forked from Minki/linux
a37c0f4895
Daniel Axtens reported that on the HiSilicon D05 board, the VGA device is behind a bridge that doesn't support PCI_BRIDGE_CTL_VGA, so the VGA arbiter never selects it as the default, which means Xorg auto-detection doesn't work. VGA is a legacy PCI feature: a VGA device can respond to addresses, e.g., [mem 0xa0000-0xbffff], [io 0x3b0-0x3bb], [io 0x3c0-0x3df], etc., that are not configurable by BARs. Consequently, multiple VGA devices can conflict with each other. The VGA arbiter avoids conflicts by ensuring that those legacy resources are only routed to one VGA device at a time. The arbiter identifies the "default VGA" device, i.e., a legacy VGA device that was used by boot firmware. It selects the first device that: - is of PCI_CLASS_DISPLAY_VGA, - has both PCI_COMMAND_IO and PCI_COMMAND_MEMORY enabled, and - has PCI_BRIDGE_CTL_VGA set in all upstream bridges. Some systems don't have such a device. For example, if a host bridge doesn't support I/O space, PCI_COMMAND_IO probably won't be enabled for any devices below it. Or, as on the HiSilicon D05, the VGA device may be behind a bridge that doesn't support PCI_BRIDGE_CTL_VGA, so accesses to the legacy VGA resources will never reach the device. This patch extends the arbiter so that if it doesn't find a device that meets all the above criteria, it selects the first device that: - is of PCI_CLASS_DISPLAY_VGA and - has PCI_COMMAND_IO or PCI_COMMAND_MEMORY enabled If it doesn't find even that, it selects the first device that: - is of class PCI_CLASS_DISPLAY_VGA. Such a device may not be able to use the legacy VGA resources, but most drivers can operate the device without those. Setting it as the default device means its "boot_vga" sysfs file will contain "1", which Xorg (via libpciaccess) uses to help select its default output device. This fixes Xorg auto-detection on some arm64 systems (HiSilicon D05 in particular; see the link below). It also replaces the powerpc fixup_vga() quirk, albeit with slightly different semantics: the quirk selected the first VGA device we found, and overrode that selection with any enabled VGA device we found. If there were several enabled VGA devices, the *last* one we found would become the default. The code here instead selects the *first* enabled VGA device we find, and if none are enabled, the first VGA device we find. Link: http://lkml.kernel.org/r/20170901072744.2409-1-dja@axtens.net Tested-by: Daniel Axtens <dja@axtens.net> # arm64, ppc64-qemu-tcg Tested-by: Zhou Wang <wangzhou1@hisilicon.com> # D05 Hisi Hip07, Hip08 Signed-off-by: Bjorn Helgaas <bhelgaas@google.com> Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Reviewed-by: Daniel Axtens <dja@axtens.net> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch> Link: https://patchwork.freedesktop.org/patch/msgid/20171013034721.14630.65913.stgit@bhelgaas-glaptop.roam.corp.google.com
1743 lines
48 KiB
C
1743 lines
48 KiB
C
/*
|
|
* Contains common pci routines for ALL ppc platform
|
|
* (based on pci_32.c and pci_64.c)
|
|
*
|
|
* Port for PPC64 David Engebretsen, IBM Corp.
|
|
* Contains common pci routines for ppc64 platform, pSeries and iSeries brands.
|
|
*
|
|
* Copyright (C) 2003 Anton Blanchard <anton@au.ibm.com>, IBM
|
|
* Rework, based on alpha PCI code.
|
|
*
|
|
* Common pmac/prep/chrp pci routines. -- Cort
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/string.h>
|
|
#include <linux/init.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/export.h>
|
|
#include <linux/of_address.h>
|
|
#include <linux/of_pci.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/shmem_fs.h>
|
|
#include <linux/list.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/vgaarb.h>
|
|
|
|
#include <asm/processor.h>
|
|
#include <asm/io.h>
|
|
#include <asm/prom.h>
|
|
#include <asm/pci-bridge.h>
|
|
#include <asm/byteorder.h>
|
|
#include <asm/machdep.h>
|
|
#include <asm/ppc-pci.h>
|
|
#include <asm/eeh.h>
|
|
|
|
/* hose_spinlock protects accesses to the the phb_bitmap. */
|
|
static DEFINE_SPINLOCK(hose_spinlock);
|
|
LIST_HEAD(hose_list);
|
|
|
|
/* For dynamic PHB numbering on get_phb_number(): max number of PHBs. */
|
|
#define MAX_PHBS 0x10000
|
|
|
|
/*
|
|
* For dynamic PHB numbering: used/free PHBs tracking bitmap.
|
|
* Accesses to this bitmap should be protected by hose_spinlock.
|
|
*/
|
|
static DECLARE_BITMAP(phb_bitmap, MAX_PHBS);
|
|
|
|
/* ISA Memory physical address */
|
|
resource_size_t isa_mem_base;
|
|
EXPORT_SYMBOL(isa_mem_base);
|
|
|
|
|
|
static const struct dma_map_ops *pci_dma_ops = &dma_direct_ops;
|
|
|
|
void set_pci_dma_ops(const struct dma_map_ops *dma_ops)
|
|
{
|
|
pci_dma_ops = dma_ops;
|
|
}
|
|
|
|
const struct dma_map_ops *get_pci_dma_ops(void)
|
|
{
|
|
return pci_dma_ops;
|
|
}
|
|
EXPORT_SYMBOL(get_pci_dma_ops);
|
|
|
|
/*
|
|
* This function should run under locking protection, specifically
|
|
* hose_spinlock.
|
|
*/
|
|
static int get_phb_number(struct device_node *dn)
|
|
{
|
|
int ret, phb_id = -1;
|
|
u32 prop_32;
|
|
u64 prop;
|
|
|
|
/*
|
|
* Try fixed PHB numbering first, by checking archs and reading
|
|
* the respective device-tree properties. Firstly, try powernv by
|
|
* reading "ibm,opal-phbid", only present in OPAL environment.
|
|
*/
|
|
ret = of_property_read_u64(dn, "ibm,opal-phbid", &prop);
|
|
if (ret) {
|
|
ret = of_property_read_u32_index(dn, "reg", 1, &prop_32);
|
|
prop = prop_32;
|
|
}
|
|
|
|
if (!ret)
|
|
phb_id = (int)(prop & (MAX_PHBS - 1));
|
|
|
|
/* We need to be sure to not use the same PHB number twice. */
|
|
if ((phb_id >= 0) && !test_and_set_bit(phb_id, phb_bitmap))
|
|
return phb_id;
|
|
|
|
/*
|
|
* If not pseries nor powernv, or if fixed PHB numbering tried to add
|
|
* the same PHB number twice, then fallback to dynamic PHB numbering.
|
|
*/
|
|
phb_id = find_first_zero_bit(phb_bitmap, MAX_PHBS);
|
|
BUG_ON(phb_id >= MAX_PHBS);
|
|
set_bit(phb_id, phb_bitmap);
|
|
|
|
return phb_id;
|
|
}
|
|
|
|
struct pci_controller *pcibios_alloc_controller(struct device_node *dev)
|
|
{
|
|
struct pci_controller *phb;
|
|
|
|
phb = zalloc_maybe_bootmem(sizeof(struct pci_controller), GFP_KERNEL);
|
|
if (phb == NULL)
|
|
return NULL;
|
|
spin_lock(&hose_spinlock);
|
|
phb->global_number = get_phb_number(dev);
|
|
list_add_tail(&phb->list_node, &hose_list);
|
|
spin_unlock(&hose_spinlock);
|
|
phb->dn = dev;
|
|
phb->is_dynamic = slab_is_available();
|
|
#ifdef CONFIG_PPC64
|
|
if (dev) {
|
|
int nid = of_node_to_nid(dev);
|
|
|
|
if (nid < 0 || !node_online(nid))
|
|
nid = -1;
|
|
|
|
PHB_SET_NODE(phb, nid);
|
|
}
|
|
#endif
|
|
return phb;
|
|
}
|
|
EXPORT_SYMBOL_GPL(pcibios_alloc_controller);
|
|
|
|
void pcibios_free_controller(struct pci_controller *phb)
|
|
{
|
|
spin_lock(&hose_spinlock);
|
|
|
|
/* Clear bit of phb_bitmap to allow reuse of this PHB number. */
|
|
if (phb->global_number < MAX_PHBS)
|
|
clear_bit(phb->global_number, phb_bitmap);
|
|
|
|
list_del(&phb->list_node);
|
|
spin_unlock(&hose_spinlock);
|
|
|
|
if (phb->is_dynamic)
|
|
kfree(phb);
|
|
}
|
|
EXPORT_SYMBOL_GPL(pcibios_free_controller);
|
|
|
|
/*
|
|
* This function is used to call pcibios_free_controller()
|
|
* in a deferred manner: a callback from the PCI subsystem.
|
|
*
|
|
* _*DO NOT*_ call pcibios_free_controller() explicitly if
|
|
* this is used (or it may access an invalid *phb pointer).
|
|
*
|
|
* The callback occurs when all references to the root bus
|
|
* are dropped (e.g., child buses/devices and their users).
|
|
*
|
|
* It's called as .release_fn() of 'struct pci_host_bridge'
|
|
* which is associated with the 'struct pci_controller.bus'
|
|
* (root bus) - it expects .release_data to hold a pointer
|
|
* to 'struct pci_controller'.
|
|
*
|
|
* In order to use it, register .release_fn()/release_data
|
|
* like this:
|
|
*
|
|
* pci_set_host_bridge_release(bridge,
|
|
* pcibios_free_controller_deferred
|
|
* (void *) phb);
|
|
*
|
|
* e.g. in the pcibios_root_bridge_prepare() callback from
|
|
* pci_create_root_bus().
|
|
*/
|
|
void pcibios_free_controller_deferred(struct pci_host_bridge *bridge)
|
|
{
|
|
struct pci_controller *phb = (struct pci_controller *)
|
|
bridge->release_data;
|
|
|
|
pr_debug("domain %d, dynamic %d\n", phb->global_number, phb->is_dynamic);
|
|
|
|
pcibios_free_controller(phb);
|
|
}
|
|
EXPORT_SYMBOL_GPL(pcibios_free_controller_deferred);
|
|
|
|
/*
|
|
* The function is used to return the minimal alignment
|
|
* for memory or I/O windows of the associated P2P bridge.
|
|
* By default, 4KiB alignment for I/O windows and 1MiB for
|
|
* memory windows.
|
|
*/
|
|
resource_size_t pcibios_window_alignment(struct pci_bus *bus,
|
|
unsigned long type)
|
|
{
|
|
struct pci_controller *phb = pci_bus_to_host(bus);
|
|
|
|
if (phb->controller_ops.window_alignment)
|
|
return phb->controller_ops.window_alignment(bus, type);
|
|
|
|
/*
|
|
* PCI core will figure out the default
|
|
* alignment: 4KiB for I/O and 1MiB for
|
|
* memory window.
|
|
*/
|
|
return 1;
|
|
}
|
|
|
|
void pcibios_setup_bridge(struct pci_bus *bus, unsigned long type)
|
|
{
|
|
struct pci_controller *hose = pci_bus_to_host(bus);
|
|
|
|
if (hose->controller_ops.setup_bridge)
|
|
hose->controller_ops.setup_bridge(bus, type);
|
|
}
|
|
|
|
void pcibios_reset_secondary_bus(struct pci_dev *dev)
|
|
{
|
|
struct pci_controller *phb = pci_bus_to_host(dev->bus);
|
|
|
|
if (phb->controller_ops.reset_secondary_bus) {
|
|
phb->controller_ops.reset_secondary_bus(dev);
|
|
return;
|
|
}
|
|
|
|
pci_reset_secondary_bus(dev);
|
|
}
|
|
|
|
resource_size_t pcibios_default_alignment(void)
|
|
{
|
|
if (ppc_md.pcibios_default_alignment)
|
|
return ppc_md.pcibios_default_alignment();
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_PCI_IOV
|
|
resource_size_t pcibios_iov_resource_alignment(struct pci_dev *pdev, int resno)
|
|
{
|
|
if (ppc_md.pcibios_iov_resource_alignment)
|
|
return ppc_md.pcibios_iov_resource_alignment(pdev, resno);
|
|
|
|
return pci_iov_resource_size(pdev, resno);
|
|
}
|
|
#endif /* CONFIG_PCI_IOV */
|
|
|
|
static resource_size_t pcibios_io_size(const struct pci_controller *hose)
|
|
{
|
|
#ifdef CONFIG_PPC64
|
|
return hose->pci_io_size;
|
|
#else
|
|
return resource_size(&hose->io_resource);
|
|
#endif
|
|
}
|
|
|
|
int pcibios_vaddr_is_ioport(void __iomem *address)
|
|
{
|
|
int ret = 0;
|
|
struct pci_controller *hose;
|
|
resource_size_t size;
|
|
|
|
spin_lock(&hose_spinlock);
|
|
list_for_each_entry(hose, &hose_list, list_node) {
|
|
size = pcibios_io_size(hose);
|
|
if (address >= hose->io_base_virt &&
|
|
address < (hose->io_base_virt + size)) {
|
|
ret = 1;
|
|
break;
|
|
}
|
|
}
|
|
spin_unlock(&hose_spinlock);
|
|
return ret;
|
|
}
|
|
|
|
unsigned long pci_address_to_pio(phys_addr_t address)
|
|
{
|
|
struct pci_controller *hose;
|
|
resource_size_t size;
|
|
unsigned long ret = ~0;
|
|
|
|
spin_lock(&hose_spinlock);
|
|
list_for_each_entry(hose, &hose_list, list_node) {
|
|
size = pcibios_io_size(hose);
|
|
if (address >= hose->io_base_phys &&
|
|
address < (hose->io_base_phys + size)) {
|
|
unsigned long base =
|
|
(unsigned long)hose->io_base_virt - _IO_BASE;
|
|
ret = base + (address - hose->io_base_phys);
|
|
break;
|
|
}
|
|
}
|
|
spin_unlock(&hose_spinlock);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(pci_address_to_pio);
|
|
|
|
/*
|
|
* Return the domain number for this bus.
|
|
*/
|
|
int pci_domain_nr(struct pci_bus *bus)
|
|
{
|
|
struct pci_controller *hose = pci_bus_to_host(bus);
|
|
|
|
return hose->global_number;
|
|
}
|
|
EXPORT_SYMBOL(pci_domain_nr);
|
|
|
|
/* This routine is meant to be used early during boot, when the
|
|
* PCI bus numbers have not yet been assigned, and you need to
|
|
* issue PCI config cycles to an OF device.
|
|
* It could also be used to "fix" RTAS config cycles if you want
|
|
* to set pci_assign_all_buses to 1 and still use RTAS for PCI
|
|
* config cycles.
|
|
*/
|
|
struct pci_controller* pci_find_hose_for_OF_device(struct device_node* node)
|
|
{
|
|
while(node) {
|
|
struct pci_controller *hose, *tmp;
|
|
list_for_each_entry_safe(hose, tmp, &hose_list, list_node)
|
|
if (hose->dn == node)
|
|
return hose;
|
|
node = node->parent;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Reads the interrupt pin to determine if interrupt is use by card.
|
|
* If the interrupt is used, then gets the interrupt line from the
|
|
* openfirmware and sets it in the pci_dev and pci_config line.
|
|
*/
|
|
static int pci_read_irq_line(struct pci_dev *pci_dev)
|
|
{
|
|
struct of_phandle_args oirq;
|
|
unsigned int virq;
|
|
|
|
pr_debug("PCI: Try to map irq for %s...\n", pci_name(pci_dev));
|
|
|
|
#ifdef DEBUG
|
|
memset(&oirq, 0xff, sizeof(oirq));
|
|
#endif
|
|
/* Try to get a mapping from the device-tree */
|
|
if (of_irq_parse_pci(pci_dev, &oirq)) {
|
|
u8 line, pin;
|
|
|
|
/* If that fails, lets fallback to what is in the config
|
|
* space and map that through the default controller. We
|
|
* also set the type to level low since that's what PCI
|
|
* interrupts are. If your platform does differently, then
|
|
* either provide a proper interrupt tree or don't use this
|
|
* function.
|
|
*/
|
|
if (pci_read_config_byte(pci_dev, PCI_INTERRUPT_PIN, &pin))
|
|
return -1;
|
|
if (pin == 0)
|
|
return -1;
|
|
if (pci_read_config_byte(pci_dev, PCI_INTERRUPT_LINE, &line) ||
|
|
line == 0xff || line == 0) {
|
|
return -1;
|
|
}
|
|
pr_debug(" No map ! Using line %d (pin %d) from PCI config\n",
|
|
line, pin);
|
|
|
|
virq = irq_create_mapping(NULL, line);
|
|
if (virq)
|
|
irq_set_irq_type(virq, IRQ_TYPE_LEVEL_LOW);
|
|
} else {
|
|
pr_debug(" Got one, spec %d cells (0x%08x 0x%08x...) on %pOF\n",
|
|
oirq.args_count, oirq.args[0], oirq.args[1], oirq.np);
|
|
|
|
virq = irq_create_of_mapping(&oirq);
|
|
}
|
|
|
|
if (!virq) {
|
|
pr_debug(" Failed to map !\n");
|
|
return -1;
|
|
}
|
|
|
|
pr_debug(" Mapped to linux irq %d\n", virq);
|
|
|
|
pci_dev->irq = virq;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Platform support for /proc/bus/pci/X/Y mmap()s,
|
|
* modelled on the sparc64 implementation by Dave Miller.
|
|
* -- paulus.
|
|
*/
|
|
|
|
/*
|
|
* Adjust vm_pgoff of VMA such that it is the physical page offset
|
|
* corresponding to the 32-bit pci bus offset for DEV requested by the user.
|
|
*
|
|
* Basically, the user finds the base address for his device which he wishes
|
|
* to mmap. They read the 32-bit value from the config space base register,
|
|
* add whatever PAGE_SIZE multiple offset they wish, and feed this into the
|
|
* offset parameter of mmap on /proc/bus/pci/XXX for that device.
|
|
*
|
|
* Returns negative error code on failure, zero on success.
|
|
*/
|
|
static struct resource *__pci_mmap_make_offset(struct pci_dev *dev,
|
|
resource_size_t *offset,
|
|
enum pci_mmap_state mmap_state)
|
|
{
|
|
struct pci_controller *hose = pci_bus_to_host(dev->bus);
|
|
unsigned long io_offset = 0;
|
|
int i, res_bit;
|
|
|
|
if (hose == NULL)
|
|
return NULL; /* should never happen */
|
|
|
|
/* If memory, add on the PCI bridge address offset */
|
|
if (mmap_state == pci_mmap_mem) {
|
|
#if 0 /* See comment in pci_resource_to_user() for why this is disabled */
|
|
*offset += hose->pci_mem_offset;
|
|
#endif
|
|
res_bit = IORESOURCE_MEM;
|
|
} else {
|
|
io_offset = (unsigned long)hose->io_base_virt - _IO_BASE;
|
|
*offset += io_offset;
|
|
res_bit = IORESOURCE_IO;
|
|
}
|
|
|
|
/*
|
|
* Check that the offset requested corresponds to one of the
|
|
* resources of the device.
|
|
*/
|
|
for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
|
|
struct resource *rp = &dev->resource[i];
|
|
int flags = rp->flags;
|
|
|
|
/* treat ROM as memory (should be already) */
|
|
if (i == PCI_ROM_RESOURCE)
|
|
flags |= IORESOURCE_MEM;
|
|
|
|
/* Active and same type? */
|
|
if ((flags & res_bit) == 0)
|
|
continue;
|
|
|
|
/* In the range of this resource? */
|
|
if (*offset < (rp->start & PAGE_MASK) || *offset > rp->end)
|
|
continue;
|
|
|
|
/* found it! construct the final physical address */
|
|
if (mmap_state == pci_mmap_io)
|
|
*offset += hose->io_base_phys - io_offset;
|
|
return rp;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* This one is used by /dev/mem and fbdev who have no clue about the
|
|
* PCI device, it tries to find the PCI device first and calls the
|
|
* above routine
|
|
*/
|
|
pgprot_t pci_phys_mem_access_prot(struct file *file,
|
|
unsigned long pfn,
|
|
unsigned long size,
|
|
pgprot_t prot)
|
|
{
|
|
struct pci_dev *pdev = NULL;
|
|
struct resource *found = NULL;
|
|
resource_size_t offset = ((resource_size_t)pfn) << PAGE_SHIFT;
|
|
int i;
|
|
|
|
if (page_is_ram(pfn))
|
|
return prot;
|
|
|
|
prot = pgprot_noncached(prot);
|
|
for_each_pci_dev(pdev) {
|
|
for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
|
|
struct resource *rp = &pdev->resource[i];
|
|
int flags = rp->flags;
|
|
|
|
/* Active and same type? */
|
|
if ((flags & IORESOURCE_MEM) == 0)
|
|
continue;
|
|
/* In the range of this resource? */
|
|
if (offset < (rp->start & PAGE_MASK) ||
|
|
offset > rp->end)
|
|
continue;
|
|
found = rp;
|
|
break;
|
|
}
|
|
if (found)
|
|
break;
|
|
}
|
|
if (found) {
|
|
if (found->flags & IORESOURCE_PREFETCH)
|
|
prot = pgprot_noncached_wc(prot);
|
|
pci_dev_put(pdev);
|
|
}
|
|
|
|
pr_debug("PCI: Non-PCI map for %llx, prot: %lx\n",
|
|
(unsigned long long)offset, pgprot_val(prot));
|
|
|
|
return prot;
|
|
}
|
|
|
|
|
|
/*
|
|
* Perform the actual remap of the pages for a PCI device mapping, as
|
|
* appropriate for this architecture. The region in the process to map
|
|
* is described by vm_start and vm_end members of VMA, the base physical
|
|
* address is found in vm_pgoff.
|
|
* The pci device structure is provided so that architectures may make mapping
|
|
* decisions on a per-device or per-bus basis.
|
|
*
|
|
* Returns a negative error code on failure, zero on success.
|
|
*/
|
|
int pci_mmap_page_range(struct pci_dev *dev, int bar,
|
|
struct vm_area_struct *vma,
|
|
enum pci_mmap_state mmap_state, int write_combine)
|
|
{
|
|
resource_size_t offset =
|
|
((resource_size_t)vma->vm_pgoff) << PAGE_SHIFT;
|
|
struct resource *rp;
|
|
int ret;
|
|
|
|
rp = __pci_mmap_make_offset(dev, &offset, mmap_state);
|
|
if (rp == NULL)
|
|
return -EINVAL;
|
|
|
|
vma->vm_pgoff = offset >> PAGE_SHIFT;
|
|
if (write_combine)
|
|
vma->vm_page_prot = pgprot_noncached_wc(vma->vm_page_prot);
|
|
else
|
|
vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
|
|
|
|
ret = remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
|
|
vma->vm_end - vma->vm_start, vma->vm_page_prot);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* This provides legacy IO read access on a bus */
|
|
int pci_legacy_read(struct pci_bus *bus, loff_t port, u32 *val, size_t size)
|
|
{
|
|
unsigned long offset;
|
|
struct pci_controller *hose = pci_bus_to_host(bus);
|
|
struct resource *rp = &hose->io_resource;
|
|
void __iomem *addr;
|
|
|
|
/* Check if port can be supported by that bus. We only check
|
|
* the ranges of the PHB though, not the bus itself as the rules
|
|
* for forwarding legacy cycles down bridges are not our problem
|
|
* here. So if the host bridge supports it, we do it.
|
|
*/
|
|
offset = (unsigned long)hose->io_base_virt - _IO_BASE;
|
|
offset += port;
|
|
|
|
if (!(rp->flags & IORESOURCE_IO))
|
|
return -ENXIO;
|
|
if (offset < rp->start || (offset + size) > rp->end)
|
|
return -ENXIO;
|
|
addr = hose->io_base_virt + port;
|
|
|
|
switch(size) {
|
|
case 1:
|
|
*((u8 *)val) = in_8(addr);
|
|
return 1;
|
|
case 2:
|
|
if (port & 1)
|
|
return -EINVAL;
|
|
*((u16 *)val) = in_le16(addr);
|
|
return 2;
|
|
case 4:
|
|
if (port & 3)
|
|
return -EINVAL;
|
|
*((u32 *)val) = in_le32(addr);
|
|
return 4;
|
|
}
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* This provides legacy IO write access on a bus */
|
|
int pci_legacy_write(struct pci_bus *bus, loff_t port, u32 val, size_t size)
|
|
{
|
|
unsigned long offset;
|
|
struct pci_controller *hose = pci_bus_to_host(bus);
|
|
struct resource *rp = &hose->io_resource;
|
|
void __iomem *addr;
|
|
|
|
/* Check if port can be supported by that bus. We only check
|
|
* the ranges of the PHB though, not the bus itself as the rules
|
|
* for forwarding legacy cycles down bridges are not our problem
|
|
* here. So if the host bridge supports it, we do it.
|
|
*/
|
|
offset = (unsigned long)hose->io_base_virt - _IO_BASE;
|
|
offset += port;
|
|
|
|
if (!(rp->flags & IORESOURCE_IO))
|
|
return -ENXIO;
|
|
if (offset < rp->start || (offset + size) > rp->end)
|
|
return -ENXIO;
|
|
addr = hose->io_base_virt + port;
|
|
|
|
/* WARNING: The generic code is idiotic. It gets passed a pointer
|
|
* to what can be a 1, 2 or 4 byte quantity and always reads that
|
|
* as a u32, which means that we have to correct the location of
|
|
* the data read within those 32 bits for size 1 and 2
|
|
*/
|
|
switch(size) {
|
|
case 1:
|
|
out_8(addr, val >> 24);
|
|
return 1;
|
|
case 2:
|
|
if (port & 1)
|
|
return -EINVAL;
|
|
out_le16(addr, val >> 16);
|
|
return 2;
|
|
case 4:
|
|
if (port & 3)
|
|
return -EINVAL;
|
|
out_le32(addr, val);
|
|
return 4;
|
|
}
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* This provides legacy IO or memory mmap access on a bus */
|
|
int pci_mmap_legacy_page_range(struct pci_bus *bus,
|
|
struct vm_area_struct *vma,
|
|
enum pci_mmap_state mmap_state)
|
|
{
|
|
struct pci_controller *hose = pci_bus_to_host(bus);
|
|
resource_size_t offset =
|
|
((resource_size_t)vma->vm_pgoff) << PAGE_SHIFT;
|
|
resource_size_t size = vma->vm_end - vma->vm_start;
|
|
struct resource *rp;
|
|
|
|
pr_debug("pci_mmap_legacy_page_range(%04x:%02x, %s @%llx..%llx)\n",
|
|
pci_domain_nr(bus), bus->number,
|
|
mmap_state == pci_mmap_mem ? "MEM" : "IO",
|
|
(unsigned long long)offset,
|
|
(unsigned long long)(offset + size - 1));
|
|
|
|
if (mmap_state == pci_mmap_mem) {
|
|
/* Hack alert !
|
|
*
|
|
* Because X is lame and can fail starting if it gets an error trying
|
|
* to mmap legacy_mem (instead of just moving on without legacy memory
|
|
* access) we fake it here by giving it anonymous memory, effectively
|
|
* behaving just like /dev/zero
|
|
*/
|
|
if ((offset + size) > hose->isa_mem_size) {
|
|
printk(KERN_DEBUG
|
|
"Process %s (pid:%d) mapped non-existing PCI legacy memory for 0%04x:%02x\n",
|
|
current->comm, current->pid, pci_domain_nr(bus), bus->number);
|
|
if (vma->vm_flags & VM_SHARED)
|
|
return shmem_zero_setup(vma);
|
|
return 0;
|
|
}
|
|
offset += hose->isa_mem_phys;
|
|
} else {
|
|
unsigned long io_offset = (unsigned long)hose->io_base_virt - _IO_BASE;
|
|
unsigned long roffset = offset + io_offset;
|
|
rp = &hose->io_resource;
|
|
if (!(rp->flags & IORESOURCE_IO))
|
|
return -ENXIO;
|
|
if (roffset < rp->start || (roffset + size) > rp->end)
|
|
return -ENXIO;
|
|
offset += hose->io_base_phys;
|
|
}
|
|
pr_debug(" -> mapping phys %llx\n", (unsigned long long)offset);
|
|
|
|
vma->vm_pgoff = offset >> PAGE_SHIFT;
|
|
vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
|
|
return remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
|
|
vma->vm_end - vma->vm_start,
|
|
vma->vm_page_prot);
|
|
}
|
|
|
|
void pci_resource_to_user(const struct pci_dev *dev, int bar,
|
|
const struct resource *rsrc,
|
|
resource_size_t *start, resource_size_t *end)
|
|
{
|
|
struct pci_bus_region region;
|
|
|
|
if (rsrc->flags & IORESOURCE_IO) {
|
|
pcibios_resource_to_bus(dev->bus, ®ion,
|
|
(struct resource *) rsrc);
|
|
*start = region.start;
|
|
*end = region.end;
|
|
return;
|
|
}
|
|
|
|
/* We pass a CPU physical address to userland for MMIO instead of a
|
|
* BAR value because X is lame and expects to be able to use that
|
|
* to pass to /dev/mem!
|
|
*
|
|
* That means we may have 64-bit values where some apps only expect
|
|
* 32 (like X itself since it thinks only Sparc has 64-bit MMIO).
|
|
*/
|
|
*start = rsrc->start;
|
|
*end = rsrc->end;
|
|
}
|
|
|
|
/**
|
|
* pci_process_bridge_OF_ranges - Parse PCI bridge resources from device tree
|
|
* @hose: newly allocated pci_controller to be setup
|
|
* @dev: device node of the host bridge
|
|
* @primary: set if primary bus (32 bits only, soon to be deprecated)
|
|
*
|
|
* This function will parse the "ranges" property of a PCI host bridge device
|
|
* node and setup the resource mapping of a pci controller based on its
|
|
* content.
|
|
*
|
|
* Life would be boring if it wasn't for a few issues that we have to deal
|
|
* with here:
|
|
*
|
|
* - We can only cope with one IO space range and up to 3 Memory space
|
|
* ranges. However, some machines (thanks Apple !) tend to split their
|
|
* space into lots of small contiguous ranges. So we have to coalesce.
|
|
*
|
|
* - Some busses have IO space not starting at 0, which causes trouble with
|
|
* the way we do our IO resource renumbering. The code somewhat deals with
|
|
* it for 64 bits but I would expect problems on 32 bits.
|
|
*
|
|
* - Some 32 bits platforms such as 4xx can have physical space larger than
|
|
* 32 bits so we need to use 64 bits values for the parsing
|
|
*/
|
|
void pci_process_bridge_OF_ranges(struct pci_controller *hose,
|
|
struct device_node *dev, int primary)
|
|
{
|
|
int memno = 0;
|
|
struct resource *res;
|
|
struct of_pci_range range;
|
|
struct of_pci_range_parser parser;
|
|
|
|
printk(KERN_INFO "PCI host bridge %pOF %s ranges:\n",
|
|
dev, primary ? "(primary)" : "");
|
|
|
|
/* Check for ranges property */
|
|
if (of_pci_range_parser_init(&parser, dev))
|
|
return;
|
|
|
|
/* Parse it */
|
|
for_each_of_pci_range(&parser, &range) {
|
|
/* If we failed translation or got a zero-sized region
|
|
* (some FW try to feed us with non sensical zero sized regions
|
|
* such as power3 which look like some kind of attempt at exposing
|
|
* the VGA memory hole)
|
|
*/
|
|
if (range.cpu_addr == OF_BAD_ADDR || range.size == 0)
|
|
continue;
|
|
|
|
/* Act based on address space type */
|
|
res = NULL;
|
|
switch (range.flags & IORESOURCE_TYPE_BITS) {
|
|
case IORESOURCE_IO:
|
|
printk(KERN_INFO
|
|
" IO 0x%016llx..0x%016llx -> 0x%016llx\n",
|
|
range.cpu_addr, range.cpu_addr + range.size - 1,
|
|
range.pci_addr);
|
|
|
|
/* We support only one IO range */
|
|
if (hose->pci_io_size) {
|
|
printk(KERN_INFO
|
|
" \\--> Skipped (too many) !\n");
|
|
continue;
|
|
}
|
|
#ifdef CONFIG_PPC32
|
|
/* On 32 bits, limit I/O space to 16MB */
|
|
if (range.size > 0x01000000)
|
|
range.size = 0x01000000;
|
|
|
|
/* 32 bits needs to map IOs here */
|
|
hose->io_base_virt = ioremap(range.cpu_addr,
|
|
range.size);
|
|
|
|
/* Expect trouble if pci_addr is not 0 */
|
|
if (primary)
|
|
isa_io_base =
|
|
(unsigned long)hose->io_base_virt;
|
|
#endif /* CONFIG_PPC32 */
|
|
/* pci_io_size and io_base_phys always represent IO
|
|
* space starting at 0 so we factor in pci_addr
|
|
*/
|
|
hose->pci_io_size = range.pci_addr + range.size;
|
|
hose->io_base_phys = range.cpu_addr - range.pci_addr;
|
|
|
|
/* Build resource */
|
|
res = &hose->io_resource;
|
|
range.cpu_addr = range.pci_addr;
|
|
break;
|
|
case IORESOURCE_MEM:
|
|
printk(KERN_INFO
|
|
" MEM 0x%016llx..0x%016llx -> 0x%016llx %s\n",
|
|
range.cpu_addr, range.cpu_addr + range.size - 1,
|
|
range.pci_addr,
|
|
(range.pci_space & 0x40000000) ?
|
|
"Prefetch" : "");
|
|
|
|
/* We support only 3 memory ranges */
|
|
if (memno >= 3) {
|
|
printk(KERN_INFO
|
|
" \\--> Skipped (too many) !\n");
|
|
continue;
|
|
}
|
|
/* Handles ISA memory hole space here */
|
|
if (range.pci_addr == 0) {
|
|
if (primary || isa_mem_base == 0)
|
|
isa_mem_base = range.cpu_addr;
|
|
hose->isa_mem_phys = range.cpu_addr;
|
|
hose->isa_mem_size = range.size;
|
|
}
|
|
|
|
/* Build resource */
|
|
hose->mem_offset[memno] = range.cpu_addr -
|
|
range.pci_addr;
|
|
res = &hose->mem_resources[memno++];
|
|
break;
|
|
}
|
|
if (res != NULL) {
|
|
res->name = dev->full_name;
|
|
res->flags = range.flags;
|
|
res->start = range.cpu_addr;
|
|
res->end = range.cpu_addr + range.size - 1;
|
|
res->parent = res->child = res->sibling = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Decide whether to display the domain number in /proc */
|
|
int pci_proc_domain(struct pci_bus *bus)
|
|
{
|
|
struct pci_controller *hose = pci_bus_to_host(bus);
|
|
|
|
if (!pci_has_flag(PCI_ENABLE_PROC_DOMAINS))
|
|
return 0;
|
|
if (pci_has_flag(PCI_COMPAT_DOMAIN_0))
|
|
return hose->global_number != 0;
|
|
return 1;
|
|
}
|
|
|
|
int pcibios_root_bridge_prepare(struct pci_host_bridge *bridge)
|
|
{
|
|
if (ppc_md.pcibios_root_bridge_prepare)
|
|
return ppc_md.pcibios_root_bridge_prepare(bridge);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* This header fixup will do the resource fixup for all devices as they are
|
|
* probed, but not for bridge ranges
|
|
*/
|
|
static void pcibios_fixup_resources(struct pci_dev *dev)
|
|
{
|
|
struct pci_controller *hose = pci_bus_to_host(dev->bus);
|
|
int i;
|
|
|
|
if (!hose) {
|
|
printk(KERN_ERR "No host bridge for PCI dev %s !\n",
|
|
pci_name(dev));
|
|
return;
|
|
}
|
|
|
|
if (dev->is_virtfn)
|
|
return;
|
|
|
|
for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
|
|
struct resource *res = dev->resource + i;
|
|
struct pci_bus_region reg;
|
|
if (!res->flags)
|
|
continue;
|
|
|
|
/* If we're going to re-assign everything, we mark all resources
|
|
* as unset (and 0-base them). In addition, we mark BARs starting
|
|
* at 0 as unset as well, except if PCI_PROBE_ONLY is also set
|
|
* since in that case, we don't want to re-assign anything
|
|
*/
|
|
pcibios_resource_to_bus(dev->bus, ®, res);
|
|
if (pci_has_flag(PCI_REASSIGN_ALL_RSRC) ||
|
|
(reg.start == 0 && !pci_has_flag(PCI_PROBE_ONLY))) {
|
|
/* Only print message if not re-assigning */
|
|
if (!pci_has_flag(PCI_REASSIGN_ALL_RSRC))
|
|
pr_debug("PCI:%s Resource %d %pR is unassigned\n",
|
|
pci_name(dev), i, res);
|
|
res->end -= res->start;
|
|
res->start = 0;
|
|
res->flags |= IORESOURCE_UNSET;
|
|
continue;
|
|
}
|
|
|
|
pr_debug("PCI:%s Resource %d %pR\n", pci_name(dev), i, res);
|
|
}
|
|
|
|
/* Call machine specific resource fixup */
|
|
if (ppc_md.pcibios_fixup_resources)
|
|
ppc_md.pcibios_fixup_resources(dev);
|
|
}
|
|
DECLARE_PCI_FIXUP_HEADER(PCI_ANY_ID, PCI_ANY_ID, pcibios_fixup_resources);
|
|
|
|
/* This function tries to figure out if a bridge resource has been initialized
|
|
* by the firmware or not. It doesn't have to be absolutely bullet proof, but
|
|
* things go more smoothly when it gets it right. It should covers cases such
|
|
* as Apple "closed" bridge resources and bare-metal pSeries unassigned bridges
|
|
*/
|
|
static int pcibios_uninitialized_bridge_resource(struct pci_bus *bus,
|
|
struct resource *res)
|
|
{
|
|
struct pci_controller *hose = pci_bus_to_host(bus);
|
|
struct pci_dev *dev = bus->self;
|
|
resource_size_t offset;
|
|
struct pci_bus_region region;
|
|
u16 command;
|
|
int i;
|
|
|
|
/* We don't do anything if PCI_PROBE_ONLY is set */
|
|
if (pci_has_flag(PCI_PROBE_ONLY))
|
|
return 0;
|
|
|
|
/* Job is a bit different between memory and IO */
|
|
if (res->flags & IORESOURCE_MEM) {
|
|
pcibios_resource_to_bus(dev->bus, ®ion, res);
|
|
|
|
/* If the BAR is non-0 then it's probably been initialized */
|
|
if (region.start != 0)
|
|
return 0;
|
|
|
|
/* The BAR is 0, let's check if memory decoding is enabled on
|
|
* the bridge. If not, we consider it unassigned
|
|
*/
|
|
pci_read_config_word(dev, PCI_COMMAND, &command);
|
|
if ((command & PCI_COMMAND_MEMORY) == 0)
|
|
return 1;
|
|
|
|
/* Memory decoding is enabled and the BAR is 0. If any of the bridge
|
|
* resources covers that starting address (0 then it's good enough for
|
|
* us for memory space)
|
|
*/
|
|
for (i = 0; i < 3; i++) {
|
|
if ((hose->mem_resources[i].flags & IORESOURCE_MEM) &&
|
|
hose->mem_resources[i].start == hose->mem_offset[i])
|
|
return 0;
|
|
}
|
|
|
|
/* Well, it starts at 0 and we know it will collide so we may as
|
|
* well consider it as unassigned. That covers the Apple case.
|
|
*/
|
|
return 1;
|
|
} else {
|
|
/* If the BAR is non-0, then we consider it assigned */
|
|
offset = (unsigned long)hose->io_base_virt - _IO_BASE;
|
|
if (((res->start - offset) & 0xfffffffful) != 0)
|
|
return 0;
|
|
|
|
/* Here, we are a bit different than memory as typically IO space
|
|
* starting at low addresses -is- valid. What we do instead if that
|
|
* we consider as unassigned anything that doesn't have IO enabled
|
|
* in the PCI command register, and that's it.
|
|
*/
|
|
pci_read_config_word(dev, PCI_COMMAND, &command);
|
|
if (command & PCI_COMMAND_IO)
|
|
return 0;
|
|
|
|
/* It's starting at 0 and IO is disabled in the bridge, consider
|
|
* it unassigned
|
|
*/
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
/* Fixup resources of a PCI<->PCI bridge */
|
|
static void pcibios_fixup_bridge(struct pci_bus *bus)
|
|
{
|
|
struct resource *res;
|
|
int i;
|
|
|
|
struct pci_dev *dev = bus->self;
|
|
|
|
pci_bus_for_each_resource(bus, res, i) {
|
|
if (!res || !res->flags)
|
|
continue;
|
|
if (i >= 3 && bus->self->transparent)
|
|
continue;
|
|
|
|
/* If we're going to reassign everything, we can
|
|
* shrink the P2P resource to have size as being
|
|
* of 0 in order to save space.
|
|
*/
|
|
if (pci_has_flag(PCI_REASSIGN_ALL_RSRC)) {
|
|
res->flags |= IORESOURCE_UNSET;
|
|
res->start = 0;
|
|
res->end = -1;
|
|
continue;
|
|
}
|
|
|
|
pr_debug("PCI:%s Bus rsrc %d %pR\n", pci_name(dev), i, res);
|
|
|
|
/* Try to detect uninitialized P2P bridge resources,
|
|
* and clear them out so they get re-assigned later
|
|
*/
|
|
if (pcibios_uninitialized_bridge_resource(bus, res)) {
|
|
res->flags = 0;
|
|
pr_debug("PCI:%s (unassigned)\n", pci_name(dev));
|
|
}
|
|
}
|
|
}
|
|
|
|
void pcibios_setup_bus_self(struct pci_bus *bus)
|
|
{
|
|
struct pci_controller *phb;
|
|
|
|
/* Fix up the bus resources for P2P bridges */
|
|
if (bus->self != NULL)
|
|
pcibios_fixup_bridge(bus);
|
|
|
|
/* Platform specific bus fixups. This is currently only used
|
|
* by fsl_pci and I'm hoping to get rid of it at some point
|
|
*/
|
|
if (ppc_md.pcibios_fixup_bus)
|
|
ppc_md.pcibios_fixup_bus(bus);
|
|
|
|
/* Setup bus DMA mappings */
|
|
phb = pci_bus_to_host(bus);
|
|
if (phb->controller_ops.dma_bus_setup)
|
|
phb->controller_ops.dma_bus_setup(bus);
|
|
}
|
|
|
|
static void pcibios_setup_device(struct pci_dev *dev)
|
|
{
|
|
struct pci_controller *phb;
|
|
/* Fixup NUMA node as it may not be setup yet by the generic
|
|
* code and is needed by the DMA init
|
|
*/
|
|
set_dev_node(&dev->dev, pcibus_to_node(dev->bus));
|
|
|
|
/* Hook up default DMA ops */
|
|
set_dma_ops(&dev->dev, pci_dma_ops);
|
|
set_dma_offset(&dev->dev, PCI_DRAM_OFFSET);
|
|
|
|
/* Additional platform DMA/iommu setup */
|
|
phb = pci_bus_to_host(dev->bus);
|
|
if (phb->controller_ops.dma_dev_setup)
|
|
phb->controller_ops.dma_dev_setup(dev);
|
|
|
|
/* Read default IRQs and fixup if necessary */
|
|
pci_read_irq_line(dev);
|
|
if (ppc_md.pci_irq_fixup)
|
|
ppc_md.pci_irq_fixup(dev);
|
|
}
|
|
|
|
int pcibios_add_device(struct pci_dev *dev)
|
|
{
|
|
/*
|
|
* We can only call pcibios_setup_device() after bus setup is complete,
|
|
* since some of the platform specific DMA setup code depends on it.
|
|
*/
|
|
if (dev->bus->is_added)
|
|
pcibios_setup_device(dev);
|
|
|
|
#ifdef CONFIG_PCI_IOV
|
|
if (ppc_md.pcibios_fixup_sriov)
|
|
ppc_md.pcibios_fixup_sriov(dev);
|
|
#endif /* CONFIG_PCI_IOV */
|
|
|
|
return 0;
|
|
}
|
|
|
|
void pcibios_setup_bus_devices(struct pci_bus *bus)
|
|
{
|
|
struct pci_dev *dev;
|
|
|
|
pr_debug("PCI: Fixup bus devices %d (%s)\n",
|
|
bus->number, bus->self ? pci_name(bus->self) : "PHB");
|
|
|
|
list_for_each_entry(dev, &bus->devices, bus_list) {
|
|
/* Cardbus can call us to add new devices to a bus, so ignore
|
|
* those who are already fully discovered
|
|
*/
|
|
if (dev->is_added)
|
|
continue;
|
|
|
|
pcibios_setup_device(dev);
|
|
}
|
|
}
|
|
|
|
void pcibios_set_master(struct pci_dev *dev)
|
|
{
|
|
/* No special bus mastering setup handling */
|
|
}
|
|
|
|
void pcibios_fixup_bus(struct pci_bus *bus)
|
|
{
|
|
/* When called from the generic PCI probe, read PCI<->PCI bridge
|
|
* bases. This is -not- called when generating the PCI tree from
|
|
* the OF device-tree.
|
|
*/
|
|
pci_read_bridge_bases(bus);
|
|
|
|
/* Now fixup the bus bus */
|
|
pcibios_setup_bus_self(bus);
|
|
|
|
/* Now fixup devices on that bus */
|
|
pcibios_setup_bus_devices(bus);
|
|
}
|
|
EXPORT_SYMBOL(pcibios_fixup_bus);
|
|
|
|
void pci_fixup_cardbus(struct pci_bus *bus)
|
|
{
|
|
/* Now fixup devices on that bus */
|
|
pcibios_setup_bus_devices(bus);
|
|
}
|
|
|
|
|
|
static int skip_isa_ioresource_align(struct pci_dev *dev)
|
|
{
|
|
if (pci_has_flag(PCI_CAN_SKIP_ISA_ALIGN) &&
|
|
!(dev->bus->bridge_ctl & PCI_BRIDGE_CTL_ISA))
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* We need to avoid collisions with `mirrored' VGA ports
|
|
* and other strange ISA hardware, so we always want the
|
|
* addresses to be allocated in the 0x000-0x0ff region
|
|
* modulo 0x400.
|
|
*
|
|
* Why? Because some silly external IO cards only decode
|
|
* the low 10 bits of the IO address. The 0x00-0xff region
|
|
* is reserved for motherboard devices that decode all 16
|
|
* bits, so it's ok to allocate at, say, 0x2800-0x28ff,
|
|
* but we want to try to avoid allocating at 0x2900-0x2bff
|
|
* which might have be mirrored at 0x0100-0x03ff..
|
|
*/
|
|
resource_size_t pcibios_align_resource(void *data, const struct resource *res,
|
|
resource_size_t size, resource_size_t align)
|
|
{
|
|
struct pci_dev *dev = data;
|
|
resource_size_t start = res->start;
|
|
|
|
if (res->flags & IORESOURCE_IO) {
|
|
if (skip_isa_ioresource_align(dev))
|
|
return start;
|
|
if (start & 0x300)
|
|
start = (start + 0x3ff) & ~0x3ff;
|
|
}
|
|
|
|
return start;
|
|
}
|
|
EXPORT_SYMBOL(pcibios_align_resource);
|
|
|
|
/*
|
|
* Reparent resource children of pr that conflict with res
|
|
* under res, and make res replace those children.
|
|
*/
|
|
static int reparent_resources(struct resource *parent,
|
|
struct resource *res)
|
|
{
|
|
struct resource *p, **pp;
|
|
struct resource **firstpp = NULL;
|
|
|
|
for (pp = &parent->child; (p = *pp) != NULL; pp = &p->sibling) {
|
|
if (p->end < res->start)
|
|
continue;
|
|
if (res->end < p->start)
|
|
break;
|
|
if (p->start < res->start || p->end > res->end)
|
|
return -1; /* not completely contained */
|
|
if (firstpp == NULL)
|
|
firstpp = pp;
|
|
}
|
|
if (firstpp == NULL)
|
|
return -1; /* didn't find any conflicting entries? */
|
|
res->parent = parent;
|
|
res->child = *firstpp;
|
|
res->sibling = *pp;
|
|
*firstpp = res;
|
|
*pp = NULL;
|
|
for (p = res->child; p != NULL; p = p->sibling) {
|
|
p->parent = res;
|
|
pr_debug("PCI: Reparented %s %pR under %s\n",
|
|
p->name, p, res->name);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Handle resources of PCI devices. If the world were perfect, we could
|
|
* just allocate all the resource regions and do nothing more. It isn't.
|
|
* On the other hand, we cannot just re-allocate all devices, as it would
|
|
* require us to know lots of host bridge internals. So we attempt to
|
|
* keep as much of the original configuration as possible, but tweak it
|
|
* when it's found to be wrong.
|
|
*
|
|
* Known BIOS problems we have to work around:
|
|
* - I/O or memory regions not configured
|
|
* - regions configured, but not enabled in the command register
|
|
* - bogus I/O addresses above 64K used
|
|
* - expansion ROMs left enabled (this may sound harmless, but given
|
|
* the fact the PCI specs explicitly allow address decoders to be
|
|
* shared between expansion ROMs and other resource regions, it's
|
|
* at least dangerous)
|
|
*
|
|
* Our solution:
|
|
* (1) Allocate resources for all buses behind PCI-to-PCI bridges.
|
|
* This gives us fixed barriers on where we can allocate.
|
|
* (2) Allocate resources for all enabled devices. If there is
|
|
* a collision, just mark the resource as unallocated. Also
|
|
* disable expansion ROMs during this step.
|
|
* (3) Try to allocate resources for disabled devices. If the
|
|
* resources were assigned correctly, everything goes well,
|
|
* if they weren't, they won't disturb allocation of other
|
|
* resources.
|
|
* (4) Assign new addresses to resources which were either
|
|
* not configured at all or misconfigured. If explicitly
|
|
* requested by the user, configure expansion ROM address
|
|
* as well.
|
|
*/
|
|
|
|
static void pcibios_allocate_bus_resources(struct pci_bus *bus)
|
|
{
|
|
struct pci_bus *b;
|
|
int i;
|
|
struct resource *res, *pr;
|
|
|
|
pr_debug("PCI: Allocating bus resources for %04x:%02x...\n",
|
|
pci_domain_nr(bus), bus->number);
|
|
|
|
pci_bus_for_each_resource(bus, res, i) {
|
|
if (!res || !res->flags || res->start > res->end || res->parent)
|
|
continue;
|
|
|
|
/* If the resource was left unset at this point, we clear it */
|
|
if (res->flags & IORESOURCE_UNSET)
|
|
goto clear_resource;
|
|
|
|
if (bus->parent == NULL)
|
|
pr = (res->flags & IORESOURCE_IO) ?
|
|
&ioport_resource : &iomem_resource;
|
|
else {
|
|
pr = pci_find_parent_resource(bus->self, res);
|
|
if (pr == res) {
|
|
/* this happens when the generic PCI
|
|
* code (wrongly) decides that this
|
|
* bridge is transparent -- paulus
|
|
*/
|
|
continue;
|
|
}
|
|
}
|
|
|
|
pr_debug("PCI: %s (bus %d) bridge rsrc %d: %pR, parent %p (%s)\n",
|
|
bus->self ? pci_name(bus->self) : "PHB", bus->number,
|
|
i, res, pr, (pr && pr->name) ? pr->name : "nil");
|
|
|
|
if (pr && !(pr->flags & IORESOURCE_UNSET)) {
|
|
struct pci_dev *dev = bus->self;
|
|
|
|
if (request_resource(pr, res) == 0)
|
|
continue;
|
|
/*
|
|
* Must be a conflict with an existing entry.
|
|
* Move that entry (or entries) under the
|
|
* bridge resource and try again.
|
|
*/
|
|
if (reparent_resources(pr, res) == 0)
|
|
continue;
|
|
|
|
if (dev && i < PCI_BRIDGE_RESOURCE_NUM &&
|
|
pci_claim_bridge_resource(dev,
|
|
i + PCI_BRIDGE_RESOURCES) == 0)
|
|
continue;
|
|
}
|
|
pr_warning("PCI: Cannot allocate resource region "
|
|
"%d of PCI bridge %d, will remap\n", i, bus->number);
|
|
clear_resource:
|
|
/* The resource might be figured out when doing
|
|
* reassignment based on the resources required
|
|
* by the downstream PCI devices. Here we set
|
|
* the size of the resource to be 0 in order to
|
|
* save more space.
|
|
*/
|
|
res->start = 0;
|
|
res->end = -1;
|
|
res->flags = 0;
|
|
}
|
|
|
|
list_for_each_entry(b, &bus->children, node)
|
|
pcibios_allocate_bus_resources(b);
|
|
}
|
|
|
|
static inline void alloc_resource(struct pci_dev *dev, int idx)
|
|
{
|
|
struct resource *pr, *r = &dev->resource[idx];
|
|
|
|
pr_debug("PCI: Allocating %s: Resource %d: %pR\n",
|
|
pci_name(dev), idx, r);
|
|
|
|
pr = pci_find_parent_resource(dev, r);
|
|
if (!pr || (pr->flags & IORESOURCE_UNSET) ||
|
|
request_resource(pr, r) < 0) {
|
|
printk(KERN_WARNING "PCI: Cannot allocate resource region %d"
|
|
" of device %s, will remap\n", idx, pci_name(dev));
|
|
if (pr)
|
|
pr_debug("PCI: parent is %p: %pR\n", pr, pr);
|
|
/* We'll assign a new address later */
|
|
r->flags |= IORESOURCE_UNSET;
|
|
r->end -= r->start;
|
|
r->start = 0;
|
|
}
|
|
}
|
|
|
|
static void __init pcibios_allocate_resources(int pass)
|
|
{
|
|
struct pci_dev *dev = NULL;
|
|
int idx, disabled;
|
|
u16 command;
|
|
struct resource *r;
|
|
|
|
for_each_pci_dev(dev) {
|
|
pci_read_config_word(dev, PCI_COMMAND, &command);
|
|
for (idx = 0; idx <= PCI_ROM_RESOURCE; idx++) {
|
|
r = &dev->resource[idx];
|
|
if (r->parent) /* Already allocated */
|
|
continue;
|
|
if (!r->flags || (r->flags & IORESOURCE_UNSET))
|
|
continue; /* Not assigned at all */
|
|
/* We only allocate ROMs on pass 1 just in case they
|
|
* have been screwed up by firmware
|
|
*/
|
|
if (idx == PCI_ROM_RESOURCE )
|
|
disabled = 1;
|
|
if (r->flags & IORESOURCE_IO)
|
|
disabled = !(command & PCI_COMMAND_IO);
|
|
else
|
|
disabled = !(command & PCI_COMMAND_MEMORY);
|
|
if (pass == disabled)
|
|
alloc_resource(dev, idx);
|
|
}
|
|
if (pass)
|
|
continue;
|
|
r = &dev->resource[PCI_ROM_RESOURCE];
|
|
if (r->flags) {
|
|
/* Turn the ROM off, leave the resource region,
|
|
* but keep it unregistered.
|
|
*/
|
|
u32 reg;
|
|
pci_read_config_dword(dev, dev->rom_base_reg, ®);
|
|
if (reg & PCI_ROM_ADDRESS_ENABLE) {
|
|
pr_debug("PCI: Switching off ROM of %s\n",
|
|
pci_name(dev));
|
|
r->flags &= ~IORESOURCE_ROM_ENABLE;
|
|
pci_write_config_dword(dev, dev->rom_base_reg,
|
|
reg & ~PCI_ROM_ADDRESS_ENABLE);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void __init pcibios_reserve_legacy_regions(struct pci_bus *bus)
|
|
{
|
|
struct pci_controller *hose = pci_bus_to_host(bus);
|
|
resource_size_t offset;
|
|
struct resource *res, *pres;
|
|
int i;
|
|
|
|
pr_debug("Reserving legacy ranges for domain %04x\n", pci_domain_nr(bus));
|
|
|
|
/* Check for IO */
|
|
if (!(hose->io_resource.flags & IORESOURCE_IO))
|
|
goto no_io;
|
|
offset = (unsigned long)hose->io_base_virt - _IO_BASE;
|
|
res = kzalloc(sizeof(struct resource), GFP_KERNEL);
|
|
BUG_ON(res == NULL);
|
|
res->name = "Legacy IO";
|
|
res->flags = IORESOURCE_IO;
|
|
res->start = offset;
|
|
res->end = (offset + 0xfff) & 0xfffffffful;
|
|
pr_debug("Candidate legacy IO: %pR\n", res);
|
|
if (request_resource(&hose->io_resource, res)) {
|
|
printk(KERN_DEBUG
|
|
"PCI %04x:%02x Cannot reserve Legacy IO %pR\n",
|
|
pci_domain_nr(bus), bus->number, res);
|
|
kfree(res);
|
|
}
|
|
|
|
no_io:
|
|
/* Check for memory */
|
|
for (i = 0; i < 3; i++) {
|
|
pres = &hose->mem_resources[i];
|
|
offset = hose->mem_offset[i];
|
|
if (!(pres->flags & IORESOURCE_MEM))
|
|
continue;
|
|
pr_debug("hose mem res: %pR\n", pres);
|
|
if ((pres->start - offset) <= 0xa0000 &&
|
|
(pres->end - offset) >= 0xbffff)
|
|
break;
|
|
}
|
|
if (i >= 3)
|
|
return;
|
|
res = kzalloc(sizeof(struct resource), GFP_KERNEL);
|
|
BUG_ON(res == NULL);
|
|
res->name = "Legacy VGA memory";
|
|
res->flags = IORESOURCE_MEM;
|
|
res->start = 0xa0000 + offset;
|
|
res->end = 0xbffff + offset;
|
|
pr_debug("Candidate VGA memory: %pR\n", res);
|
|
if (request_resource(pres, res)) {
|
|
printk(KERN_DEBUG
|
|
"PCI %04x:%02x Cannot reserve VGA memory %pR\n",
|
|
pci_domain_nr(bus), bus->number, res);
|
|
kfree(res);
|
|
}
|
|
}
|
|
|
|
void __init pcibios_resource_survey(void)
|
|
{
|
|
struct pci_bus *b;
|
|
|
|
/* Allocate and assign resources */
|
|
list_for_each_entry(b, &pci_root_buses, node)
|
|
pcibios_allocate_bus_resources(b);
|
|
if (!pci_has_flag(PCI_REASSIGN_ALL_RSRC)) {
|
|
pcibios_allocate_resources(0);
|
|
pcibios_allocate_resources(1);
|
|
}
|
|
|
|
/* Before we start assigning unassigned resource, we try to reserve
|
|
* the low IO area and the VGA memory area if they intersect the
|
|
* bus available resources to avoid allocating things on top of them
|
|
*/
|
|
if (!pci_has_flag(PCI_PROBE_ONLY)) {
|
|
list_for_each_entry(b, &pci_root_buses, node)
|
|
pcibios_reserve_legacy_regions(b);
|
|
}
|
|
|
|
/* Now, if the platform didn't decide to blindly trust the firmware,
|
|
* we proceed to assigning things that were left unassigned
|
|
*/
|
|
if (!pci_has_flag(PCI_PROBE_ONLY)) {
|
|
pr_debug("PCI: Assigning unassigned resources...\n");
|
|
pci_assign_unassigned_resources();
|
|
}
|
|
|
|
/* Call machine dependent fixup */
|
|
if (ppc_md.pcibios_fixup)
|
|
ppc_md.pcibios_fixup();
|
|
}
|
|
|
|
/* This is used by the PCI hotplug driver to allocate resource
|
|
* of newly plugged busses. We can try to consolidate with the
|
|
* rest of the code later, for now, keep it as-is as our main
|
|
* resource allocation function doesn't deal with sub-trees yet.
|
|
*/
|
|
void pcibios_claim_one_bus(struct pci_bus *bus)
|
|
{
|
|
struct pci_dev *dev;
|
|
struct pci_bus *child_bus;
|
|
|
|
list_for_each_entry(dev, &bus->devices, bus_list) {
|
|
int i;
|
|
|
|
for (i = 0; i < PCI_NUM_RESOURCES; i++) {
|
|
struct resource *r = &dev->resource[i];
|
|
|
|
if (r->parent || !r->start || !r->flags)
|
|
continue;
|
|
|
|
pr_debug("PCI: Claiming %s: Resource %d: %pR\n",
|
|
pci_name(dev), i, r);
|
|
|
|
if (pci_claim_resource(dev, i) == 0)
|
|
continue;
|
|
|
|
pci_claim_bridge_resource(dev, i);
|
|
}
|
|
}
|
|
|
|
list_for_each_entry(child_bus, &bus->children, node)
|
|
pcibios_claim_one_bus(child_bus);
|
|
}
|
|
EXPORT_SYMBOL_GPL(pcibios_claim_one_bus);
|
|
|
|
|
|
/* pcibios_finish_adding_to_bus
|
|
*
|
|
* This is to be called by the hotplug code after devices have been
|
|
* added to a bus, this include calling it for a PHB that is just
|
|
* being added
|
|
*/
|
|
void pcibios_finish_adding_to_bus(struct pci_bus *bus)
|
|
{
|
|
pr_debug("PCI: Finishing adding to hotplug bus %04x:%02x\n",
|
|
pci_domain_nr(bus), bus->number);
|
|
|
|
/* Allocate bus and devices resources */
|
|
pcibios_allocate_bus_resources(bus);
|
|
pcibios_claim_one_bus(bus);
|
|
if (!pci_has_flag(PCI_PROBE_ONLY)) {
|
|
if (bus->self)
|
|
pci_assign_unassigned_bridge_resources(bus->self);
|
|
else
|
|
pci_assign_unassigned_bus_resources(bus);
|
|
}
|
|
|
|
/* Fixup EEH */
|
|
eeh_add_device_tree_late(bus);
|
|
|
|
/* Add new devices to global lists. Register in proc, sysfs. */
|
|
pci_bus_add_devices(bus);
|
|
|
|
/* sysfs files should only be added after devices are added */
|
|
eeh_add_sysfs_files(bus);
|
|
}
|
|
EXPORT_SYMBOL_GPL(pcibios_finish_adding_to_bus);
|
|
|
|
int pcibios_enable_device(struct pci_dev *dev, int mask)
|
|
{
|
|
struct pci_controller *phb = pci_bus_to_host(dev->bus);
|
|
|
|
if (phb->controller_ops.enable_device_hook)
|
|
if (!phb->controller_ops.enable_device_hook(dev))
|
|
return -EINVAL;
|
|
|
|
return pci_enable_resources(dev, mask);
|
|
}
|
|
|
|
void pcibios_disable_device(struct pci_dev *dev)
|
|
{
|
|
struct pci_controller *phb = pci_bus_to_host(dev->bus);
|
|
|
|
if (phb->controller_ops.disable_device)
|
|
phb->controller_ops.disable_device(dev);
|
|
}
|
|
|
|
resource_size_t pcibios_io_space_offset(struct pci_controller *hose)
|
|
{
|
|
return (unsigned long) hose->io_base_virt - _IO_BASE;
|
|
}
|
|
|
|
static void pcibios_setup_phb_resources(struct pci_controller *hose,
|
|
struct list_head *resources)
|
|
{
|
|
struct resource *res;
|
|
resource_size_t offset;
|
|
int i;
|
|
|
|
/* Hookup PHB IO resource */
|
|
res = &hose->io_resource;
|
|
|
|
if (!res->flags) {
|
|
pr_debug("PCI: I/O resource not set for host"
|
|
" bridge %pOF (domain %d)\n",
|
|
hose->dn, hose->global_number);
|
|
} else {
|
|
offset = pcibios_io_space_offset(hose);
|
|
|
|
pr_debug("PCI: PHB IO resource = %pR off 0x%08llx\n",
|
|
res, (unsigned long long)offset);
|
|
pci_add_resource_offset(resources, res, offset);
|
|
}
|
|
|
|
/* Hookup PHB Memory resources */
|
|
for (i = 0; i < 3; ++i) {
|
|
res = &hose->mem_resources[i];
|
|
if (!res->flags)
|
|
continue;
|
|
|
|
offset = hose->mem_offset[i];
|
|
pr_debug("PCI: PHB MEM resource %d = %pR off 0x%08llx\n", i,
|
|
res, (unsigned long long)offset);
|
|
|
|
pci_add_resource_offset(resources, res, offset);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Null PCI config access functions, for the case when we can't
|
|
* find a hose.
|
|
*/
|
|
#define NULL_PCI_OP(rw, size, type) \
|
|
static int \
|
|
null_##rw##_config_##size(struct pci_dev *dev, int offset, type val) \
|
|
{ \
|
|
return PCIBIOS_DEVICE_NOT_FOUND; \
|
|
}
|
|
|
|
static int
|
|
null_read_config(struct pci_bus *bus, unsigned int devfn, int offset,
|
|
int len, u32 *val)
|
|
{
|
|
return PCIBIOS_DEVICE_NOT_FOUND;
|
|
}
|
|
|
|
static int
|
|
null_write_config(struct pci_bus *bus, unsigned int devfn, int offset,
|
|
int len, u32 val)
|
|
{
|
|
return PCIBIOS_DEVICE_NOT_FOUND;
|
|
}
|
|
|
|
static struct pci_ops null_pci_ops =
|
|
{
|
|
.read = null_read_config,
|
|
.write = null_write_config,
|
|
};
|
|
|
|
/*
|
|
* These functions are used early on before PCI scanning is done
|
|
* and all of the pci_dev and pci_bus structures have been created.
|
|
*/
|
|
static struct pci_bus *
|
|
fake_pci_bus(struct pci_controller *hose, int busnr)
|
|
{
|
|
static struct pci_bus bus;
|
|
|
|
if (hose == NULL) {
|
|
printk(KERN_ERR "Can't find hose for PCI bus %d!\n", busnr);
|
|
}
|
|
bus.number = busnr;
|
|
bus.sysdata = hose;
|
|
bus.ops = hose? hose->ops: &null_pci_ops;
|
|
return &bus;
|
|
}
|
|
|
|
#define EARLY_PCI_OP(rw, size, type) \
|
|
int early_##rw##_config_##size(struct pci_controller *hose, int bus, \
|
|
int devfn, int offset, type value) \
|
|
{ \
|
|
return pci_bus_##rw##_config_##size(fake_pci_bus(hose, bus), \
|
|
devfn, offset, value); \
|
|
}
|
|
|
|
EARLY_PCI_OP(read, byte, u8 *)
|
|
EARLY_PCI_OP(read, word, u16 *)
|
|
EARLY_PCI_OP(read, dword, u32 *)
|
|
EARLY_PCI_OP(write, byte, u8)
|
|
EARLY_PCI_OP(write, word, u16)
|
|
EARLY_PCI_OP(write, dword, u32)
|
|
|
|
int early_find_capability(struct pci_controller *hose, int bus, int devfn,
|
|
int cap)
|
|
{
|
|
return pci_bus_find_capability(fake_pci_bus(hose, bus), devfn, cap);
|
|
}
|
|
|
|
struct device_node *pcibios_get_phb_of_node(struct pci_bus *bus)
|
|
{
|
|
struct pci_controller *hose = bus->sysdata;
|
|
|
|
return of_node_get(hose->dn);
|
|
}
|
|
|
|
/**
|
|
* pci_scan_phb - Given a pci_controller, setup and scan the PCI bus
|
|
* @hose: Pointer to the PCI host controller instance structure
|
|
*/
|
|
void pcibios_scan_phb(struct pci_controller *hose)
|
|
{
|
|
LIST_HEAD(resources);
|
|
struct pci_bus *bus;
|
|
struct device_node *node = hose->dn;
|
|
int mode;
|
|
|
|
pr_debug("PCI: Scanning PHB %pOF\n", node);
|
|
|
|
/* Get some IO space for the new PHB */
|
|
pcibios_setup_phb_io_space(hose);
|
|
|
|
/* Wire up PHB bus resources */
|
|
pcibios_setup_phb_resources(hose, &resources);
|
|
|
|
hose->busn.start = hose->first_busno;
|
|
hose->busn.end = hose->last_busno;
|
|
hose->busn.flags = IORESOURCE_BUS;
|
|
pci_add_resource(&resources, &hose->busn);
|
|
|
|
/* Create an empty bus for the toplevel */
|
|
bus = pci_create_root_bus(hose->parent, hose->first_busno,
|
|
hose->ops, hose, &resources);
|
|
if (bus == NULL) {
|
|
pr_err("Failed to create bus for PCI domain %04x\n",
|
|
hose->global_number);
|
|
pci_free_resource_list(&resources);
|
|
return;
|
|
}
|
|
hose->bus = bus;
|
|
|
|
/* Get probe mode and perform scan */
|
|
mode = PCI_PROBE_NORMAL;
|
|
if (node && hose->controller_ops.probe_mode)
|
|
mode = hose->controller_ops.probe_mode(bus);
|
|
pr_debug(" probe mode: %d\n", mode);
|
|
if (mode == PCI_PROBE_DEVTREE)
|
|
of_scan_bus(node, bus);
|
|
|
|
if (mode == PCI_PROBE_NORMAL) {
|
|
pci_bus_update_busn_res_end(bus, 255);
|
|
hose->last_busno = pci_scan_child_bus(bus);
|
|
pci_bus_update_busn_res_end(bus, hose->last_busno);
|
|
}
|
|
|
|
/* Platform gets a chance to do some global fixups before
|
|
* we proceed to resource allocation
|
|
*/
|
|
if (ppc_md.pcibios_fixup_phb)
|
|
ppc_md.pcibios_fixup_phb(hose);
|
|
|
|
/* Configure PCI Express settings */
|
|
if (bus && !pci_has_flag(PCI_PROBE_ONLY)) {
|
|
struct pci_bus *child;
|
|
list_for_each_entry(child, &bus->children, node)
|
|
pcie_bus_configure_settings(child);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(pcibios_scan_phb);
|
|
|
|
static void fixup_hide_host_resource_fsl(struct pci_dev *dev)
|
|
{
|
|
int i, class = dev->class >> 8;
|
|
/* When configured as agent, programing interface = 1 */
|
|
int prog_if = dev->class & 0xf;
|
|
|
|
if ((class == PCI_CLASS_PROCESSOR_POWERPC ||
|
|
class == PCI_CLASS_BRIDGE_OTHER) &&
|
|
(dev->hdr_type == PCI_HEADER_TYPE_NORMAL) &&
|
|
(prog_if == 0) &&
|
|
(dev->bus->parent == NULL)) {
|
|
for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
|
|
dev->resource[i].start = 0;
|
|
dev->resource[i].end = 0;
|
|
dev->resource[i].flags = 0;
|
|
}
|
|
}
|
|
}
|
|
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_MOTOROLA, PCI_ANY_ID, fixup_hide_host_resource_fsl);
|
|
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_FREESCALE, PCI_ANY_ID, fixup_hide_host_resource_fsl);
|