linux/drivers/dma/fsldma.c
Ira Snyder d3f620b2c4 fsldma: simplify IRQ probing and handling
The IRQ probing is needlessly complex. All off the 83xx device trees in
arch/powerpc/boot/dts/ specify 5 interrupts per DMA controller: one for the
controller, and one for each channel. These interrupts are all attached to
the same IRQ line.

This causes an interesting situation if two channels interrupt at the same
time. The per-controller handler will handle the first channel, and the
per-channel handler will handle the remaining channels.

Instead of this mess, we fix the bug in the per-controller handler, and
make it handle all channels that generated an interrupt. When a
per-controller handler is specified in the device tree, we prefer to use
the shared handler instead of the per-channel handler.

The 85xx/86xx controllers do not have a per-controller interrupt, and
instead use a per-channel interrupt. This behavior has not been changed.

Signed-off-by: Ira W. Snyder <iws@ovro.caltech.edu>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2010-02-02 14:51:41 -07:00

1417 lines
36 KiB
C

/*
* Freescale MPC85xx, MPC83xx DMA Engine support
*
* Copyright (C) 2007 Freescale Semiconductor, Inc. All rights reserved.
*
* Author:
* Zhang Wei <wei.zhang@freescale.com>, Jul 2007
* Ebony Zhu <ebony.zhu@freescale.com>, May 2007
*
* Description:
* DMA engine driver for Freescale MPC8540 DMA controller, which is
* also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc.
* The support for MPC8349 DMA contorller is also added.
*
* This driver instructs the DMA controller to issue the PCI Read Multiple
* command for PCI read operations, instead of using the default PCI Read Line
* command. Please be aware that this setting may result in read pre-fetching
* on some platforms.
*
* This is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/interrupt.h>
#include <linux/dmaengine.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/dmapool.h>
#include <linux/of_platform.h>
#include <asm/fsldma.h>
#include "fsldma.h"
static void dma_init(struct fsldma_chan *fsl_chan)
{
/* Reset the channel */
DMA_OUT(fsl_chan, &fsl_chan->regs->mr, 0, 32);
switch (fsl_chan->feature & FSL_DMA_IP_MASK) {
case FSL_DMA_IP_85XX:
/* Set the channel to below modes:
* EIE - Error interrupt enable
* EOSIE - End of segments interrupt enable (basic mode)
* EOLNIE - End of links interrupt enable
*/
DMA_OUT(fsl_chan, &fsl_chan->regs->mr, FSL_DMA_MR_EIE
| FSL_DMA_MR_EOLNIE | FSL_DMA_MR_EOSIE, 32);
break;
case FSL_DMA_IP_83XX:
/* Set the channel to below modes:
* EOTIE - End-of-transfer interrupt enable
* PRC_RM - PCI read multiple
*/
DMA_OUT(fsl_chan, &fsl_chan->regs->mr, FSL_DMA_MR_EOTIE
| FSL_DMA_MR_PRC_RM, 32);
break;
}
}
static void set_sr(struct fsldma_chan *fsl_chan, u32 val)
{
DMA_OUT(fsl_chan, &fsl_chan->regs->sr, val, 32);
}
static u32 get_sr(struct fsldma_chan *fsl_chan)
{
return DMA_IN(fsl_chan, &fsl_chan->regs->sr, 32);
}
static void set_desc_cnt(struct fsldma_chan *fsl_chan,
struct fsl_dma_ld_hw *hw, u32 count)
{
hw->count = CPU_TO_DMA(fsl_chan, count, 32);
}
static void set_desc_src(struct fsldma_chan *fsl_chan,
struct fsl_dma_ld_hw *hw, dma_addr_t src)
{
u64 snoop_bits;
snoop_bits = ((fsl_chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
hw->src_addr = CPU_TO_DMA(fsl_chan, snoop_bits | src, 64);
}
static void set_desc_dst(struct fsldma_chan *fsl_chan,
struct fsl_dma_ld_hw *hw, dma_addr_t dst)
{
u64 snoop_bits;
snoop_bits = ((fsl_chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
hw->dst_addr = CPU_TO_DMA(fsl_chan, snoop_bits | dst, 64);
}
static void set_desc_next(struct fsldma_chan *fsl_chan,
struct fsl_dma_ld_hw *hw, dma_addr_t next)
{
u64 snoop_bits;
snoop_bits = ((fsl_chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
? FSL_DMA_SNEN : 0;
hw->next_ln_addr = CPU_TO_DMA(fsl_chan, snoop_bits | next, 64);
}
static void set_cdar(struct fsldma_chan *fsl_chan, dma_addr_t addr)
{
DMA_OUT(fsl_chan, &fsl_chan->regs->cdar, addr | FSL_DMA_SNEN, 64);
}
static dma_addr_t get_cdar(struct fsldma_chan *fsl_chan)
{
return DMA_IN(fsl_chan, &fsl_chan->regs->cdar, 64) & ~FSL_DMA_SNEN;
}
static void set_ndar(struct fsldma_chan *fsl_chan, dma_addr_t addr)
{
DMA_OUT(fsl_chan, &fsl_chan->regs->ndar, addr, 64);
}
static dma_addr_t get_ndar(struct fsldma_chan *fsl_chan)
{
return DMA_IN(fsl_chan, &fsl_chan->regs->ndar, 64);
}
static u32 get_bcr(struct fsldma_chan *fsl_chan)
{
return DMA_IN(fsl_chan, &fsl_chan->regs->bcr, 32);
}
static int dma_is_idle(struct fsldma_chan *fsl_chan)
{
u32 sr = get_sr(fsl_chan);
return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH);
}
static void dma_start(struct fsldma_chan *fsl_chan)
{
u32 mode;
mode = DMA_IN(fsl_chan, &fsl_chan->regs->mr, 32);
if ((fsl_chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
if (fsl_chan->feature & FSL_DMA_CHAN_PAUSE_EXT) {
DMA_OUT(fsl_chan, &fsl_chan->regs->bcr, 0, 32);
mode |= FSL_DMA_MR_EMP_EN;
} else {
mode &= ~FSL_DMA_MR_EMP_EN;
}
}
if (fsl_chan->feature & FSL_DMA_CHAN_START_EXT)
mode |= FSL_DMA_MR_EMS_EN;
else
mode |= FSL_DMA_MR_CS;
DMA_OUT(fsl_chan, &fsl_chan->regs->mr, mode, 32);
}
static void dma_halt(struct fsldma_chan *fsl_chan)
{
u32 mode;
int i;
mode = DMA_IN(fsl_chan, &fsl_chan->regs->mr, 32);
mode |= FSL_DMA_MR_CA;
DMA_OUT(fsl_chan, &fsl_chan->regs->mr, mode, 32);
mode &= ~(FSL_DMA_MR_CS | FSL_DMA_MR_EMS_EN | FSL_DMA_MR_CA);
DMA_OUT(fsl_chan, &fsl_chan->regs->mr, mode, 32);
for (i = 0; i < 100; i++) {
if (dma_is_idle(fsl_chan))
break;
udelay(10);
}
if (i >= 100 && !dma_is_idle(fsl_chan))
dev_err(fsl_chan->dev, "DMA halt timeout!\n");
}
static void set_ld_eol(struct fsldma_chan *fsl_chan,
struct fsl_desc_sw *desc)
{
u64 snoop_bits;
snoop_bits = ((fsl_chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
? FSL_DMA_SNEN : 0;
desc->hw.next_ln_addr = CPU_TO_DMA(fsl_chan,
DMA_TO_CPU(fsl_chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL
| snoop_bits, 64);
}
static void append_ld_queue(struct fsldma_chan *fsl_chan,
struct fsl_desc_sw *new_desc)
{
struct fsl_desc_sw *queue_tail = to_fsl_desc(fsl_chan->ld_queue.prev);
if (list_empty(&fsl_chan->ld_queue))
return;
/* Link to the new descriptor physical address and
* Enable End-of-segment interrupt for
* the last link descriptor.
* (the previous node's next link descriptor)
*
* For FSL_DMA_IP_83xx, the snoop enable bit need be set.
*/
queue_tail->hw.next_ln_addr = CPU_TO_DMA(fsl_chan,
new_desc->async_tx.phys | FSL_DMA_EOSIE |
(((fsl_chan->feature & FSL_DMA_IP_MASK)
== FSL_DMA_IP_83XX) ? FSL_DMA_SNEN : 0), 64);
}
/**
* fsl_chan_set_src_loop_size - Set source address hold transfer size
* @fsl_chan : Freescale DMA channel
* @size : Address loop size, 0 for disable loop
*
* The set source address hold transfer size. The source
* address hold or loop transfer size is when the DMA transfer
* data from source address (SA), if the loop size is 4, the DMA will
* read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA,
* SA + 1 ... and so on.
*/
static void fsl_chan_set_src_loop_size(struct fsldma_chan *fsl_chan, int size)
{
u32 mode;
mode = DMA_IN(fsl_chan, &fsl_chan->regs->mr, 32);
switch (size) {
case 0:
mode &= ~FSL_DMA_MR_SAHE;
break;
case 1:
case 2:
case 4:
case 8:
mode |= FSL_DMA_MR_SAHE | (__ilog2(size) << 14);
break;
}
DMA_OUT(fsl_chan, &fsl_chan->regs->mr, mode, 32);
}
/**
* fsl_chan_set_dst_loop_size - Set destination address hold transfer size
* @fsl_chan : Freescale DMA channel
* @size : Address loop size, 0 for disable loop
*
* The set destination address hold transfer size. The destination
* address hold or loop transfer size is when the DMA transfer
* data to destination address (TA), if the loop size is 4, the DMA will
* write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA,
* TA + 1 ... and so on.
*/
static void fsl_chan_set_dst_loop_size(struct fsldma_chan *fsl_chan, int size)
{
u32 mode;
mode = DMA_IN(fsl_chan, &fsl_chan->regs->mr, 32);
switch (size) {
case 0:
mode &= ~FSL_DMA_MR_DAHE;
break;
case 1:
case 2:
case 4:
case 8:
mode |= FSL_DMA_MR_DAHE | (__ilog2(size) << 16);
break;
}
DMA_OUT(fsl_chan, &fsl_chan->regs->mr, mode, 32);
}
/**
* fsl_chan_set_request_count - Set DMA Request Count for external control
* @fsl_chan : Freescale DMA channel
* @size : Number of bytes to transfer in a single request
*
* The Freescale DMA channel can be controlled by the external signal DREQ#.
* The DMA request count is how many bytes are allowed to transfer before
* pausing the channel, after which a new assertion of DREQ# resumes channel
* operation.
*
* A size of 0 disables external pause control. The maximum size is 1024.
*/
static void fsl_chan_set_request_count(struct fsldma_chan *fsl_chan, int size)
{
u32 mode;
BUG_ON(size > 1024);
mode = DMA_IN(fsl_chan, &fsl_chan->regs->mr, 32);
mode |= (__ilog2(size) << 24) & 0x0f000000;
DMA_OUT(fsl_chan, &fsl_chan->regs->mr, mode, 32);
}
/**
* fsl_chan_toggle_ext_pause - Toggle channel external pause status
* @fsl_chan : Freescale DMA channel
* @enable : 0 is disabled, 1 is enabled.
*
* The Freescale DMA channel can be controlled by the external signal DREQ#.
* The DMA Request Count feature should be used in addition to this feature
* to set the number of bytes to transfer before pausing the channel.
*/
static void fsl_chan_toggle_ext_pause(struct fsldma_chan *fsl_chan, int enable)
{
if (enable)
fsl_chan->feature |= FSL_DMA_CHAN_PAUSE_EXT;
else
fsl_chan->feature &= ~FSL_DMA_CHAN_PAUSE_EXT;
}
/**
* fsl_chan_toggle_ext_start - Toggle channel external start status
* @fsl_chan : Freescale DMA channel
* @enable : 0 is disabled, 1 is enabled.
*
* If enable the external start, the channel can be started by an
* external DMA start pin. So the dma_start() does not start the
* transfer immediately. The DMA channel will wait for the
* control pin asserted.
*/
static void fsl_chan_toggle_ext_start(struct fsldma_chan *fsl_chan, int enable)
{
if (enable)
fsl_chan->feature |= FSL_DMA_CHAN_START_EXT;
else
fsl_chan->feature &= ~FSL_DMA_CHAN_START_EXT;
}
static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx)
{
struct fsldma_chan *fsl_chan = to_fsl_chan(tx->chan);
struct fsl_desc_sw *desc = tx_to_fsl_desc(tx);
struct fsl_desc_sw *child;
unsigned long flags;
dma_cookie_t cookie;
/* cookie increment and adding to ld_queue must be atomic */
spin_lock_irqsave(&fsl_chan->desc_lock, flags);
cookie = fsl_chan->common.cookie;
list_for_each_entry(child, &desc->tx_list, node) {
cookie++;
if (cookie < 0)
cookie = 1;
desc->async_tx.cookie = cookie;
}
fsl_chan->common.cookie = cookie;
append_ld_queue(fsl_chan, desc);
list_splice_init(&desc->tx_list, fsl_chan->ld_queue.prev);
spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
return cookie;
}
/**
* fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool.
* @fsl_chan : Freescale DMA channel
*
* Return - The descriptor allocated. NULL for failed.
*/
static struct fsl_desc_sw *fsl_dma_alloc_descriptor(
struct fsldma_chan *fsl_chan)
{
dma_addr_t pdesc;
struct fsl_desc_sw *desc_sw;
desc_sw = dma_pool_alloc(fsl_chan->desc_pool, GFP_ATOMIC, &pdesc);
if (desc_sw) {
memset(desc_sw, 0, sizeof(struct fsl_desc_sw));
INIT_LIST_HEAD(&desc_sw->tx_list);
dma_async_tx_descriptor_init(&desc_sw->async_tx,
&fsl_chan->common);
desc_sw->async_tx.tx_submit = fsl_dma_tx_submit;
desc_sw->async_tx.phys = pdesc;
}
return desc_sw;
}
/**
* fsl_dma_alloc_chan_resources - Allocate resources for DMA channel.
* @fsl_chan : Freescale DMA channel
*
* This function will create a dma pool for descriptor allocation.
*
* Return - The number of descriptors allocated.
*/
static int fsl_dma_alloc_chan_resources(struct dma_chan *chan)
{
struct fsldma_chan *fsl_chan = to_fsl_chan(chan);
/* Has this channel already been allocated? */
if (fsl_chan->desc_pool)
return 1;
/* We need the descriptor to be aligned to 32bytes
* for meeting FSL DMA specification requirement.
*/
fsl_chan->desc_pool = dma_pool_create("fsl_dma_engine_desc_pool",
fsl_chan->dev, sizeof(struct fsl_desc_sw),
32, 0);
if (!fsl_chan->desc_pool) {
dev_err(fsl_chan->dev, "No memory for channel %d "
"descriptor dma pool.\n", fsl_chan->id);
return 0;
}
return 1;
}
/**
* fsl_dma_free_chan_resources - Free all resources of the channel.
* @fsl_chan : Freescale DMA channel
*/
static void fsl_dma_free_chan_resources(struct dma_chan *chan)
{
struct fsldma_chan *fsl_chan = to_fsl_chan(chan);
struct fsl_desc_sw *desc, *_desc;
unsigned long flags;
dev_dbg(fsl_chan->dev, "Free all channel resources.\n");
spin_lock_irqsave(&fsl_chan->desc_lock, flags);
list_for_each_entry_safe(desc, _desc, &fsl_chan->ld_queue, node) {
#ifdef FSL_DMA_LD_DEBUG
dev_dbg(fsl_chan->dev,
"LD %p will be released.\n", desc);
#endif
list_del(&desc->node);
/* free link descriptor */
dma_pool_free(fsl_chan->desc_pool, desc, desc->async_tx.phys);
}
spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
dma_pool_destroy(fsl_chan->desc_pool);
fsl_chan->desc_pool = NULL;
}
static struct dma_async_tx_descriptor *
fsl_dma_prep_interrupt(struct dma_chan *chan, unsigned long flags)
{
struct fsldma_chan *fsl_chan;
struct fsl_desc_sw *new;
if (!chan)
return NULL;
fsl_chan = to_fsl_chan(chan);
new = fsl_dma_alloc_descriptor(fsl_chan);
if (!new) {
dev_err(fsl_chan->dev, "No free memory for link descriptor\n");
return NULL;
}
new->async_tx.cookie = -EBUSY;
new->async_tx.flags = flags;
/* Insert the link descriptor to the LD ring */
list_add_tail(&new->node, &new->tx_list);
/* Set End-of-link to the last link descriptor of new list*/
set_ld_eol(fsl_chan, new);
return &new->async_tx;
}
static struct dma_async_tx_descriptor *fsl_dma_prep_memcpy(
struct dma_chan *chan, dma_addr_t dma_dst, dma_addr_t dma_src,
size_t len, unsigned long flags)
{
struct fsldma_chan *fsl_chan;
struct fsl_desc_sw *first = NULL, *prev = NULL, *new;
struct list_head *list;
size_t copy;
if (!chan)
return NULL;
if (!len)
return NULL;
fsl_chan = to_fsl_chan(chan);
do {
/* Allocate the link descriptor from DMA pool */
new = fsl_dma_alloc_descriptor(fsl_chan);
if (!new) {
dev_err(fsl_chan->dev,
"No free memory for link descriptor\n");
goto fail;
}
#ifdef FSL_DMA_LD_DEBUG
dev_dbg(fsl_chan->dev, "new link desc alloc %p\n", new);
#endif
copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT);
set_desc_cnt(fsl_chan, &new->hw, copy);
set_desc_src(fsl_chan, &new->hw, dma_src);
set_desc_dst(fsl_chan, &new->hw, dma_dst);
if (!first)
first = new;
else
set_desc_next(fsl_chan, &prev->hw, new->async_tx.phys);
new->async_tx.cookie = 0;
async_tx_ack(&new->async_tx);
prev = new;
len -= copy;
dma_src += copy;
dma_dst += copy;
/* Insert the link descriptor to the LD ring */
list_add_tail(&new->node, &first->tx_list);
} while (len);
new->async_tx.flags = flags; /* client is in control of this ack */
new->async_tx.cookie = -EBUSY;
/* Set End-of-link to the last link descriptor of new list*/
set_ld_eol(fsl_chan, new);
return &first->async_tx;
fail:
if (!first)
return NULL;
list = &first->tx_list;
list_for_each_entry_safe_reverse(new, prev, list, node) {
list_del(&new->node);
dma_pool_free(fsl_chan->desc_pool, new, new->async_tx.phys);
}
return NULL;
}
/**
* fsl_dma_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
* @chan: DMA channel
* @sgl: scatterlist to transfer to/from
* @sg_len: number of entries in @scatterlist
* @direction: DMA direction
* @flags: DMAEngine flags
*
* Prepare a set of descriptors for a DMA_SLAVE transaction. Following the
* DMA_SLAVE API, this gets the device-specific information from the
* chan->private variable.
*/
static struct dma_async_tx_descriptor *fsl_dma_prep_slave_sg(
struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
enum dma_data_direction direction, unsigned long flags)
{
struct fsldma_chan *fsl_chan;
struct fsl_desc_sw *first = NULL, *prev = NULL, *new = NULL;
struct fsl_dma_slave *slave;
struct list_head *tx_list;
size_t copy;
int i;
struct scatterlist *sg;
size_t sg_used;
size_t hw_used;
struct fsl_dma_hw_addr *hw;
dma_addr_t dma_dst, dma_src;
if (!chan)
return NULL;
if (!chan->private)
return NULL;
fsl_chan = to_fsl_chan(chan);
slave = chan->private;
if (list_empty(&slave->addresses))
return NULL;
hw = list_first_entry(&slave->addresses, struct fsl_dma_hw_addr, entry);
hw_used = 0;
/*
* Build the hardware transaction to copy from the scatterlist to
* the hardware, or from the hardware to the scatterlist
*
* If you are copying from the hardware to the scatterlist and it
* takes two hardware entries to fill an entire page, then both
* hardware entries will be coalesced into the same page
*
* If you are copying from the scatterlist to the hardware and a
* single page can fill two hardware entries, then the data will
* be read out of the page into the first hardware entry, and so on
*/
for_each_sg(sgl, sg, sg_len, i) {
sg_used = 0;
/* Loop until the entire scatterlist entry is used */
while (sg_used < sg_dma_len(sg)) {
/*
* If we've used up the current hardware address/length
* pair, we need to load a new one
*
* This is done in a while loop so that descriptors with
* length == 0 will be skipped
*/
while (hw_used >= hw->length) {
/*
* If the current hardware entry is the last
* entry in the list, we're finished
*/
if (list_is_last(&hw->entry, &slave->addresses))
goto finished;
/* Get the next hardware address/length pair */
hw = list_entry(hw->entry.next,
struct fsl_dma_hw_addr, entry);
hw_used = 0;
}
/* Allocate the link descriptor from DMA pool */
new = fsl_dma_alloc_descriptor(fsl_chan);
if (!new) {
dev_err(fsl_chan->dev, "No free memory for "
"link descriptor\n");
goto fail;
}
#ifdef FSL_DMA_LD_DEBUG
dev_dbg(fsl_chan->dev, "new link desc alloc %p\n", new);
#endif
/*
* Calculate the maximum number of bytes to transfer,
* making sure it is less than the DMA controller limit
*/
copy = min_t(size_t, sg_dma_len(sg) - sg_used,
hw->length - hw_used);
copy = min_t(size_t, copy, FSL_DMA_BCR_MAX_CNT);
/*
* DMA_FROM_DEVICE
* from the hardware to the scatterlist
*
* DMA_TO_DEVICE
* from the scatterlist to the hardware
*/
if (direction == DMA_FROM_DEVICE) {
dma_src = hw->address + hw_used;
dma_dst = sg_dma_address(sg) + sg_used;
} else {
dma_src = sg_dma_address(sg) + sg_used;
dma_dst = hw->address + hw_used;
}
/* Fill in the descriptor */
set_desc_cnt(fsl_chan, &new->hw, copy);
set_desc_src(fsl_chan, &new->hw, dma_src);
set_desc_dst(fsl_chan, &new->hw, dma_dst);
/*
* If this is not the first descriptor, chain the
* current descriptor after the previous descriptor
*/
if (!first) {
first = new;
} else {
set_desc_next(fsl_chan, &prev->hw,
new->async_tx.phys);
}
new->async_tx.cookie = 0;
async_tx_ack(&new->async_tx);
prev = new;
sg_used += copy;
hw_used += copy;
/* Insert the link descriptor into the LD ring */
list_add_tail(&new->node, &first->tx_list);
}
}
finished:
/* All of the hardware address/length pairs had length == 0 */
if (!first || !new)
return NULL;
new->async_tx.flags = flags;
new->async_tx.cookie = -EBUSY;
/* Set End-of-link to the last link descriptor of new list */
set_ld_eol(fsl_chan, new);
/* Enable extra controller features */
if (fsl_chan->set_src_loop_size)
fsl_chan->set_src_loop_size(fsl_chan, slave->src_loop_size);
if (fsl_chan->set_dst_loop_size)
fsl_chan->set_dst_loop_size(fsl_chan, slave->dst_loop_size);
if (fsl_chan->toggle_ext_start)
fsl_chan->toggle_ext_start(fsl_chan, slave->external_start);
if (fsl_chan->toggle_ext_pause)
fsl_chan->toggle_ext_pause(fsl_chan, slave->external_pause);
if (fsl_chan->set_request_count)
fsl_chan->set_request_count(fsl_chan, slave->request_count);
return &first->async_tx;
fail:
/* If first was not set, then we failed to allocate the very first
* descriptor, and we're done */
if (!first)
return NULL;
/*
* First is set, so all of the descriptors we allocated have been added
* to first->tx_list, INCLUDING "first" itself. Therefore we
* must traverse the list backwards freeing each descriptor in turn
*
* We're re-using variables for the loop, oh well
*/
tx_list = &first->tx_list;
list_for_each_entry_safe_reverse(new, prev, tx_list, node) {
list_del_init(&new->node);
dma_pool_free(fsl_chan->desc_pool, new, new->async_tx.phys);
}
return NULL;
}
static void fsl_dma_device_terminate_all(struct dma_chan *chan)
{
struct fsldma_chan *fsl_chan;
struct fsl_desc_sw *desc, *tmp;
unsigned long flags;
if (!chan)
return;
fsl_chan = to_fsl_chan(chan);
/* Halt the DMA engine */
dma_halt(fsl_chan);
spin_lock_irqsave(&fsl_chan->desc_lock, flags);
/* Remove and free all of the descriptors in the LD queue */
list_for_each_entry_safe(desc, tmp, &fsl_chan->ld_queue, node) {
list_del(&desc->node);
dma_pool_free(fsl_chan->desc_pool, desc, desc->async_tx.phys);
}
spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
}
/**
* fsl_dma_update_completed_cookie - Update the completed cookie.
* @fsl_chan : Freescale DMA channel
*/
static void fsl_dma_update_completed_cookie(struct fsldma_chan *fsl_chan)
{
struct fsl_desc_sw *cur_desc, *desc;
dma_addr_t ld_phy;
ld_phy = get_cdar(fsl_chan) & FSL_DMA_NLDA_MASK;
if (ld_phy) {
cur_desc = NULL;
list_for_each_entry(desc, &fsl_chan->ld_queue, node)
if (desc->async_tx.phys == ld_phy) {
cur_desc = desc;
break;
}
if (cur_desc && cur_desc->async_tx.cookie) {
if (dma_is_idle(fsl_chan))
fsl_chan->completed_cookie =
cur_desc->async_tx.cookie;
else
fsl_chan->completed_cookie =
cur_desc->async_tx.cookie - 1;
}
}
}
/**
* fsl_chan_ld_cleanup - Clean up link descriptors
* @fsl_chan : Freescale DMA channel
*
* This function clean up the ld_queue of DMA channel.
* If 'in_intr' is set, the function will move the link descriptor to
* the recycle list. Otherwise, free it directly.
*/
static void fsl_chan_ld_cleanup(struct fsldma_chan *fsl_chan)
{
struct fsl_desc_sw *desc, *_desc;
unsigned long flags;
spin_lock_irqsave(&fsl_chan->desc_lock, flags);
dev_dbg(fsl_chan->dev, "chan completed_cookie = %d\n",
fsl_chan->completed_cookie);
list_for_each_entry_safe(desc, _desc, &fsl_chan->ld_queue, node) {
dma_async_tx_callback callback;
void *callback_param;
if (dma_async_is_complete(desc->async_tx.cookie,
fsl_chan->completed_cookie, fsl_chan->common.cookie)
== DMA_IN_PROGRESS)
break;
callback = desc->async_tx.callback;
callback_param = desc->async_tx.callback_param;
/* Remove from ld_queue list */
list_del(&desc->node);
dev_dbg(fsl_chan->dev, "link descriptor %p will be recycle.\n",
desc);
dma_pool_free(fsl_chan->desc_pool, desc, desc->async_tx.phys);
/* Run the link descriptor callback function */
if (callback) {
spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
dev_dbg(fsl_chan->dev, "link descriptor %p callback\n",
desc);
callback(callback_param);
spin_lock_irqsave(&fsl_chan->desc_lock, flags);
}
}
spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
}
/**
* fsl_chan_xfer_ld_queue - Transfer link descriptors in channel ld_queue.
* @fsl_chan : Freescale DMA channel
*/
static void fsl_chan_xfer_ld_queue(struct fsldma_chan *fsl_chan)
{
struct list_head *ld_node;
dma_addr_t next_dst_addr;
unsigned long flags;
spin_lock_irqsave(&fsl_chan->desc_lock, flags);
if (!dma_is_idle(fsl_chan))
goto out_unlock;
dma_halt(fsl_chan);
/* If there are some link descriptors
* not transfered in queue. We need to start it.
*/
/* Find the first un-transfer desciptor */
for (ld_node = fsl_chan->ld_queue.next;
(ld_node != &fsl_chan->ld_queue)
&& (dma_async_is_complete(
to_fsl_desc(ld_node)->async_tx.cookie,
fsl_chan->completed_cookie,
fsl_chan->common.cookie) == DMA_SUCCESS);
ld_node = ld_node->next);
if (ld_node != &fsl_chan->ld_queue) {
/* Get the ld start address from ld_queue */
next_dst_addr = to_fsl_desc(ld_node)->async_tx.phys;
dev_dbg(fsl_chan->dev, "xfer LDs staring from 0x%llx\n",
(unsigned long long)next_dst_addr);
set_cdar(fsl_chan, next_dst_addr);
dma_start(fsl_chan);
} else {
set_cdar(fsl_chan, 0);
set_ndar(fsl_chan, 0);
}
out_unlock:
spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
}
/**
* fsl_dma_memcpy_issue_pending - Issue the DMA start command
* @fsl_chan : Freescale DMA channel
*/
static void fsl_dma_memcpy_issue_pending(struct dma_chan *chan)
{
struct fsldma_chan *fsl_chan = to_fsl_chan(chan);
#ifdef FSL_DMA_LD_DEBUG
struct fsl_desc_sw *ld;
unsigned long flags;
spin_lock_irqsave(&fsl_chan->desc_lock, flags);
if (list_empty(&fsl_chan->ld_queue)) {
spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
return;
}
dev_dbg(fsl_chan->dev, "--memcpy issue--\n");
list_for_each_entry(ld, &fsl_chan->ld_queue, node) {
int i;
dev_dbg(fsl_chan->dev, "Ch %d, LD %08x\n",
fsl_chan->id, ld->async_tx.phys);
for (i = 0; i < 8; i++)
dev_dbg(fsl_chan->dev, "LD offset %d: %08x\n",
i, *(((u32 *)&ld->hw) + i));
}
dev_dbg(fsl_chan->dev, "----------------\n");
spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
#endif
fsl_chan_xfer_ld_queue(fsl_chan);
}
/**
* fsl_dma_is_complete - Determine the DMA status
* @fsl_chan : Freescale DMA channel
*/
static enum dma_status fsl_dma_is_complete(struct dma_chan *chan,
dma_cookie_t cookie,
dma_cookie_t *done,
dma_cookie_t *used)
{
struct fsldma_chan *fsl_chan = to_fsl_chan(chan);
dma_cookie_t last_used;
dma_cookie_t last_complete;
fsl_chan_ld_cleanup(fsl_chan);
last_used = chan->cookie;
last_complete = fsl_chan->completed_cookie;
if (done)
*done = last_complete;
if (used)
*used = last_used;
return dma_async_is_complete(cookie, last_complete, last_used);
}
/*----------------------------------------------------------------------------*/
/* Interrupt Handling */
/*----------------------------------------------------------------------------*/
static irqreturn_t fsldma_chan_irq(int irq, void *data)
{
struct fsldma_chan *fsl_chan = data;
u32 stat;
int update_cookie = 0;
int xfer_ld_q = 0;
stat = get_sr(fsl_chan);
dev_dbg(fsl_chan->dev, "event: channel %d, stat = 0x%x\n",
fsl_chan->id, stat);
set_sr(fsl_chan, stat); /* Clear the event register */
stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH);
if (!stat)
return IRQ_NONE;
if (stat & FSL_DMA_SR_TE)
dev_err(fsl_chan->dev, "Transfer Error!\n");
/* Programming Error
* The DMA_INTERRUPT async_tx is a NULL transfer, which will
* triger a PE interrupt.
*/
if (stat & FSL_DMA_SR_PE) {
dev_dbg(fsl_chan->dev, "event: Programming Error INT\n");
if (get_bcr(fsl_chan) == 0) {
/* BCR register is 0, this is a DMA_INTERRUPT async_tx.
* Now, update the completed cookie, and continue the
* next uncompleted transfer.
*/
update_cookie = 1;
xfer_ld_q = 1;
}
stat &= ~FSL_DMA_SR_PE;
}
/* If the link descriptor segment transfer finishes,
* we will recycle the used descriptor.
*/
if (stat & FSL_DMA_SR_EOSI) {
dev_dbg(fsl_chan->dev, "event: End-of-segments INT\n");
dev_dbg(fsl_chan->dev, "event: clndar 0x%llx, nlndar 0x%llx\n",
(unsigned long long)get_cdar(fsl_chan),
(unsigned long long)get_ndar(fsl_chan));
stat &= ~FSL_DMA_SR_EOSI;
update_cookie = 1;
}
/* For MPC8349, EOCDI event need to update cookie
* and start the next transfer if it exist.
*/
if (stat & FSL_DMA_SR_EOCDI) {
dev_dbg(fsl_chan->dev, "event: End-of-Chain link INT\n");
stat &= ~FSL_DMA_SR_EOCDI;
update_cookie = 1;
xfer_ld_q = 1;
}
/* If it current transfer is the end-of-transfer,
* we should clear the Channel Start bit for
* prepare next transfer.
*/
if (stat & FSL_DMA_SR_EOLNI) {
dev_dbg(fsl_chan->dev, "event: End-of-link INT\n");
stat &= ~FSL_DMA_SR_EOLNI;
xfer_ld_q = 1;
}
if (update_cookie)
fsl_dma_update_completed_cookie(fsl_chan);
if (xfer_ld_q)
fsl_chan_xfer_ld_queue(fsl_chan);
if (stat)
dev_dbg(fsl_chan->dev, "event: unhandled sr 0x%02x\n",
stat);
dev_dbg(fsl_chan->dev, "event: Exit\n");
tasklet_schedule(&fsl_chan->tasklet);
return IRQ_HANDLED;
}
static void dma_do_tasklet(unsigned long data)
{
struct fsldma_chan *fsl_chan = (struct fsldma_chan *)data;
fsl_chan_ld_cleanup(fsl_chan);
}
static irqreturn_t fsldma_ctrl_irq(int irq, void *data)
{
struct fsldma_device *fdev = data;
struct fsldma_chan *chan;
unsigned int handled = 0;
u32 gsr, mask;
int i;
gsr = (fdev->feature & FSL_DMA_BIG_ENDIAN) ? in_be32(fdev->regs)
: in_le32(fdev->regs);
mask = 0xff000000;
dev_dbg(fdev->dev, "IRQ: gsr 0x%.8x\n", gsr);
for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
chan = fdev->chan[i];
if (!chan)
continue;
if (gsr & mask) {
dev_dbg(fdev->dev, "IRQ: chan %d\n", chan->id);
fsldma_chan_irq(irq, chan);
handled++;
}
gsr &= ~mask;
mask >>= 8;
}
return IRQ_RETVAL(handled);
}
static void fsldma_free_irqs(struct fsldma_device *fdev)
{
struct fsldma_chan *chan;
int i;
if (fdev->irq != NO_IRQ) {
dev_dbg(fdev->dev, "free per-controller IRQ\n");
free_irq(fdev->irq, fdev);
return;
}
for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
chan = fdev->chan[i];
if (chan && chan->irq != NO_IRQ) {
dev_dbg(fdev->dev, "free channel %d IRQ\n", chan->id);
free_irq(chan->irq, chan);
}
}
}
static int fsldma_request_irqs(struct fsldma_device *fdev)
{
struct fsldma_chan *chan;
int ret;
int i;
/* if we have a per-controller IRQ, use that */
if (fdev->irq != NO_IRQ) {
dev_dbg(fdev->dev, "request per-controller IRQ\n");
ret = request_irq(fdev->irq, fsldma_ctrl_irq, IRQF_SHARED,
"fsldma-controller", fdev);
return ret;
}
/* no per-controller IRQ, use the per-channel IRQs */
for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
chan = fdev->chan[i];
if (!chan)
continue;
if (chan->irq == NO_IRQ) {
dev_err(fdev->dev, "no interrupts property defined for "
"DMA channel %d. Please fix your "
"device tree\n", chan->id);
ret = -ENODEV;
goto out_unwind;
}
dev_dbg(fdev->dev, "request channel %d IRQ\n", chan->id);
ret = request_irq(chan->irq, fsldma_chan_irq, IRQF_SHARED,
"fsldma-chan", chan);
if (ret) {
dev_err(fdev->dev, "unable to request IRQ for DMA "
"channel %d\n", chan->id);
goto out_unwind;
}
}
return 0;
out_unwind:
for (/* none */; i >= 0; i--) {
chan = fdev->chan[i];
if (!chan)
continue;
if (chan->irq == NO_IRQ)
continue;
free_irq(chan->irq, chan);
}
return ret;
}
/*----------------------------------------------------------------------------*/
/* OpenFirmware Subsystem */
/*----------------------------------------------------------------------------*/
static int __devinit fsl_dma_chan_probe(struct fsldma_device *fdev,
struct device_node *node, u32 feature, const char *compatible)
{
struct fsldma_chan *fchan;
struct resource res;
int err;
/* alloc channel */
fchan = kzalloc(sizeof(*fchan), GFP_KERNEL);
if (!fchan) {
dev_err(fdev->dev, "no free memory for DMA channels!\n");
err = -ENOMEM;
goto out_return;
}
/* ioremap registers for use */
fchan->regs = of_iomap(node, 0);
if (!fchan->regs) {
dev_err(fdev->dev, "unable to ioremap registers\n");
err = -ENOMEM;
goto out_free_fchan;
}
err = of_address_to_resource(node, 0, &res);
if (err) {
dev_err(fdev->dev, "unable to find 'reg' property\n");
goto out_iounmap_regs;
}
fchan->feature = feature;
if (!fdev->feature)
fdev->feature = fchan->feature;
/*
* If the DMA device's feature is different than the feature
* of its channels, report the bug
*/
WARN_ON(fdev->feature != fchan->feature);
fchan->dev = fdev->dev;
fchan->id = ((res.start - 0x100) & 0xfff) >> 7;
if (fchan->id >= FSL_DMA_MAX_CHANS_PER_DEVICE) {
dev_err(fdev->dev, "too many channels for device\n");
err = -EINVAL;
goto out_iounmap_regs;
}
fdev->chan[fchan->id] = fchan;
tasklet_init(&fchan->tasklet, dma_do_tasklet, (unsigned long)fchan);
/* Initialize the channel */
dma_init(fchan);
/* Clear cdar registers */
set_cdar(fchan, 0);
switch (fchan->feature & FSL_DMA_IP_MASK) {
case FSL_DMA_IP_85XX:
fchan->toggle_ext_pause = fsl_chan_toggle_ext_pause;
case FSL_DMA_IP_83XX:
fchan->toggle_ext_start = fsl_chan_toggle_ext_start;
fchan->set_src_loop_size = fsl_chan_set_src_loop_size;
fchan->set_dst_loop_size = fsl_chan_set_dst_loop_size;
fchan->set_request_count = fsl_chan_set_request_count;
}
spin_lock_init(&fchan->desc_lock);
INIT_LIST_HEAD(&fchan->ld_queue);
fchan->common.device = &fdev->common;
/* find the IRQ line, if it exists in the device tree */
fchan->irq = irq_of_parse_and_map(node, 0);
/* Add the channel to DMA device channel list */
list_add_tail(&fchan->common.device_node, &fdev->common.channels);
fdev->common.chancnt++;
dev_info(fdev->dev, "#%d (%s), irq %d\n", fchan->id, compatible,
fchan->irq != NO_IRQ ? fchan->irq : fdev->irq);
return 0;
out_iounmap_regs:
iounmap(fchan->regs);
out_free_fchan:
kfree(fchan);
out_return:
return err;
}
static void fsl_dma_chan_remove(struct fsldma_chan *fchan)
{
irq_dispose_mapping(fchan->irq);
list_del(&fchan->common.device_node);
iounmap(fchan->regs);
kfree(fchan);
}
static int __devinit fsldma_of_probe(struct of_device *op,
const struct of_device_id *match)
{
struct fsldma_device *fdev;
struct device_node *child;
int err;
fdev = kzalloc(sizeof(*fdev), GFP_KERNEL);
if (!fdev) {
dev_err(&op->dev, "No enough memory for 'priv'\n");
err = -ENOMEM;
goto out_return;
}
fdev->dev = &op->dev;
INIT_LIST_HEAD(&fdev->common.channels);
/* ioremap the registers for use */
fdev->regs = of_iomap(op->node, 0);
if (!fdev->regs) {
dev_err(&op->dev, "unable to ioremap registers\n");
err = -ENOMEM;
goto out_free_fdev;
}
/* map the channel IRQ if it exists, but don't hookup the handler yet */
fdev->irq = irq_of_parse_and_map(op->node, 0);
dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask);
dma_cap_set(DMA_INTERRUPT, fdev->common.cap_mask);
dma_cap_set(DMA_SLAVE, fdev->common.cap_mask);
fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources;
fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources;
fdev->common.device_prep_dma_interrupt = fsl_dma_prep_interrupt;
fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy;
fdev->common.device_is_tx_complete = fsl_dma_is_complete;
fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending;
fdev->common.device_prep_slave_sg = fsl_dma_prep_slave_sg;
fdev->common.device_terminate_all = fsl_dma_device_terminate_all;
fdev->common.dev = &op->dev;
dev_set_drvdata(&op->dev, fdev);
/*
* We cannot use of_platform_bus_probe() because there is no
* of_platform_bus_remove(). Instead, we manually instantiate every DMA
* channel object.
*/
for_each_child_of_node(op->node, child) {
if (of_device_is_compatible(child, "fsl,eloplus-dma-channel")) {
fsl_dma_chan_probe(fdev, child,
FSL_DMA_IP_85XX | FSL_DMA_BIG_ENDIAN,
"fsl,eloplus-dma-channel");
}
if (of_device_is_compatible(child, "fsl,elo-dma-channel")) {
fsl_dma_chan_probe(fdev, child,
FSL_DMA_IP_83XX | FSL_DMA_LITTLE_ENDIAN,
"fsl,elo-dma-channel");
}
}
/*
* Hookup the IRQ handler(s)
*
* If we have a per-controller interrupt, we prefer that to the
* per-channel interrupts to reduce the number of shared interrupt
* handlers on the same IRQ line
*/
err = fsldma_request_irqs(fdev);
if (err) {
dev_err(fdev->dev, "unable to request IRQs\n");
goto out_free_fdev;
}
dma_async_device_register(&fdev->common);
return 0;
out_free_fdev:
irq_dispose_mapping(fdev->irq);
kfree(fdev);
out_return:
return err;
}
static int fsldma_of_remove(struct of_device *op)
{
struct fsldma_device *fdev;
unsigned int i;
fdev = dev_get_drvdata(&op->dev);
dma_async_device_unregister(&fdev->common);
fsldma_free_irqs(fdev);
for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
if (fdev->chan[i])
fsl_dma_chan_remove(fdev->chan[i]);
}
iounmap(fdev->regs);
dev_set_drvdata(&op->dev, NULL);
kfree(fdev);
return 0;
}
static struct of_device_id fsldma_of_ids[] = {
{ .compatible = "fsl,eloplus-dma", },
{ .compatible = "fsl,elo-dma", },
{}
};
static struct of_platform_driver fsldma_of_driver = {
.name = "fsl-elo-dma",
.match_table = fsldma_of_ids,
.probe = fsldma_of_probe,
.remove = fsldma_of_remove,
};
/*----------------------------------------------------------------------------*/
/* Module Init / Exit */
/*----------------------------------------------------------------------------*/
static __init int fsldma_init(void)
{
int ret;
pr_info("Freescale Elo / Elo Plus DMA driver\n");
ret = of_register_platform_driver(&fsldma_of_driver);
if (ret)
pr_err("fsldma: failed to register platform driver\n");
return ret;
}
static void __exit fsldma_exit(void)
{
of_unregister_platform_driver(&fsldma_of_driver);
}
subsys_initcall(fsldma_init);
module_exit(fsldma_exit);
MODULE_DESCRIPTION("Freescale Elo / Elo Plus DMA driver");
MODULE_LICENSE("GPL");