0f8975ec4d
The soft-dirty is a bit on a PTE which helps to track which pages a task writes to. In order to do this tracking one should 1. Clear soft-dirty bits from PTEs ("echo 4 > /proc/PID/clear_refs) 2. Wait some time. 3. Read soft-dirty bits (55'th in /proc/PID/pagemap2 entries) To do this tracking, the writable bit is cleared from PTEs when the soft-dirty bit is. Thus, after this, when the task tries to modify a page at some virtual address the #PF occurs and the kernel sets the soft-dirty bit on the respective PTE. Note, that although all the task's address space is marked as r/o after the soft-dirty bits clear, the #PF-s that occur after that are processed fast. This is so, since the pages are still mapped to physical memory, and thus all the kernel does is finds this fact out and puts back writable, dirty and soft-dirty bits on the PTE. Another thing to note, is that when mremap moves PTEs they are marked with soft-dirty as well, since from the user perspective mremap modifies the virtual memory at mremap's new address. Signed-off-by: Pavel Emelyanov <xemul@parallels.com> Cc: Matt Mackall <mpm@selenic.com> Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Glauber Costa <glommer@parallels.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: KOSAKI Motohiro <kosaki.motohiro@gmail.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
560 lines
14 KiB
C
560 lines
14 KiB
C
/*
|
|
* mm/mremap.c
|
|
*
|
|
* (C) Copyright 1996 Linus Torvalds
|
|
*
|
|
* Address space accounting code <alan@lxorguk.ukuu.org.uk>
|
|
* (C) Copyright 2002 Red Hat Inc, All Rights Reserved
|
|
*/
|
|
|
|
#include <linux/mm.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <linux/shm.h>
|
|
#include <linux/ksm.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/capability.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/security.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/mmu_notifier.h>
|
|
#include <linux/sched/sysctl.h>
|
|
|
|
#include <asm/uaccess.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/tlbflush.h>
|
|
|
|
#include "internal.h"
|
|
|
|
static pmd_t *get_old_pmd(struct mm_struct *mm, unsigned long addr)
|
|
{
|
|
pgd_t *pgd;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
|
|
pgd = pgd_offset(mm, addr);
|
|
if (pgd_none_or_clear_bad(pgd))
|
|
return NULL;
|
|
|
|
pud = pud_offset(pgd, addr);
|
|
if (pud_none_or_clear_bad(pud))
|
|
return NULL;
|
|
|
|
pmd = pmd_offset(pud, addr);
|
|
if (pmd_none(*pmd))
|
|
return NULL;
|
|
|
|
return pmd;
|
|
}
|
|
|
|
static pmd_t *alloc_new_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
|
|
unsigned long addr)
|
|
{
|
|
pgd_t *pgd;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
|
|
pgd = pgd_offset(mm, addr);
|
|
pud = pud_alloc(mm, pgd, addr);
|
|
if (!pud)
|
|
return NULL;
|
|
|
|
pmd = pmd_alloc(mm, pud, addr);
|
|
if (!pmd)
|
|
return NULL;
|
|
|
|
VM_BUG_ON(pmd_trans_huge(*pmd));
|
|
|
|
return pmd;
|
|
}
|
|
|
|
static void move_ptes(struct vm_area_struct *vma, pmd_t *old_pmd,
|
|
unsigned long old_addr, unsigned long old_end,
|
|
struct vm_area_struct *new_vma, pmd_t *new_pmd,
|
|
unsigned long new_addr, bool need_rmap_locks)
|
|
{
|
|
struct address_space *mapping = NULL;
|
|
struct anon_vma *anon_vma = NULL;
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
pte_t *old_pte, *new_pte, pte;
|
|
spinlock_t *old_ptl, *new_ptl;
|
|
|
|
/*
|
|
* When need_rmap_locks is true, we take the i_mmap_mutex and anon_vma
|
|
* locks to ensure that rmap will always observe either the old or the
|
|
* new ptes. This is the easiest way to avoid races with
|
|
* truncate_pagecache(), page migration, etc...
|
|
*
|
|
* When need_rmap_locks is false, we use other ways to avoid
|
|
* such races:
|
|
*
|
|
* - During exec() shift_arg_pages(), we use a specially tagged vma
|
|
* which rmap call sites look for using is_vma_temporary_stack().
|
|
*
|
|
* - During mremap(), new_vma is often known to be placed after vma
|
|
* in rmap traversal order. This ensures rmap will always observe
|
|
* either the old pte, or the new pte, or both (the page table locks
|
|
* serialize access to individual ptes, but only rmap traversal
|
|
* order guarantees that we won't miss both the old and new ptes).
|
|
*/
|
|
if (need_rmap_locks) {
|
|
if (vma->vm_file) {
|
|
mapping = vma->vm_file->f_mapping;
|
|
mutex_lock(&mapping->i_mmap_mutex);
|
|
}
|
|
if (vma->anon_vma) {
|
|
anon_vma = vma->anon_vma;
|
|
anon_vma_lock_write(anon_vma);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We don't have to worry about the ordering of src and dst
|
|
* pte locks because exclusive mmap_sem prevents deadlock.
|
|
*/
|
|
old_pte = pte_offset_map_lock(mm, old_pmd, old_addr, &old_ptl);
|
|
new_pte = pte_offset_map(new_pmd, new_addr);
|
|
new_ptl = pte_lockptr(mm, new_pmd);
|
|
if (new_ptl != old_ptl)
|
|
spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
|
|
arch_enter_lazy_mmu_mode();
|
|
|
|
for (; old_addr < old_end; old_pte++, old_addr += PAGE_SIZE,
|
|
new_pte++, new_addr += PAGE_SIZE) {
|
|
if (pte_none(*old_pte))
|
|
continue;
|
|
pte = ptep_get_and_clear(mm, old_addr, old_pte);
|
|
pte = move_pte(pte, new_vma->vm_page_prot, old_addr, new_addr);
|
|
set_pte_at(mm, new_addr, new_pte, pte_mksoft_dirty(pte));
|
|
}
|
|
|
|
arch_leave_lazy_mmu_mode();
|
|
if (new_ptl != old_ptl)
|
|
spin_unlock(new_ptl);
|
|
pte_unmap(new_pte - 1);
|
|
pte_unmap_unlock(old_pte - 1, old_ptl);
|
|
if (anon_vma)
|
|
anon_vma_unlock_write(anon_vma);
|
|
if (mapping)
|
|
mutex_unlock(&mapping->i_mmap_mutex);
|
|
}
|
|
|
|
#define LATENCY_LIMIT (64 * PAGE_SIZE)
|
|
|
|
unsigned long move_page_tables(struct vm_area_struct *vma,
|
|
unsigned long old_addr, struct vm_area_struct *new_vma,
|
|
unsigned long new_addr, unsigned long len,
|
|
bool need_rmap_locks)
|
|
{
|
|
unsigned long extent, next, old_end;
|
|
pmd_t *old_pmd, *new_pmd;
|
|
bool need_flush = false;
|
|
unsigned long mmun_start; /* For mmu_notifiers */
|
|
unsigned long mmun_end; /* For mmu_notifiers */
|
|
|
|
old_end = old_addr + len;
|
|
flush_cache_range(vma, old_addr, old_end);
|
|
|
|
mmun_start = old_addr;
|
|
mmun_end = old_end;
|
|
mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
|
|
|
|
for (; old_addr < old_end; old_addr += extent, new_addr += extent) {
|
|
cond_resched();
|
|
next = (old_addr + PMD_SIZE) & PMD_MASK;
|
|
/* even if next overflowed, extent below will be ok */
|
|
extent = next - old_addr;
|
|
if (extent > old_end - old_addr)
|
|
extent = old_end - old_addr;
|
|
old_pmd = get_old_pmd(vma->vm_mm, old_addr);
|
|
if (!old_pmd)
|
|
continue;
|
|
new_pmd = alloc_new_pmd(vma->vm_mm, vma, new_addr);
|
|
if (!new_pmd)
|
|
break;
|
|
if (pmd_trans_huge(*old_pmd)) {
|
|
int err = 0;
|
|
if (extent == HPAGE_PMD_SIZE)
|
|
err = move_huge_pmd(vma, new_vma, old_addr,
|
|
new_addr, old_end,
|
|
old_pmd, new_pmd);
|
|
if (err > 0) {
|
|
need_flush = true;
|
|
continue;
|
|
} else if (!err) {
|
|
split_huge_page_pmd(vma, old_addr, old_pmd);
|
|
}
|
|
VM_BUG_ON(pmd_trans_huge(*old_pmd));
|
|
}
|
|
if (pmd_none(*new_pmd) && __pte_alloc(new_vma->vm_mm, new_vma,
|
|
new_pmd, new_addr))
|
|
break;
|
|
next = (new_addr + PMD_SIZE) & PMD_MASK;
|
|
if (extent > next - new_addr)
|
|
extent = next - new_addr;
|
|
if (extent > LATENCY_LIMIT)
|
|
extent = LATENCY_LIMIT;
|
|
move_ptes(vma, old_pmd, old_addr, old_addr + extent,
|
|
new_vma, new_pmd, new_addr, need_rmap_locks);
|
|
need_flush = true;
|
|
}
|
|
if (likely(need_flush))
|
|
flush_tlb_range(vma, old_end-len, old_addr);
|
|
|
|
mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
|
|
|
|
return len + old_addr - old_end; /* how much done */
|
|
}
|
|
|
|
static unsigned long move_vma(struct vm_area_struct *vma,
|
|
unsigned long old_addr, unsigned long old_len,
|
|
unsigned long new_len, unsigned long new_addr, bool *locked)
|
|
{
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
struct vm_area_struct *new_vma;
|
|
unsigned long vm_flags = vma->vm_flags;
|
|
unsigned long new_pgoff;
|
|
unsigned long moved_len;
|
|
unsigned long excess = 0;
|
|
unsigned long hiwater_vm;
|
|
int split = 0;
|
|
int err;
|
|
bool need_rmap_locks;
|
|
|
|
/*
|
|
* We'd prefer to avoid failure later on in do_munmap:
|
|
* which may split one vma into three before unmapping.
|
|
*/
|
|
if (mm->map_count >= sysctl_max_map_count - 3)
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* Advise KSM to break any KSM pages in the area to be moved:
|
|
* it would be confusing if they were to turn up at the new
|
|
* location, where they happen to coincide with different KSM
|
|
* pages recently unmapped. But leave vma->vm_flags as it was,
|
|
* so KSM can come around to merge on vma and new_vma afterwards.
|
|
*/
|
|
err = ksm_madvise(vma, old_addr, old_addr + old_len,
|
|
MADV_UNMERGEABLE, &vm_flags);
|
|
if (err)
|
|
return err;
|
|
|
|
new_pgoff = vma->vm_pgoff + ((old_addr - vma->vm_start) >> PAGE_SHIFT);
|
|
new_vma = copy_vma(&vma, new_addr, new_len, new_pgoff,
|
|
&need_rmap_locks);
|
|
if (!new_vma)
|
|
return -ENOMEM;
|
|
|
|
moved_len = move_page_tables(vma, old_addr, new_vma, new_addr, old_len,
|
|
need_rmap_locks);
|
|
if (moved_len < old_len) {
|
|
/*
|
|
* On error, move entries back from new area to old,
|
|
* which will succeed since page tables still there,
|
|
* and then proceed to unmap new area instead of old.
|
|
*/
|
|
move_page_tables(new_vma, new_addr, vma, old_addr, moved_len,
|
|
true);
|
|
vma = new_vma;
|
|
old_len = new_len;
|
|
old_addr = new_addr;
|
|
new_addr = -ENOMEM;
|
|
}
|
|
|
|
/* Conceal VM_ACCOUNT so old reservation is not undone */
|
|
if (vm_flags & VM_ACCOUNT) {
|
|
vma->vm_flags &= ~VM_ACCOUNT;
|
|
excess = vma->vm_end - vma->vm_start - old_len;
|
|
if (old_addr > vma->vm_start &&
|
|
old_addr + old_len < vma->vm_end)
|
|
split = 1;
|
|
}
|
|
|
|
/*
|
|
* If we failed to move page tables we still do total_vm increment
|
|
* since do_munmap() will decrement it by old_len == new_len.
|
|
*
|
|
* Since total_vm is about to be raised artificially high for a
|
|
* moment, we need to restore high watermark afterwards: if stats
|
|
* are taken meanwhile, total_vm and hiwater_vm appear too high.
|
|
* If this were a serious issue, we'd add a flag to do_munmap().
|
|
*/
|
|
hiwater_vm = mm->hiwater_vm;
|
|
vm_stat_account(mm, vma->vm_flags, vma->vm_file, new_len>>PAGE_SHIFT);
|
|
|
|
if (do_munmap(mm, old_addr, old_len) < 0) {
|
|
/* OOM: unable to split vma, just get accounts right */
|
|
vm_unacct_memory(excess >> PAGE_SHIFT);
|
|
excess = 0;
|
|
}
|
|
mm->hiwater_vm = hiwater_vm;
|
|
|
|
/* Restore VM_ACCOUNT if one or two pieces of vma left */
|
|
if (excess) {
|
|
vma->vm_flags |= VM_ACCOUNT;
|
|
if (split)
|
|
vma->vm_next->vm_flags |= VM_ACCOUNT;
|
|
}
|
|
|
|
if (vm_flags & VM_LOCKED) {
|
|
mm->locked_vm += new_len >> PAGE_SHIFT;
|
|
*locked = true;
|
|
}
|
|
|
|
return new_addr;
|
|
}
|
|
|
|
static struct vm_area_struct *vma_to_resize(unsigned long addr,
|
|
unsigned long old_len, unsigned long new_len, unsigned long *p)
|
|
{
|
|
struct mm_struct *mm = current->mm;
|
|
struct vm_area_struct *vma = find_vma(mm, addr);
|
|
|
|
if (!vma || vma->vm_start > addr)
|
|
goto Efault;
|
|
|
|
if (is_vm_hugetlb_page(vma))
|
|
goto Einval;
|
|
|
|
/* We can't remap across vm area boundaries */
|
|
if (old_len > vma->vm_end - addr)
|
|
goto Efault;
|
|
|
|
/* Need to be careful about a growing mapping */
|
|
if (new_len > old_len) {
|
|
unsigned long pgoff;
|
|
|
|
if (vma->vm_flags & (VM_DONTEXPAND | VM_PFNMAP))
|
|
goto Efault;
|
|
pgoff = (addr - vma->vm_start) >> PAGE_SHIFT;
|
|
pgoff += vma->vm_pgoff;
|
|
if (pgoff + (new_len >> PAGE_SHIFT) < pgoff)
|
|
goto Einval;
|
|
}
|
|
|
|
if (vma->vm_flags & VM_LOCKED) {
|
|
unsigned long locked, lock_limit;
|
|
locked = mm->locked_vm << PAGE_SHIFT;
|
|
lock_limit = rlimit(RLIMIT_MEMLOCK);
|
|
locked += new_len - old_len;
|
|
if (locked > lock_limit && !capable(CAP_IPC_LOCK))
|
|
goto Eagain;
|
|
}
|
|
|
|
if (!may_expand_vm(mm, (new_len - old_len) >> PAGE_SHIFT))
|
|
goto Enomem;
|
|
|
|
if (vma->vm_flags & VM_ACCOUNT) {
|
|
unsigned long charged = (new_len - old_len) >> PAGE_SHIFT;
|
|
if (security_vm_enough_memory_mm(mm, charged))
|
|
goto Efault;
|
|
*p = charged;
|
|
}
|
|
|
|
return vma;
|
|
|
|
Efault: /* very odd choice for most of the cases, but... */
|
|
return ERR_PTR(-EFAULT);
|
|
Einval:
|
|
return ERR_PTR(-EINVAL);
|
|
Enomem:
|
|
return ERR_PTR(-ENOMEM);
|
|
Eagain:
|
|
return ERR_PTR(-EAGAIN);
|
|
}
|
|
|
|
static unsigned long mremap_to(unsigned long addr, unsigned long old_len,
|
|
unsigned long new_addr, unsigned long new_len, bool *locked)
|
|
{
|
|
struct mm_struct *mm = current->mm;
|
|
struct vm_area_struct *vma;
|
|
unsigned long ret = -EINVAL;
|
|
unsigned long charged = 0;
|
|
unsigned long map_flags;
|
|
|
|
if (new_addr & ~PAGE_MASK)
|
|
goto out;
|
|
|
|
if (new_len > TASK_SIZE || new_addr > TASK_SIZE - new_len)
|
|
goto out;
|
|
|
|
/* Check if the location we're moving into overlaps the
|
|
* old location at all, and fail if it does.
|
|
*/
|
|
if ((new_addr <= addr) && (new_addr+new_len) > addr)
|
|
goto out;
|
|
|
|
if ((addr <= new_addr) && (addr+old_len) > new_addr)
|
|
goto out;
|
|
|
|
ret = do_munmap(mm, new_addr, new_len);
|
|
if (ret)
|
|
goto out;
|
|
|
|
if (old_len >= new_len) {
|
|
ret = do_munmap(mm, addr+new_len, old_len - new_len);
|
|
if (ret && old_len != new_len)
|
|
goto out;
|
|
old_len = new_len;
|
|
}
|
|
|
|
vma = vma_to_resize(addr, old_len, new_len, &charged);
|
|
if (IS_ERR(vma)) {
|
|
ret = PTR_ERR(vma);
|
|
goto out;
|
|
}
|
|
|
|
map_flags = MAP_FIXED;
|
|
if (vma->vm_flags & VM_MAYSHARE)
|
|
map_flags |= MAP_SHARED;
|
|
|
|
ret = get_unmapped_area(vma->vm_file, new_addr, new_len, vma->vm_pgoff +
|
|
((addr - vma->vm_start) >> PAGE_SHIFT),
|
|
map_flags);
|
|
if (ret & ~PAGE_MASK)
|
|
goto out1;
|
|
|
|
ret = move_vma(vma, addr, old_len, new_len, new_addr, locked);
|
|
if (!(ret & ~PAGE_MASK))
|
|
goto out;
|
|
out1:
|
|
vm_unacct_memory(charged);
|
|
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static int vma_expandable(struct vm_area_struct *vma, unsigned long delta)
|
|
{
|
|
unsigned long end = vma->vm_end + delta;
|
|
if (end < vma->vm_end) /* overflow */
|
|
return 0;
|
|
if (vma->vm_next && vma->vm_next->vm_start < end) /* intersection */
|
|
return 0;
|
|
if (get_unmapped_area(NULL, vma->vm_start, end - vma->vm_start,
|
|
0, MAP_FIXED) & ~PAGE_MASK)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Expand (or shrink) an existing mapping, potentially moving it at the
|
|
* same time (controlled by the MREMAP_MAYMOVE flag and available VM space)
|
|
*
|
|
* MREMAP_FIXED option added 5-Dec-1999 by Benjamin LaHaise
|
|
* This option implies MREMAP_MAYMOVE.
|
|
*/
|
|
SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
|
|
unsigned long, new_len, unsigned long, flags,
|
|
unsigned long, new_addr)
|
|
{
|
|
struct mm_struct *mm = current->mm;
|
|
struct vm_area_struct *vma;
|
|
unsigned long ret = -EINVAL;
|
|
unsigned long charged = 0;
|
|
bool locked = false;
|
|
|
|
down_write(¤t->mm->mmap_sem);
|
|
|
|
if (flags & ~(MREMAP_FIXED | MREMAP_MAYMOVE))
|
|
goto out;
|
|
|
|
if (addr & ~PAGE_MASK)
|
|
goto out;
|
|
|
|
old_len = PAGE_ALIGN(old_len);
|
|
new_len = PAGE_ALIGN(new_len);
|
|
|
|
/*
|
|
* We allow a zero old-len as a special case
|
|
* for DOS-emu "duplicate shm area" thing. But
|
|
* a zero new-len is nonsensical.
|
|
*/
|
|
if (!new_len)
|
|
goto out;
|
|
|
|
if (flags & MREMAP_FIXED) {
|
|
if (flags & MREMAP_MAYMOVE)
|
|
ret = mremap_to(addr, old_len, new_addr, new_len,
|
|
&locked);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Always allow a shrinking remap: that just unmaps
|
|
* the unnecessary pages..
|
|
* do_munmap does all the needed commit accounting
|
|
*/
|
|
if (old_len >= new_len) {
|
|
ret = do_munmap(mm, addr+new_len, old_len - new_len);
|
|
if (ret && old_len != new_len)
|
|
goto out;
|
|
ret = addr;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Ok, we need to grow..
|
|
*/
|
|
vma = vma_to_resize(addr, old_len, new_len, &charged);
|
|
if (IS_ERR(vma)) {
|
|
ret = PTR_ERR(vma);
|
|
goto out;
|
|
}
|
|
|
|
/* old_len exactly to the end of the area..
|
|
*/
|
|
if (old_len == vma->vm_end - addr) {
|
|
/* can we just expand the current mapping? */
|
|
if (vma_expandable(vma, new_len - old_len)) {
|
|
int pages = (new_len - old_len) >> PAGE_SHIFT;
|
|
|
|
if (vma_adjust(vma, vma->vm_start, addr + new_len,
|
|
vma->vm_pgoff, NULL)) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
vm_stat_account(mm, vma->vm_flags, vma->vm_file, pages);
|
|
if (vma->vm_flags & VM_LOCKED) {
|
|
mm->locked_vm += pages;
|
|
locked = true;
|
|
new_addr = addr;
|
|
}
|
|
ret = addr;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We weren't able to just expand or shrink the area,
|
|
* we need to create a new one and move it..
|
|
*/
|
|
ret = -ENOMEM;
|
|
if (flags & MREMAP_MAYMOVE) {
|
|
unsigned long map_flags = 0;
|
|
if (vma->vm_flags & VM_MAYSHARE)
|
|
map_flags |= MAP_SHARED;
|
|
|
|
new_addr = get_unmapped_area(vma->vm_file, 0, new_len,
|
|
vma->vm_pgoff +
|
|
((addr - vma->vm_start) >> PAGE_SHIFT),
|
|
map_flags);
|
|
if (new_addr & ~PAGE_MASK) {
|
|
ret = new_addr;
|
|
goto out;
|
|
}
|
|
|
|
ret = move_vma(vma, addr, old_len, new_len, new_addr, &locked);
|
|
}
|
|
out:
|
|
if (ret & ~PAGE_MASK)
|
|
vm_unacct_memory(charged);
|
|
up_write(¤t->mm->mmap_sem);
|
|
if (locked && new_len > old_len)
|
|
mm_populate(new_addr + old_len, new_len - old_len);
|
|
return ret;
|
|
}
|