forked from Minki/linux
f2e9084779
The subdev EDID ioctls receive a pad field that must reference an existing pad and an EDID field that must point to a buffer. Validate both fields in the core code instead of duplicating validation in all drivers. Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com> Acked-by: Sakari Ailus <sakari.ailus@linux.intel.com> Reviewed-by: Hans Verkuil <hans.verkuil@cisco.com> Signed-off-by: Mauro Carvalho Chehab <m.chehab@samsung.com>
1251 lines
35 KiB
C
1251 lines
35 KiB
C
/*
|
|
* Analog Devices AD9389B/AD9889B video encoder driver
|
|
*
|
|
* Copyright 2012 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
|
|
*
|
|
* This program is free software; you may redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; version 2 of the License.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
|
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
|
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
|
|
/*
|
|
* References (c = chapter, p = page):
|
|
* REF_01 - Analog Devices, Programming Guide, AD9889B/AD9389B,
|
|
* HDMI Transitter, Rev. A, October 2010
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/i2c.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/videodev2.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/v4l2-dv-timings.h>
|
|
#include <media/v4l2-device.h>
|
|
#include <media/v4l2-common.h>
|
|
#include <media/v4l2-dv-timings.h>
|
|
#include <media/v4l2-ctrls.h>
|
|
#include <media/ad9389b.h>
|
|
|
|
static int debug;
|
|
module_param(debug, int, 0644);
|
|
MODULE_PARM_DESC(debug, "debug level (0-2)");
|
|
|
|
MODULE_DESCRIPTION("Analog Devices AD9389B/AD9889B video encoder driver");
|
|
MODULE_AUTHOR("Hans Verkuil <hans.verkuil@cisco.com>");
|
|
MODULE_AUTHOR("Martin Bugge <marbugge@cisco.com>");
|
|
MODULE_LICENSE("GPL");
|
|
|
|
#define MASK_AD9389B_EDID_RDY_INT 0x04
|
|
#define MASK_AD9389B_MSEN_INT 0x40
|
|
#define MASK_AD9389B_HPD_INT 0x80
|
|
|
|
#define MASK_AD9389B_HPD_DETECT 0x40
|
|
#define MASK_AD9389B_MSEN_DETECT 0x20
|
|
#define MASK_AD9389B_EDID_RDY 0x10
|
|
|
|
#define EDID_MAX_RETRIES (8)
|
|
#define EDID_DELAY 250
|
|
#define EDID_MAX_SEGM 8
|
|
|
|
/*
|
|
**********************************************************************
|
|
*
|
|
* Arrays with configuration parameters for the AD9389B
|
|
*
|
|
**********************************************************************
|
|
*/
|
|
|
|
struct ad9389b_state_edid {
|
|
/* total number of blocks */
|
|
u32 blocks;
|
|
/* Number of segments read */
|
|
u32 segments;
|
|
u8 data[EDID_MAX_SEGM * 256];
|
|
/* Number of EDID read retries left */
|
|
unsigned read_retries;
|
|
};
|
|
|
|
struct ad9389b_state {
|
|
struct ad9389b_platform_data pdata;
|
|
struct v4l2_subdev sd;
|
|
struct media_pad pad;
|
|
struct v4l2_ctrl_handler hdl;
|
|
int chip_revision;
|
|
/* Is the ad9389b powered on? */
|
|
bool power_on;
|
|
/* Did we receive hotplug and rx-sense signals? */
|
|
bool have_monitor;
|
|
/* timings from s_dv_timings */
|
|
struct v4l2_dv_timings dv_timings;
|
|
/* controls */
|
|
struct v4l2_ctrl *hdmi_mode_ctrl;
|
|
struct v4l2_ctrl *hotplug_ctrl;
|
|
struct v4l2_ctrl *rx_sense_ctrl;
|
|
struct v4l2_ctrl *have_edid0_ctrl;
|
|
struct v4l2_ctrl *rgb_quantization_range_ctrl;
|
|
struct i2c_client *edid_i2c_client;
|
|
struct ad9389b_state_edid edid;
|
|
/* Running counter of the number of detected EDIDs (for debugging) */
|
|
unsigned edid_detect_counter;
|
|
struct workqueue_struct *work_queue;
|
|
struct delayed_work edid_handler; /* work entry */
|
|
};
|
|
|
|
static void ad9389b_check_monitor_present_status(struct v4l2_subdev *sd);
|
|
static bool ad9389b_check_edid_status(struct v4l2_subdev *sd);
|
|
static void ad9389b_setup(struct v4l2_subdev *sd);
|
|
static int ad9389b_s_i2s_clock_freq(struct v4l2_subdev *sd, u32 freq);
|
|
static int ad9389b_s_clock_freq(struct v4l2_subdev *sd, u32 freq);
|
|
|
|
static inline struct ad9389b_state *get_ad9389b_state(struct v4l2_subdev *sd)
|
|
{
|
|
return container_of(sd, struct ad9389b_state, sd);
|
|
}
|
|
|
|
static inline struct v4l2_subdev *to_sd(struct v4l2_ctrl *ctrl)
|
|
{
|
|
return &container_of(ctrl->handler, struct ad9389b_state, hdl)->sd;
|
|
}
|
|
|
|
/* ------------------------ I2C ----------------------------------------------- */
|
|
|
|
static int ad9389b_rd(struct v4l2_subdev *sd, u8 reg)
|
|
{
|
|
struct i2c_client *client = v4l2_get_subdevdata(sd);
|
|
|
|
return i2c_smbus_read_byte_data(client, reg);
|
|
}
|
|
|
|
static int ad9389b_wr(struct v4l2_subdev *sd, u8 reg, u8 val)
|
|
{
|
|
struct i2c_client *client = v4l2_get_subdevdata(sd);
|
|
int ret;
|
|
int i;
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
ret = i2c_smbus_write_byte_data(client, reg, val);
|
|
if (ret == 0)
|
|
return 0;
|
|
}
|
|
v4l2_err(sd, "%s: failed reg 0x%x, val 0x%x\n", __func__, reg, val);
|
|
return ret;
|
|
}
|
|
|
|
/* To set specific bits in the register, a clear-mask is given (to be AND-ed),
|
|
and then the value-mask (to be OR-ed). */
|
|
static inline void ad9389b_wr_and_or(struct v4l2_subdev *sd, u8 reg,
|
|
u8 clr_mask, u8 val_mask)
|
|
{
|
|
ad9389b_wr(sd, reg, (ad9389b_rd(sd, reg) & clr_mask) | val_mask);
|
|
}
|
|
|
|
static void ad9389b_edid_rd(struct v4l2_subdev *sd, u16 len, u8 *buf)
|
|
{
|
|
struct ad9389b_state *state = get_ad9389b_state(sd);
|
|
int i;
|
|
|
|
v4l2_dbg(1, debug, sd, "%s:\n", __func__);
|
|
|
|
for (i = 0; i < len; i++)
|
|
buf[i] = i2c_smbus_read_byte_data(state->edid_i2c_client, i);
|
|
}
|
|
|
|
static inline bool ad9389b_have_hotplug(struct v4l2_subdev *sd)
|
|
{
|
|
return ad9389b_rd(sd, 0x42) & MASK_AD9389B_HPD_DETECT;
|
|
}
|
|
|
|
static inline bool ad9389b_have_rx_sense(struct v4l2_subdev *sd)
|
|
{
|
|
return ad9389b_rd(sd, 0x42) & MASK_AD9389B_MSEN_DETECT;
|
|
}
|
|
|
|
static void ad9389b_csc_conversion_mode(struct v4l2_subdev *sd, u8 mode)
|
|
{
|
|
ad9389b_wr_and_or(sd, 0x17, 0xe7, (mode & 0x3)<<3);
|
|
ad9389b_wr_and_or(sd, 0x18, 0x9f, (mode & 0x3)<<5);
|
|
}
|
|
|
|
static void ad9389b_csc_coeff(struct v4l2_subdev *sd,
|
|
u16 A1, u16 A2, u16 A3, u16 A4,
|
|
u16 B1, u16 B2, u16 B3, u16 B4,
|
|
u16 C1, u16 C2, u16 C3, u16 C4)
|
|
{
|
|
/* A */
|
|
ad9389b_wr_and_or(sd, 0x18, 0xe0, A1>>8);
|
|
ad9389b_wr(sd, 0x19, A1);
|
|
ad9389b_wr_and_or(sd, 0x1A, 0xe0, A2>>8);
|
|
ad9389b_wr(sd, 0x1B, A2);
|
|
ad9389b_wr_and_or(sd, 0x1c, 0xe0, A3>>8);
|
|
ad9389b_wr(sd, 0x1d, A3);
|
|
ad9389b_wr_and_or(sd, 0x1e, 0xe0, A4>>8);
|
|
ad9389b_wr(sd, 0x1f, A4);
|
|
|
|
/* B */
|
|
ad9389b_wr_and_or(sd, 0x20, 0xe0, B1>>8);
|
|
ad9389b_wr(sd, 0x21, B1);
|
|
ad9389b_wr_and_or(sd, 0x22, 0xe0, B2>>8);
|
|
ad9389b_wr(sd, 0x23, B2);
|
|
ad9389b_wr_and_or(sd, 0x24, 0xe0, B3>>8);
|
|
ad9389b_wr(sd, 0x25, B3);
|
|
ad9389b_wr_and_or(sd, 0x26, 0xe0, B4>>8);
|
|
ad9389b_wr(sd, 0x27, B4);
|
|
|
|
/* C */
|
|
ad9389b_wr_and_or(sd, 0x28, 0xe0, C1>>8);
|
|
ad9389b_wr(sd, 0x29, C1);
|
|
ad9389b_wr_and_or(sd, 0x2A, 0xe0, C2>>8);
|
|
ad9389b_wr(sd, 0x2B, C2);
|
|
ad9389b_wr_and_or(sd, 0x2C, 0xe0, C3>>8);
|
|
ad9389b_wr(sd, 0x2D, C3);
|
|
ad9389b_wr_and_or(sd, 0x2E, 0xe0, C4>>8);
|
|
ad9389b_wr(sd, 0x2F, C4);
|
|
}
|
|
|
|
static void ad9389b_csc_rgb_full2limit(struct v4l2_subdev *sd, bool enable)
|
|
{
|
|
if (enable) {
|
|
u8 csc_mode = 0;
|
|
|
|
ad9389b_csc_conversion_mode(sd, csc_mode);
|
|
ad9389b_csc_coeff(sd,
|
|
4096-564, 0, 0, 256,
|
|
0, 4096-564, 0, 256,
|
|
0, 0, 4096-564, 256);
|
|
/* enable CSC */
|
|
ad9389b_wr_and_or(sd, 0x3b, 0xfe, 0x1);
|
|
/* AVI infoframe: Limited range RGB (16-235) */
|
|
ad9389b_wr_and_or(sd, 0xcd, 0xf9, 0x02);
|
|
} else {
|
|
/* disable CSC */
|
|
ad9389b_wr_and_or(sd, 0x3b, 0xfe, 0x0);
|
|
/* AVI infoframe: Full range RGB (0-255) */
|
|
ad9389b_wr_and_or(sd, 0xcd, 0xf9, 0x04);
|
|
}
|
|
}
|
|
|
|
static void ad9389b_set_IT_content_AVI_InfoFrame(struct v4l2_subdev *sd)
|
|
{
|
|
struct ad9389b_state *state = get_ad9389b_state(sd);
|
|
|
|
if (state->dv_timings.bt.standards & V4L2_DV_BT_STD_CEA861) {
|
|
/* CEA format, not IT */
|
|
ad9389b_wr_and_or(sd, 0xcd, 0xbf, 0x00);
|
|
} else {
|
|
/* IT format */
|
|
ad9389b_wr_and_or(sd, 0xcd, 0xbf, 0x40);
|
|
}
|
|
}
|
|
|
|
static int ad9389b_set_rgb_quantization_mode(struct v4l2_subdev *sd, struct v4l2_ctrl *ctrl)
|
|
{
|
|
struct ad9389b_state *state = get_ad9389b_state(sd);
|
|
|
|
switch (ctrl->val) {
|
|
case V4L2_DV_RGB_RANGE_AUTO:
|
|
/* automatic */
|
|
if (state->dv_timings.bt.standards & V4L2_DV_BT_STD_CEA861) {
|
|
/* cea format, RGB limited range (16-235) */
|
|
ad9389b_csc_rgb_full2limit(sd, true);
|
|
} else {
|
|
/* not cea format, RGB full range (0-255) */
|
|
ad9389b_csc_rgb_full2limit(sd, false);
|
|
}
|
|
break;
|
|
case V4L2_DV_RGB_RANGE_LIMITED:
|
|
/* RGB limited range (16-235) */
|
|
ad9389b_csc_rgb_full2limit(sd, true);
|
|
break;
|
|
case V4L2_DV_RGB_RANGE_FULL:
|
|
/* RGB full range (0-255) */
|
|
ad9389b_csc_rgb_full2limit(sd, false);
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void ad9389b_set_manual_pll_gear(struct v4l2_subdev *sd, u32 pixelclock)
|
|
{
|
|
u8 gear;
|
|
|
|
/* Workaround for TMDS PLL problem
|
|
* The TMDS PLL in AD9389b change gear when the chip is heated above a
|
|
* certain temperature. The output is disabled when the PLL change gear
|
|
* so the monitor has to lock on the signal again. A workaround for
|
|
* this is to use the manual PLL gears. This is a solution from Analog
|
|
* Devices that is not documented in the datasheets.
|
|
* 0x98 [7] = enable manual gearing. 0x98 [6:4] = gear
|
|
*
|
|
* The pixel frequency ranges are based on readout of the gear the
|
|
* automatic gearing selects for different pixel clocks
|
|
* (read from 0x9e [3:1]).
|
|
*/
|
|
|
|
if (pixelclock > 140000000)
|
|
gear = 0xc0; /* 4th gear */
|
|
else if (pixelclock > 117000000)
|
|
gear = 0xb0; /* 3rd gear */
|
|
else if (pixelclock > 87000000)
|
|
gear = 0xa0; /* 2nd gear */
|
|
else if (pixelclock > 60000000)
|
|
gear = 0x90; /* 1st gear */
|
|
else
|
|
gear = 0x80; /* 0th gear */
|
|
|
|
ad9389b_wr_and_or(sd, 0x98, 0x0f, gear);
|
|
}
|
|
|
|
/* ------------------------------ CTRL OPS ------------------------------ */
|
|
|
|
static int ad9389b_s_ctrl(struct v4l2_ctrl *ctrl)
|
|
{
|
|
struct v4l2_subdev *sd = to_sd(ctrl);
|
|
struct ad9389b_state *state = get_ad9389b_state(sd);
|
|
|
|
v4l2_dbg(1, debug, sd,
|
|
"%s: ctrl id: %d, ctrl->val %d\n", __func__, ctrl->id, ctrl->val);
|
|
|
|
if (state->hdmi_mode_ctrl == ctrl) {
|
|
/* Set HDMI or DVI-D */
|
|
ad9389b_wr_and_or(sd, 0xaf, 0xfd,
|
|
ctrl->val == V4L2_DV_TX_MODE_HDMI ? 0x02 : 0x00);
|
|
return 0;
|
|
}
|
|
if (state->rgb_quantization_range_ctrl == ctrl)
|
|
return ad9389b_set_rgb_quantization_mode(sd, ctrl);
|
|
return -EINVAL;
|
|
}
|
|
|
|
static const struct v4l2_ctrl_ops ad9389b_ctrl_ops = {
|
|
.s_ctrl = ad9389b_s_ctrl,
|
|
};
|
|
|
|
/* ---------------------------- CORE OPS ------------------------------------------- */
|
|
|
|
#ifdef CONFIG_VIDEO_ADV_DEBUG
|
|
static int ad9389b_g_register(struct v4l2_subdev *sd, struct v4l2_dbg_register *reg)
|
|
{
|
|
reg->val = ad9389b_rd(sd, reg->reg & 0xff);
|
|
reg->size = 1;
|
|
return 0;
|
|
}
|
|
|
|
static int ad9389b_s_register(struct v4l2_subdev *sd, const struct v4l2_dbg_register *reg)
|
|
{
|
|
ad9389b_wr(sd, reg->reg & 0xff, reg->val & 0xff);
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static int ad9389b_log_status(struct v4l2_subdev *sd)
|
|
{
|
|
struct ad9389b_state *state = get_ad9389b_state(sd);
|
|
struct ad9389b_state_edid *edid = &state->edid;
|
|
|
|
static const char * const states[] = {
|
|
"in reset",
|
|
"reading EDID",
|
|
"idle",
|
|
"initializing HDCP",
|
|
"HDCP enabled",
|
|
"initializing HDCP repeater",
|
|
"6", "7", "8", "9", "A", "B", "C", "D", "E", "F"
|
|
};
|
|
static const char * const errors[] = {
|
|
"no error",
|
|
"bad receiver BKSV",
|
|
"Ri mismatch",
|
|
"Pj mismatch",
|
|
"i2c error",
|
|
"timed out",
|
|
"max repeater cascade exceeded",
|
|
"hash check failed",
|
|
"too many devices",
|
|
"9", "A", "B", "C", "D", "E", "F"
|
|
};
|
|
|
|
u8 manual_gear;
|
|
|
|
v4l2_info(sd, "chip revision %d\n", state->chip_revision);
|
|
v4l2_info(sd, "power %s\n", state->power_on ? "on" : "off");
|
|
v4l2_info(sd, "%s hotplug, %s Rx Sense, %s EDID (%d block(s))\n",
|
|
(ad9389b_rd(sd, 0x42) & MASK_AD9389B_HPD_DETECT) ?
|
|
"detected" : "no",
|
|
(ad9389b_rd(sd, 0x42) & MASK_AD9389B_MSEN_DETECT) ?
|
|
"detected" : "no",
|
|
edid->segments ? "found" : "no", edid->blocks);
|
|
v4l2_info(sd, "%s output %s\n",
|
|
(ad9389b_rd(sd, 0xaf) & 0x02) ?
|
|
"HDMI" : "DVI-D",
|
|
(ad9389b_rd(sd, 0xa1) & 0x3c) ?
|
|
"disabled" : "enabled");
|
|
v4l2_info(sd, "ad9389b: %s\n", (ad9389b_rd(sd, 0xb8) & 0x40) ?
|
|
"encrypted" : "no encryption");
|
|
v4l2_info(sd, "state: %s, error: %s, detect count: %u, msk/irq: %02x/%02x\n",
|
|
states[ad9389b_rd(sd, 0xc8) & 0xf],
|
|
errors[ad9389b_rd(sd, 0xc8) >> 4],
|
|
state->edid_detect_counter,
|
|
ad9389b_rd(sd, 0x94), ad9389b_rd(sd, 0x96));
|
|
manual_gear = ad9389b_rd(sd, 0x98) & 0x80;
|
|
v4l2_info(sd, "ad9389b: RGB quantization: %s range\n",
|
|
ad9389b_rd(sd, 0x3b) & 0x01 ? "limited" : "full");
|
|
v4l2_info(sd, "ad9389b: %s gear %d\n",
|
|
manual_gear ? "manual" : "automatic",
|
|
manual_gear ? ((ad9389b_rd(sd, 0x98) & 0x70) >> 4) :
|
|
((ad9389b_rd(sd, 0x9e) & 0x0e) >> 1));
|
|
if (ad9389b_rd(sd, 0xaf) & 0x02) {
|
|
/* HDMI only */
|
|
u8 manual_cts = ad9389b_rd(sd, 0x0a) & 0x80;
|
|
u32 N = (ad9389b_rd(sd, 0x01) & 0xf) << 16 |
|
|
ad9389b_rd(sd, 0x02) << 8 |
|
|
ad9389b_rd(sd, 0x03);
|
|
u8 vic_detect = ad9389b_rd(sd, 0x3e) >> 2;
|
|
u8 vic_sent = ad9389b_rd(sd, 0x3d) & 0x3f;
|
|
u32 CTS;
|
|
|
|
if (manual_cts)
|
|
CTS = (ad9389b_rd(sd, 0x07) & 0xf) << 16 |
|
|
ad9389b_rd(sd, 0x08) << 8 |
|
|
ad9389b_rd(sd, 0x09);
|
|
else
|
|
CTS = (ad9389b_rd(sd, 0x04) & 0xf) << 16 |
|
|
ad9389b_rd(sd, 0x05) << 8 |
|
|
ad9389b_rd(sd, 0x06);
|
|
N = (ad9389b_rd(sd, 0x01) & 0xf) << 16 |
|
|
ad9389b_rd(sd, 0x02) << 8 |
|
|
ad9389b_rd(sd, 0x03);
|
|
|
|
v4l2_info(sd, "ad9389b: CTS %s mode: N %d, CTS %d\n",
|
|
manual_cts ? "manual" : "automatic", N, CTS);
|
|
|
|
v4l2_info(sd, "ad9389b: VIC: detected %d, sent %d\n",
|
|
vic_detect, vic_sent);
|
|
}
|
|
if (state->dv_timings.type == V4L2_DV_BT_656_1120)
|
|
v4l2_print_dv_timings(sd->name, "timings: ",
|
|
&state->dv_timings, false);
|
|
else
|
|
v4l2_info(sd, "no timings set\n");
|
|
return 0;
|
|
}
|
|
|
|
/* Power up/down ad9389b */
|
|
static int ad9389b_s_power(struct v4l2_subdev *sd, int on)
|
|
{
|
|
struct ad9389b_state *state = get_ad9389b_state(sd);
|
|
struct ad9389b_platform_data *pdata = &state->pdata;
|
|
const int retries = 20;
|
|
int i;
|
|
|
|
v4l2_dbg(1, debug, sd, "%s: power %s\n", __func__, on ? "on" : "off");
|
|
|
|
state->power_on = on;
|
|
|
|
if (!on) {
|
|
/* Power down */
|
|
ad9389b_wr_and_or(sd, 0x41, 0xbf, 0x40);
|
|
return true;
|
|
}
|
|
|
|
/* Power up */
|
|
/* The ad9389b does not always come up immediately.
|
|
Retry multiple times. */
|
|
for (i = 0; i < retries; i++) {
|
|
ad9389b_wr_and_or(sd, 0x41, 0xbf, 0x0);
|
|
if ((ad9389b_rd(sd, 0x41) & 0x40) == 0)
|
|
break;
|
|
ad9389b_wr_and_or(sd, 0x41, 0xbf, 0x40);
|
|
msleep(10);
|
|
}
|
|
if (i == retries) {
|
|
v4l2_dbg(1, debug, sd, "failed to powerup the ad9389b\n");
|
|
ad9389b_s_power(sd, 0);
|
|
return false;
|
|
}
|
|
if (i > 1)
|
|
v4l2_dbg(1, debug, sd,
|
|
"needed %d retries to powerup the ad9389b\n", i);
|
|
|
|
/* Select chip: AD9389B */
|
|
ad9389b_wr_and_or(sd, 0xba, 0xef, 0x10);
|
|
|
|
/* Reserved registers that must be set according to REF_01 p. 11*/
|
|
ad9389b_wr_and_or(sd, 0x98, 0xf0, 0x07);
|
|
ad9389b_wr(sd, 0x9c, 0x38);
|
|
ad9389b_wr_and_or(sd, 0x9d, 0xfc, 0x01);
|
|
|
|
/* Differential output drive strength */
|
|
if (pdata->diff_data_drive_strength > 0)
|
|
ad9389b_wr(sd, 0xa2, pdata->diff_data_drive_strength);
|
|
else
|
|
ad9389b_wr(sd, 0xa2, 0x87);
|
|
|
|
if (pdata->diff_clk_drive_strength > 0)
|
|
ad9389b_wr(sd, 0xa3, pdata->diff_clk_drive_strength);
|
|
else
|
|
ad9389b_wr(sd, 0xa3, 0x87);
|
|
|
|
ad9389b_wr(sd, 0x0a, 0x01);
|
|
ad9389b_wr(sd, 0xbb, 0xff);
|
|
|
|
/* Set number of attempts to read the EDID */
|
|
ad9389b_wr(sd, 0xc9, 0xf);
|
|
return true;
|
|
}
|
|
|
|
/* Enable interrupts */
|
|
static void ad9389b_set_isr(struct v4l2_subdev *sd, bool enable)
|
|
{
|
|
u8 irqs = MASK_AD9389B_HPD_INT | MASK_AD9389B_MSEN_INT;
|
|
u8 irqs_rd;
|
|
int retries = 100;
|
|
|
|
/* The datasheet says that the EDID ready interrupt should be
|
|
disabled if there is no hotplug. */
|
|
if (!enable)
|
|
irqs = 0;
|
|
else if (ad9389b_have_hotplug(sd))
|
|
irqs |= MASK_AD9389B_EDID_RDY_INT;
|
|
|
|
/*
|
|
* This i2c write can fail (approx. 1 in 1000 writes). But it
|
|
* is essential that this register is correct, so retry it
|
|
* multiple times.
|
|
*
|
|
* Note that the i2c write does not report an error, but the readback
|
|
* clearly shows the wrong value.
|
|
*/
|
|
do {
|
|
ad9389b_wr(sd, 0x94, irqs);
|
|
irqs_rd = ad9389b_rd(sd, 0x94);
|
|
} while (retries-- && irqs_rd != irqs);
|
|
|
|
if (irqs_rd != irqs)
|
|
v4l2_err(sd, "Could not set interrupts: hw failure?\n");
|
|
}
|
|
|
|
/* Interrupt handler */
|
|
static int ad9389b_isr(struct v4l2_subdev *sd, u32 status, bool *handled)
|
|
{
|
|
u8 irq_status;
|
|
|
|
/* disable interrupts to prevent a race condition */
|
|
ad9389b_set_isr(sd, false);
|
|
irq_status = ad9389b_rd(sd, 0x96);
|
|
/* clear detected interrupts */
|
|
ad9389b_wr(sd, 0x96, irq_status);
|
|
/* enable interrupts */
|
|
ad9389b_set_isr(sd, true);
|
|
|
|
v4l2_dbg(1, debug, sd, "%s: irq_status 0x%x\n", __func__, irq_status);
|
|
|
|
if (irq_status & (MASK_AD9389B_HPD_INT))
|
|
ad9389b_check_monitor_present_status(sd);
|
|
if (irq_status & MASK_AD9389B_EDID_RDY_INT)
|
|
ad9389b_check_edid_status(sd);
|
|
|
|
*handled = true;
|
|
return 0;
|
|
}
|
|
|
|
static const struct v4l2_subdev_core_ops ad9389b_core_ops = {
|
|
.log_status = ad9389b_log_status,
|
|
#ifdef CONFIG_VIDEO_ADV_DEBUG
|
|
.g_register = ad9389b_g_register,
|
|
.s_register = ad9389b_s_register,
|
|
#endif
|
|
.s_power = ad9389b_s_power,
|
|
.interrupt_service_routine = ad9389b_isr,
|
|
};
|
|
|
|
/* ------------------------------ VIDEO OPS ------------------------------ */
|
|
|
|
/* Enable/disable ad9389b output */
|
|
static int ad9389b_s_stream(struct v4l2_subdev *sd, int enable)
|
|
{
|
|
v4l2_dbg(1, debug, sd, "%s: %sable\n", __func__, (enable ? "en" : "dis"));
|
|
|
|
ad9389b_wr_and_or(sd, 0xa1, ~0x3c, (enable ? 0 : 0x3c));
|
|
if (enable) {
|
|
ad9389b_check_monitor_present_status(sd);
|
|
} else {
|
|
ad9389b_s_power(sd, 0);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static const struct v4l2_dv_timings_cap ad9389b_timings_cap = {
|
|
.type = V4L2_DV_BT_656_1120,
|
|
/* keep this initialization for compatibility with GCC < 4.4.6 */
|
|
.reserved = { 0 },
|
|
V4L2_INIT_BT_TIMINGS(0, 1920, 0, 1200, 25000000, 170000000,
|
|
V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT |
|
|
V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT,
|
|
V4L2_DV_BT_CAP_PROGRESSIVE | V4L2_DV_BT_CAP_REDUCED_BLANKING |
|
|
V4L2_DV_BT_CAP_CUSTOM)
|
|
};
|
|
|
|
static int ad9389b_s_dv_timings(struct v4l2_subdev *sd,
|
|
struct v4l2_dv_timings *timings)
|
|
{
|
|
struct ad9389b_state *state = get_ad9389b_state(sd);
|
|
|
|
v4l2_dbg(1, debug, sd, "%s:\n", __func__);
|
|
|
|
/* quick sanity check */
|
|
if (!v4l2_valid_dv_timings(timings, &ad9389b_timings_cap, NULL, NULL))
|
|
return -EINVAL;
|
|
|
|
/* Fill the optional fields .standards and .flags in struct v4l2_dv_timings
|
|
if the format is one of the CEA or DMT timings. */
|
|
v4l2_find_dv_timings_cap(timings, &ad9389b_timings_cap, 0, NULL, NULL);
|
|
|
|
timings->bt.flags &= ~V4L2_DV_FL_REDUCED_FPS;
|
|
|
|
/* save timings */
|
|
state->dv_timings = *timings;
|
|
|
|
/* update quantization range based on new dv_timings */
|
|
ad9389b_set_rgb_quantization_mode(sd, state->rgb_quantization_range_ctrl);
|
|
|
|
/* update PLL gear based on new dv_timings */
|
|
if (state->pdata.tmds_pll_gear == AD9389B_TMDS_PLL_GEAR_SEMI_AUTOMATIC)
|
|
ad9389b_set_manual_pll_gear(sd, (u32)timings->bt.pixelclock);
|
|
|
|
/* update AVI infoframe */
|
|
ad9389b_set_IT_content_AVI_InfoFrame(sd);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ad9389b_g_dv_timings(struct v4l2_subdev *sd,
|
|
struct v4l2_dv_timings *timings)
|
|
{
|
|
struct ad9389b_state *state = get_ad9389b_state(sd);
|
|
|
|
v4l2_dbg(1, debug, sd, "%s:\n", __func__);
|
|
|
|
if (!timings)
|
|
return -EINVAL;
|
|
|
|
*timings = state->dv_timings;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ad9389b_enum_dv_timings(struct v4l2_subdev *sd,
|
|
struct v4l2_enum_dv_timings *timings)
|
|
{
|
|
if (timings->pad != 0)
|
|
return -EINVAL;
|
|
|
|
return v4l2_enum_dv_timings_cap(timings, &ad9389b_timings_cap,
|
|
NULL, NULL);
|
|
}
|
|
|
|
static int ad9389b_dv_timings_cap(struct v4l2_subdev *sd,
|
|
struct v4l2_dv_timings_cap *cap)
|
|
{
|
|
if (cap->pad != 0)
|
|
return -EINVAL;
|
|
|
|
*cap = ad9389b_timings_cap;
|
|
return 0;
|
|
}
|
|
|
|
static const struct v4l2_subdev_video_ops ad9389b_video_ops = {
|
|
.s_stream = ad9389b_s_stream,
|
|
.s_dv_timings = ad9389b_s_dv_timings,
|
|
.g_dv_timings = ad9389b_g_dv_timings,
|
|
};
|
|
|
|
/* ------------------------------ PAD OPS ------------------------------ */
|
|
|
|
static int ad9389b_get_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
|
|
{
|
|
struct ad9389b_state *state = get_ad9389b_state(sd);
|
|
|
|
if (edid->pad != 0)
|
|
return -EINVAL;
|
|
if (edid->blocks == 0 || edid->blocks > 256)
|
|
return -EINVAL;
|
|
if (!state->edid.segments) {
|
|
v4l2_dbg(1, debug, sd, "EDID segment 0 not found\n");
|
|
return -ENODATA;
|
|
}
|
|
if (edid->start_block >= state->edid.segments * 2)
|
|
return -E2BIG;
|
|
if (edid->blocks + edid->start_block >= state->edid.segments * 2)
|
|
edid->blocks = state->edid.segments * 2 - edid->start_block;
|
|
memcpy(edid->edid, &state->edid.data[edid->start_block * 128],
|
|
128 * edid->blocks);
|
|
return 0;
|
|
}
|
|
|
|
static const struct v4l2_subdev_pad_ops ad9389b_pad_ops = {
|
|
.get_edid = ad9389b_get_edid,
|
|
.enum_dv_timings = ad9389b_enum_dv_timings,
|
|
.dv_timings_cap = ad9389b_dv_timings_cap,
|
|
};
|
|
|
|
/* ------------------------------ AUDIO OPS ------------------------------ */
|
|
|
|
static int ad9389b_s_audio_stream(struct v4l2_subdev *sd, int enable)
|
|
{
|
|
v4l2_dbg(1, debug, sd, "%s: %sable\n", __func__, (enable ? "en" : "dis"));
|
|
|
|
if (enable)
|
|
ad9389b_wr_and_or(sd, 0x45, 0x3f, 0x80);
|
|
else
|
|
ad9389b_wr_and_or(sd, 0x45, 0x3f, 0x40);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ad9389b_s_clock_freq(struct v4l2_subdev *sd, u32 freq)
|
|
{
|
|
u32 N;
|
|
|
|
switch (freq) {
|
|
case 32000: N = 4096; break;
|
|
case 44100: N = 6272; break;
|
|
case 48000: N = 6144; break;
|
|
case 88200: N = 12544; break;
|
|
case 96000: N = 12288; break;
|
|
case 176400: N = 25088; break;
|
|
case 192000: N = 24576; break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Set N (used with CTS to regenerate the audio clock) */
|
|
ad9389b_wr(sd, 0x01, (N >> 16) & 0xf);
|
|
ad9389b_wr(sd, 0x02, (N >> 8) & 0xff);
|
|
ad9389b_wr(sd, 0x03, N & 0xff);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ad9389b_s_i2s_clock_freq(struct v4l2_subdev *sd, u32 freq)
|
|
{
|
|
u32 i2s_sf;
|
|
|
|
switch (freq) {
|
|
case 32000: i2s_sf = 0x30; break;
|
|
case 44100: i2s_sf = 0x00; break;
|
|
case 48000: i2s_sf = 0x20; break;
|
|
case 88200: i2s_sf = 0x80; break;
|
|
case 96000: i2s_sf = 0xa0; break;
|
|
case 176400: i2s_sf = 0xc0; break;
|
|
case 192000: i2s_sf = 0xe0; break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Set sampling frequency for I2S audio to 48 kHz */
|
|
ad9389b_wr_and_or(sd, 0x15, 0xf, i2s_sf);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ad9389b_s_routing(struct v4l2_subdev *sd, u32 input, u32 output, u32 config)
|
|
{
|
|
/* TODO based on input/output/config */
|
|
/* TODO See datasheet "Programmers guide" p. 39-40 */
|
|
|
|
/* Only 2 channels in use for application */
|
|
ad9389b_wr_and_or(sd, 0x50, 0x1f, 0x20);
|
|
/* Speaker mapping */
|
|
ad9389b_wr(sd, 0x51, 0x00);
|
|
|
|
/* TODO Where should this be placed? */
|
|
/* 16 bit audio word length */
|
|
ad9389b_wr_and_or(sd, 0x14, 0xf0, 0x02);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct v4l2_subdev_audio_ops ad9389b_audio_ops = {
|
|
.s_stream = ad9389b_s_audio_stream,
|
|
.s_clock_freq = ad9389b_s_clock_freq,
|
|
.s_i2s_clock_freq = ad9389b_s_i2s_clock_freq,
|
|
.s_routing = ad9389b_s_routing,
|
|
};
|
|
|
|
/* --------------------- SUBDEV OPS --------------------------------------- */
|
|
|
|
static const struct v4l2_subdev_ops ad9389b_ops = {
|
|
.core = &ad9389b_core_ops,
|
|
.video = &ad9389b_video_ops,
|
|
.audio = &ad9389b_audio_ops,
|
|
.pad = &ad9389b_pad_ops,
|
|
};
|
|
|
|
/* ----------------------------------------------------------------------- */
|
|
static void ad9389b_dbg_dump_edid(int lvl, int debug, struct v4l2_subdev *sd,
|
|
int segment, u8 *buf)
|
|
{
|
|
int i, j;
|
|
|
|
if (debug < lvl)
|
|
return;
|
|
|
|
v4l2_dbg(lvl, debug, sd, "edid segment %d\n", segment);
|
|
for (i = 0; i < 256; i += 16) {
|
|
u8 b[128];
|
|
u8 *bp = b;
|
|
|
|
if (i == 128)
|
|
v4l2_dbg(lvl, debug, sd, "\n");
|
|
for (j = i; j < i + 16; j++) {
|
|
sprintf(bp, "0x%02x, ", buf[j]);
|
|
bp += 6;
|
|
}
|
|
bp[0] = '\0';
|
|
v4l2_dbg(lvl, debug, sd, "%s\n", b);
|
|
}
|
|
}
|
|
|
|
static void ad9389b_edid_handler(struct work_struct *work)
|
|
{
|
|
struct delayed_work *dwork = to_delayed_work(work);
|
|
struct ad9389b_state *state =
|
|
container_of(dwork, struct ad9389b_state, edid_handler);
|
|
struct v4l2_subdev *sd = &state->sd;
|
|
struct ad9389b_edid_detect ed;
|
|
|
|
v4l2_dbg(1, debug, sd, "%s:\n", __func__);
|
|
|
|
if (ad9389b_check_edid_status(sd)) {
|
|
/* Return if we received the EDID. */
|
|
return;
|
|
}
|
|
|
|
if (ad9389b_have_hotplug(sd)) {
|
|
/* We must retry reading the EDID several times, it is possible
|
|
* that initially the EDID couldn't be read due to i2c errors
|
|
* (DVI connectors are particularly prone to this problem). */
|
|
if (state->edid.read_retries) {
|
|
state->edid.read_retries--;
|
|
v4l2_dbg(1, debug, sd, "%s: edid read failed\n", __func__);
|
|
ad9389b_s_power(sd, false);
|
|
ad9389b_s_power(sd, true);
|
|
queue_delayed_work(state->work_queue,
|
|
&state->edid_handler, EDID_DELAY);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* We failed to read the EDID, so send an event for this. */
|
|
ed.present = false;
|
|
ed.segment = ad9389b_rd(sd, 0xc4);
|
|
v4l2_subdev_notify(sd, AD9389B_EDID_DETECT, (void *)&ed);
|
|
v4l2_dbg(1, debug, sd, "%s: no edid found\n", __func__);
|
|
}
|
|
|
|
static void ad9389b_audio_setup(struct v4l2_subdev *sd)
|
|
{
|
|
v4l2_dbg(1, debug, sd, "%s\n", __func__);
|
|
|
|
ad9389b_s_i2s_clock_freq(sd, 48000);
|
|
ad9389b_s_clock_freq(sd, 48000);
|
|
ad9389b_s_routing(sd, 0, 0, 0);
|
|
}
|
|
|
|
/* Initial setup of AD9389b */
|
|
|
|
/* Configure hdmi transmitter. */
|
|
static void ad9389b_setup(struct v4l2_subdev *sd)
|
|
{
|
|
struct ad9389b_state *state = get_ad9389b_state(sd);
|
|
|
|
v4l2_dbg(1, debug, sd, "%s\n", __func__);
|
|
|
|
/* Input format: RGB 4:4:4 */
|
|
ad9389b_wr_and_or(sd, 0x15, 0xf1, 0x0);
|
|
/* Output format: RGB 4:4:4 */
|
|
ad9389b_wr_and_or(sd, 0x16, 0x3f, 0x0);
|
|
/* 1st order interpolation 4:2:2 -> 4:4:4 up conversion,
|
|
Aspect ratio: 16:9 */
|
|
ad9389b_wr_and_or(sd, 0x17, 0xf9, 0x06);
|
|
/* Output format: RGB 4:4:4, Active Format Information is valid. */
|
|
ad9389b_wr_and_or(sd, 0x45, 0xc7, 0x08);
|
|
/* Underscanned */
|
|
ad9389b_wr_and_or(sd, 0x46, 0x3f, 0x80);
|
|
/* Setup video format */
|
|
ad9389b_wr(sd, 0x3c, 0x0);
|
|
/* Active format aspect ratio: same as picure. */
|
|
ad9389b_wr(sd, 0x47, 0x80);
|
|
/* No encryption */
|
|
ad9389b_wr_and_or(sd, 0xaf, 0xef, 0x0);
|
|
/* Positive clk edge capture for input video clock */
|
|
ad9389b_wr_and_or(sd, 0xba, 0x1f, 0x60);
|
|
|
|
ad9389b_audio_setup(sd);
|
|
|
|
v4l2_ctrl_handler_setup(&state->hdl);
|
|
|
|
ad9389b_set_IT_content_AVI_InfoFrame(sd);
|
|
}
|
|
|
|
static void ad9389b_notify_monitor_detect(struct v4l2_subdev *sd)
|
|
{
|
|
struct ad9389b_monitor_detect mdt;
|
|
struct ad9389b_state *state = get_ad9389b_state(sd);
|
|
|
|
mdt.present = state->have_monitor;
|
|
v4l2_subdev_notify(sd, AD9389B_MONITOR_DETECT, (void *)&mdt);
|
|
}
|
|
|
|
static void ad9389b_update_monitor_present_status(struct v4l2_subdev *sd)
|
|
{
|
|
struct ad9389b_state *state = get_ad9389b_state(sd);
|
|
/* read hotplug and rx-sense state */
|
|
u8 status = ad9389b_rd(sd, 0x42);
|
|
|
|
v4l2_dbg(1, debug, sd, "%s: status: 0x%x%s%s\n",
|
|
__func__,
|
|
status,
|
|
status & MASK_AD9389B_HPD_DETECT ? ", hotplug" : "",
|
|
status & MASK_AD9389B_MSEN_DETECT ? ", rx-sense" : "");
|
|
|
|
if (status & MASK_AD9389B_HPD_DETECT) {
|
|
v4l2_dbg(1, debug, sd, "%s: hotplug detected\n", __func__);
|
|
state->have_monitor = true;
|
|
if (!ad9389b_s_power(sd, true)) {
|
|
v4l2_dbg(1, debug, sd,
|
|
"%s: monitor detected, powerup failed\n", __func__);
|
|
return;
|
|
}
|
|
ad9389b_setup(sd);
|
|
ad9389b_notify_monitor_detect(sd);
|
|
state->edid.read_retries = EDID_MAX_RETRIES;
|
|
queue_delayed_work(state->work_queue,
|
|
&state->edid_handler, EDID_DELAY);
|
|
} else if (!(status & MASK_AD9389B_HPD_DETECT)) {
|
|
v4l2_dbg(1, debug, sd, "%s: hotplug not detected\n", __func__);
|
|
state->have_monitor = false;
|
|
ad9389b_notify_monitor_detect(sd);
|
|
ad9389b_s_power(sd, false);
|
|
memset(&state->edid, 0, sizeof(struct ad9389b_state_edid));
|
|
}
|
|
|
|
/* update read only ctrls */
|
|
v4l2_ctrl_s_ctrl(state->hotplug_ctrl, ad9389b_have_hotplug(sd) ? 0x1 : 0x0);
|
|
v4l2_ctrl_s_ctrl(state->rx_sense_ctrl, ad9389b_have_rx_sense(sd) ? 0x1 : 0x0);
|
|
v4l2_ctrl_s_ctrl(state->have_edid0_ctrl, state->edid.segments ? 0x1 : 0x0);
|
|
|
|
/* update with setting from ctrls */
|
|
ad9389b_s_ctrl(state->rgb_quantization_range_ctrl);
|
|
ad9389b_s_ctrl(state->hdmi_mode_ctrl);
|
|
}
|
|
|
|
static void ad9389b_check_monitor_present_status(struct v4l2_subdev *sd)
|
|
{
|
|
struct ad9389b_state *state = get_ad9389b_state(sd);
|
|
int retry = 0;
|
|
|
|
ad9389b_update_monitor_present_status(sd);
|
|
|
|
/*
|
|
* Rapid toggling of the hotplug may leave the chip powered off,
|
|
* even if we think it is on. In that case reset and power up again.
|
|
*/
|
|
while (state->power_on && (ad9389b_rd(sd, 0x41) & 0x40)) {
|
|
if (++retry > 5) {
|
|
v4l2_err(sd, "retried %d times, give up\n", retry);
|
|
return;
|
|
}
|
|
v4l2_dbg(1, debug, sd, "%s: reset and re-check status (%d)\n", __func__, retry);
|
|
ad9389b_notify_monitor_detect(sd);
|
|
cancel_delayed_work_sync(&state->edid_handler);
|
|
memset(&state->edid, 0, sizeof(struct ad9389b_state_edid));
|
|
ad9389b_s_power(sd, false);
|
|
ad9389b_update_monitor_present_status(sd);
|
|
}
|
|
}
|
|
|
|
static bool edid_block_verify_crc(u8 *edid_block)
|
|
{
|
|
u8 sum = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < 128; i++)
|
|
sum += edid_block[i];
|
|
return sum == 0;
|
|
}
|
|
|
|
static bool edid_verify_crc(struct v4l2_subdev *sd, u32 segment)
|
|
{
|
|
struct ad9389b_state *state = get_ad9389b_state(sd);
|
|
u32 blocks = state->edid.blocks;
|
|
u8 *data = state->edid.data;
|
|
|
|
if (edid_block_verify_crc(&data[segment * 256])) {
|
|
if ((segment + 1) * 2 <= blocks)
|
|
return edid_block_verify_crc(&data[segment * 256 + 128]);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool edid_verify_header(struct v4l2_subdev *sd, u32 segment)
|
|
{
|
|
static const u8 hdmi_header[] = {
|
|
0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00
|
|
};
|
|
struct ad9389b_state *state = get_ad9389b_state(sd);
|
|
u8 *data = state->edid.data;
|
|
int i;
|
|
|
|
if (segment)
|
|
return true;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(hdmi_header); i++)
|
|
if (data[i] != hdmi_header[i])
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool ad9389b_check_edid_status(struct v4l2_subdev *sd)
|
|
{
|
|
struct ad9389b_state *state = get_ad9389b_state(sd);
|
|
struct ad9389b_edid_detect ed;
|
|
int segment;
|
|
u8 edidRdy = ad9389b_rd(sd, 0xc5);
|
|
|
|
v4l2_dbg(1, debug, sd, "%s: edid ready (retries: %d)\n",
|
|
__func__, EDID_MAX_RETRIES - state->edid.read_retries);
|
|
|
|
if (!(edidRdy & MASK_AD9389B_EDID_RDY))
|
|
return false;
|
|
|
|
segment = ad9389b_rd(sd, 0xc4);
|
|
if (segment >= EDID_MAX_SEGM) {
|
|
v4l2_err(sd, "edid segment number too big\n");
|
|
return false;
|
|
}
|
|
v4l2_dbg(1, debug, sd, "%s: got segment %d\n", __func__, segment);
|
|
ad9389b_edid_rd(sd, 256, &state->edid.data[segment * 256]);
|
|
ad9389b_dbg_dump_edid(2, debug, sd, segment,
|
|
&state->edid.data[segment * 256]);
|
|
if (segment == 0) {
|
|
state->edid.blocks = state->edid.data[0x7e] + 1;
|
|
v4l2_dbg(1, debug, sd, "%s: %d blocks in total\n",
|
|
__func__, state->edid.blocks);
|
|
}
|
|
if (!edid_verify_crc(sd, segment) ||
|
|
!edid_verify_header(sd, segment)) {
|
|
/* edid crc error, force reread of edid segment */
|
|
v4l2_err(sd, "%s: edid crc or header error\n", __func__);
|
|
ad9389b_s_power(sd, false);
|
|
ad9389b_s_power(sd, true);
|
|
return false;
|
|
}
|
|
/* one more segment read ok */
|
|
state->edid.segments = segment + 1;
|
|
if (((state->edid.data[0x7e] >> 1) + 1) > state->edid.segments) {
|
|
/* Request next EDID segment */
|
|
v4l2_dbg(1, debug, sd, "%s: request segment %d\n",
|
|
__func__, state->edid.segments);
|
|
ad9389b_wr(sd, 0xc9, 0xf);
|
|
ad9389b_wr(sd, 0xc4, state->edid.segments);
|
|
state->edid.read_retries = EDID_MAX_RETRIES;
|
|
queue_delayed_work(state->work_queue,
|
|
&state->edid_handler, EDID_DELAY);
|
|
return false;
|
|
}
|
|
|
|
/* report when we have all segments but report only for segment 0 */
|
|
ed.present = true;
|
|
ed.segment = 0;
|
|
v4l2_subdev_notify(sd, AD9389B_EDID_DETECT, (void *)&ed);
|
|
state->edid_detect_counter++;
|
|
v4l2_ctrl_s_ctrl(state->have_edid0_ctrl, state->edid.segments ? 0x1 : 0x0);
|
|
return ed.present;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------- */
|
|
|
|
static void ad9389b_init_setup(struct v4l2_subdev *sd)
|
|
{
|
|
struct ad9389b_state *state = get_ad9389b_state(sd);
|
|
struct ad9389b_state_edid *edid = &state->edid;
|
|
|
|
v4l2_dbg(1, debug, sd, "%s\n", __func__);
|
|
|
|
/* clear all interrupts */
|
|
ad9389b_wr(sd, 0x96, 0xff);
|
|
|
|
memset(edid, 0, sizeof(struct ad9389b_state_edid));
|
|
state->have_monitor = false;
|
|
ad9389b_set_isr(sd, false);
|
|
}
|
|
|
|
static int ad9389b_probe(struct i2c_client *client, const struct i2c_device_id *id)
|
|
{
|
|
const struct v4l2_dv_timings dv1080p60 = V4L2_DV_BT_CEA_1920X1080P60;
|
|
struct ad9389b_state *state;
|
|
struct ad9389b_platform_data *pdata = client->dev.platform_data;
|
|
struct v4l2_ctrl_handler *hdl;
|
|
struct v4l2_subdev *sd;
|
|
int err = -EIO;
|
|
|
|
/* Check if the adapter supports the needed features */
|
|
if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA))
|
|
return -EIO;
|
|
|
|
v4l_dbg(1, debug, client, "detecting ad9389b client on address 0x%x\n",
|
|
client->addr << 1);
|
|
|
|
state = devm_kzalloc(&client->dev, sizeof(*state), GFP_KERNEL);
|
|
if (!state)
|
|
return -ENOMEM;
|
|
|
|
/* Platform data */
|
|
if (pdata == NULL) {
|
|
v4l_err(client, "No platform data!\n");
|
|
return -ENODEV;
|
|
}
|
|
memcpy(&state->pdata, pdata, sizeof(state->pdata));
|
|
|
|
sd = &state->sd;
|
|
v4l2_i2c_subdev_init(sd, client, &ad9389b_ops);
|
|
sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
|
|
|
|
hdl = &state->hdl;
|
|
v4l2_ctrl_handler_init(hdl, 5);
|
|
|
|
/* private controls */
|
|
|
|
state->hdmi_mode_ctrl = v4l2_ctrl_new_std_menu(hdl, &ad9389b_ctrl_ops,
|
|
V4L2_CID_DV_TX_MODE, V4L2_DV_TX_MODE_HDMI,
|
|
0, V4L2_DV_TX_MODE_DVI_D);
|
|
state->hotplug_ctrl = v4l2_ctrl_new_std(hdl, NULL,
|
|
V4L2_CID_DV_TX_HOTPLUG, 0, 1, 0, 0);
|
|
state->rx_sense_ctrl = v4l2_ctrl_new_std(hdl, NULL,
|
|
V4L2_CID_DV_TX_RXSENSE, 0, 1, 0, 0);
|
|
state->have_edid0_ctrl = v4l2_ctrl_new_std(hdl, NULL,
|
|
V4L2_CID_DV_TX_EDID_PRESENT, 0, 1, 0, 0);
|
|
state->rgb_quantization_range_ctrl =
|
|
v4l2_ctrl_new_std_menu(hdl, &ad9389b_ctrl_ops,
|
|
V4L2_CID_DV_TX_RGB_RANGE, V4L2_DV_RGB_RANGE_FULL,
|
|
0, V4L2_DV_RGB_RANGE_AUTO);
|
|
sd->ctrl_handler = hdl;
|
|
if (hdl->error) {
|
|
err = hdl->error;
|
|
|
|
goto err_hdl;
|
|
}
|
|
state->hdmi_mode_ctrl->is_private = true;
|
|
state->hotplug_ctrl->is_private = true;
|
|
state->rx_sense_ctrl->is_private = true;
|
|
state->have_edid0_ctrl->is_private = true;
|
|
state->rgb_quantization_range_ctrl->is_private = true;
|
|
|
|
state->pad.flags = MEDIA_PAD_FL_SINK;
|
|
err = media_entity_init(&sd->entity, 1, &state->pad, 0);
|
|
if (err)
|
|
goto err_hdl;
|
|
|
|
state->chip_revision = ad9389b_rd(sd, 0x0);
|
|
if (state->chip_revision != 2) {
|
|
v4l2_err(sd, "chip_revision %d != 2\n", state->chip_revision);
|
|
err = -EIO;
|
|
goto err_entity;
|
|
}
|
|
v4l2_dbg(1, debug, sd, "reg 0x41 0x%x, chip version (reg 0x00) 0x%x\n",
|
|
ad9389b_rd(sd, 0x41), state->chip_revision);
|
|
|
|
state->edid_i2c_client = i2c_new_dummy(client->adapter, (0x7e>>1));
|
|
if (state->edid_i2c_client == NULL) {
|
|
v4l2_err(sd, "failed to register edid i2c client\n");
|
|
err = -ENOMEM;
|
|
goto err_entity;
|
|
}
|
|
|
|
state->work_queue = create_singlethread_workqueue(sd->name);
|
|
if (state->work_queue == NULL) {
|
|
v4l2_err(sd, "could not create workqueue\n");
|
|
err = -ENOMEM;
|
|
goto err_unreg;
|
|
}
|
|
|
|
INIT_DELAYED_WORK(&state->edid_handler, ad9389b_edid_handler);
|
|
state->dv_timings = dv1080p60;
|
|
|
|
ad9389b_init_setup(sd);
|
|
ad9389b_set_isr(sd, true);
|
|
|
|
v4l2_info(sd, "%s found @ 0x%x (%s)\n", client->name,
|
|
client->addr << 1, client->adapter->name);
|
|
return 0;
|
|
|
|
err_unreg:
|
|
i2c_unregister_device(state->edid_i2c_client);
|
|
err_entity:
|
|
media_entity_cleanup(&sd->entity);
|
|
err_hdl:
|
|
v4l2_ctrl_handler_free(&state->hdl);
|
|
return err;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------- */
|
|
|
|
static int ad9389b_remove(struct i2c_client *client)
|
|
{
|
|
struct v4l2_subdev *sd = i2c_get_clientdata(client);
|
|
struct ad9389b_state *state = get_ad9389b_state(sd);
|
|
|
|
state->chip_revision = -1;
|
|
|
|
v4l2_dbg(1, debug, sd, "%s removed @ 0x%x (%s)\n", client->name,
|
|
client->addr << 1, client->adapter->name);
|
|
|
|
ad9389b_s_stream(sd, false);
|
|
ad9389b_s_audio_stream(sd, false);
|
|
ad9389b_init_setup(sd);
|
|
cancel_delayed_work(&state->edid_handler);
|
|
i2c_unregister_device(state->edid_i2c_client);
|
|
destroy_workqueue(state->work_queue);
|
|
v4l2_device_unregister_subdev(sd);
|
|
media_entity_cleanup(&sd->entity);
|
|
v4l2_ctrl_handler_free(sd->ctrl_handler);
|
|
return 0;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------- */
|
|
|
|
static struct i2c_device_id ad9389b_id[] = {
|
|
{ "ad9389b", 0 },
|
|
{ "ad9889b", 0 },
|
|
{ }
|
|
};
|
|
MODULE_DEVICE_TABLE(i2c, ad9389b_id);
|
|
|
|
static struct i2c_driver ad9389b_driver = {
|
|
.driver = {
|
|
.owner = THIS_MODULE,
|
|
.name = "ad9389b",
|
|
},
|
|
.probe = ad9389b_probe,
|
|
.remove = ad9389b_remove,
|
|
.id_table = ad9389b_id,
|
|
};
|
|
|
|
module_i2c_driver(ad9389b_driver);
|