linux/drivers/gpu/drm/i915/intel_fbc.c
Paulo Zanoni e6cd6dc104 drm/i915: check for FBC planes in the same place as the pipes
This moves the pre-gen4 check from update() to enable(). The HAS_DDI
in the original code is not needed since only gen 2/3 have the plane
swapping code.

v2: Rebase.
v3: Extract fbc_on_plane_a_only() (Chris).

Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk>
Signed-off-by: Paulo Zanoni <paulo.r.zanoni@intel.com>
Link: http://patchwork.freedesktop.org/patch/msgid/
2015-12-03 11:35:34 -02:00

1153 lines
32 KiB
C

/*
* Copyright © 2014 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
/**
* DOC: Frame Buffer Compression (FBC)
*
* FBC tries to save memory bandwidth (and so power consumption) by
* compressing the amount of memory used by the display. It is total
* transparent to user space and completely handled in the kernel.
*
* The benefits of FBC are mostly visible with solid backgrounds and
* variation-less patterns. It comes from keeping the memory footprint small
* and having fewer memory pages opened and accessed for refreshing the display.
*
* i915 is responsible to reserve stolen memory for FBC and configure its
* offset on proper registers. The hardware takes care of all
* compress/decompress. However there are many known cases where we have to
* forcibly disable it to allow proper screen updates.
*/
#include "intel_drv.h"
#include "i915_drv.h"
static inline bool fbc_supported(struct drm_i915_private *dev_priv)
{
return dev_priv->fbc.activate != NULL;
}
static inline bool fbc_on_pipe_a_only(struct drm_i915_private *dev_priv)
{
return IS_HASWELL(dev_priv) || INTEL_INFO(dev_priv)->gen >= 8;
}
static inline bool fbc_on_plane_a_only(struct drm_i915_private *dev_priv)
{
return INTEL_INFO(dev_priv)->gen < 4;
}
/*
* In some platforms where the CRTC's x:0/y:0 coordinates doesn't match the
* frontbuffer's x:0/y:0 coordinates we lie to the hardware about the plane's
* origin so the x and y offsets can actually fit the registers. As a
* consequence, the fence doesn't really start exactly at the display plane
* address we program because it starts at the real start of the buffer, so we
* have to take this into consideration here.
*/
static unsigned int get_crtc_fence_y_offset(struct intel_crtc *crtc)
{
return crtc->base.y - crtc->adjusted_y;
}
/*
* For SKL+, the plane source size used by the hardware is based on the value we
* write to the PLANE_SIZE register. For BDW-, the hardware looks at the value
* we wrote to PIPESRC.
*/
static void intel_fbc_get_plane_source_size(struct intel_crtc *crtc,
int *width, int *height)
{
struct intel_plane_state *plane_state =
to_intel_plane_state(crtc->base.primary->state);
int w, h;
if (intel_rotation_90_or_270(plane_state->base.rotation)) {
w = drm_rect_height(&plane_state->src) >> 16;
h = drm_rect_width(&plane_state->src) >> 16;
} else {
w = drm_rect_width(&plane_state->src) >> 16;
h = drm_rect_height(&plane_state->src) >> 16;
}
if (width)
*width = w;
if (height)
*height = h;
}
static int intel_fbc_calculate_cfb_size(struct intel_crtc *crtc,
struct drm_framebuffer *fb)
{
struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
int lines;
intel_fbc_get_plane_source_size(crtc, NULL, &lines);
if (INTEL_INFO(dev_priv)->gen >= 7)
lines = min(lines, 2048);
/* Hardware needs the full buffer stride, not just the active area. */
return lines * fb->pitches[0];
}
static void i8xx_fbc_deactivate(struct drm_i915_private *dev_priv)
{
u32 fbc_ctl;
dev_priv->fbc.active = false;
/* Disable compression */
fbc_ctl = I915_READ(FBC_CONTROL);
if ((fbc_ctl & FBC_CTL_EN) == 0)
return;
fbc_ctl &= ~FBC_CTL_EN;
I915_WRITE(FBC_CONTROL, fbc_ctl);
/* Wait for compressing bit to clear */
if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
DRM_DEBUG_KMS("FBC idle timed out\n");
return;
}
DRM_DEBUG_KMS("deactivated FBC\n");
}
static void i8xx_fbc_activate(struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
struct drm_framebuffer *fb = crtc->base.primary->fb;
struct drm_i915_gem_object *obj = intel_fb_obj(fb);
int cfb_pitch;
int i;
u32 fbc_ctl;
dev_priv->fbc.active = true;
/* Note: fbc.threshold == 1 for i8xx */
cfb_pitch = dev_priv->fbc.uncompressed_size / FBC_LL_SIZE;
if (fb->pitches[0] < cfb_pitch)
cfb_pitch = fb->pitches[0];
/* FBC_CTL wants 32B or 64B units */
if (IS_GEN2(dev_priv))
cfb_pitch = (cfb_pitch / 32) - 1;
else
cfb_pitch = (cfb_pitch / 64) - 1;
/* Clear old tags */
for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
I915_WRITE(FBC_TAG(i), 0);
if (IS_GEN4(dev_priv)) {
u32 fbc_ctl2;
/* Set it up... */
fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
fbc_ctl2 |= FBC_CTL_PLANE(crtc->plane);
I915_WRITE(FBC_CONTROL2, fbc_ctl2);
I915_WRITE(FBC_FENCE_OFF, get_crtc_fence_y_offset(crtc));
}
/* enable it... */
fbc_ctl = I915_READ(FBC_CONTROL);
fbc_ctl &= 0x3fff << FBC_CTL_INTERVAL_SHIFT;
fbc_ctl |= FBC_CTL_EN | FBC_CTL_PERIODIC;
if (IS_I945GM(dev_priv))
fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
fbc_ctl |= obj->fence_reg;
I915_WRITE(FBC_CONTROL, fbc_ctl);
DRM_DEBUG_KMS("activated FBC, pitch %d, yoff %d, plane %c\n",
cfb_pitch, crtc->base.y, plane_name(crtc->plane));
}
static bool i8xx_fbc_is_active(struct drm_i915_private *dev_priv)
{
return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
}
static void g4x_fbc_activate(struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
struct drm_framebuffer *fb = crtc->base.primary->fb;
struct drm_i915_gem_object *obj = intel_fb_obj(fb);
u32 dpfc_ctl;
dev_priv->fbc.active = true;
dpfc_ctl = DPFC_CTL_PLANE(crtc->plane) | DPFC_SR_EN;
if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
dpfc_ctl |= DPFC_CTL_LIMIT_2X;
else
dpfc_ctl |= DPFC_CTL_LIMIT_1X;
dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
I915_WRITE(DPFC_FENCE_YOFF, get_crtc_fence_y_offset(crtc));
/* enable it... */
I915_WRITE(DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
DRM_DEBUG_KMS("activated fbc on plane %c\n", plane_name(crtc->plane));
}
static void g4x_fbc_deactivate(struct drm_i915_private *dev_priv)
{
u32 dpfc_ctl;
dev_priv->fbc.active = false;
/* Disable compression */
dpfc_ctl = I915_READ(DPFC_CONTROL);
if (dpfc_ctl & DPFC_CTL_EN) {
dpfc_ctl &= ~DPFC_CTL_EN;
I915_WRITE(DPFC_CONTROL, dpfc_ctl);
DRM_DEBUG_KMS("deactivated FBC\n");
}
}
static bool g4x_fbc_is_active(struct drm_i915_private *dev_priv)
{
return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
}
/* This function forces a CFB recompression through the nuke operation. */
static void intel_fbc_recompress(struct drm_i915_private *dev_priv)
{
I915_WRITE(MSG_FBC_REND_STATE, FBC_REND_NUKE);
POSTING_READ(MSG_FBC_REND_STATE);
}
static void ilk_fbc_activate(struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
struct drm_framebuffer *fb = crtc->base.primary->fb;
struct drm_i915_gem_object *obj = intel_fb_obj(fb);
u32 dpfc_ctl;
int threshold = dev_priv->fbc.threshold;
unsigned int y_offset;
dev_priv->fbc.active = true;
dpfc_ctl = DPFC_CTL_PLANE(crtc->plane);
if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
threshold++;
switch (threshold) {
case 4:
case 3:
dpfc_ctl |= DPFC_CTL_LIMIT_4X;
break;
case 2:
dpfc_ctl |= DPFC_CTL_LIMIT_2X;
break;
case 1:
dpfc_ctl |= DPFC_CTL_LIMIT_1X;
break;
}
dpfc_ctl |= DPFC_CTL_FENCE_EN;
if (IS_GEN5(dev_priv))
dpfc_ctl |= obj->fence_reg;
y_offset = get_crtc_fence_y_offset(crtc);
I915_WRITE(ILK_DPFC_FENCE_YOFF, y_offset);
I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
/* enable it... */
I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
if (IS_GEN6(dev_priv)) {
I915_WRITE(SNB_DPFC_CTL_SA,
SNB_CPU_FENCE_ENABLE | obj->fence_reg);
I915_WRITE(DPFC_CPU_FENCE_OFFSET, y_offset);
}
intel_fbc_recompress(dev_priv);
DRM_DEBUG_KMS("activated fbc on plane %c\n", plane_name(crtc->plane));
}
static void ilk_fbc_deactivate(struct drm_i915_private *dev_priv)
{
u32 dpfc_ctl;
dev_priv->fbc.active = false;
/* Disable compression */
dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
if (dpfc_ctl & DPFC_CTL_EN) {
dpfc_ctl &= ~DPFC_CTL_EN;
I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
DRM_DEBUG_KMS("deactivated FBC\n");
}
}
static bool ilk_fbc_is_active(struct drm_i915_private *dev_priv)
{
return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
}
static void gen7_fbc_activate(struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
struct drm_framebuffer *fb = crtc->base.primary->fb;
struct drm_i915_gem_object *obj = intel_fb_obj(fb);
u32 dpfc_ctl;
int threshold = dev_priv->fbc.threshold;
dev_priv->fbc.active = true;
dpfc_ctl = 0;
if (IS_IVYBRIDGE(dev_priv))
dpfc_ctl |= IVB_DPFC_CTL_PLANE(crtc->plane);
if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
threshold++;
switch (threshold) {
case 4:
case 3:
dpfc_ctl |= DPFC_CTL_LIMIT_4X;
break;
case 2:
dpfc_ctl |= DPFC_CTL_LIMIT_2X;
break;
case 1:
dpfc_ctl |= DPFC_CTL_LIMIT_1X;
break;
}
dpfc_ctl |= IVB_DPFC_CTL_FENCE_EN;
if (dev_priv->fbc.false_color)
dpfc_ctl |= FBC_CTL_FALSE_COLOR;
if (IS_IVYBRIDGE(dev_priv)) {
/* WaFbcAsynchFlipDisableFbcQueue:ivb */
I915_WRITE(ILK_DISPLAY_CHICKEN1,
I915_READ(ILK_DISPLAY_CHICKEN1) |
ILK_FBCQ_DIS);
} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
/* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
I915_WRITE(CHICKEN_PIPESL_1(crtc->pipe),
I915_READ(CHICKEN_PIPESL_1(crtc->pipe)) |
HSW_FBCQ_DIS);
}
I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
I915_WRITE(SNB_DPFC_CTL_SA,
SNB_CPU_FENCE_ENABLE | obj->fence_reg);
I915_WRITE(DPFC_CPU_FENCE_OFFSET, get_crtc_fence_y_offset(crtc));
intel_fbc_recompress(dev_priv);
DRM_DEBUG_KMS("activated fbc on plane %c\n", plane_name(crtc->plane));
}
/**
* intel_fbc_is_active - Is FBC active?
* @dev_priv: i915 device instance
*
* This function is used to verify the current state of FBC.
* FIXME: This should be tracked in the plane config eventually
* instead of queried at runtime for most callers.
*/
bool intel_fbc_is_active(struct drm_i915_private *dev_priv)
{
return dev_priv->fbc.active;
}
static void intel_fbc_activate(const struct drm_framebuffer *fb)
{
struct drm_i915_private *dev_priv = fb->dev->dev_private;
struct intel_crtc *crtc = dev_priv->fbc.crtc;
dev_priv->fbc.activate(crtc);
dev_priv->fbc.fb_id = fb->base.id;
dev_priv->fbc.y = crtc->base.y;
}
static void intel_fbc_work_fn(struct work_struct *__work)
{
struct intel_fbc_work *work =
container_of(to_delayed_work(__work),
struct intel_fbc_work, work);
struct drm_i915_private *dev_priv = work->fb->dev->dev_private;
struct drm_framebuffer *crtc_fb = dev_priv->fbc.crtc->base.primary->fb;
mutex_lock(&dev_priv->fbc.lock);
if (work == dev_priv->fbc.fbc_work) {
/* Double check that we haven't switched fb without cancelling
* the prior work.
*/
if (crtc_fb == work->fb)
intel_fbc_activate(work->fb);
dev_priv->fbc.fbc_work = NULL;
}
mutex_unlock(&dev_priv->fbc.lock);
kfree(work);
}
static void intel_fbc_cancel_work(struct drm_i915_private *dev_priv)
{
WARN_ON(!mutex_is_locked(&dev_priv->fbc.lock));
if (dev_priv->fbc.fbc_work == NULL)
return;
/* Synchronisation is provided by struct_mutex and checking of
* dev_priv->fbc.fbc_work, so we can perform the cancellation
* entirely asynchronously.
*/
if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
/* tasklet was killed before being run, clean up */
kfree(dev_priv->fbc.fbc_work);
/* Mark the work as no longer wanted so that if it does
* wake-up (because the work was already running and waiting
* for our mutex), it will discover that is no longer
* necessary to run.
*/
dev_priv->fbc.fbc_work = NULL;
}
static void intel_fbc_schedule_activation(struct intel_crtc *crtc)
{
struct intel_fbc_work *work;
struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
WARN_ON(!mutex_is_locked(&dev_priv->fbc.lock));
intel_fbc_cancel_work(dev_priv);
work = kzalloc(sizeof(*work), GFP_KERNEL);
if (work == NULL) {
DRM_ERROR("Failed to allocate FBC work structure\n");
intel_fbc_activate(crtc->base.primary->fb);
return;
}
work->fb = crtc->base.primary->fb;
INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
dev_priv->fbc.fbc_work = work;
/* Delay the actual enabling to let pageflipping cease and the
* display to settle before starting the compression. Note that
* this delay also serves a second purpose: it allows for a
* vblank to pass after disabling the FBC before we attempt
* to modify the control registers.
*
* A more complicated solution would involve tracking vblanks
* following the termination of the page-flipping sequence
* and indeed performing the enable as a co-routine and not
* waiting synchronously upon the vblank.
*
* WaFbcWaitForVBlankBeforeEnable:ilk,snb
*/
schedule_delayed_work(&work->work, msecs_to_jiffies(50));
}
static void __intel_fbc_deactivate(struct drm_i915_private *dev_priv)
{
WARN_ON(!mutex_is_locked(&dev_priv->fbc.lock));
intel_fbc_cancel_work(dev_priv);
if (dev_priv->fbc.active)
dev_priv->fbc.deactivate(dev_priv);
}
/*
* intel_fbc_deactivate - deactivate FBC if it's associated with crtc
* @crtc: the CRTC
*
* This function deactivates FBC if it's associated with the provided CRTC.
*/
void intel_fbc_deactivate(struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
if (!fbc_supported(dev_priv))
return;
mutex_lock(&dev_priv->fbc.lock);
if (dev_priv->fbc.crtc == crtc)
__intel_fbc_deactivate(dev_priv);
mutex_unlock(&dev_priv->fbc.lock);
}
static void set_no_fbc_reason(struct drm_i915_private *dev_priv,
const char *reason)
{
if (dev_priv->fbc.no_fbc_reason == reason)
return;
dev_priv->fbc.no_fbc_reason = reason;
DRM_DEBUG_KMS("Disabling FBC: %s\n", reason);
}
static bool crtc_can_fbc(struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
if (fbc_on_pipe_a_only(dev_priv) && crtc->pipe != PIPE_A)
return false;
if (fbc_on_plane_a_only(dev_priv) && crtc->plane != PLANE_A)
return false;
return true;
}
static bool crtc_is_valid(struct intel_crtc *crtc)
{
if (!intel_crtc_active(&crtc->base))
return false;
if (!to_intel_plane_state(crtc->base.primary->state)->visible)
return false;
return true;
}
static bool multiple_pipes_ok(struct drm_i915_private *dev_priv)
{
enum pipe pipe;
int n_pipes = 0;
struct drm_crtc *crtc;
if (INTEL_INFO(dev_priv)->gen > 4)
return true;
for_each_pipe(dev_priv, pipe) {
crtc = dev_priv->pipe_to_crtc_mapping[pipe];
if (intel_crtc_active(crtc) &&
to_intel_plane_state(crtc->primary->state)->visible)
n_pipes++;
}
return (n_pipes < 2);
}
static int find_compression_threshold(struct drm_i915_private *dev_priv,
struct drm_mm_node *node,
int size,
int fb_cpp)
{
int compression_threshold = 1;
int ret;
u64 end;
/* The FBC hardware for BDW/SKL doesn't have access to the stolen
* reserved range size, so it always assumes the maximum (8mb) is used.
* If we enable FBC using a CFB on that memory range we'll get FIFO
* underruns, even if that range is not reserved by the BIOS. */
if (IS_BROADWELL(dev_priv) ||
IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
end = dev_priv->gtt.stolen_size - 8 * 1024 * 1024;
else
end = dev_priv->gtt.stolen_usable_size;
/* HACK: This code depends on what we will do in *_enable_fbc. If that
* code changes, this code needs to change as well.
*
* The enable_fbc code will attempt to use one of our 2 compression
* thresholds, therefore, in that case, we only have 1 resort.
*/
/* Try to over-allocate to reduce reallocations and fragmentation. */
ret = i915_gem_stolen_insert_node_in_range(dev_priv, node, size <<= 1,
4096, 0, end);
if (ret == 0)
return compression_threshold;
again:
/* HW's ability to limit the CFB is 1:4 */
if (compression_threshold > 4 ||
(fb_cpp == 2 && compression_threshold == 2))
return 0;
ret = i915_gem_stolen_insert_node_in_range(dev_priv, node, size >>= 1,
4096, 0, end);
if (ret && INTEL_INFO(dev_priv)->gen <= 4) {
return 0;
} else if (ret) {
compression_threshold <<= 1;
goto again;
} else {
return compression_threshold;
}
}
static int intel_fbc_alloc_cfb(struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
struct drm_framebuffer *fb = crtc->base.primary->state->fb;
struct drm_mm_node *uninitialized_var(compressed_llb);
int size, fb_cpp, ret;
WARN_ON(drm_mm_node_allocated(&dev_priv->fbc.compressed_fb));
size = intel_fbc_calculate_cfb_size(crtc, fb);
fb_cpp = drm_format_plane_cpp(fb->pixel_format, 0);
ret = find_compression_threshold(dev_priv, &dev_priv->fbc.compressed_fb,
size, fb_cpp);
if (!ret)
goto err_llb;
else if (ret > 1) {
DRM_INFO("Reducing the compressed framebuffer size. This may lead to less power savings than a non-reduced-size. Try to increase stolen memory size if available in BIOS.\n");
}
dev_priv->fbc.threshold = ret;
if (INTEL_INFO(dev_priv)->gen >= 5)
I915_WRITE(ILK_DPFC_CB_BASE, dev_priv->fbc.compressed_fb.start);
else if (IS_GM45(dev_priv)) {
I915_WRITE(DPFC_CB_BASE, dev_priv->fbc.compressed_fb.start);
} else {
compressed_llb = kzalloc(sizeof(*compressed_llb), GFP_KERNEL);
if (!compressed_llb)
goto err_fb;
ret = i915_gem_stolen_insert_node(dev_priv, compressed_llb,
4096, 4096);
if (ret)
goto err_fb;
dev_priv->fbc.compressed_llb = compressed_llb;
I915_WRITE(FBC_CFB_BASE,
dev_priv->mm.stolen_base + dev_priv->fbc.compressed_fb.start);
I915_WRITE(FBC_LL_BASE,
dev_priv->mm.stolen_base + compressed_llb->start);
}
dev_priv->fbc.uncompressed_size = size;
DRM_DEBUG_KMS("reserved %llu bytes of contiguous stolen space for FBC, threshold: %d\n",
dev_priv->fbc.compressed_fb.size,
dev_priv->fbc.threshold);
return 0;
err_fb:
kfree(compressed_llb);
i915_gem_stolen_remove_node(dev_priv, &dev_priv->fbc.compressed_fb);
err_llb:
pr_info_once("drm: not enough stolen space for compressed buffer (need %d more bytes), disabling. Hint: you may be able to increase stolen memory size in the BIOS to avoid this.\n", size);
return -ENOSPC;
}
static void __intel_fbc_cleanup_cfb(struct drm_i915_private *dev_priv)
{
if (dev_priv->fbc.uncompressed_size == 0)
return;
i915_gem_stolen_remove_node(dev_priv, &dev_priv->fbc.compressed_fb);
if (dev_priv->fbc.compressed_llb) {
i915_gem_stolen_remove_node(dev_priv,
dev_priv->fbc.compressed_llb);
kfree(dev_priv->fbc.compressed_llb);
}
dev_priv->fbc.uncompressed_size = 0;
}
void intel_fbc_cleanup_cfb(struct drm_i915_private *dev_priv)
{
if (!fbc_supported(dev_priv))
return;
mutex_lock(&dev_priv->fbc.lock);
__intel_fbc_cleanup_cfb(dev_priv);
mutex_unlock(&dev_priv->fbc.lock);
}
static bool stride_is_valid(struct drm_i915_private *dev_priv,
unsigned int stride)
{
/* These should have been caught earlier. */
WARN_ON(stride < 512);
WARN_ON((stride & (64 - 1)) != 0);
/* Below are the additional FBC restrictions. */
if (IS_GEN2(dev_priv) || IS_GEN3(dev_priv))
return stride == 4096 || stride == 8192;
if (IS_GEN4(dev_priv) && !IS_G4X(dev_priv) && stride < 2048)
return false;
if (stride > 16384)
return false;
return true;
}
static bool pixel_format_is_valid(struct drm_framebuffer *fb)
{
struct drm_device *dev = fb->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
switch (fb->pixel_format) {
case DRM_FORMAT_XRGB8888:
case DRM_FORMAT_XBGR8888:
return true;
case DRM_FORMAT_XRGB1555:
case DRM_FORMAT_RGB565:
/* 16bpp not supported on gen2 */
if (IS_GEN2(dev))
return false;
/* WaFbcOnly1to1Ratio:ctg */
if (IS_G4X(dev_priv))
return false;
return true;
default:
return false;
}
}
/*
* For some reason, the hardware tracking starts looking at whatever we
* programmed as the display plane base address register. It does not look at
* the X and Y offset registers. That's why we look at the crtc->adjusted{x,y}
* variables instead of just looking at the pipe/plane size.
*/
static bool intel_fbc_hw_tracking_covers_screen(struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
unsigned int effective_w, effective_h, max_w, max_h;
if (INTEL_INFO(dev_priv)->gen >= 8 || IS_HASWELL(dev_priv)) {
max_w = 4096;
max_h = 4096;
} else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
max_w = 4096;
max_h = 2048;
} else {
max_w = 2048;
max_h = 1536;
}
intel_fbc_get_plane_source_size(crtc, &effective_w, &effective_h);
effective_w += crtc->adjusted_x;
effective_h += crtc->adjusted_y;
return effective_w <= max_w && effective_h <= max_h;
}
/**
* __intel_fbc_update - activate/deactivate FBC as needed, unlocked
* @crtc: the CRTC that triggered the update
*
* This function completely reevaluates the status of FBC, then activates,
* deactivates or maintains it on the same state.
*/
static void __intel_fbc_update(struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
struct drm_framebuffer *fb;
struct drm_i915_gem_object *obj;
const struct drm_display_mode *adjusted_mode;
WARN_ON(!mutex_is_locked(&dev_priv->fbc.lock));
if (!multiple_pipes_ok(dev_priv)) {
set_no_fbc_reason(dev_priv, "more than one pipe active");
goto out_disable;
}
if (!dev_priv->fbc.enabled || dev_priv->fbc.crtc != crtc)
return;
if (!crtc_is_valid(crtc)) {
set_no_fbc_reason(dev_priv, "no output");
goto out_disable;
}
fb = crtc->base.primary->fb;
obj = intel_fb_obj(fb);
adjusted_mode = &crtc->config->base.adjusted_mode;
if ((adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) ||
(adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
set_no_fbc_reason(dev_priv, "incompatible mode");
goto out_disable;
}
if (!intel_fbc_hw_tracking_covers_screen(crtc)) {
set_no_fbc_reason(dev_priv, "mode too large for compression");
goto out_disable;
}
/* The use of a CPU fence is mandatory in order to detect writes
* by the CPU to the scanout and trigger updates to the FBC.
*/
if (obj->tiling_mode != I915_TILING_X ||
obj->fence_reg == I915_FENCE_REG_NONE) {
set_no_fbc_reason(dev_priv, "framebuffer not tiled or fenced");
goto out_disable;
}
if (INTEL_INFO(dev_priv)->gen <= 4 && !IS_G4X(dev_priv) &&
crtc->base.primary->state->rotation != BIT(DRM_ROTATE_0)) {
set_no_fbc_reason(dev_priv, "rotation unsupported");
goto out_disable;
}
if (!stride_is_valid(dev_priv, fb->pitches[0])) {
set_no_fbc_reason(dev_priv, "framebuffer stride not supported");
goto out_disable;
}
if (!pixel_format_is_valid(fb)) {
set_no_fbc_reason(dev_priv, "pixel format is invalid");
goto out_disable;
}
/* WaFbcExceedCdClockThreshold:hsw,bdw */
if ((IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) &&
ilk_pipe_pixel_rate(crtc->config) >=
dev_priv->cdclk_freq * 95 / 100) {
set_no_fbc_reason(dev_priv, "pixel rate is too big");
goto out_disable;
}
/* It is possible for the required CFB size change without a
* crtc->disable + crtc->enable since it is possible to change the
* stride without triggering a full modeset. Since we try to
* over-allocate the CFB, there's a chance we may keep FBC enabled even
* if this happens, but if we exceed the current CFB size we'll have to
* disable FBC. Notice that it would be possible to disable FBC, wait
* for a frame, free the stolen node, then try to reenable FBC in case
* we didn't get any invalidate/deactivate calls, but this would require
* a lot of tracking just for a specific case. If we conclude it's an
* important case, we can implement it later. */
if (intel_fbc_calculate_cfb_size(crtc, fb) >
dev_priv->fbc.compressed_fb.size * dev_priv->fbc.threshold) {
set_no_fbc_reason(dev_priv, "CFB requirements changed");
goto out_disable;
}
/* If the scanout has not changed, don't modify the FBC settings.
* Note that we make the fundamental assumption that the fb->obj
* cannot be unpinned (and have its GTT offset and fence revoked)
* without first being decoupled from the scanout and FBC disabled.
*/
if (dev_priv->fbc.crtc == crtc &&
dev_priv->fbc.fb_id == fb->base.id &&
dev_priv->fbc.y == crtc->base.y &&
dev_priv->fbc.active)
return;
if (intel_fbc_is_active(dev_priv)) {
/* We update FBC along two paths, after changing fb/crtc
* configuration (modeswitching) and after page-flipping
* finishes. For the latter, we know that not only did
* we disable the FBC at the start of the page-flip
* sequence, but also more than one vblank has passed.
*
* For the former case of modeswitching, it is possible
* to switch between two FBC valid configurations
* instantaneously so we do need to disable the FBC
* before we can modify its control registers. We also
* have to wait for the next vblank for that to take
* effect. However, since we delay enabling FBC we can
* assume that a vblank has passed since disabling and
* that we can safely alter the registers in the deferred
* callback.
*
* In the scenario that we go from a valid to invalid
* and then back to valid FBC configuration we have
* no strict enforcement that a vblank occurred since
* disabling the FBC. However, along all current pipe
* disabling paths we do need to wait for a vblank at
* some point. And we wait before enabling FBC anyway.
*/
DRM_DEBUG_KMS("deactivating FBC for update\n");
__intel_fbc_deactivate(dev_priv);
}
intel_fbc_schedule_activation(crtc);
dev_priv->fbc.no_fbc_reason = "FBC enabled (not necessarily active)";
return;
out_disable:
/* Multiple disables should be harmless */
if (intel_fbc_is_active(dev_priv)) {
DRM_DEBUG_KMS("unsupported config, deactivating FBC\n");
__intel_fbc_deactivate(dev_priv);
}
}
/*
* intel_fbc_update - activate/deactivate FBC as needed
* @crtc: the CRTC that triggered the update
*
* This function reevaluates the overall state and activates or deactivates FBC.
*/
void intel_fbc_update(struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
if (!fbc_supported(dev_priv))
return;
mutex_lock(&dev_priv->fbc.lock);
__intel_fbc_update(crtc);
mutex_unlock(&dev_priv->fbc.lock);
}
void intel_fbc_invalidate(struct drm_i915_private *dev_priv,
unsigned int frontbuffer_bits,
enum fb_op_origin origin)
{
unsigned int fbc_bits;
if (!fbc_supported(dev_priv))
return;
if (origin == ORIGIN_GTT)
return;
mutex_lock(&dev_priv->fbc.lock);
if (dev_priv->fbc.enabled)
fbc_bits = INTEL_FRONTBUFFER_PRIMARY(dev_priv->fbc.crtc->pipe);
else
fbc_bits = dev_priv->fbc.possible_framebuffer_bits;
dev_priv->fbc.busy_bits |= (fbc_bits & frontbuffer_bits);
if (dev_priv->fbc.busy_bits)
__intel_fbc_deactivate(dev_priv);
mutex_unlock(&dev_priv->fbc.lock);
}
void intel_fbc_flush(struct drm_i915_private *dev_priv,
unsigned int frontbuffer_bits, enum fb_op_origin origin)
{
if (!fbc_supported(dev_priv))
return;
if (origin == ORIGIN_GTT)
return;
mutex_lock(&dev_priv->fbc.lock);
dev_priv->fbc.busy_bits &= ~frontbuffer_bits;
if (!dev_priv->fbc.busy_bits && dev_priv->fbc.enabled) {
__intel_fbc_deactivate(dev_priv);
__intel_fbc_update(dev_priv->fbc.crtc);
}
mutex_unlock(&dev_priv->fbc.lock);
}
/**
* intel_fbc_enable: tries to enable FBC on the CRTC
* @crtc: the CRTC
*
* This function checks if it's possible to enable FBC on the following CRTC,
* then enables it. Notice that it doesn't activate FBC.
*/
void intel_fbc_enable(struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
if (!fbc_supported(dev_priv))
return;
mutex_lock(&dev_priv->fbc.lock);
if (dev_priv->fbc.enabled) {
WARN_ON(dev_priv->fbc.crtc == crtc);
goto out;
}
WARN_ON(dev_priv->fbc.active);
WARN_ON(dev_priv->fbc.crtc != NULL);
if (intel_vgpu_active(dev_priv->dev)) {
set_no_fbc_reason(dev_priv, "VGPU is active");
goto out;
}
if (i915.enable_fbc < 0) {
set_no_fbc_reason(dev_priv, "disabled per chip default");
goto out;
}
if (!i915.enable_fbc) {
set_no_fbc_reason(dev_priv, "disabled per module param");
goto out;
}
if (!crtc_can_fbc(crtc)) {
set_no_fbc_reason(dev_priv, "no enabled pipes can have FBC");
goto out;
}
if (intel_fbc_alloc_cfb(crtc)) {
set_no_fbc_reason(dev_priv, "not enough stolen memory");
goto out;
}
DRM_DEBUG_KMS("Enabling FBC on pipe %c\n", pipe_name(crtc->pipe));
dev_priv->fbc.no_fbc_reason = "FBC enabled but not active yet\n";
dev_priv->fbc.enabled = true;
dev_priv->fbc.crtc = crtc;
out:
mutex_unlock(&dev_priv->fbc.lock);
}
/**
* __intel_fbc_disable - disable FBC
* @dev_priv: i915 device instance
*
* This is the low level function that actually disables FBC. Callers should
* grab the FBC lock.
*/
static void __intel_fbc_disable(struct drm_i915_private *dev_priv)
{
struct intel_crtc *crtc = dev_priv->fbc.crtc;
WARN_ON(!mutex_is_locked(&dev_priv->fbc.lock));
WARN_ON(!dev_priv->fbc.enabled);
WARN_ON(dev_priv->fbc.active);
assert_pipe_disabled(dev_priv, crtc->pipe);
DRM_DEBUG_KMS("Disabling FBC on pipe %c\n", pipe_name(crtc->pipe));
__intel_fbc_cleanup_cfb(dev_priv);
dev_priv->fbc.enabled = false;
dev_priv->fbc.crtc = NULL;
}
/**
* intel_fbc_disable_crtc - disable FBC if it's associated with crtc
* @crtc: the CRTC
*
* This function disables FBC if it's associated with the provided CRTC.
*/
void intel_fbc_disable_crtc(struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
if (!fbc_supported(dev_priv))
return;
mutex_lock(&dev_priv->fbc.lock);
if (dev_priv->fbc.crtc == crtc) {
WARN_ON(!dev_priv->fbc.enabled);
WARN_ON(dev_priv->fbc.active);
__intel_fbc_disable(dev_priv);
}
mutex_unlock(&dev_priv->fbc.lock);
}
/**
* intel_fbc_disable - globally disable FBC
* @dev_priv: i915 device instance
*
* This function disables FBC regardless of which CRTC is associated with it.
*/
void intel_fbc_disable(struct drm_i915_private *dev_priv)
{
if (!fbc_supported(dev_priv))
return;
mutex_lock(&dev_priv->fbc.lock);
if (dev_priv->fbc.enabled)
__intel_fbc_disable(dev_priv);
mutex_unlock(&dev_priv->fbc.lock);
}
/**
* intel_fbc_init - Initialize FBC
* @dev_priv: the i915 device
*
* This function might be called during PM init process.
*/
void intel_fbc_init(struct drm_i915_private *dev_priv)
{
enum pipe pipe;
mutex_init(&dev_priv->fbc.lock);
dev_priv->fbc.enabled = false;
dev_priv->fbc.active = false;
if (!HAS_FBC(dev_priv)) {
dev_priv->fbc.no_fbc_reason = "unsupported by this chipset";
return;
}
for_each_pipe(dev_priv, pipe) {
dev_priv->fbc.possible_framebuffer_bits |=
INTEL_FRONTBUFFER_PRIMARY(pipe);
if (fbc_on_pipe_a_only(dev_priv))
break;
}
if (INTEL_INFO(dev_priv)->gen >= 7) {
dev_priv->fbc.is_active = ilk_fbc_is_active;
dev_priv->fbc.activate = gen7_fbc_activate;
dev_priv->fbc.deactivate = ilk_fbc_deactivate;
} else if (INTEL_INFO(dev_priv)->gen >= 5) {
dev_priv->fbc.is_active = ilk_fbc_is_active;
dev_priv->fbc.activate = ilk_fbc_activate;
dev_priv->fbc.deactivate = ilk_fbc_deactivate;
} else if (IS_GM45(dev_priv)) {
dev_priv->fbc.is_active = g4x_fbc_is_active;
dev_priv->fbc.activate = g4x_fbc_activate;
dev_priv->fbc.deactivate = g4x_fbc_deactivate;
} else {
dev_priv->fbc.is_active = i8xx_fbc_is_active;
dev_priv->fbc.activate = i8xx_fbc_activate;
dev_priv->fbc.deactivate = i8xx_fbc_deactivate;
/* This value was pulled out of someone's hat */
I915_WRITE(FBC_CONTROL, 500 << FBC_CTL_INTERVAL_SHIFT);
}
/* We still don't have any sort of hardware state readout for FBC, so
* deactivate it in case the BIOS activated it to make sure software
* matches the hardware state. */
if (dev_priv->fbc.is_active(dev_priv))
dev_priv->fbc.deactivate(dev_priv);
}