
struct work_struct work;
struct mutex work_lock;
bool work_in_progress;
bool need_freq_update;
};
struct sugov_cpu {
struct update_util_data update_util;
struct sugov_policy *sg_policy;
/* The fields below are only needed when sharing a policy. */
unsigned long util;
unsigned long max;
u64 last_update;
};
static DEFINE_PER_CPU(struct sugov_cpu, sugov_cpu);
/************************ Governor internals ***********************/
static bool sugov_should_update_freq(struct sugov_policy *sg_policy, u64 time)
{
s64 delta_ns;
if (sg_policy->work_in_progress)
return false;
if (unlikely(sg_policy->need_freq_update)) {
sg_policy->need_freq_update = false;
/*
* This happens when limits change, so forget the previous
* next_freq value and force an update.
*/
sg_policy->next_freq = UINT_MAX;
return true;
}
delta_ns = time - sg_policy->last_freq_update_time;
return delta_ns >= sg_policy->freq_update_delay_ns;
}
static void sugov_update_commit(struct sugov_policy *sg_policy, u64 time,
unsigned int next_freq)
{
struct cpufreq_policy *policy = sg_policy->policy;
sg_policy->last_freq_update_time = time;
if (policy->fast_switch_enabled) {
if (sg_policy->next_freq == next_freq) {
trace_cpu_frequency(policy->cur, smp_processor_id());
return;
}
sg_policy->next_freq = next_freq;
next_freq = cpufreq_driver_fast_switch(policy, next_freq);
if (next_freq == CPUFREQ_ENTRY_INVALID)
return;
policy->cur = next_freq;
trace_cpu_frequency(next_freq, smp_processor_id());
} else if (sg_policy->next_freq != next_freq) {
sg_policy->next_freq = next_freq;
sg_policy->work_in_progress = true;
irq_work_queue(&sg_policy->irq_work);
}
}
/**
* get_next_freq - Compute a new frequency for a given cpufreq policy.
* @policy: cpufreq policy object to compute the new frequency for.
* @util: Current CPU utilization.
* @max: CPU capacity.
*
* If the utilization is frequency-invariant, choose the new frequency to be
* proportional to it, that is
*
* next_freq = C * max_freq * util / max
*
* Otherwise, approximate the would-be frequency-invariant utilization by
* util_raw * (curr_freq / max_freq) which leads to
*
* next_freq = C * curr_freq * util_raw / max
*
* Take C = 1.25 for the frequency tipping point at (util / max) = 0.8.
*/
static unsigned int get_next_freq(struct cpufreq_policy *policy,
unsigned long util, unsigned long max)
{
unsigned int freq = arch_scale_freq_invariant() ?
policy->cpuinfo.max_freq : policy->cur;
return (freq + (freq >> 2)) * util / max;
}
static void sugov_update_single(struct update_util_data *hook, u64 time,
unsigned long util, unsigned long max)
{
struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
struct sugov_policy *sg_policy = sg_cpu->sg_policy;
struct cpufreq_policy *policy = sg_policy->policy;
unsigned int next_f;
if (!sugov_should_update_freq(sg_policy, time))
return;
next_f = util == ULONG_MAX ? policy->cpuinfo.max_freq :
get_next_freq(policy, util, max);
sugov_update_commit(sg_policy, time, next_f);
}
static unsigned int sugov_next_freq_shared(struct sugov_policy *sg_policy,
unsigned long util, unsigned long max)
{
struct cpufreq_policy *policy = sg_policy->policy;
unsigned int max_f = policy->cpuinfo.max_freq;
u64 last_freq_update_time = sg_policy->last_freq_update_time;
unsigned int j;
if (util == ULONG_MAX)
return max_f;
for_each_cpu(j, policy->cpus) {
struct sugov_cpu *j_sg_cpu;
unsigned long j_util, j_max;
s64 delta_ns;
if (j == smp_processor_id())
continue;
j_sg_cpu = &per_cpu(sugov_cpu, j);
/*
* If the CPU utilization was last updated before the previous
* frequency update and the time elapsed between the last update
* of the CPU utilization and the last frequency update is long
* enough, don't take the CPU into account as it probably is
* idle now.
*/
delta_ns = last_freq_update_time - j_sg_cpu->last_update;
if (delta_ns > TICK_NSEC)
continue;
j_util = j_sg_cpu->util;
if (j_util == ULONG_MAX)
return max_f;
j_max = j_sg_cpu->max;
if (j_util * max > j_max * util) {
util = j_util;
max = j_max;
}
}
return get_next_freq(policy, util, max);
}
static void sugov_update_shared(struct update_util_data *hook, u64 time,
unsigned long util, unsigned long max)
{
struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
struct sugov_policy *sg_policy = sg_cpu->sg_policy;
unsigned int next_f;
raw_spin_lock(&sg_policy->update_lock);
sg_cpu->util = util;
sg_cpu->max = max;
sg_cpu->last_update = time;
if (sugov_should_update_freq(sg_policy, time)) {
next_f = sugov_next_freq_shared(sg_policy, util, max);
sugov_update_commit(sg_policy, time, next_f);
}
raw_spin_unlock(&sg_policy->update_lock);
}
static void sugov_work(struct work_struct *work)
{
struct sugov_policy *sg_policy = container_of(work, struct sugov_policy, work);
mutex_lock(&sg_policy->work_lock);
__cpufreq_driver_target(sg_policy->policy, sg_policy->next_freq,
CPUFREQ_RELATION_L);
mutex_unlock(&sg_policy->work_lock);
sg_policy->work_in_progress = false;
}
static void sugov_irq_work(struct irq_work *irq_work)
{
struct sugov_policy *sg_policy;
sg_policy = container_of(irq_work, struct sugov_policy, irq_work);
schedule_work_on(smp_processor_id(), &sg_policy->work);
}
/************************** sysfs interface ************************/
static struct sugov_tunables *global_tunables;
static DEFINE_MUTEX(global_tunables_lock);
static inline struct sugov_tunables *to_sugov_tunables(struct gov_attr_set *attr_set)
{
return container_of(attr_set, struct sugov_tunables, attr_set);
}
static ssize_t rate_limit_us_show(struct gov_attr_set *attr_set, char *buf)
{
struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
return sprintf(buf, "%u\n", tunables->rate_limit_us);
}
static ssize_t rate_limit_us_store(struct gov_attr_set *attr_set, const char *buf,
size_t count)
{
struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
struct sugov_policy *sg_policy;
unsigned int rate_limit_us;
if (kstrtouint(buf, 10, &rate_limit_us))
return -EINVAL;
tunables->rate_limit_us = rate_limit_us;
list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook)
sg_policy->freq_update_delay_ns = rate_limit_us * NSEC_PER_USEC;
return count;
}
static struct governor_attr rate_limit_us = __ATTR_RW(rate_limit_us);
static struct attribute *sugov_attributes[] = {
&rate_limit_us.attr,
NULL
};
static struct kobj_type sugov_tunables_ktype = {
.default_attrs = sugov_attributes,
.sysfs_ops = &governor_sysfs_ops,
};
/********************** cpufreq governor interface *********************/
static struct cpufreq_governor schedutil_gov;
static struct sugov_policy *sugov_policy_alloc(struct cpufreq_policy *policy)
{
struct sugov_policy *sg_policy;
sg_policy = kzalloc(sizeof(*sg_policy), GFP_KERNEL);
if (!sg_policy)
return NULL;
sg_policy->policy = policy;
init_irq_work(&sg_policy->irq_work, sugov_irq_work);
INIT_WORK(&sg_policy->work, sugov_work);
mutex_init(&sg_policy->work_lock);
raw_spin_lock_init(&sg_policy->update_lock);
return sg_policy;
}
static void sugov_policy_free(struct sugov_policy *sg_policy)
{
mutex_destroy(&sg_policy->work_lock);
kfree(sg_policy);
}
static struct sugov_tunables *sugov_tunables_alloc(struct sugov_policy *sg_policy)
{
struct sugov_tunables *tunables;
tunables = kzalloc(sizeof(*tunables), GFP_KERNEL);
if (tunables) {
gov_attr_set_init(&tunables->attr_set, &sg_policy->tunables_hook);
if (!have_governor_per_policy())
global_tunables = tunables;
}
return tunables;
}
static void sugov_tunables_free(struct sugov_tunables *tunables)
{
if (!have_governor_per_policy())
global_tunables = NULL;
kfree(tunables);
}
static int sugov_init(struct cpufreq_policy *policy)
{
struct sugov_policy *sg_policy;
struct sugov_tunables *tunables;
unsigned int lat;
int ret = 0;
/* State should be equivalent to EXIT */
if (policy->governor_data)
return -EBUSY;
sg_policy = sugov_policy_alloc(policy);
if (!sg_policy)
return -ENOMEM;
mutex_lock(&global_tunables_lock);
if (global_tunables) {
if (WARN_ON(have_governor_per_policy())) {
ret = -EINVAL;
goto free_sg_policy;
}
policy->governor_data = sg_policy;
sg_policy->tunables = global_tunables;
gov_attr_set_get(&global_tunables->attr_set, &sg_policy->tunables_hook);
goto out;
}
tunables = sugov_tunables_alloc(sg_policy);
if (!tunables) {
ret = -ENOMEM;
goto free_sg_policy;
}
tunables->rate_limit_us = LATENCY_MULTIPLIER;
lat = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
if (lat)
tunables->rate_limit_us *= lat;
policy->governor_data = sg_policy;
sg_policy->tunables = tunables;
ret = kobject_init_and_add(&tunables->attr_set.kobj, &sugov_tunables_ktype,
get_governor_parent_kobj(policy), "%s",
schedutil_gov.name);
if (ret)
goto fail;
out:
mutex_unlock(&global_tunables_lock);
cpufreq_enable_fast_switch(policy);
return 0;
fail:
policy->governor_data = NULL;
sugov_tunables_free(tunables);
free_sg_policy:
mutex_unlock(&global_tunables_lock);
sugov_policy_free(sg_policy);
pr_err("initialization failed (error %d)\n", ret);
return ret;
}
static void sugov_exit(struct cpufreq_policy *policy)
{
struct sugov_policy *sg_policy = policy->governor_data;
struct sugov_tunables *tunables = sg_policy->tunables;
unsigned int count;
cpufreq_disable_fast_switch(policy);
mutex_lock(&global_tunables_lock);
count = gov_attr_set_put(&tunables->attr_set, &sg_policy->tunables_hook);
policy->governor_data = NULL;
if (!count)
sugov_tunables_free(tunables);
mutex_unlock(&global_tunables_lock);
sugov_policy_free(sg_policy);
}
static int sugov_start(struct cpufreq_policy *policy)
{
struct sugov_policy *sg_policy = policy->governor_data;
unsigned int cpu;
sg_policy->freq_update_delay_ns = sg_policy->tunables->rate_limit_us * NSEC_PER_USEC;
sg_policy->last_freq_update_time = 0;
sg_policy->next_freq = UINT_MAX;
sg_policy->work_in_progress = false;
sg_policy->need_freq_update = false;
for_each_cpu(cpu, policy->cpus) {
struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
sg_cpu->sg_policy = sg_policy;
if (policy_is_shared(policy)) {
sg_cpu->util = ULONG_MAX;
sg_cpu->max = 0;
sg_cpu->last_update = 0;
cpufreq_add_update_util_hook(cpu, &sg_cpu->update_util,
sugov_update_shared);
} else {
cpufreq_add_update_util_hook(cpu, &sg_cpu->update_util,
sugov_update_single);
}
}
return 0;
}
static void sugov_stop(struct cpufreq_policy *policy)
{
struct sugov_policy *sg_policy = policy->governor_data;
unsigned int cpu;
for_each_cpu(cpu, policy->cpus)
cpufreq_remove_update_util_hook(cpu);
synchronize_sched();
irq_work_sync(&sg_policy->irq_work);
cancel_work_sync(&sg_policy->work);
}
static void sugov_limits(struct cpufreq_policy *policy)
{
struct sugov_policy *sg_policy = policy->governor_data;
if (!policy->fast_switch_enabled) {
mutex_lock(&sg_policy->work_lock);
if (policy->max < policy->cur)
__cpufreq_driver_target(policy, policy->max,
CPUFREQ_RELATION_H);
else if (policy->min > policy->cur)
__cpufreq_driver_target(policy, policy->min,
CPUFREQ_RELATION_L);
mutex_unlock(&sg_policy->work_lock);
}
sg_policy->need_freq_update = true;
}
static struct cpufreq_governor schedutil_gov = {
.name = "schedutil",
.owner = THIS_MODULE,
.init = sugov_init,
.exit = sugov_exit,
.start = sugov_start,
.stop = sugov_stop,
.limits = sugov_limits,
};
static int __init sugov_module_init(void)
{
return cpufreq_register_governor(&schedutil_gov);
}
static void __exit sugov_module_exit(void)
{
cpufreq_unregister_governor(&schedutil_gov);
}
MODULE_AUTHOR("Rafael J. Wysocki <rafael.j.wysocki@intel.com>");
MODULE_DESCRIPTION("Utilization-based CPU frequency selection");
MODULE_LICENSE("GPL");
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL
struct cpufreq_governor *cpufreq_default_governor(void)
{
return &schedutil_gov;
}
fs_initcall(sugov_module_init);
#else
module_init(sugov_module_init);
#endif
module_exit(sugov_module_exit);