linux/fs/proc/task_mmu.c
Shaohua Li cf8496ea80 proc: show MADV_FREE pages info in smaps
Show MADV_FREE pages info of each vma in smaps.  The interface is for
diganose or monitoring purpose, userspace could use it to understand
what happens in the application.  Since userspace could dirty MADV_FREE
pages without notice from kernel, this interface is the only place we
can get accurate accounting info about MADV_FREE pages.

[mhocko@kernel.org: update Documentation/filesystems/proc.txt]
Link: http://lkml.kernel.org/r/89efde633559de1ec07444f2ef0f4963a97a2ce8.1487965799.git.shli@fb.com
Signed-off-by: Shaohua Li <shli@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-03 15:52:08 -07:00

1778 lines
42 KiB
C

#include <linux/mm.h>
#include <linux/vmacache.h>
#include <linux/hugetlb.h>
#include <linux/huge_mm.h>
#include <linux/mount.h>
#include <linux/seq_file.h>
#include <linux/highmem.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/pagemap.h>
#include <linux/mempolicy.h>
#include <linux/rmap.h>
#include <linux/swap.h>
#include <linux/sched/mm.h>
#include <linux/swapops.h>
#include <linux/mmu_notifier.h>
#include <linux/page_idle.h>
#include <linux/shmem_fs.h>
#include <asm/elf.h>
#include <linux/uaccess.h>
#include <asm/tlbflush.h>
#include "internal.h"
void task_mem(struct seq_file *m, struct mm_struct *mm)
{
unsigned long text, lib, swap, ptes, pmds, anon, file, shmem;
unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
anon = get_mm_counter(mm, MM_ANONPAGES);
file = get_mm_counter(mm, MM_FILEPAGES);
shmem = get_mm_counter(mm, MM_SHMEMPAGES);
/*
* Note: to minimize their overhead, mm maintains hiwater_vm and
* hiwater_rss only when about to *lower* total_vm or rss. Any
* collector of these hiwater stats must therefore get total_vm
* and rss too, which will usually be the higher. Barriers? not
* worth the effort, such snapshots can always be inconsistent.
*/
hiwater_vm = total_vm = mm->total_vm;
if (hiwater_vm < mm->hiwater_vm)
hiwater_vm = mm->hiwater_vm;
hiwater_rss = total_rss = anon + file + shmem;
if (hiwater_rss < mm->hiwater_rss)
hiwater_rss = mm->hiwater_rss;
text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
swap = get_mm_counter(mm, MM_SWAPENTS);
ptes = PTRS_PER_PTE * sizeof(pte_t) * atomic_long_read(&mm->nr_ptes);
pmds = PTRS_PER_PMD * sizeof(pmd_t) * mm_nr_pmds(mm);
seq_printf(m,
"VmPeak:\t%8lu kB\n"
"VmSize:\t%8lu kB\n"
"VmLck:\t%8lu kB\n"
"VmPin:\t%8lu kB\n"
"VmHWM:\t%8lu kB\n"
"VmRSS:\t%8lu kB\n"
"RssAnon:\t%8lu kB\n"
"RssFile:\t%8lu kB\n"
"RssShmem:\t%8lu kB\n"
"VmData:\t%8lu kB\n"
"VmStk:\t%8lu kB\n"
"VmExe:\t%8lu kB\n"
"VmLib:\t%8lu kB\n"
"VmPTE:\t%8lu kB\n"
"VmPMD:\t%8lu kB\n"
"VmSwap:\t%8lu kB\n",
hiwater_vm << (PAGE_SHIFT-10),
total_vm << (PAGE_SHIFT-10),
mm->locked_vm << (PAGE_SHIFT-10),
mm->pinned_vm << (PAGE_SHIFT-10),
hiwater_rss << (PAGE_SHIFT-10),
total_rss << (PAGE_SHIFT-10),
anon << (PAGE_SHIFT-10),
file << (PAGE_SHIFT-10),
shmem << (PAGE_SHIFT-10),
mm->data_vm << (PAGE_SHIFT-10),
mm->stack_vm << (PAGE_SHIFT-10), text, lib,
ptes >> 10,
pmds >> 10,
swap << (PAGE_SHIFT-10));
hugetlb_report_usage(m, mm);
}
unsigned long task_vsize(struct mm_struct *mm)
{
return PAGE_SIZE * mm->total_vm;
}
unsigned long task_statm(struct mm_struct *mm,
unsigned long *shared, unsigned long *text,
unsigned long *data, unsigned long *resident)
{
*shared = get_mm_counter(mm, MM_FILEPAGES) +
get_mm_counter(mm, MM_SHMEMPAGES);
*text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
>> PAGE_SHIFT;
*data = mm->data_vm + mm->stack_vm;
*resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
return mm->total_vm;
}
#ifdef CONFIG_NUMA
/*
* Save get_task_policy() for show_numa_map().
*/
static void hold_task_mempolicy(struct proc_maps_private *priv)
{
struct task_struct *task = priv->task;
task_lock(task);
priv->task_mempolicy = get_task_policy(task);
mpol_get(priv->task_mempolicy);
task_unlock(task);
}
static void release_task_mempolicy(struct proc_maps_private *priv)
{
mpol_put(priv->task_mempolicy);
}
#else
static void hold_task_mempolicy(struct proc_maps_private *priv)
{
}
static void release_task_mempolicy(struct proc_maps_private *priv)
{
}
#endif
static void vma_stop(struct proc_maps_private *priv)
{
struct mm_struct *mm = priv->mm;
release_task_mempolicy(priv);
up_read(&mm->mmap_sem);
mmput(mm);
}
static struct vm_area_struct *
m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
{
if (vma == priv->tail_vma)
return NULL;
return vma->vm_next ?: priv->tail_vma;
}
static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
{
if (m->count < m->size) /* vma is copied successfully */
m->version = m_next_vma(m->private, vma) ? vma->vm_end : -1UL;
}
static void *m_start(struct seq_file *m, loff_t *ppos)
{
struct proc_maps_private *priv = m->private;
unsigned long last_addr = m->version;
struct mm_struct *mm;
struct vm_area_struct *vma;
unsigned int pos = *ppos;
/* See m_cache_vma(). Zero at the start or after lseek. */
if (last_addr == -1UL)
return NULL;
priv->task = get_proc_task(priv->inode);
if (!priv->task)
return ERR_PTR(-ESRCH);
mm = priv->mm;
if (!mm || !mmget_not_zero(mm))
return NULL;
down_read(&mm->mmap_sem);
hold_task_mempolicy(priv);
priv->tail_vma = get_gate_vma(mm);
if (last_addr) {
vma = find_vma(mm, last_addr - 1);
if (vma && vma->vm_start <= last_addr)
vma = m_next_vma(priv, vma);
if (vma)
return vma;
}
m->version = 0;
if (pos < mm->map_count) {
for (vma = mm->mmap; pos; pos--) {
m->version = vma->vm_start;
vma = vma->vm_next;
}
return vma;
}
/* we do not bother to update m->version in this case */
if (pos == mm->map_count && priv->tail_vma)
return priv->tail_vma;
vma_stop(priv);
return NULL;
}
static void *m_next(struct seq_file *m, void *v, loff_t *pos)
{
struct proc_maps_private *priv = m->private;
struct vm_area_struct *next;
(*pos)++;
next = m_next_vma(priv, v);
if (!next)
vma_stop(priv);
return next;
}
static void m_stop(struct seq_file *m, void *v)
{
struct proc_maps_private *priv = m->private;
if (!IS_ERR_OR_NULL(v))
vma_stop(priv);
if (priv->task) {
put_task_struct(priv->task);
priv->task = NULL;
}
}
static int proc_maps_open(struct inode *inode, struct file *file,
const struct seq_operations *ops, int psize)
{
struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
if (!priv)
return -ENOMEM;
priv->inode = inode;
priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
if (IS_ERR(priv->mm)) {
int err = PTR_ERR(priv->mm);
seq_release_private(inode, file);
return err;
}
return 0;
}
static int proc_map_release(struct inode *inode, struct file *file)
{
struct seq_file *seq = file->private_data;
struct proc_maps_private *priv = seq->private;
if (priv->mm)
mmdrop(priv->mm);
return seq_release_private(inode, file);
}
static int do_maps_open(struct inode *inode, struct file *file,
const struct seq_operations *ops)
{
return proc_maps_open(inode, file, ops,
sizeof(struct proc_maps_private));
}
/*
* Indicate if the VMA is a stack for the given task; for
* /proc/PID/maps that is the stack of the main task.
*/
static int is_stack(struct proc_maps_private *priv,
struct vm_area_struct *vma)
{
/*
* We make no effort to guess what a given thread considers to be
* its "stack". It's not even well-defined for programs written
* languages like Go.
*/
return vma->vm_start <= vma->vm_mm->start_stack &&
vma->vm_end >= vma->vm_mm->start_stack;
}
static void
show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
{
struct mm_struct *mm = vma->vm_mm;
struct file *file = vma->vm_file;
struct proc_maps_private *priv = m->private;
vm_flags_t flags = vma->vm_flags;
unsigned long ino = 0;
unsigned long long pgoff = 0;
unsigned long start, end;
dev_t dev = 0;
const char *name = NULL;
if (file) {
struct inode *inode = file_inode(vma->vm_file);
dev = inode->i_sb->s_dev;
ino = inode->i_ino;
pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
}
/* We don't show the stack guard page in /proc/maps */
start = vma->vm_start;
if (stack_guard_page_start(vma, start))
start += PAGE_SIZE;
end = vma->vm_end;
if (stack_guard_page_end(vma, end))
end -= PAGE_SIZE;
seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
start,
end,
flags & VM_READ ? 'r' : '-',
flags & VM_WRITE ? 'w' : '-',
flags & VM_EXEC ? 'x' : '-',
flags & VM_MAYSHARE ? 's' : 'p',
pgoff,
MAJOR(dev), MINOR(dev), ino);
/*
* Print the dentry name for named mappings, and a
* special [heap] marker for the heap:
*/
if (file) {
seq_pad(m, ' ');
seq_file_path(m, file, "\n");
goto done;
}
if (vma->vm_ops && vma->vm_ops->name) {
name = vma->vm_ops->name(vma);
if (name)
goto done;
}
name = arch_vma_name(vma);
if (!name) {
if (!mm) {
name = "[vdso]";
goto done;
}
if (vma->vm_start <= mm->brk &&
vma->vm_end >= mm->start_brk) {
name = "[heap]";
goto done;
}
if (is_stack(priv, vma))
name = "[stack]";
}
done:
if (name) {
seq_pad(m, ' ');
seq_puts(m, name);
}
seq_putc(m, '\n');
}
static int show_map(struct seq_file *m, void *v, int is_pid)
{
show_map_vma(m, v, is_pid);
m_cache_vma(m, v);
return 0;
}
static int show_pid_map(struct seq_file *m, void *v)
{
return show_map(m, v, 1);
}
static int show_tid_map(struct seq_file *m, void *v)
{
return show_map(m, v, 0);
}
static const struct seq_operations proc_pid_maps_op = {
.start = m_start,
.next = m_next,
.stop = m_stop,
.show = show_pid_map
};
static const struct seq_operations proc_tid_maps_op = {
.start = m_start,
.next = m_next,
.stop = m_stop,
.show = show_tid_map
};
static int pid_maps_open(struct inode *inode, struct file *file)
{
return do_maps_open(inode, file, &proc_pid_maps_op);
}
static int tid_maps_open(struct inode *inode, struct file *file)
{
return do_maps_open(inode, file, &proc_tid_maps_op);
}
const struct file_operations proc_pid_maps_operations = {
.open = pid_maps_open,
.read = seq_read,
.llseek = seq_lseek,
.release = proc_map_release,
};
const struct file_operations proc_tid_maps_operations = {
.open = tid_maps_open,
.read = seq_read,
.llseek = seq_lseek,
.release = proc_map_release,
};
/*
* Proportional Set Size(PSS): my share of RSS.
*
* PSS of a process is the count of pages it has in memory, where each
* page is divided by the number of processes sharing it. So if a
* process has 1000 pages all to itself, and 1000 shared with one other
* process, its PSS will be 1500.
*
* To keep (accumulated) division errors low, we adopt a 64bit
* fixed-point pss counter to minimize division errors. So (pss >>
* PSS_SHIFT) would be the real byte count.
*
* A shift of 12 before division means (assuming 4K page size):
* - 1M 3-user-pages add up to 8KB errors;
* - supports mapcount up to 2^24, or 16M;
* - supports PSS up to 2^52 bytes, or 4PB.
*/
#define PSS_SHIFT 12
#ifdef CONFIG_PROC_PAGE_MONITOR
struct mem_size_stats {
unsigned long resident;
unsigned long shared_clean;
unsigned long shared_dirty;
unsigned long private_clean;
unsigned long private_dirty;
unsigned long referenced;
unsigned long anonymous;
unsigned long lazyfree;
unsigned long anonymous_thp;
unsigned long shmem_thp;
unsigned long swap;
unsigned long shared_hugetlb;
unsigned long private_hugetlb;
u64 pss;
u64 swap_pss;
bool check_shmem_swap;
};
static void smaps_account(struct mem_size_stats *mss, struct page *page,
bool compound, bool young, bool dirty)
{
int i, nr = compound ? 1 << compound_order(page) : 1;
unsigned long size = nr * PAGE_SIZE;
if (PageAnon(page)) {
mss->anonymous += size;
if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
mss->lazyfree += size;
}
mss->resident += size;
/* Accumulate the size in pages that have been accessed. */
if (young || page_is_young(page) || PageReferenced(page))
mss->referenced += size;
/*
* page_count(page) == 1 guarantees the page is mapped exactly once.
* If any subpage of the compound page mapped with PTE it would elevate
* page_count().
*/
if (page_count(page) == 1) {
if (dirty || PageDirty(page))
mss->private_dirty += size;
else
mss->private_clean += size;
mss->pss += (u64)size << PSS_SHIFT;
return;
}
for (i = 0; i < nr; i++, page++) {
int mapcount = page_mapcount(page);
if (mapcount >= 2) {
if (dirty || PageDirty(page))
mss->shared_dirty += PAGE_SIZE;
else
mss->shared_clean += PAGE_SIZE;
mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount;
} else {
if (dirty || PageDirty(page))
mss->private_dirty += PAGE_SIZE;
else
mss->private_clean += PAGE_SIZE;
mss->pss += PAGE_SIZE << PSS_SHIFT;
}
}
}
#ifdef CONFIG_SHMEM
static int smaps_pte_hole(unsigned long addr, unsigned long end,
struct mm_walk *walk)
{
struct mem_size_stats *mss = walk->private;
mss->swap += shmem_partial_swap_usage(
walk->vma->vm_file->f_mapping, addr, end);
return 0;
}
#endif
static void smaps_pte_entry(pte_t *pte, unsigned long addr,
struct mm_walk *walk)
{
struct mem_size_stats *mss = walk->private;
struct vm_area_struct *vma = walk->vma;
struct page *page = NULL;
if (pte_present(*pte)) {
page = vm_normal_page(vma, addr, *pte);
} else if (is_swap_pte(*pte)) {
swp_entry_t swpent = pte_to_swp_entry(*pte);
if (!non_swap_entry(swpent)) {
int mapcount;
mss->swap += PAGE_SIZE;
mapcount = swp_swapcount(swpent);
if (mapcount >= 2) {
u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
do_div(pss_delta, mapcount);
mss->swap_pss += pss_delta;
} else {
mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
}
} else if (is_migration_entry(swpent))
page = migration_entry_to_page(swpent);
} else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
&& pte_none(*pte))) {
page = find_get_entry(vma->vm_file->f_mapping,
linear_page_index(vma, addr));
if (!page)
return;
if (radix_tree_exceptional_entry(page))
mss->swap += PAGE_SIZE;
else
put_page(page);
return;
}
if (!page)
return;
smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte));
}
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
struct mm_walk *walk)
{
struct mem_size_stats *mss = walk->private;
struct vm_area_struct *vma = walk->vma;
struct page *page;
/* FOLL_DUMP will return -EFAULT on huge zero page */
page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
if (IS_ERR_OR_NULL(page))
return;
if (PageAnon(page))
mss->anonymous_thp += HPAGE_PMD_SIZE;
else if (PageSwapBacked(page))
mss->shmem_thp += HPAGE_PMD_SIZE;
else if (is_zone_device_page(page))
/* pass */;
else
VM_BUG_ON_PAGE(1, page);
smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd));
}
#else
static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
struct mm_walk *walk)
{
}
#endif
static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
struct mm_walk *walk)
{
struct vm_area_struct *vma = walk->vma;
pte_t *pte;
spinlock_t *ptl;
ptl = pmd_trans_huge_lock(pmd, vma);
if (ptl) {
smaps_pmd_entry(pmd, addr, walk);
spin_unlock(ptl);
return 0;
}
if (pmd_trans_unstable(pmd))
return 0;
/*
* The mmap_sem held all the way back in m_start() is what
* keeps khugepaged out of here and from collapsing things
* in here.
*/
pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
for (; addr != end; pte++, addr += PAGE_SIZE)
smaps_pte_entry(pte, addr, walk);
pte_unmap_unlock(pte - 1, ptl);
cond_resched();
return 0;
}
static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
{
/*
* Don't forget to update Documentation/ on changes.
*/
static const char mnemonics[BITS_PER_LONG][2] = {
/*
* In case if we meet a flag we don't know about.
*/
[0 ... (BITS_PER_LONG-1)] = "??",
[ilog2(VM_READ)] = "rd",
[ilog2(VM_WRITE)] = "wr",
[ilog2(VM_EXEC)] = "ex",
[ilog2(VM_SHARED)] = "sh",
[ilog2(VM_MAYREAD)] = "mr",
[ilog2(VM_MAYWRITE)] = "mw",
[ilog2(VM_MAYEXEC)] = "me",
[ilog2(VM_MAYSHARE)] = "ms",
[ilog2(VM_GROWSDOWN)] = "gd",
[ilog2(VM_PFNMAP)] = "pf",
[ilog2(VM_DENYWRITE)] = "dw",
#ifdef CONFIG_X86_INTEL_MPX
[ilog2(VM_MPX)] = "mp",
#endif
[ilog2(VM_LOCKED)] = "lo",
[ilog2(VM_IO)] = "io",
[ilog2(VM_SEQ_READ)] = "sr",
[ilog2(VM_RAND_READ)] = "rr",
[ilog2(VM_DONTCOPY)] = "dc",
[ilog2(VM_DONTEXPAND)] = "de",
[ilog2(VM_ACCOUNT)] = "ac",
[ilog2(VM_NORESERVE)] = "nr",
[ilog2(VM_HUGETLB)] = "ht",
[ilog2(VM_ARCH_1)] = "ar",
[ilog2(VM_DONTDUMP)] = "dd",
#ifdef CONFIG_MEM_SOFT_DIRTY
[ilog2(VM_SOFTDIRTY)] = "sd",
#endif
[ilog2(VM_MIXEDMAP)] = "mm",
[ilog2(VM_HUGEPAGE)] = "hg",
[ilog2(VM_NOHUGEPAGE)] = "nh",
[ilog2(VM_MERGEABLE)] = "mg",
[ilog2(VM_UFFD_MISSING)]= "um",
[ilog2(VM_UFFD_WP)] = "uw",
#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
/* These come out via ProtectionKey: */
[ilog2(VM_PKEY_BIT0)] = "",
[ilog2(VM_PKEY_BIT1)] = "",
[ilog2(VM_PKEY_BIT2)] = "",
[ilog2(VM_PKEY_BIT3)] = "",
#endif
};
size_t i;
seq_puts(m, "VmFlags: ");
for (i = 0; i < BITS_PER_LONG; i++) {
if (!mnemonics[i][0])
continue;
if (vma->vm_flags & (1UL << i)) {
seq_printf(m, "%c%c ",
mnemonics[i][0], mnemonics[i][1]);
}
}
seq_putc(m, '\n');
}
#ifdef CONFIG_HUGETLB_PAGE
static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
unsigned long addr, unsigned long end,
struct mm_walk *walk)
{
struct mem_size_stats *mss = walk->private;
struct vm_area_struct *vma = walk->vma;
struct page *page = NULL;
if (pte_present(*pte)) {
page = vm_normal_page(vma, addr, *pte);
} else if (is_swap_pte(*pte)) {
swp_entry_t swpent = pte_to_swp_entry(*pte);
if (is_migration_entry(swpent))
page = migration_entry_to_page(swpent);
}
if (page) {
int mapcount = page_mapcount(page);
if (mapcount >= 2)
mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
else
mss->private_hugetlb += huge_page_size(hstate_vma(vma));
}
return 0;
}
#endif /* HUGETLB_PAGE */
void __weak arch_show_smap(struct seq_file *m, struct vm_area_struct *vma)
{
}
static int show_smap(struct seq_file *m, void *v, int is_pid)
{
struct vm_area_struct *vma = v;
struct mem_size_stats mss;
struct mm_walk smaps_walk = {
.pmd_entry = smaps_pte_range,
#ifdef CONFIG_HUGETLB_PAGE
.hugetlb_entry = smaps_hugetlb_range,
#endif
.mm = vma->vm_mm,
.private = &mss,
};
memset(&mss, 0, sizeof mss);
#ifdef CONFIG_SHMEM
if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
/*
* For shared or readonly shmem mappings we know that all
* swapped out pages belong to the shmem object, and we can
* obtain the swap value much more efficiently. For private
* writable mappings, we might have COW pages that are
* not affected by the parent swapped out pages of the shmem
* object, so we have to distinguish them during the page walk.
* Unless we know that the shmem object (or the part mapped by
* our VMA) has no swapped out pages at all.
*/
unsigned long shmem_swapped = shmem_swap_usage(vma);
if (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
!(vma->vm_flags & VM_WRITE)) {
mss.swap = shmem_swapped;
} else {
mss.check_shmem_swap = true;
smaps_walk.pte_hole = smaps_pte_hole;
}
}
#endif
/* mmap_sem is held in m_start */
walk_page_vma(vma, &smaps_walk);
show_map_vma(m, vma, is_pid);
seq_printf(m,
"Size: %8lu kB\n"
"Rss: %8lu kB\n"
"Pss: %8lu kB\n"
"Shared_Clean: %8lu kB\n"
"Shared_Dirty: %8lu kB\n"
"Private_Clean: %8lu kB\n"
"Private_Dirty: %8lu kB\n"
"Referenced: %8lu kB\n"
"Anonymous: %8lu kB\n"
"LazyFree: %8lu kB\n"
"AnonHugePages: %8lu kB\n"
"ShmemPmdMapped: %8lu kB\n"
"Shared_Hugetlb: %8lu kB\n"
"Private_Hugetlb: %7lu kB\n"
"Swap: %8lu kB\n"
"SwapPss: %8lu kB\n"
"KernelPageSize: %8lu kB\n"
"MMUPageSize: %8lu kB\n"
"Locked: %8lu kB\n",
(vma->vm_end - vma->vm_start) >> 10,
mss.resident >> 10,
(unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
mss.shared_clean >> 10,
mss.shared_dirty >> 10,
mss.private_clean >> 10,
mss.private_dirty >> 10,
mss.referenced >> 10,
mss.anonymous >> 10,
mss.lazyfree >> 10,
mss.anonymous_thp >> 10,
mss.shmem_thp >> 10,
mss.shared_hugetlb >> 10,
mss.private_hugetlb >> 10,
mss.swap >> 10,
(unsigned long)(mss.swap_pss >> (10 + PSS_SHIFT)),
vma_kernel_pagesize(vma) >> 10,
vma_mmu_pagesize(vma) >> 10,
(vma->vm_flags & VM_LOCKED) ?
(unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
arch_show_smap(m, vma);
show_smap_vma_flags(m, vma);
m_cache_vma(m, vma);
return 0;
}
static int show_pid_smap(struct seq_file *m, void *v)
{
return show_smap(m, v, 1);
}
static int show_tid_smap(struct seq_file *m, void *v)
{
return show_smap(m, v, 0);
}
static const struct seq_operations proc_pid_smaps_op = {
.start = m_start,
.next = m_next,
.stop = m_stop,
.show = show_pid_smap
};
static const struct seq_operations proc_tid_smaps_op = {
.start = m_start,
.next = m_next,
.stop = m_stop,
.show = show_tid_smap
};
static int pid_smaps_open(struct inode *inode, struct file *file)
{
return do_maps_open(inode, file, &proc_pid_smaps_op);
}
static int tid_smaps_open(struct inode *inode, struct file *file)
{
return do_maps_open(inode, file, &proc_tid_smaps_op);
}
const struct file_operations proc_pid_smaps_operations = {
.open = pid_smaps_open,
.read = seq_read,
.llseek = seq_lseek,
.release = proc_map_release,
};
const struct file_operations proc_tid_smaps_operations = {
.open = tid_smaps_open,
.read = seq_read,
.llseek = seq_lseek,
.release = proc_map_release,
};
enum clear_refs_types {
CLEAR_REFS_ALL = 1,
CLEAR_REFS_ANON,
CLEAR_REFS_MAPPED,
CLEAR_REFS_SOFT_DIRTY,
CLEAR_REFS_MM_HIWATER_RSS,
CLEAR_REFS_LAST,
};
struct clear_refs_private {
enum clear_refs_types type;
};
#ifdef CONFIG_MEM_SOFT_DIRTY
static inline void clear_soft_dirty(struct vm_area_struct *vma,
unsigned long addr, pte_t *pte)
{
/*
* The soft-dirty tracker uses #PF-s to catch writes
* to pages, so write-protect the pte as well. See the
* Documentation/vm/soft-dirty.txt for full description
* of how soft-dirty works.
*/
pte_t ptent = *pte;
if (pte_present(ptent)) {
ptent = ptep_modify_prot_start(vma->vm_mm, addr, pte);
ptent = pte_wrprotect(ptent);
ptent = pte_clear_soft_dirty(ptent);
ptep_modify_prot_commit(vma->vm_mm, addr, pte, ptent);
} else if (is_swap_pte(ptent)) {
ptent = pte_swp_clear_soft_dirty(ptent);
set_pte_at(vma->vm_mm, addr, pte, ptent);
}
}
#else
static inline void clear_soft_dirty(struct vm_area_struct *vma,
unsigned long addr, pte_t *pte)
{
}
#endif
#if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
unsigned long addr, pmd_t *pmdp)
{
pmd_t pmd = *pmdp;
/* See comment in change_huge_pmd() */
pmdp_invalidate(vma, addr, pmdp);
if (pmd_dirty(*pmdp))
pmd = pmd_mkdirty(pmd);
if (pmd_young(*pmdp))
pmd = pmd_mkyoung(pmd);
pmd = pmd_wrprotect(pmd);
pmd = pmd_clear_soft_dirty(pmd);
set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
}
#else
static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
unsigned long addr, pmd_t *pmdp)
{
}
#endif
static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
unsigned long end, struct mm_walk *walk)
{
struct clear_refs_private *cp = walk->private;
struct vm_area_struct *vma = walk->vma;
pte_t *pte, ptent;
spinlock_t *ptl;
struct page *page;
ptl = pmd_trans_huge_lock(pmd, vma);
if (ptl) {
if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
clear_soft_dirty_pmd(vma, addr, pmd);
goto out;
}
page = pmd_page(*pmd);
/* Clear accessed and referenced bits. */
pmdp_test_and_clear_young(vma, addr, pmd);
test_and_clear_page_young(page);
ClearPageReferenced(page);
out:
spin_unlock(ptl);
return 0;
}
if (pmd_trans_unstable(pmd))
return 0;
pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
for (; addr != end; pte++, addr += PAGE_SIZE) {
ptent = *pte;
if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
clear_soft_dirty(vma, addr, pte);
continue;
}
if (!pte_present(ptent))
continue;
page = vm_normal_page(vma, addr, ptent);
if (!page)
continue;
/* Clear accessed and referenced bits. */
ptep_test_and_clear_young(vma, addr, pte);
test_and_clear_page_young(page);
ClearPageReferenced(page);
}
pte_unmap_unlock(pte - 1, ptl);
cond_resched();
return 0;
}
static int clear_refs_test_walk(unsigned long start, unsigned long end,
struct mm_walk *walk)
{
struct clear_refs_private *cp = walk->private;
struct vm_area_struct *vma = walk->vma;
if (vma->vm_flags & VM_PFNMAP)
return 1;
/*
* Writing 1 to /proc/pid/clear_refs affects all pages.
* Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
* Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
* Writing 4 to /proc/pid/clear_refs affects all pages.
*/
if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
return 1;
if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
return 1;
return 0;
}
static ssize_t clear_refs_write(struct file *file, const char __user *buf,
size_t count, loff_t *ppos)
{
struct task_struct *task;
char buffer[PROC_NUMBUF];
struct mm_struct *mm;
struct vm_area_struct *vma;
enum clear_refs_types type;
int itype;
int rv;
memset(buffer, 0, sizeof(buffer));
if (count > sizeof(buffer) - 1)
count = sizeof(buffer) - 1;
if (copy_from_user(buffer, buf, count))
return -EFAULT;
rv = kstrtoint(strstrip(buffer), 10, &itype);
if (rv < 0)
return rv;
type = (enum clear_refs_types)itype;
if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
return -EINVAL;
task = get_proc_task(file_inode(file));
if (!task)
return -ESRCH;
mm = get_task_mm(task);
if (mm) {
struct clear_refs_private cp = {
.type = type,
};
struct mm_walk clear_refs_walk = {
.pmd_entry = clear_refs_pte_range,
.test_walk = clear_refs_test_walk,
.mm = mm,
.private = &cp,
};
if (type == CLEAR_REFS_MM_HIWATER_RSS) {
if (down_write_killable(&mm->mmap_sem)) {
count = -EINTR;
goto out_mm;
}
/*
* Writing 5 to /proc/pid/clear_refs resets the peak
* resident set size to this mm's current rss value.
*/
reset_mm_hiwater_rss(mm);
up_write(&mm->mmap_sem);
goto out_mm;
}
down_read(&mm->mmap_sem);
if (type == CLEAR_REFS_SOFT_DIRTY) {
for (vma = mm->mmap; vma; vma = vma->vm_next) {
if (!(vma->vm_flags & VM_SOFTDIRTY))
continue;
up_read(&mm->mmap_sem);
if (down_write_killable(&mm->mmap_sem)) {
count = -EINTR;
goto out_mm;
}
for (vma = mm->mmap; vma; vma = vma->vm_next) {
vma->vm_flags &= ~VM_SOFTDIRTY;
vma_set_page_prot(vma);
}
downgrade_write(&mm->mmap_sem);
break;
}
mmu_notifier_invalidate_range_start(mm, 0, -1);
}
walk_page_range(0, mm->highest_vm_end, &clear_refs_walk);
if (type == CLEAR_REFS_SOFT_DIRTY)
mmu_notifier_invalidate_range_end(mm, 0, -1);
flush_tlb_mm(mm);
up_read(&mm->mmap_sem);
out_mm:
mmput(mm);
}
put_task_struct(task);
return count;
}
const struct file_operations proc_clear_refs_operations = {
.write = clear_refs_write,
.llseek = noop_llseek,
};
typedef struct {
u64 pme;
} pagemap_entry_t;
struct pagemapread {
int pos, len; /* units: PM_ENTRY_BYTES, not bytes */
pagemap_entry_t *buffer;
bool show_pfn;
};
#define PAGEMAP_WALK_SIZE (PMD_SIZE)
#define PAGEMAP_WALK_MASK (PMD_MASK)
#define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
#define PM_PFRAME_BITS 55
#define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
#define PM_SOFT_DIRTY BIT_ULL(55)
#define PM_MMAP_EXCLUSIVE BIT_ULL(56)
#define PM_FILE BIT_ULL(61)
#define PM_SWAP BIT_ULL(62)
#define PM_PRESENT BIT_ULL(63)
#define PM_END_OF_BUFFER 1
static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
{
return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
}
static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
struct pagemapread *pm)
{
pm->buffer[pm->pos++] = *pme;
if (pm->pos >= pm->len)
return PM_END_OF_BUFFER;
return 0;
}
static int pagemap_pte_hole(unsigned long start, unsigned long end,
struct mm_walk *walk)
{
struct pagemapread *pm = walk->private;
unsigned long addr = start;
int err = 0;
while (addr < end) {
struct vm_area_struct *vma = find_vma(walk->mm, addr);
pagemap_entry_t pme = make_pme(0, 0);
/* End of address space hole, which we mark as non-present. */
unsigned long hole_end;
if (vma)
hole_end = min(end, vma->vm_start);
else
hole_end = end;
for (; addr < hole_end; addr += PAGE_SIZE) {
err = add_to_pagemap(addr, &pme, pm);
if (err)
goto out;
}
if (!vma)
break;
/* Addresses in the VMA. */
if (vma->vm_flags & VM_SOFTDIRTY)
pme = make_pme(0, PM_SOFT_DIRTY);
for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
err = add_to_pagemap(addr, &pme, pm);
if (err)
goto out;
}
}
out:
return err;
}
static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
struct vm_area_struct *vma, unsigned long addr, pte_t pte)
{
u64 frame = 0, flags = 0;
struct page *page = NULL;
if (pte_present(pte)) {
if (pm->show_pfn)
frame = pte_pfn(pte);
flags |= PM_PRESENT;
page = vm_normal_page(vma, addr, pte);
if (pte_soft_dirty(pte))
flags |= PM_SOFT_DIRTY;
} else if (is_swap_pte(pte)) {
swp_entry_t entry;
if (pte_swp_soft_dirty(pte))
flags |= PM_SOFT_DIRTY;
entry = pte_to_swp_entry(pte);
frame = swp_type(entry) |
(swp_offset(entry) << MAX_SWAPFILES_SHIFT);
flags |= PM_SWAP;
if (is_migration_entry(entry))
page = migration_entry_to_page(entry);
}
if (page && !PageAnon(page))
flags |= PM_FILE;
if (page && page_mapcount(page) == 1)
flags |= PM_MMAP_EXCLUSIVE;
if (vma->vm_flags & VM_SOFTDIRTY)
flags |= PM_SOFT_DIRTY;
return make_pme(frame, flags);
}
static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
struct mm_walk *walk)
{
struct vm_area_struct *vma = walk->vma;
struct pagemapread *pm = walk->private;
spinlock_t *ptl;
pte_t *pte, *orig_pte;
int err = 0;
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ptl = pmd_trans_huge_lock(pmdp, vma);
if (ptl) {
u64 flags = 0, frame = 0;
pmd_t pmd = *pmdp;
if ((vma->vm_flags & VM_SOFTDIRTY) || pmd_soft_dirty(pmd))
flags |= PM_SOFT_DIRTY;
/*
* Currently pmd for thp is always present because thp
* can not be swapped-out, migrated, or HWPOISONed
* (split in such cases instead.)
* This if-check is just to prepare for future implementation.
*/
if (pmd_present(pmd)) {
struct page *page = pmd_page(pmd);
if (page_mapcount(page) == 1)
flags |= PM_MMAP_EXCLUSIVE;
flags |= PM_PRESENT;
if (pm->show_pfn)
frame = pmd_pfn(pmd) +
((addr & ~PMD_MASK) >> PAGE_SHIFT);
}
for (; addr != end; addr += PAGE_SIZE) {
pagemap_entry_t pme = make_pme(frame, flags);
err = add_to_pagemap(addr, &pme, pm);
if (err)
break;
if (pm->show_pfn && (flags & PM_PRESENT))
frame++;
}
spin_unlock(ptl);
return err;
}
if (pmd_trans_unstable(pmdp))
return 0;
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
/*
* We can assume that @vma always points to a valid one and @end never
* goes beyond vma->vm_end.
*/
orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
for (; addr < end; pte++, addr += PAGE_SIZE) {
pagemap_entry_t pme;
pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
err = add_to_pagemap(addr, &pme, pm);
if (err)
break;
}
pte_unmap_unlock(orig_pte, ptl);
cond_resched();
return err;
}
#ifdef CONFIG_HUGETLB_PAGE
/* This function walks within one hugetlb entry in the single call */
static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
unsigned long addr, unsigned long end,
struct mm_walk *walk)
{
struct pagemapread *pm = walk->private;
struct vm_area_struct *vma = walk->vma;
u64 flags = 0, frame = 0;
int err = 0;
pte_t pte;
if (vma->vm_flags & VM_SOFTDIRTY)
flags |= PM_SOFT_DIRTY;
pte = huge_ptep_get(ptep);
if (pte_present(pte)) {
struct page *page = pte_page(pte);
if (!PageAnon(page))
flags |= PM_FILE;
if (page_mapcount(page) == 1)
flags |= PM_MMAP_EXCLUSIVE;
flags |= PM_PRESENT;
if (pm->show_pfn)
frame = pte_pfn(pte) +
((addr & ~hmask) >> PAGE_SHIFT);
}
for (; addr != end; addr += PAGE_SIZE) {
pagemap_entry_t pme = make_pme(frame, flags);
err = add_to_pagemap(addr, &pme, pm);
if (err)
return err;
if (pm->show_pfn && (flags & PM_PRESENT))
frame++;
}
cond_resched();
return err;
}
#endif /* HUGETLB_PAGE */
/*
* /proc/pid/pagemap - an array mapping virtual pages to pfns
*
* For each page in the address space, this file contains one 64-bit entry
* consisting of the following:
*
* Bits 0-54 page frame number (PFN) if present
* Bits 0-4 swap type if swapped
* Bits 5-54 swap offset if swapped
* Bit 55 pte is soft-dirty (see Documentation/vm/soft-dirty.txt)
* Bit 56 page exclusively mapped
* Bits 57-60 zero
* Bit 61 page is file-page or shared-anon
* Bit 62 page swapped
* Bit 63 page present
*
* If the page is not present but in swap, then the PFN contains an
* encoding of the swap file number and the page's offset into the
* swap. Unmapped pages return a null PFN. This allows determining
* precisely which pages are mapped (or in swap) and comparing mapped
* pages between processes.
*
* Efficient users of this interface will use /proc/pid/maps to
* determine which areas of memory are actually mapped and llseek to
* skip over unmapped regions.
*/
static ssize_t pagemap_read(struct file *file, char __user *buf,
size_t count, loff_t *ppos)
{
struct mm_struct *mm = file->private_data;
struct pagemapread pm;
struct mm_walk pagemap_walk = {};
unsigned long src;
unsigned long svpfn;
unsigned long start_vaddr;
unsigned long end_vaddr;
int ret = 0, copied = 0;
if (!mm || !mmget_not_zero(mm))
goto out;
ret = -EINVAL;
/* file position must be aligned */
if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
goto out_mm;
ret = 0;
if (!count)
goto out_mm;
/* do not disclose physical addresses: attack vector */
pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_TEMPORARY);
ret = -ENOMEM;
if (!pm.buffer)
goto out_mm;
pagemap_walk.pmd_entry = pagemap_pmd_range;
pagemap_walk.pte_hole = pagemap_pte_hole;
#ifdef CONFIG_HUGETLB_PAGE
pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
#endif
pagemap_walk.mm = mm;
pagemap_walk.private = &pm;
src = *ppos;
svpfn = src / PM_ENTRY_BYTES;
start_vaddr = svpfn << PAGE_SHIFT;
end_vaddr = mm->task_size;
/* watch out for wraparound */
if (svpfn > mm->task_size >> PAGE_SHIFT)
start_vaddr = end_vaddr;
/*
* The odds are that this will stop walking way
* before end_vaddr, because the length of the
* user buffer is tracked in "pm", and the walk
* will stop when we hit the end of the buffer.
*/
ret = 0;
while (count && (start_vaddr < end_vaddr)) {
int len;
unsigned long end;
pm.pos = 0;
end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
/* overflow ? */
if (end < start_vaddr || end > end_vaddr)
end = end_vaddr;
down_read(&mm->mmap_sem);
ret = walk_page_range(start_vaddr, end, &pagemap_walk);
up_read(&mm->mmap_sem);
start_vaddr = end;
len = min(count, PM_ENTRY_BYTES * pm.pos);
if (copy_to_user(buf, pm.buffer, len)) {
ret = -EFAULT;
goto out_free;
}
copied += len;
buf += len;
count -= len;
}
*ppos += copied;
if (!ret || ret == PM_END_OF_BUFFER)
ret = copied;
out_free:
kfree(pm.buffer);
out_mm:
mmput(mm);
out:
return ret;
}
static int pagemap_open(struct inode *inode, struct file *file)
{
struct mm_struct *mm;
mm = proc_mem_open(inode, PTRACE_MODE_READ);
if (IS_ERR(mm))
return PTR_ERR(mm);
file->private_data = mm;
return 0;
}
static int pagemap_release(struct inode *inode, struct file *file)
{
struct mm_struct *mm = file->private_data;
if (mm)
mmdrop(mm);
return 0;
}
const struct file_operations proc_pagemap_operations = {
.llseek = mem_lseek, /* borrow this */
.read = pagemap_read,
.open = pagemap_open,
.release = pagemap_release,
};
#endif /* CONFIG_PROC_PAGE_MONITOR */
#ifdef CONFIG_NUMA
struct numa_maps {
unsigned long pages;
unsigned long anon;
unsigned long active;
unsigned long writeback;
unsigned long mapcount_max;
unsigned long dirty;
unsigned long swapcache;
unsigned long node[MAX_NUMNODES];
};
struct numa_maps_private {
struct proc_maps_private proc_maps;
struct numa_maps md;
};
static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
unsigned long nr_pages)
{
int count = page_mapcount(page);
md->pages += nr_pages;
if (pte_dirty || PageDirty(page))
md->dirty += nr_pages;
if (PageSwapCache(page))
md->swapcache += nr_pages;
if (PageActive(page) || PageUnevictable(page))
md->active += nr_pages;
if (PageWriteback(page))
md->writeback += nr_pages;
if (PageAnon(page))
md->anon += nr_pages;
if (count > md->mapcount_max)
md->mapcount_max = count;
md->node[page_to_nid(page)] += nr_pages;
}
static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
unsigned long addr)
{
struct page *page;
int nid;
if (!pte_present(pte))
return NULL;
page = vm_normal_page(vma, addr, pte);
if (!page)
return NULL;
if (PageReserved(page))
return NULL;
nid = page_to_nid(page);
if (!node_isset(nid, node_states[N_MEMORY]))
return NULL;
return page;
}
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
struct vm_area_struct *vma,
unsigned long addr)
{
struct page *page;
int nid;
if (!pmd_present(pmd))
return NULL;
page = vm_normal_page_pmd(vma, addr, pmd);
if (!page)
return NULL;
if (PageReserved(page))
return NULL;
nid = page_to_nid(page);
if (!node_isset(nid, node_states[N_MEMORY]))
return NULL;
return page;
}
#endif
static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
unsigned long end, struct mm_walk *walk)
{
struct numa_maps *md = walk->private;
struct vm_area_struct *vma = walk->vma;
spinlock_t *ptl;
pte_t *orig_pte;
pte_t *pte;
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ptl = pmd_trans_huge_lock(pmd, vma);
if (ptl) {
struct page *page;
page = can_gather_numa_stats_pmd(*pmd, vma, addr);
if (page)
gather_stats(page, md, pmd_dirty(*pmd),
HPAGE_PMD_SIZE/PAGE_SIZE);
spin_unlock(ptl);
return 0;
}
if (pmd_trans_unstable(pmd))
return 0;
#endif
orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
do {
struct page *page = can_gather_numa_stats(*pte, vma, addr);
if (!page)
continue;
gather_stats(page, md, pte_dirty(*pte), 1);
} while (pte++, addr += PAGE_SIZE, addr != end);
pte_unmap_unlock(orig_pte, ptl);
cond_resched();
return 0;
}
#ifdef CONFIG_HUGETLB_PAGE
static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
unsigned long addr, unsigned long end, struct mm_walk *walk)
{
pte_t huge_pte = huge_ptep_get(pte);
struct numa_maps *md;
struct page *page;
if (!pte_present(huge_pte))
return 0;
page = pte_page(huge_pte);
if (!page)
return 0;
md = walk->private;
gather_stats(page, md, pte_dirty(huge_pte), 1);
return 0;
}
#else
static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
unsigned long addr, unsigned long end, struct mm_walk *walk)
{
return 0;
}
#endif
/*
* Display pages allocated per node and memory policy via /proc.
*/
static int show_numa_map(struct seq_file *m, void *v, int is_pid)
{
struct numa_maps_private *numa_priv = m->private;
struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
struct vm_area_struct *vma = v;
struct numa_maps *md = &numa_priv->md;
struct file *file = vma->vm_file;
struct mm_struct *mm = vma->vm_mm;
struct mm_walk walk = {
.hugetlb_entry = gather_hugetlb_stats,
.pmd_entry = gather_pte_stats,
.private = md,
.mm = mm,
};
struct mempolicy *pol;
char buffer[64];
int nid;
if (!mm)
return 0;
/* Ensure we start with an empty set of numa_maps statistics. */
memset(md, 0, sizeof(*md));
pol = __get_vma_policy(vma, vma->vm_start);
if (pol) {
mpol_to_str(buffer, sizeof(buffer), pol);
mpol_cond_put(pol);
} else {
mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
}
seq_printf(m, "%08lx %s", vma->vm_start, buffer);
if (file) {
seq_puts(m, " file=");
seq_file_path(m, file, "\n\t= ");
} else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
seq_puts(m, " heap");
} else if (is_stack(proc_priv, vma)) {
seq_puts(m, " stack");
}
if (is_vm_hugetlb_page(vma))
seq_puts(m, " huge");
/* mmap_sem is held by m_start */
walk_page_vma(vma, &walk);
if (!md->pages)
goto out;
if (md->anon)
seq_printf(m, " anon=%lu", md->anon);
if (md->dirty)
seq_printf(m, " dirty=%lu", md->dirty);
if (md->pages != md->anon && md->pages != md->dirty)
seq_printf(m, " mapped=%lu", md->pages);
if (md->mapcount_max > 1)
seq_printf(m, " mapmax=%lu", md->mapcount_max);
if (md->swapcache)
seq_printf(m, " swapcache=%lu", md->swapcache);
if (md->active < md->pages && !is_vm_hugetlb_page(vma))
seq_printf(m, " active=%lu", md->active);
if (md->writeback)
seq_printf(m, " writeback=%lu", md->writeback);
for_each_node_state(nid, N_MEMORY)
if (md->node[nid])
seq_printf(m, " N%d=%lu", nid, md->node[nid]);
seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
out:
seq_putc(m, '\n');
m_cache_vma(m, vma);
return 0;
}
static int show_pid_numa_map(struct seq_file *m, void *v)
{
return show_numa_map(m, v, 1);
}
static int show_tid_numa_map(struct seq_file *m, void *v)
{
return show_numa_map(m, v, 0);
}
static const struct seq_operations proc_pid_numa_maps_op = {
.start = m_start,
.next = m_next,
.stop = m_stop,
.show = show_pid_numa_map,
};
static const struct seq_operations proc_tid_numa_maps_op = {
.start = m_start,
.next = m_next,
.stop = m_stop,
.show = show_tid_numa_map,
};
static int numa_maps_open(struct inode *inode, struct file *file,
const struct seq_operations *ops)
{
return proc_maps_open(inode, file, ops,
sizeof(struct numa_maps_private));
}
static int pid_numa_maps_open(struct inode *inode, struct file *file)
{
return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
}
static int tid_numa_maps_open(struct inode *inode, struct file *file)
{
return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
}
const struct file_operations proc_pid_numa_maps_operations = {
.open = pid_numa_maps_open,
.read = seq_read,
.llseek = seq_lseek,
.release = proc_map_release,
};
const struct file_operations proc_tid_numa_maps_operations = {
.open = tid_numa_maps_open,
.read = seq_read,
.llseek = seq_lseek,
.release = proc_map_release,
};
#endif /* CONFIG_NUMA */