d366e7ec41
Now that all conf and stat fields are moved into policy specific blkio_policy_data->pdata areas, there's no reason to use blkio_policy_data itself in prfill functions. Pass around @pd->pdata instead of @pd. Signed-off-by: Tejun Heo <tj@kernel.org>
1283 lines
31 KiB
C
1283 lines
31 KiB
C
/*
|
|
* Interface for controlling IO bandwidth on a request queue
|
|
*
|
|
* Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/bio.h>
|
|
#include <linux/blktrace_api.h>
|
|
#include "blk-cgroup.h"
|
|
#include "blk.h"
|
|
|
|
/* Max dispatch from a group in 1 round */
|
|
static int throtl_grp_quantum = 8;
|
|
|
|
/* Total max dispatch from all groups in one round */
|
|
static int throtl_quantum = 32;
|
|
|
|
/* Throttling is performed over 100ms slice and after that slice is renewed */
|
|
static unsigned long throtl_slice = HZ/10; /* 100 ms */
|
|
|
|
static struct blkio_policy_type blkio_policy_throtl;
|
|
|
|
/* A workqueue to queue throttle related work */
|
|
static struct workqueue_struct *kthrotld_workqueue;
|
|
static void throtl_schedule_delayed_work(struct throtl_data *td,
|
|
unsigned long delay);
|
|
|
|
struct throtl_rb_root {
|
|
struct rb_root rb;
|
|
struct rb_node *left;
|
|
unsigned int count;
|
|
unsigned long min_disptime;
|
|
};
|
|
|
|
#define THROTL_RB_ROOT (struct throtl_rb_root) { .rb = RB_ROOT, .left = NULL, \
|
|
.count = 0, .min_disptime = 0}
|
|
|
|
#define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node)
|
|
|
|
/* Per-cpu group stats */
|
|
struct tg_stats_cpu {
|
|
/* total bytes transferred */
|
|
struct blkg_rwstat service_bytes;
|
|
/* total IOs serviced, post merge */
|
|
struct blkg_rwstat serviced;
|
|
};
|
|
|
|
struct throtl_grp {
|
|
/* active throtl group service_tree member */
|
|
struct rb_node rb_node;
|
|
|
|
/*
|
|
* Dispatch time in jiffies. This is the estimated time when group
|
|
* will unthrottle and is ready to dispatch more bio. It is used as
|
|
* key to sort active groups in service tree.
|
|
*/
|
|
unsigned long disptime;
|
|
|
|
unsigned int flags;
|
|
|
|
/* Two lists for READ and WRITE */
|
|
struct bio_list bio_lists[2];
|
|
|
|
/* Number of queued bios on READ and WRITE lists */
|
|
unsigned int nr_queued[2];
|
|
|
|
/* bytes per second rate limits */
|
|
uint64_t bps[2];
|
|
|
|
/* IOPS limits */
|
|
unsigned int iops[2];
|
|
|
|
/* Number of bytes disptached in current slice */
|
|
uint64_t bytes_disp[2];
|
|
/* Number of bio's dispatched in current slice */
|
|
unsigned int io_disp[2];
|
|
|
|
/* When did we start a new slice */
|
|
unsigned long slice_start[2];
|
|
unsigned long slice_end[2];
|
|
|
|
/* Some throttle limits got updated for the group */
|
|
int limits_changed;
|
|
|
|
/* Per cpu stats pointer */
|
|
struct tg_stats_cpu __percpu *stats_cpu;
|
|
|
|
/* List of tgs waiting for per cpu stats memory to be allocated */
|
|
struct list_head stats_alloc_node;
|
|
};
|
|
|
|
struct throtl_data
|
|
{
|
|
/* service tree for active throtl groups */
|
|
struct throtl_rb_root tg_service_tree;
|
|
|
|
struct throtl_grp *root_tg;
|
|
struct request_queue *queue;
|
|
|
|
/* Total Number of queued bios on READ and WRITE lists */
|
|
unsigned int nr_queued[2];
|
|
|
|
/*
|
|
* number of total undestroyed groups
|
|
*/
|
|
unsigned int nr_undestroyed_grps;
|
|
|
|
/* Work for dispatching throttled bios */
|
|
struct delayed_work throtl_work;
|
|
|
|
int limits_changed;
|
|
};
|
|
|
|
/* list and work item to allocate percpu group stats */
|
|
static DEFINE_SPINLOCK(tg_stats_alloc_lock);
|
|
static LIST_HEAD(tg_stats_alloc_list);
|
|
|
|
static void tg_stats_alloc_fn(struct work_struct *);
|
|
static DECLARE_DELAYED_WORK(tg_stats_alloc_work, tg_stats_alloc_fn);
|
|
|
|
static inline struct throtl_grp *blkg_to_tg(struct blkio_group *blkg)
|
|
{
|
|
return blkg_to_pdata(blkg, &blkio_policy_throtl);
|
|
}
|
|
|
|
static inline struct blkio_group *tg_to_blkg(struct throtl_grp *tg)
|
|
{
|
|
return pdata_to_blkg(tg);
|
|
}
|
|
|
|
enum tg_state_flags {
|
|
THROTL_TG_FLAG_on_rr = 0, /* on round-robin busy list */
|
|
};
|
|
|
|
#define THROTL_TG_FNS(name) \
|
|
static inline void throtl_mark_tg_##name(struct throtl_grp *tg) \
|
|
{ \
|
|
(tg)->flags |= (1 << THROTL_TG_FLAG_##name); \
|
|
} \
|
|
static inline void throtl_clear_tg_##name(struct throtl_grp *tg) \
|
|
{ \
|
|
(tg)->flags &= ~(1 << THROTL_TG_FLAG_##name); \
|
|
} \
|
|
static inline int throtl_tg_##name(const struct throtl_grp *tg) \
|
|
{ \
|
|
return ((tg)->flags & (1 << THROTL_TG_FLAG_##name)) != 0; \
|
|
}
|
|
|
|
THROTL_TG_FNS(on_rr);
|
|
|
|
#define throtl_log_tg(td, tg, fmt, args...) \
|
|
blk_add_trace_msg((td)->queue, "throtl %s " fmt, \
|
|
blkg_path(tg_to_blkg(tg)), ##args); \
|
|
|
|
#define throtl_log(td, fmt, args...) \
|
|
blk_add_trace_msg((td)->queue, "throtl " fmt, ##args)
|
|
|
|
static inline unsigned int total_nr_queued(struct throtl_data *td)
|
|
{
|
|
return td->nr_queued[0] + td->nr_queued[1];
|
|
}
|
|
|
|
/*
|
|
* Worker for allocating per cpu stat for tgs. This is scheduled on the
|
|
* system_nrt_wq once there are some groups on the alloc_list waiting for
|
|
* allocation.
|
|
*/
|
|
static void tg_stats_alloc_fn(struct work_struct *work)
|
|
{
|
|
static struct tg_stats_cpu *stats_cpu; /* this fn is non-reentrant */
|
|
struct delayed_work *dwork = to_delayed_work(work);
|
|
bool empty = false;
|
|
|
|
alloc_stats:
|
|
if (!stats_cpu) {
|
|
stats_cpu = alloc_percpu(struct tg_stats_cpu);
|
|
if (!stats_cpu) {
|
|
/* allocation failed, try again after some time */
|
|
queue_delayed_work(system_nrt_wq, dwork,
|
|
msecs_to_jiffies(10));
|
|
return;
|
|
}
|
|
}
|
|
|
|
spin_lock_irq(&tg_stats_alloc_lock);
|
|
|
|
if (!list_empty(&tg_stats_alloc_list)) {
|
|
struct throtl_grp *tg = list_first_entry(&tg_stats_alloc_list,
|
|
struct throtl_grp,
|
|
stats_alloc_node);
|
|
swap(tg->stats_cpu, stats_cpu);
|
|
list_del_init(&tg->stats_alloc_node);
|
|
}
|
|
|
|
empty = list_empty(&tg_stats_alloc_list);
|
|
spin_unlock_irq(&tg_stats_alloc_lock);
|
|
if (!empty)
|
|
goto alloc_stats;
|
|
}
|
|
|
|
static void throtl_init_blkio_group(struct blkio_group *blkg)
|
|
{
|
|
struct throtl_grp *tg = blkg_to_tg(blkg);
|
|
|
|
RB_CLEAR_NODE(&tg->rb_node);
|
|
bio_list_init(&tg->bio_lists[0]);
|
|
bio_list_init(&tg->bio_lists[1]);
|
|
tg->limits_changed = false;
|
|
|
|
tg->bps[READ] = -1;
|
|
tg->bps[WRITE] = -1;
|
|
tg->iops[READ] = -1;
|
|
tg->iops[WRITE] = -1;
|
|
|
|
/*
|
|
* Ugh... We need to perform per-cpu allocation for tg->stats_cpu
|
|
* but percpu allocator can't be called from IO path. Queue tg on
|
|
* tg_stats_alloc_list and allocate from work item.
|
|
*/
|
|
spin_lock(&tg_stats_alloc_lock);
|
|
list_add(&tg->stats_alloc_node, &tg_stats_alloc_list);
|
|
queue_delayed_work(system_nrt_wq, &tg_stats_alloc_work, 0);
|
|
spin_unlock(&tg_stats_alloc_lock);
|
|
}
|
|
|
|
static void throtl_exit_blkio_group(struct blkio_group *blkg)
|
|
{
|
|
struct throtl_grp *tg = blkg_to_tg(blkg);
|
|
|
|
spin_lock(&tg_stats_alloc_lock);
|
|
list_del_init(&tg->stats_alloc_node);
|
|
spin_unlock(&tg_stats_alloc_lock);
|
|
|
|
free_percpu(tg->stats_cpu);
|
|
}
|
|
|
|
static void throtl_reset_group_stats(struct blkio_group *blkg)
|
|
{
|
|
struct throtl_grp *tg = blkg_to_tg(blkg);
|
|
int cpu;
|
|
|
|
if (tg->stats_cpu == NULL)
|
|
return;
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
struct tg_stats_cpu *sc = per_cpu_ptr(tg->stats_cpu, cpu);
|
|
|
|
blkg_rwstat_reset(&sc->service_bytes);
|
|
blkg_rwstat_reset(&sc->serviced);
|
|
}
|
|
}
|
|
|
|
static struct
|
|
throtl_grp *throtl_lookup_tg(struct throtl_data *td, struct blkio_cgroup *blkcg)
|
|
{
|
|
/*
|
|
* This is the common case when there are no blkio cgroups.
|
|
* Avoid lookup in this case
|
|
*/
|
|
if (blkcg == &blkio_root_cgroup)
|
|
return td->root_tg;
|
|
|
|
return blkg_to_tg(blkg_lookup(blkcg, td->queue));
|
|
}
|
|
|
|
static struct throtl_grp *throtl_lookup_create_tg(struct throtl_data *td,
|
|
struct blkio_cgroup *blkcg)
|
|
{
|
|
struct request_queue *q = td->queue;
|
|
struct throtl_grp *tg = NULL;
|
|
|
|
/*
|
|
* This is the common case when there are no blkio cgroups.
|
|
* Avoid lookup in this case
|
|
*/
|
|
if (blkcg == &blkio_root_cgroup) {
|
|
tg = td->root_tg;
|
|
} else {
|
|
struct blkio_group *blkg;
|
|
|
|
blkg = blkg_lookup_create(blkcg, q, false);
|
|
|
|
/* if %NULL and @q is alive, fall back to root_tg */
|
|
if (!IS_ERR(blkg))
|
|
tg = blkg_to_tg(blkg);
|
|
else if (!blk_queue_dead(q))
|
|
tg = td->root_tg;
|
|
}
|
|
|
|
return tg;
|
|
}
|
|
|
|
static struct throtl_grp *throtl_rb_first(struct throtl_rb_root *root)
|
|
{
|
|
/* Service tree is empty */
|
|
if (!root->count)
|
|
return NULL;
|
|
|
|
if (!root->left)
|
|
root->left = rb_first(&root->rb);
|
|
|
|
if (root->left)
|
|
return rb_entry_tg(root->left);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void rb_erase_init(struct rb_node *n, struct rb_root *root)
|
|
{
|
|
rb_erase(n, root);
|
|
RB_CLEAR_NODE(n);
|
|
}
|
|
|
|
static void throtl_rb_erase(struct rb_node *n, struct throtl_rb_root *root)
|
|
{
|
|
if (root->left == n)
|
|
root->left = NULL;
|
|
rb_erase_init(n, &root->rb);
|
|
--root->count;
|
|
}
|
|
|
|
static void update_min_dispatch_time(struct throtl_rb_root *st)
|
|
{
|
|
struct throtl_grp *tg;
|
|
|
|
tg = throtl_rb_first(st);
|
|
if (!tg)
|
|
return;
|
|
|
|
st->min_disptime = tg->disptime;
|
|
}
|
|
|
|
static void
|
|
tg_service_tree_add(struct throtl_rb_root *st, struct throtl_grp *tg)
|
|
{
|
|
struct rb_node **node = &st->rb.rb_node;
|
|
struct rb_node *parent = NULL;
|
|
struct throtl_grp *__tg;
|
|
unsigned long key = tg->disptime;
|
|
int left = 1;
|
|
|
|
while (*node != NULL) {
|
|
parent = *node;
|
|
__tg = rb_entry_tg(parent);
|
|
|
|
if (time_before(key, __tg->disptime))
|
|
node = &parent->rb_left;
|
|
else {
|
|
node = &parent->rb_right;
|
|
left = 0;
|
|
}
|
|
}
|
|
|
|
if (left)
|
|
st->left = &tg->rb_node;
|
|
|
|
rb_link_node(&tg->rb_node, parent, node);
|
|
rb_insert_color(&tg->rb_node, &st->rb);
|
|
}
|
|
|
|
static void __throtl_enqueue_tg(struct throtl_data *td, struct throtl_grp *tg)
|
|
{
|
|
struct throtl_rb_root *st = &td->tg_service_tree;
|
|
|
|
tg_service_tree_add(st, tg);
|
|
throtl_mark_tg_on_rr(tg);
|
|
st->count++;
|
|
}
|
|
|
|
static void throtl_enqueue_tg(struct throtl_data *td, struct throtl_grp *tg)
|
|
{
|
|
if (!throtl_tg_on_rr(tg))
|
|
__throtl_enqueue_tg(td, tg);
|
|
}
|
|
|
|
static void __throtl_dequeue_tg(struct throtl_data *td, struct throtl_grp *tg)
|
|
{
|
|
throtl_rb_erase(&tg->rb_node, &td->tg_service_tree);
|
|
throtl_clear_tg_on_rr(tg);
|
|
}
|
|
|
|
static void throtl_dequeue_tg(struct throtl_data *td, struct throtl_grp *tg)
|
|
{
|
|
if (throtl_tg_on_rr(tg))
|
|
__throtl_dequeue_tg(td, tg);
|
|
}
|
|
|
|
static void throtl_schedule_next_dispatch(struct throtl_data *td)
|
|
{
|
|
struct throtl_rb_root *st = &td->tg_service_tree;
|
|
|
|
/*
|
|
* If there are more bios pending, schedule more work.
|
|
*/
|
|
if (!total_nr_queued(td))
|
|
return;
|
|
|
|
BUG_ON(!st->count);
|
|
|
|
update_min_dispatch_time(st);
|
|
|
|
if (time_before_eq(st->min_disptime, jiffies))
|
|
throtl_schedule_delayed_work(td, 0);
|
|
else
|
|
throtl_schedule_delayed_work(td, (st->min_disptime - jiffies));
|
|
}
|
|
|
|
static inline void
|
|
throtl_start_new_slice(struct throtl_data *td, struct throtl_grp *tg, bool rw)
|
|
{
|
|
tg->bytes_disp[rw] = 0;
|
|
tg->io_disp[rw] = 0;
|
|
tg->slice_start[rw] = jiffies;
|
|
tg->slice_end[rw] = jiffies + throtl_slice;
|
|
throtl_log_tg(td, tg, "[%c] new slice start=%lu end=%lu jiffies=%lu",
|
|
rw == READ ? 'R' : 'W', tg->slice_start[rw],
|
|
tg->slice_end[rw], jiffies);
|
|
}
|
|
|
|
static inline void throtl_set_slice_end(struct throtl_data *td,
|
|
struct throtl_grp *tg, bool rw, unsigned long jiffy_end)
|
|
{
|
|
tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
|
|
}
|
|
|
|
static inline void throtl_extend_slice(struct throtl_data *td,
|
|
struct throtl_grp *tg, bool rw, unsigned long jiffy_end)
|
|
{
|
|
tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
|
|
throtl_log_tg(td, tg, "[%c] extend slice start=%lu end=%lu jiffies=%lu",
|
|
rw == READ ? 'R' : 'W', tg->slice_start[rw],
|
|
tg->slice_end[rw], jiffies);
|
|
}
|
|
|
|
/* Determine if previously allocated or extended slice is complete or not */
|
|
static bool
|
|
throtl_slice_used(struct throtl_data *td, struct throtl_grp *tg, bool rw)
|
|
{
|
|
if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Trim the used slices and adjust slice start accordingly */
|
|
static inline void
|
|
throtl_trim_slice(struct throtl_data *td, struct throtl_grp *tg, bool rw)
|
|
{
|
|
unsigned long nr_slices, time_elapsed, io_trim;
|
|
u64 bytes_trim, tmp;
|
|
|
|
BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
|
|
|
|
/*
|
|
* If bps are unlimited (-1), then time slice don't get
|
|
* renewed. Don't try to trim the slice if slice is used. A new
|
|
* slice will start when appropriate.
|
|
*/
|
|
if (throtl_slice_used(td, tg, rw))
|
|
return;
|
|
|
|
/*
|
|
* A bio has been dispatched. Also adjust slice_end. It might happen
|
|
* that initially cgroup limit was very low resulting in high
|
|
* slice_end, but later limit was bumped up and bio was dispached
|
|
* sooner, then we need to reduce slice_end. A high bogus slice_end
|
|
* is bad because it does not allow new slice to start.
|
|
*/
|
|
|
|
throtl_set_slice_end(td, tg, rw, jiffies + throtl_slice);
|
|
|
|
time_elapsed = jiffies - tg->slice_start[rw];
|
|
|
|
nr_slices = time_elapsed / throtl_slice;
|
|
|
|
if (!nr_slices)
|
|
return;
|
|
tmp = tg->bps[rw] * throtl_slice * nr_slices;
|
|
do_div(tmp, HZ);
|
|
bytes_trim = tmp;
|
|
|
|
io_trim = (tg->iops[rw] * throtl_slice * nr_slices)/HZ;
|
|
|
|
if (!bytes_trim && !io_trim)
|
|
return;
|
|
|
|
if (tg->bytes_disp[rw] >= bytes_trim)
|
|
tg->bytes_disp[rw] -= bytes_trim;
|
|
else
|
|
tg->bytes_disp[rw] = 0;
|
|
|
|
if (tg->io_disp[rw] >= io_trim)
|
|
tg->io_disp[rw] -= io_trim;
|
|
else
|
|
tg->io_disp[rw] = 0;
|
|
|
|
tg->slice_start[rw] += nr_slices * throtl_slice;
|
|
|
|
throtl_log_tg(td, tg, "[%c] trim slice nr=%lu bytes=%llu io=%lu"
|
|
" start=%lu end=%lu jiffies=%lu",
|
|
rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
|
|
tg->slice_start[rw], tg->slice_end[rw], jiffies);
|
|
}
|
|
|
|
static bool tg_with_in_iops_limit(struct throtl_data *td, struct throtl_grp *tg,
|
|
struct bio *bio, unsigned long *wait)
|
|
{
|
|
bool rw = bio_data_dir(bio);
|
|
unsigned int io_allowed;
|
|
unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
|
|
u64 tmp;
|
|
|
|
jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
|
|
|
|
/* Slice has just started. Consider one slice interval */
|
|
if (!jiffy_elapsed)
|
|
jiffy_elapsed_rnd = throtl_slice;
|
|
|
|
jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
|
|
|
|
/*
|
|
* jiffy_elapsed_rnd should not be a big value as minimum iops can be
|
|
* 1 then at max jiffy elapsed should be equivalent of 1 second as we
|
|
* will allow dispatch after 1 second and after that slice should
|
|
* have been trimmed.
|
|
*/
|
|
|
|
tmp = (u64)tg->iops[rw] * jiffy_elapsed_rnd;
|
|
do_div(tmp, HZ);
|
|
|
|
if (tmp > UINT_MAX)
|
|
io_allowed = UINT_MAX;
|
|
else
|
|
io_allowed = tmp;
|
|
|
|
if (tg->io_disp[rw] + 1 <= io_allowed) {
|
|
if (wait)
|
|
*wait = 0;
|
|
return 1;
|
|
}
|
|
|
|
/* Calc approx time to dispatch */
|
|
jiffy_wait = ((tg->io_disp[rw] + 1) * HZ)/tg->iops[rw] + 1;
|
|
|
|
if (jiffy_wait > jiffy_elapsed)
|
|
jiffy_wait = jiffy_wait - jiffy_elapsed;
|
|
else
|
|
jiffy_wait = 1;
|
|
|
|
if (wait)
|
|
*wait = jiffy_wait;
|
|
return 0;
|
|
}
|
|
|
|
static bool tg_with_in_bps_limit(struct throtl_data *td, struct throtl_grp *tg,
|
|
struct bio *bio, unsigned long *wait)
|
|
{
|
|
bool rw = bio_data_dir(bio);
|
|
u64 bytes_allowed, extra_bytes, tmp;
|
|
unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
|
|
|
|
jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
|
|
|
|
/* Slice has just started. Consider one slice interval */
|
|
if (!jiffy_elapsed)
|
|
jiffy_elapsed_rnd = throtl_slice;
|
|
|
|
jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
|
|
|
|
tmp = tg->bps[rw] * jiffy_elapsed_rnd;
|
|
do_div(tmp, HZ);
|
|
bytes_allowed = tmp;
|
|
|
|
if (tg->bytes_disp[rw] + bio->bi_size <= bytes_allowed) {
|
|
if (wait)
|
|
*wait = 0;
|
|
return 1;
|
|
}
|
|
|
|
/* Calc approx time to dispatch */
|
|
extra_bytes = tg->bytes_disp[rw] + bio->bi_size - bytes_allowed;
|
|
jiffy_wait = div64_u64(extra_bytes * HZ, tg->bps[rw]);
|
|
|
|
if (!jiffy_wait)
|
|
jiffy_wait = 1;
|
|
|
|
/*
|
|
* This wait time is without taking into consideration the rounding
|
|
* up we did. Add that time also.
|
|
*/
|
|
jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
|
|
if (wait)
|
|
*wait = jiffy_wait;
|
|
return 0;
|
|
}
|
|
|
|
static bool tg_no_rule_group(struct throtl_grp *tg, bool rw) {
|
|
if (tg->bps[rw] == -1 && tg->iops[rw] == -1)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Returns whether one can dispatch a bio or not. Also returns approx number
|
|
* of jiffies to wait before this bio is with-in IO rate and can be dispatched
|
|
*/
|
|
static bool tg_may_dispatch(struct throtl_data *td, struct throtl_grp *tg,
|
|
struct bio *bio, unsigned long *wait)
|
|
{
|
|
bool rw = bio_data_dir(bio);
|
|
unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
|
|
|
|
/*
|
|
* Currently whole state machine of group depends on first bio
|
|
* queued in the group bio list. So one should not be calling
|
|
* this function with a different bio if there are other bios
|
|
* queued.
|
|
*/
|
|
BUG_ON(tg->nr_queued[rw] && bio != bio_list_peek(&tg->bio_lists[rw]));
|
|
|
|
/* If tg->bps = -1, then BW is unlimited */
|
|
if (tg->bps[rw] == -1 && tg->iops[rw] == -1) {
|
|
if (wait)
|
|
*wait = 0;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* If previous slice expired, start a new one otherwise renew/extend
|
|
* existing slice to make sure it is at least throtl_slice interval
|
|
* long since now.
|
|
*/
|
|
if (throtl_slice_used(td, tg, rw))
|
|
throtl_start_new_slice(td, tg, rw);
|
|
else {
|
|
if (time_before(tg->slice_end[rw], jiffies + throtl_slice))
|
|
throtl_extend_slice(td, tg, rw, jiffies + throtl_slice);
|
|
}
|
|
|
|
if (tg_with_in_bps_limit(td, tg, bio, &bps_wait)
|
|
&& tg_with_in_iops_limit(td, tg, bio, &iops_wait)) {
|
|
if (wait)
|
|
*wait = 0;
|
|
return 1;
|
|
}
|
|
|
|
max_wait = max(bps_wait, iops_wait);
|
|
|
|
if (wait)
|
|
*wait = max_wait;
|
|
|
|
if (time_before(tg->slice_end[rw], jiffies + max_wait))
|
|
throtl_extend_slice(td, tg, rw, jiffies + max_wait);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void throtl_update_dispatch_stats(struct blkio_group *blkg, u64 bytes,
|
|
int rw)
|
|
{
|
|
struct throtl_grp *tg = blkg_to_tg(blkg);
|
|
struct tg_stats_cpu *stats_cpu;
|
|
unsigned long flags;
|
|
|
|
/* If per cpu stats are not allocated yet, don't do any accounting. */
|
|
if (tg->stats_cpu == NULL)
|
|
return;
|
|
|
|
/*
|
|
* Disabling interrupts to provide mutual exclusion between two
|
|
* writes on same cpu. It probably is not needed for 64bit. Not
|
|
* optimizing that case yet.
|
|
*/
|
|
local_irq_save(flags);
|
|
|
|
stats_cpu = this_cpu_ptr(tg->stats_cpu);
|
|
|
|
blkg_rwstat_add(&stats_cpu->serviced, rw, 1);
|
|
blkg_rwstat_add(&stats_cpu->service_bytes, rw, bytes);
|
|
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
|
|
{
|
|
bool rw = bio_data_dir(bio);
|
|
|
|
/* Charge the bio to the group */
|
|
tg->bytes_disp[rw] += bio->bi_size;
|
|
tg->io_disp[rw]++;
|
|
|
|
throtl_update_dispatch_stats(tg_to_blkg(tg), bio->bi_size, bio->bi_rw);
|
|
}
|
|
|
|
static void throtl_add_bio_tg(struct throtl_data *td, struct throtl_grp *tg,
|
|
struct bio *bio)
|
|
{
|
|
bool rw = bio_data_dir(bio);
|
|
|
|
bio_list_add(&tg->bio_lists[rw], bio);
|
|
/* Take a bio reference on tg */
|
|
blkg_get(tg_to_blkg(tg));
|
|
tg->nr_queued[rw]++;
|
|
td->nr_queued[rw]++;
|
|
throtl_enqueue_tg(td, tg);
|
|
}
|
|
|
|
static void tg_update_disptime(struct throtl_data *td, struct throtl_grp *tg)
|
|
{
|
|
unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
|
|
struct bio *bio;
|
|
|
|
if ((bio = bio_list_peek(&tg->bio_lists[READ])))
|
|
tg_may_dispatch(td, tg, bio, &read_wait);
|
|
|
|
if ((bio = bio_list_peek(&tg->bio_lists[WRITE])))
|
|
tg_may_dispatch(td, tg, bio, &write_wait);
|
|
|
|
min_wait = min(read_wait, write_wait);
|
|
disptime = jiffies + min_wait;
|
|
|
|
/* Update dispatch time */
|
|
throtl_dequeue_tg(td, tg);
|
|
tg->disptime = disptime;
|
|
throtl_enqueue_tg(td, tg);
|
|
}
|
|
|
|
static void tg_dispatch_one_bio(struct throtl_data *td, struct throtl_grp *tg,
|
|
bool rw, struct bio_list *bl)
|
|
{
|
|
struct bio *bio;
|
|
|
|
bio = bio_list_pop(&tg->bio_lists[rw]);
|
|
tg->nr_queued[rw]--;
|
|
/* Drop bio reference on blkg */
|
|
blkg_put(tg_to_blkg(tg));
|
|
|
|
BUG_ON(td->nr_queued[rw] <= 0);
|
|
td->nr_queued[rw]--;
|
|
|
|
throtl_charge_bio(tg, bio);
|
|
bio_list_add(bl, bio);
|
|
bio->bi_rw |= REQ_THROTTLED;
|
|
|
|
throtl_trim_slice(td, tg, rw);
|
|
}
|
|
|
|
static int throtl_dispatch_tg(struct throtl_data *td, struct throtl_grp *tg,
|
|
struct bio_list *bl)
|
|
{
|
|
unsigned int nr_reads = 0, nr_writes = 0;
|
|
unsigned int max_nr_reads = throtl_grp_quantum*3/4;
|
|
unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
|
|
struct bio *bio;
|
|
|
|
/* Try to dispatch 75% READS and 25% WRITES */
|
|
|
|
while ((bio = bio_list_peek(&tg->bio_lists[READ]))
|
|
&& tg_may_dispatch(td, tg, bio, NULL)) {
|
|
|
|
tg_dispatch_one_bio(td, tg, bio_data_dir(bio), bl);
|
|
nr_reads++;
|
|
|
|
if (nr_reads >= max_nr_reads)
|
|
break;
|
|
}
|
|
|
|
while ((bio = bio_list_peek(&tg->bio_lists[WRITE]))
|
|
&& tg_may_dispatch(td, tg, bio, NULL)) {
|
|
|
|
tg_dispatch_one_bio(td, tg, bio_data_dir(bio), bl);
|
|
nr_writes++;
|
|
|
|
if (nr_writes >= max_nr_writes)
|
|
break;
|
|
}
|
|
|
|
return nr_reads + nr_writes;
|
|
}
|
|
|
|
static int throtl_select_dispatch(struct throtl_data *td, struct bio_list *bl)
|
|
{
|
|
unsigned int nr_disp = 0;
|
|
struct throtl_grp *tg;
|
|
struct throtl_rb_root *st = &td->tg_service_tree;
|
|
|
|
while (1) {
|
|
tg = throtl_rb_first(st);
|
|
|
|
if (!tg)
|
|
break;
|
|
|
|
if (time_before(jiffies, tg->disptime))
|
|
break;
|
|
|
|
throtl_dequeue_tg(td, tg);
|
|
|
|
nr_disp += throtl_dispatch_tg(td, tg, bl);
|
|
|
|
if (tg->nr_queued[0] || tg->nr_queued[1]) {
|
|
tg_update_disptime(td, tg);
|
|
throtl_enqueue_tg(td, tg);
|
|
}
|
|
|
|
if (nr_disp >= throtl_quantum)
|
|
break;
|
|
}
|
|
|
|
return nr_disp;
|
|
}
|
|
|
|
static void throtl_process_limit_change(struct throtl_data *td)
|
|
{
|
|
struct request_queue *q = td->queue;
|
|
struct blkio_group *blkg, *n;
|
|
|
|
if (!td->limits_changed)
|
|
return;
|
|
|
|
xchg(&td->limits_changed, false);
|
|
|
|
throtl_log(td, "limits changed");
|
|
|
|
list_for_each_entry_safe(blkg, n, &q->blkg_list, q_node) {
|
|
struct throtl_grp *tg = blkg_to_tg(blkg);
|
|
|
|
if (!tg->limits_changed)
|
|
continue;
|
|
|
|
if (!xchg(&tg->limits_changed, false))
|
|
continue;
|
|
|
|
throtl_log_tg(td, tg, "limit change rbps=%llu wbps=%llu"
|
|
" riops=%u wiops=%u", tg->bps[READ], tg->bps[WRITE],
|
|
tg->iops[READ], tg->iops[WRITE]);
|
|
|
|
/*
|
|
* Restart the slices for both READ and WRITES. It
|
|
* might happen that a group's limit are dropped
|
|
* suddenly and we don't want to account recently
|
|
* dispatched IO with new low rate
|
|
*/
|
|
throtl_start_new_slice(td, tg, 0);
|
|
throtl_start_new_slice(td, tg, 1);
|
|
|
|
if (throtl_tg_on_rr(tg))
|
|
tg_update_disptime(td, tg);
|
|
}
|
|
}
|
|
|
|
/* Dispatch throttled bios. Should be called without queue lock held. */
|
|
static int throtl_dispatch(struct request_queue *q)
|
|
{
|
|
struct throtl_data *td = q->td;
|
|
unsigned int nr_disp = 0;
|
|
struct bio_list bio_list_on_stack;
|
|
struct bio *bio;
|
|
struct blk_plug plug;
|
|
|
|
spin_lock_irq(q->queue_lock);
|
|
|
|
throtl_process_limit_change(td);
|
|
|
|
if (!total_nr_queued(td))
|
|
goto out;
|
|
|
|
bio_list_init(&bio_list_on_stack);
|
|
|
|
throtl_log(td, "dispatch nr_queued=%u read=%u write=%u",
|
|
total_nr_queued(td), td->nr_queued[READ],
|
|
td->nr_queued[WRITE]);
|
|
|
|
nr_disp = throtl_select_dispatch(td, &bio_list_on_stack);
|
|
|
|
if (nr_disp)
|
|
throtl_log(td, "bios disp=%u", nr_disp);
|
|
|
|
throtl_schedule_next_dispatch(td);
|
|
out:
|
|
spin_unlock_irq(q->queue_lock);
|
|
|
|
/*
|
|
* If we dispatched some requests, unplug the queue to make sure
|
|
* immediate dispatch
|
|
*/
|
|
if (nr_disp) {
|
|
blk_start_plug(&plug);
|
|
while((bio = bio_list_pop(&bio_list_on_stack)))
|
|
generic_make_request(bio);
|
|
blk_finish_plug(&plug);
|
|
}
|
|
return nr_disp;
|
|
}
|
|
|
|
void blk_throtl_work(struct work_struct *work)
|
|
{
|
|
struct throtl_data *td = container_of(work, struct throtl_data,
|
|
throtl_work.work);
|
|
struct request_queue *q = td->queue;
|
|
|
|
throtl_dispatch(q);
|
|
}
|
|
|
|
/* Call with queue lock held */
|
|
static void
|
|
throtl_schedule_delayed_work(struct throtl_data *td, unsigned long delay)
|
|
{
|
|
|
|
struct delayed_work *dwork = &td->throtl_work;
|
|
|
|
/* schedule work if limits changed even if no bio is queued */
|
|
if (total_nr_queued(td) || td->limits_changed) {
|
|
/*
|
|
* We might have a work scheduled to be executed in future.
|
|
* Cancel that and schedule a new one.
|
|
*/
|
|
__cancel_delayed_work(dwork);
|
|
queue_delayed_work(kthrotld_workqueue, dwork, delay);
|
|
throtl_log(td, "schedule work. delay=%lu jiffies=%lu",
|
|
delay, jiffies);
|
|
}
|
|
}
|
|
|
|
static u64 tg_prfill_cpu_rwstat(struct seq_file *sf, void *pdata, int off)
|
|
{
|
|
struct throtl_grp *tg = pdata;
|
|
struct blkg_rwstat rwstat = { }, tmp;
|
|
int i, cpu;
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
struct tg_stats_cpu *sc = per_cpu_ptr(tg->stats_cpu, cpu);
|
|
|
|
tmp = blkg_rwstat_read((void *)sc + off);
|
|
for (i = 0; i < BLKG_RWSTAT_NR; i++)
|
|
rwstat.cnt[i] += tmp.cnt[i];
|
|
}
|
|
|
|
return __blkg_prfill_rwstat(sf, pdata, &rwstat);
|
|
}
|
|
|
|
/* print per-cpu blkg_rwstat specified by BLKCG_STAT_PRIV() */
|
|
static int tg_print_cpu_rwstat(struct cgroup *cgrp, struct cftype *cft,
|
|
struct seq_file *sf)
|
|
{
|
|
struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgrp);
|
|
|
|
blkcg_print_blkgs(sf, blkcg, tg_prfill_cpu_rwstat,
|
|
BLKCG_STAT_POL(cft->private),
|
|
BLKCG_STAT_OFF(cft->private), true);
|
|
return 0;
|
|
}
|
|
|
|
static u64 tg_prfill_conf_u64(struct seq_file *sf, void *pdata, int off)
|
|
{
|
|
u64 v = *(u64 *)(pdata + off);
|
|
|
|
if (v == -1)
|
|
return 0;
|
|
return __blkg_prfill_u64(sf, pdata, v);
|
|
}
|
|
|
|
static u64 tg_prfill_conf_uint(struct seq_file *sf, void *pdata, int off)
|
|
{
|
|
unsigned int v = *(unsigned int *)(pdata + off);
|
|
|
|
if (v == -1)
|
|
return 0;
|
|
return __blkg_prfill_u64(sf, pdata, v);
|
|
}
|
|
|
|
static int tg_print_conf_u64(struct cgroup *cgrp, struct cftype *cft,
|
|
struct seq_file *sf)
|
|
{
|
|
blkcg_print_blkgs(sf, cgroup_to_blkio_cgroup(cgrp), tg_prfill_conf_u64,
|
|
BLKIO_POLICY_THROTL, cft->private, false);
|
|
return 0;
|
|
}
|
|
|
|
static int tg_print_conf_uint(struct cgroup *cgrp, struct cftype *cft,
|
|
struct seq_file *sf)
|
|
{
|
|
blkcg_print_blkgs(sf, cgroup_to_blkio_cgroup(cgrp), tg_prfill_conf_uint,
|
|
BLKIO_POLICY_THROTL, cft->private, false);
|
|
return 0;
|
|
}
|
|
|
|
static int tg_set_conf(struct cgroup *cgrp, struct cftype *cft, const char *buf,
|
|
bool is_u64)
|
|
{
|
|
struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgrp);
|
|
struct blkg_conf_ctx ctx;
|
|
struct throtl_grp *tg;
|
|
int ret;
|
|
|
|
ret = blkg_conf_prep(blkcg, buf, &ctx);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = -EINVAL;
|
|
tg = blkg_to_tg(ctx.blkg);
|
|
if (tg) {
|
|
struct throtl_data *td = ctx.blkg->q->td;
|
|
|
|
if (!ctx.v)
|
|
ctx.v = -1;
|
|
|
|
if (is_u64)
|
|
*(u64 *)((void *)tg + cft->private) = ctx.v;
|
|
else
|
|
*(unsigned int *)((void *)tg + cft->private) = ctx.v;
|
|
|
|
/* XXX: we don't need the following deferred processing */
|
|
xchg(&tg->limits_changed, true);
|
|
xchg(&td->limits_changed, true);
|
|
throtl_schedule_delayed_work(td, 0);
|
|
|
|
ret = 0;
|
|
}
|
|
|
|
blkg_conf_finish(&ctx);
|
|
return ret;
|
|
}
|
|
|
|
static int tg_set_conf_u64(struct cgroup *cgrp, struct cftype *cft,
|
|
const char *buf)
|
|
{
|
|
return tg_set_conf(cgrp, cft, buf, true);
|
|
}
|
|
|
|
static int tg_set_conf_uint(struct cgroup *cgrp, struct cftype *cft,
|
|
const char *buf)
|
|
{
|
|
return tg_set_conf(cgrp, cft, buf, false);
|
|
}
|
|
|
|
static struct cftype throtl_files[] = {
|
|
{
|
|
.name = "throttle.read_bps_device",
|
|
.private = offsetof(struct throtl_grp, bps[READ]),
|
|
.read_seq_string = tg_print_conf_u64,
|
|
.write_string = tg_set_conf_u64,
|
|
.max_write_len = 256,
|
|
},
|
|
{
|
|
.name = "throttle.write_bps_device",
|
|
.private = offsetof(struct throtl_grp, bps[WRITE]),
|
|
.read_seq_string = tg_print_conf_u64,
|
|
.write_string = tg_set_conf_u64,
|
|
.max_write_len = 256,
|
|
},
|
|
{
|
|
.name = "throttle.read_iops_device",
|
|
.private = offsetof(struct throtl_grp, iops[READ]),
|
|
.read_seq_string = tg_print_conf_uint,
|
|
.write_string = tg_set_conf_uint,
|
|
.max_write_len = 256,
|
|
},
|
|
{
|
|
.name = "throttle.write_iops_device",
|
|
.private = offsetof(struct throtl_grp, iops[WRITE]),
|
|
.read_seq_string = tg_print_conf_uint,
|
|
.write_string = tg_set_conf_uint,
|
|
.max_write_len = 256,
|
|
},
|
|
{
|
|
.name = "throttle.io_service_bytes",
|
|
.private = BLKCG_STAT_PRIV(BLKIO_POLICY_THROTL,
|
|
offsetof(struct tg_stats_cpu, service_bytes)),
|
|
.read_seq_string = tg_print_cpu_rwstat,
|
|
},
|
|
{
|
|
.name = "throttle.io_serviced",
|
|
.private = BLKCG_STAT_PRIV(BLKIO_POLICY_THROTL,
|
|
offsetof(struct tg_stats_cpu, serviced)),
|
|
.read_seq_string = tg_print_cpu_rwstat,
|
|
},
|
|
{ } /* terminate */
|
|
};
|
|
|
|
static void throtl_shutdown_wq(struct request_queue *q)
|
|
{
|
|
struct throtl_data *td = q->td;
|
|
|
|
cancel_delayed_work_sync(&td->throtl_work);
|
|
}
|
|
|
|
static struct blkio_policy_type blkio_policy_throtl = {
|
|
.ops = {
|
|
.blkio_init_group_fn = throtl_init_blkio_group,
|
|
.blkio_exit_group_fn = throtl_exit_blkio_group,
|
|
.blkio_reset_group_stats_fn = throtl_reset_group_stats,
|
|
},
|
|
.plid = BLKIO_POLICY_THROTL,
|
|
.pdata_size = sizeof(struct throtl_grp),
|
|
.cftypes = throtl_files,
|
|
};
|
|
|
|
bool blk_throtl_bio(struct request_queue *q, struct bio *bio)
|
|
{
|
|
struct throtl_data *td = q->td;
|
|
struct throtl_grp *tg;
|
|
bool rw = bio_data_dir(bio), update_disptime = true;
|
|
struct blkio_cgroup *blkcg;
|
|
bool throttled = false;
|
|
|
|
if (bio->bi_rw & REQ_THROTTLED) {
|
|
bio->bi_rw &= ~REQ_THROTTLED;
|
|
goto out;
|
|
}
|
|
|
|
/* bio_associate_current() needs ioc, try creating */
|
|
create_io_context(GFP_ATOMIC, q->node);
|
|
|
|
/*
|
|
* A throtl_grp pointer retrieved under rcu can be used to access
|
|
* basic fields like stats and io rates. If a group has no rules,
|
|
* just update the dispatch stats in lockless manner and return.
|
|
*/
|
|
rcu_read_lock();
|
|
blkcg = bio_blkio_cgroup(bio);
|
|
tg = throtl_lookup_tg(td, blkcg);
|
|
if (tg) {
|
|
if (tg_no_rule_group(tg, rw)) {
|
|
throtl_update_dispatch_stats(tg_to_blkg(tg),
|
|
bio->bi_size, bio->bi_rw);
|
|
goto out_unlock_rcu;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Either group has not been allocated yet or it is not an unlimited
|
|
* IO group
|
|
*/
|
|
spin_lock_irq(q->queue_lock);
|
|
tg = throtl_lookup_create_tg(td, blkcg);
|
|
if (unlikely(!tg))
|
|
goto out_unlock;
|
|
|
|
if (tg->nr_queued[rw]) {
|
|
/*
|
|
* There is already another bio queued in same dir. No
|
|
* need to update dispatch time.
|
|
*/
|
|
update_disptime = false;
|
|
goto queue_bio;
|
|
|
|
}
|
|
|
|
/* Bio is with-in rate limit of group */
|
|
if (tg_may_dispatch(td, tg, bio, NULL)) {
|
|
throtl_charge_bio(tg, bio);
|
|
|
|
/*
|
|
* We need to trim slice even when bios are not being queued
|
|
* otherwise it might happen that a bio is not queued for
|
|
* a long time and slice keeps on extending and trim is not
|
|
* called for a long time. Now if limits are reduced suddenly
|
|
* we take into account all the IO dispatched so far at new
|
|
* low rate and * newly queued IO gets a really long dispatch
|
|
* time.
|
|
*
|
|
* So keep on trimming slice even if bio is not queued.
|
|
*/
|
|
throtl_trim_slice(td, tg, rw);
|
|
goto out_unlock;
|
|
}
|
|
|
|
queue_bio:
|
|
throtl_log_tg(td, tg, "[%c] bio. bdisp=%llu sz=%u bps=%llu"
|
|
" iodisp=%u iops=%u queued=%d/%d",
|
|
rw == READ ? 'R' : 'W',
|
|
tg->bytes_disp[rw], bio->bi_size, tg->bps[rw],
|
|
tg->io_disp[rw], tg->iops[rw],
|
|
tg->nr_queued[READ], tg->nr_queued[WRITE]);
|
|
|
|
bio_associate_current(bio);
|
|
throtl_add_bio_tg(q->td, tg, bio);
|
|
throttled = true;
|
|
|
|
if (update_disptime) {
|
|
tg_update_disptime(td, tg);
|
|
throtl_schedule_next_dispatch(td);
|
|
}
|
|
|
|
out_unlock:
|
|
spin_unlock_irq(q->queue_lock);
|
|
out_unlock_rcu:
|
|
rcu_read_unlock();
|
|
out:
|
|
return throttled;
|
|
}
|
|
|
|
/**
|
|
* blk_throtl_drain - drain throttled bios
|
|
* @q: request_queue to drain throttled bios for
|
|
*
|
|
* Dispatch all currently throttled bios on @q through ->make_request_fn().
|
|
*/
|
|
void blk_throtl_drain(struct request_queue *q)
|
|
__releases(q->queue_lock) __acquires(q->queue_lock)
|
|
{
|
|
struct throtl_data *td = q->td;
|
|
struct throtl_rb_root *st = &td->tg_service_tree;
|
|
struct throtl_grp *tg;
|
|
struct bio_list bl;
|
|
struct bio *bio;
|
|
|
|
WARN_ON_ONCE(!queue_is_locked(q));
|
|
|
|
bio_list_init(&bl);
|
|
|
|
while ((tg = throtl_rb_first(st))) {
|
|
throtl_dequeue_tg(td, tg);
|
|
|
|
while ((bio = bio_list_peek(&tg->bio_lists[READ])))
|
|
tg_dispatch_one_bio(td, tg, bio_data_dir(bio), &bl);
|
|
while ((bio = bio_list_peek(&tg->bio_lists[WRITE])))
|
|
tg_dispatch_one_bio(td, tg, bio_data_dir(bio), &bl);
|
|
}
|
|
spin_unlock_irq(q->queue_lock);
|
|
|
|
while ((bio = bio_list_pop(&bl)))
|
|
generic_make_request(bio);
|
|
|
|
spin_lock_irq(q->queue_lock);
|
|
}
|
|
|
|
int blk_throtl_init(struct request_queue *q)
|
|
{
|
|
struct throtl_data *td;
|
|
struct blkio_group *blkg;
|
|
|
|
td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
|
|
if (!td)
|
|
return -ENOMEM;
|
|
|
|
td->tg_service_tree = THROTL_RB_ROOT;
|
|
td->limits_changed = false;
|
|
INIT_DELAYED_WORK(&td->throtl_work, blk_throtl_work);
|
|
|
|
q->td = td;
|
|
td->queue = q;
|
|
|
|
/* alloc and init root group. */
|
|
rcu_read_lock();
|
|
spin_lock_irq(q->queue_lock);
|
|
|
|
blkg = blkg_lookup_create(&blkio_root_cgroup, q, true);
|
|
if (!IS_ERR(blkg))
|
|
td->root_tg = blkg_to_tg(blkg);
|
|
|
|
spin_unlock_irq(q->queue_lock);
|
|
rcu_read_unlock();
|
|
|
|
if (!td->root_tg) {
|
|
kfree(td);
|
|
return -ENOMEM;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void blk_throtl_exit(struct request_queue *q)
|
|
{
|
|
BUG_ON(!q->td);
|
|
throtl_shutdown_wq(q);
|
|
kfree(q->td);
|
|
}
|
|
|
|
static int __init throtl_init(void)
|
|
{
|
|
kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
|
|
if (!kthrotld_workqueue)
|
|
panic("Failed to create kthrotld\n");
|
|
|
|
blkio_policy_register(&blkio_policy_throtl);
|
|
return 0;
|
|
}
|
|
|
|
module_init(throtl_init);
|