098297b27d
This patch reformats comments in the reiserfs code to fit in 80 columns and to follow the style rules. There is no functional change but it helps make my eyes bleed less. Signed-off-by: Jeff Mahoney <jeffm@suse.com> Signed-off-by: Jan Kara <jack@suse.cz>
1161 lines
34 KiB
C
1161 lines
34 KiB
C
/*
|
|
* Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
|
|
*/
|
|
|
|
#include <asm/uaccess.h>
|
|
#include <linux/string.h>
|
|
#include <linux/time.h>
|
|
#include "reiserfs.h"
|
|
#include <linux/buffer_head.h>
|
|
|
|
/* this is one and only function that is used outside (do_balance.c) */
|
|
int balance_internal(struct tree_balance *,
|
|
int, int, struct item_head *, struct buffer_head **);
|
|
|
|
/*
|
|
* modes of internal_shift_left, internal_shift_right and
|
|
* internal_insert_childs
|
|
*/
|
|
#define INTERNAL_SHIFT_FROM_S_TO_L 0
|
|
#define INTERNAL_SHIFT_FROM_R_TO_S 1
|
|
#define INTERNAL_SHIFT_FROM_L_TO_S 2
|
|
#define INTERNAL_SHIFT_FROM_S_TO_R 3
|
|
#define INTERNAL_INSERT_TO_S 4
|
|
#define INTERNAL_INSERT_TO_L 5
|
|
#define INTERNAL_INSERT_TO_R 6
|
|
|
|
static void internal_define_dest_src_infos(int shift_mode,
|
|
struct tree_balance *tb,
|
|
int h,
|
|
struct buffer_info *dest_bi,
|
|
struct buffer_info *src_bi,
|
|
int *d_key, struct buffer_head **cf)
|
|
{
|
|
memset(dest_bi, 0, sizeof(struct buffer_info));
|
|
memset(src_bi, 0, sizeof(struct buffer_info));
|
|
/* define dest, src, dest parent, dest position */
|
|
switch (shift_mode) {
|
|
|
|
/* used in internal_shift_left */
|
|
case INTERNAL_SHIFT_FROM_S_TO_L:
|
|
src_bi->tb = tb;
|
|
src_bi->bi_bh = PATH_H_PBUFFER(tb->tb_path, h);
|
|
src_bi->bi_parent = PATH_H_PPARENT(tb->tb_path, h);
|
|
src_bi->bi_position = PATH_H_POSITION(tb->tb_path, h + 1);
|
|
dest_bi->tb = tb;
|
|
dest_bi->bi_bh = tb->L[h];
|
|
dest_bi->bi_parent = tb->FL[h];
|
|
dest_bi->bi_position = get_left_neighbor_position(tb, h);
|
|
*d_key = tb->lkey[h];
|
|
*cf = tb->CFL[h];
|
|
break;
|
|
case INTERNAL_SHIFT_FROM_L_TO_S:
|
|
src_bi->tb = tb;
|
|
src_bi->bi_bh = tb->L[h];
|
|
src_bi->bi_parent = tb->FL[h];
|
|
src_bi->bi_position = get_left_neighbor_position(tb, h);
|
|
dest_bi->tb = tb;
|
|
dest_bi->bi_bh = PATH_H_PBUFFER(tb->tb_path, h);
|
|
dest_bi->bi_parent = PATH_H_PPARENT(tb->tb_path, h);
|
|
/* dest position is analog of dest->b_item_order */
|
|
dest_bi->bi_position = PATH_H_POSITION(tb->tb_path, h + 1);
|
|
*d_key = tb->lkey[h];
|
|
*cf = tb->CFL[h];
|
|
break;
|
|
|
|
/* used in internal_shift_left */
|
|
case INTERNAL_SHIFT_FROM_R_TO_S:
|
|
src_bi->tb = tb;
|
|
src_bi->bi_bh = tb->R[h];
|
|
src_bi->bi_parent = tb->FR[h];
|
|
src_bi->bi_position = get_right_neighbor_position(tb, h);
|
|
dest_bi->tb = tb;
|
|
dest_bi->bi_bh = PATH_H_PBUFFER(tb->tb_path, h);
|
|
dest_bi->bi_parent = PATH_H_PPARENT(tb->tb_path, h);
|
|
dest_bi->bi_position = PATH_H_POSITION(tb->tb_path, h + 1);
|
|
*d_key = tb->rkey[h];
|
|
*cf = tb->CFR[h];
|
|
break;
|
|
|
|
case INTERNAL_SHIFT_FROM_S_TO_R:
|
|
src_bi->tb = tb;
|
|
src_bi->bi_bh = PATH_H_PBUFFER(tb->tb_path, h);
|
|
src_bi->bi_parent = PATH_H_PPARENT(tb->tb_path, h);
|
|
src_bi->bi_position = PATH_H_POSITION(tb->tb_path, h + 1);
|
|
dest_bi->tb = tb;
|
|
dest_bi->bi_bh = tb->R[h];
|
|
dest_bi->bi_parent = tb->FR[h];
|
|
dest_bi->bi_position = get_right_neighbor_position(tb, h);
|
|
*d_key = tb->rkey[h];
|
|
*cf = tb->CFR[h];
|
|
break;
|
|
|
|
case INTERNAL_INSERT_TO_L:
|
|
dest_bi->tb = tb;
|
|
dest_bi->bi_bh = tb->L[h];
|
|
dest_bi->bi_parent = tb->FL[h];
|
|
dest_bi->bi_position = get_left_neighbor_position(tb, h);
|
|
break;
|
|
|
|
case INTERNAL_INSERT_TO_S:
|
|
dest_bi->tb = tb;
|
|
dest_bi->bi_bh = PATH_H_PBUFFER(tb->tb_path, h);
|
|
dest_bi->bi_parent = PATH_H_PPARENT(tb->tb_path, h);
|
|
dest_bi->bi_position = PATH_H_POSITION(tb->tb_path, h + 1);
|
|
break;
|
|
|
|
case INTERNAL_INSERT_TO_R:
|
|
dest_bi->tb = tb;
|
|
dest_bi->bi_bh = tb->R[h];
|
|
dest_bi->bi_parent = tb->FR[h];
|
|
dest_bi->bi_position = get_right_neighbor_position(tb, h);
|
|
break;
|
|
|
|
default:
|
|
reiserfs_panic(tb->tb_sb, "ibalance-1",
|
|
"shift type is unknown (%d)",
|
|
shift_mode);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Insert count node pointers into buffer cur before position to + 1.
|
|
* Insert count items into buffer cur before position to.
|
|
* Items and node pointers are specified by inserted and bh respectively.
|
|
*/
|
|
static void internal_insert_childs(struct buffer_info *cur_bi,
|
|
int to, int count,
|
|
struct item_head *inserted,
|
|
struct buffer_head **bh)
|
|
{
|
|
struct buffer_head *cur = cur_bi->bi_bh;
|
|
struct block_head *blkh;
|
|
int nr;
|
|
struct reiserfs_key *ih;
|
|
struct disk_child new_dc[2];
|
|
struct disk_child *dc;
|
|
int i;
|
|
|
|
if (count <= 0)
|
|
return;
|
|
|
|
blkh = B_BLK_HEAD(cur);
|
|
nr = blkh_nr_item(blkh);
|
|
|
|
RFALSE(count > 2, "too many children (%d) are to be inserted", count);
|
|
RFALSE(B_FREE_SPACE(cur) < count * (KEY_SIZE + DC_SIZE),
|
|
"no enough free space (%d), needed %d bytes",
|
|
B_FREE_SPACE(cur), count * (KEY_SIZE + DC_SIZE));
|
|
|
|
/* prepare space for count disk_child */
|
|
dc = B_N_CHILD(cur, to + 1);
|
|
|
|
memmove(dc + count, dc, (nr + 1 - (to + 1)) * DC_SIZE);
|
|
|
|
/* copy to_be_insert disk children */
|
|
for (i = 0; i < count; i++) {
|
|
put_dc_size(&(new_dc[i]),
|
|
MAX_CHILD_SIZE(bh[i]) - B_FREE_SPACE(bh[i]));
|
|
put_dc_block_number(&(new_dc[i]), bh[i]->b_blocknr);
|
|
}
|
|
memcpy(dc, new_dc, DC_SIZE * count);
|
|
|
|
/* prepare space for count items */
|
|
ih = internal_key(cur, ((to == -1) ? 0 : to));
|
|
|
|
memmove(ih + count, ih,
|
|
(nr - to) * KEY_SIZE + (nr + 1 + count) * DC_SIZE);
|
|
|
|
/* copy item headers (keys) */
|
|
memcpy(ih, inserted, KEY_SIZE);
|
|
if (count > 1)
|
|
memcpy(ih + 1, inserted + 1, KEY_SIZE);
|
|
|
|
/* sizes, item number */
|
|
set_blkh_nr_item(blkh, blkh_nr_item(blkh) + count);
|
|
set_blkh_free_space(blkh,
|
|
blkh_free_space(blkh) - count * (DC_SIZE +
|
|
KEY_SIZE));
|
|
|
|
do_balance_mark_internal_dirty(cur_bi->tb, cur, 0);
|
|
|
|
/*&&&&&&&&&&&&&&&&&&&&&&&& */
|
|
check_internal(cur);
|
|
/*&&&&&&&&&&&&&&&&&&&&&&&& */
|
|
|
|
if (cur_bi->bi_parent) {
|
|
struct disk_child *t_dc =
|
|
B_N_CHILD(cur_bi->bi_parent, cur_bi->bi_position);
|
|
put_dc_size(t_dc,
|
|
dc_size(t_dc) + (count * (DC_SIZE + KEY_SIZE)));
|
|
do_balance_mark_internal_dirty(cur_bi->tb, cur_bi->bi_parent,
|
|
0);
|
|
|
|
/*&&&&&&&&&&&&&&&&&&&&&&&& */
|
|
check_internal(cur_bi->bi_parent);
|
|
/*&&&&&&&&&&&&&&&&&&&&&&&& */
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
* Delete del_num items and node pointers from buffer cur starting from
|
|
* the first_i'th item and first_p'th pointers respectively.
|
|
*/
|
|
static void internal_delete_pointers_items(struct buffer_info *cur_bi,
|
|
int first_p,
|
|
int first_i, int del_num)
|
|
{
|
|
struct buffer_head *cur = cur_bi->bi_bh;
|
|
int nr;
|
|
struct block_head *blkh;
|
|
struct reiserfs_key *key;
|
|
struct disk_child *dc;
|
|
|
|
RFALSE(cur == NULL, "buffer is 0");
|
|
RFALSE(del_num < 0,
|
|
"negative number of items (%d) can not be deleted", del_num);
|
|
RFALSE(first_p < 0 || first_p + del_num > B_NR_ITEMS(cur) + 1
|
|
|| first_i < 0,
|
|
"first pointer order (%d) < 0 or "
|
|
"no so many pointers (%d), only (%d) or "
|
|
"first key order %d < 0", first_p, first_p + del_num,
|
|
B_NR_ITEMS(cur) + 1, first_i);
|
|
if (del_num == 0)
|
|
return;
|
|
|
|
blkh = B_BLK_HEAD(cur);
|
|
nr = blkh_nr_item(blkh);
|
|
|
|
if (first_p == 0 && del_num == nr + 1) {
|
|
RFALSE(first_i != 0,
|
|
"1st deleted key must have order 0, not %d", first_i);
|
|
make_empty_node(cur_bi);
|
|
return;
|
|
}
|
|
|
|
RFALSE(first_i + del_num > B_NR_ITEMS(cur),
|
|
"first_i = %d del_num = %d "
|
|
"no so many keys (%d) in the node (%b)(%z)",
|
|
first_i, del_num, first_i + del_num, cur, cur);
|
|
|
|
/* deleting */
|
|
dc = B_N_CHILD(cur, first_p);
|
|
|
|
memmove(dc, dc + del_num, (nr + 1 - first_p - del_num) * DC_SIZE);
|
|
key = internal_key(cur, first_i);
|
|
memmove(key, key + del_num,
|
|
(nr - first_i - del_num) * KEY_SIZE + (nr + 1 -
|
|
del_num) * DC_SIZE);
|
|
|
|
/* sizes, item number */
|
|
set_blkh_nr_item(blkh, blkh_nr_item(blkh) - del_num);
|
|
set_blkh_free_space(blkh,
|
|
blkh_free_space(blkh) +
|
|
(del_num * (KEY_SIZE + DC_SIZE)));
|
|
|
|
do_balance_mark_internal_dirty(cur_bi->tb, cur, 0);
|
|
/*&&&&&&&&&&&&&&&&&&&&&&& */
|
|
check_internal(cur);
|
|
/*&&&&&&&&&&&&&&&&&&&&&&& */
|
|
|
|
if (cur_bi->bi_parent) {
|
|
struct disk_child *t_dc;
|
|
t_dc = B_N_CHILD(cur_bi->bi_parent, cur_bi->bi_position);
|
|
put_dc_size(t_dc,
|
|
dc_size(t_dc) - (del_num * (KEY_SIZE + DC_SIZE)));
|
|
|
|
do_balance_mark_internal_dirty(cur_bi->tb, cur_bi->bi_parent,
|
|
0);
|
|
/*&&&&&&&&&&&&&&&&&&&&&&&& */
|
|
check_internal(cur_bi->bi_parent);
|
|
/*&&&&&&&&&&&&&&&&&&&&&&&& */
|
|
}
|
|
}
|
|
|
|
/* delete n node pointers and items starting from given position */
|
|
static void internal_delete_childs(struct buffer_info *cur_bi, int from, int n)
|
|
{
|
|
int i_from;
|
|
|
|
i_from = (from == 0) ? from : from - 1;
|
|
|
|
/*
|
|
* delete n pointers starting from `from' position in CUR;
|
|
* delete n keys starting from 'i_from' position in CUR;
|
|
*/
|
|
internal_delete_pointers_items(cur_bi, from, i_from, n);
|
|
}
|
|
|
|
/*
|
|
* copy cpy_num node pointers and cpy_num - 1 items from buffer src to buffer
|
|
* dest
|
|
* last_first == FIRST_TO_LAST means that we copy first items
|
|
* from src to tail of dest
|
|
* last_first == LAST_TO_FIRST means that we copy last items
|
|
* from src to head of dest
|
|
*/
|
|
static void internal_copy_pointers_items(struct buffer_info *dest_bi,
|
|
struct buffer_head *src,
|
|
int last_first, int cpy_num)
|
|
{
|
|
/*
|
|
* ATTENTION! Number of node pointers in DEST is equal to number
|
|
* of items in DEST as delimiting key have already inserted to
|
|
* buffer dest.
|
|
*/
|
|
struct buffer_head *dest = dest_bi->bi_bh;
|
|
int nr_dest, nr_src;
|
|
int dest_order, src_order;
|
|
struct block_head *blkh;
|
|
struct reiserfs_key *key;
|
|
struct disk_child *dc;
|
|
|
|
nr_src = B_NR_ITEMS(src);
|
|
|
|
RFALSE(dest == NULL || src == NULL,
|
|
"src (%p) or dest (%p) buffer is 0", src, dest);
|
|
RFALSE(last_first != FIRST_TO_LAST && last_first != LAST_TO_FIRST,
|
|
"invalid last_first parameter (%d)", last_first);
|
|
RFALSE(nr_src < cpy_num - 1,
|
|
"no so many items (%d) in src (%d)", cpy_num, nr_src);
|
|
RFALSE(cpy_num < 0, "cpy_num less than 0 (%d)", cpy_num);
|
|
RFALSE(cpy_num - 1 + B_NR_ITEMS(dest) > (int)MAX_NR_KEY(dest),
|
|
"cpy_num (%d) + item number in dest (%d) can not be > MAX_NR_KEY(%d)",
|
|
cpy_num, B_NR_ITEMS(dest), MAX_NR_KEY(dest));
|
|
|
|
if (cpy_num == 0)
|
|
return;
|
|
|
|
/* coping */
|
|
blkh = B_BLK_HEAD(dest);
|
|
nr_dest = blkh_nr_item(blkh);
|
|
|
|
/*dest_order = (last_first == LAST_TO_FIRST) ? 0 : nr_dest; */
|
|
/*src_order = (last_first == LAST_TO_FIRST) ? (nr_src - cpy_num + 1) : 0; */
|
|
(last_first == LAST_TO_FIRST) ? (dest_order = 0, src_order =
|
|
nr_src - cpy_num + 1) : (dest_order =
|
|
nr_dest,
|
|
src_order =
|
|
0);
|
|
|
|
/* prepare space for cpy_num pointers */
|
|
dc = B_N_CHILD(dest, dest_order);
|
|
|
|
memmove(dc + cpy_num, dc, (nr_dest - dest_order) * DC_SIZE);
|
|
|
|
/* insert pointers */
|
|
memcpy(dc, B_N_CHILD(src, src_order), DC_SIZE * cpy_num);
|
|
|
|
/* prepare space for cpy_num - 1 item headers */
|
|
key = internal_key(dest, dest_order);
|
|
memmove(key + cpy_num - 1, key,
|
|
KEY_SIZE * (nr_dest - dest_order) + DC_SIZE * (nr_dest +
|
|
cpy_num));
|
|
|
|
/* insert headers */
|
|
memcpy(key, internal_key(src, src_order), KEY_SIZE * (cpy_num - 1));
|
|
|
|
/* sizes, item number */
|
|
set_blkh_nr_item(blkh, blkh_nr_item(blkh) + (cpy_num - 1));
|
|
set_blkh_free_space(blkh,
|
|
blkh_free_space(blkh) - (KEY_SIZE * (cpy_num - 1) +
|
|
DC_SIZE * cpy_num));
|
|
|
|
do_balance_mark_internal_dirty(dest_bi->tb, dest, 0);
|
|
|
|
/*&&&&&&&&&&&&&&&&&&&&&&&& */
|
|
check_internal(dest);
|
|
/*&&&&&&&&&&&&&&&&&&&&&&&& */
|
|
|
|
if (dest_bi->bi_parent) {
|
|
struct disk_child *t_dc;
|
|
t_dc = B_N_CHILD(dest_bi->bi_parent, dest_bi->bi_position);
|
|
put_dc_size(t_dc,
|
|
dc_size(t_dc) + (KEY_SIZE * (cpy_num - 1) +
|
|
DC_SIZE * cpy_num));
|
|
|
|
do_balance_mark_internal_dirty(dest_bi->tb, dest_bi->bi_parent,
|
|
0);
|
|
/*&&&&&&&&&&&&&&&&&&&&&&&& */
|
|
check_internal(dest_bi->bi_parent);
|
|
/*&&&&&&&&&&&&&&&&&&&&&&&& */
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
* Copy cpy_num node pointers and cpy_num - 1 items from buffer src to
|
|
* buffer dest.
|
|
* Delete cpy_num - del_par items and node pointers from buffer src.
|
|
* last_first == FIRST_TO_LAST means, that we copy/delete first items from src.
|
|
* last_first == LAST_TO_FIRST means, that we copy/delete last items from src.
|
|
*/
|
|
static void internal_move_pointers_items(struct buffer_info *dest_bi,
|
|
struct buffer_info *src_bi,
|
|
int last_first, int cpy_num,
|
|
int del_par)
|
|
{
|
|
int first_pointer;
|
|
int first_item;
|
|
|
|
internal_copy_pointers_items(dest_bi, src_bi->bi_bh, last_first,
|
|
cpy_num);
|
|
|
|
if (last_first == FIRST_TO_LAST) { /* shift_left occurs */
|
|
first_pointer = 0;
|
|
first_item = 0;
|
|
/*
|
|
* delete cpy_num - del_par pointers and keys starting for
|
|
* pointers with first_pointer, for key - with first_item
|
|
*/
|
|
internal_delete_pointers_items(src_bi, first_pointer,
|
|
first_item, cpy_num - del_par);
|
|
} else { /* shift_right occurs */
|
|
int i, j;
|
|
|
|
i = (cpy_num - del_par ==
|
|
(j =
|
|
B_NR_ITEMS(src_bi->bi_bh)) + 1) ? 0 : j - cpy_num +
|
|
del_par;
|
|
|
|
internal_delete_pointers_items(src_bi,
|
|
j + 1 - cpy_num + del_par, i,
|
|
cpy_num - del_par);
|
|
}
|
|
}
|
|
|
|
/* Insert n_src'th key of buffer src before n_dest'th key of buffer dest. */
|
|
static void internal_insert_key(struct buffer_info *dest_bi,
|
|
/* insert key before key with n_dest number */
|
|
int dest_position_before,
|
|
struct buffer_head *src, int src_position)
|
|
{
|
|
struct buffer_head *dest = dest_bi->bi_bh;
|
|
int nr;
|
|
struct block_head *blkh;
|
|
struct reiserfs_key *key;
|
|
|
|
RFALSE(dest == NULL || src == NULL,
|
|
"source(%p) or dest(%p) buffer is 0", src, dest);
|
|
RFALSE(dest_position_before < 0 || src_position < 0,
|
|
"source(%d) or dest(%d) key number less than 0",
|
|
src_position, dest_position_before);
|
|
RFALSE(dest_position_before > B_NR_ITEMS(dest) ||
|
|
src_position >= B_NR_ITEMS(src),
|
|
"invalid position in dest (%d (key number %d)) or in src (%d (key number %d))",
|
|
dest_position_before, B_NR_ITEMS(dest),
|
|
src_position, B_NR_ITEMS(src));
|
|
RFALSE(B_FREE_SPACE(dest) < KEY_SIZE,
|
|
"no enough free space (%d) in dest buffer", B_FREE_SPACE(dest));
|
|
|
|
blkh = B_BLK_HEAD(dest);
|
|
nr = blkh_nr_item(blkh);
|
|
|
|
/* prepare space for inserting key */
|
|
key = internal_key(dest, dest_position_before);
|
|
memmove(key + 1, key,
|
|
(nr - dest_position_before) * KEY_SIZE + (nr + 1) * DC_SIZE);
|
|
|
|
/* insert key */
|
|
memcpy(key, internal_key(src, src_position), KEY_SIZE);
|
|
|
|
/* Change dirt, free space, item number fields. */
|
|
|
|
set_blkh_nr_item(blkh, blkh_nr_item(blkh) + 1);
|
|
set_blkh_free_space(blkh, blkh_free_space(blkh) - KEY_SIZE);
|
|
|
|
do_balance_mark_internal_dirty(dest_bi->tb, dest, 0);
|
|
|
|
if (dest_bi->bi_parent) {
|
|
struct disk_child *t_dc;
|
|
t_dc = B_N_CHILD(dest_bi->bi_parent, dest_bi->bi_position);
|
|
put_dc_size(t_dc, dc_size(t_dc) + KEY_SIZE);
|
|
|
|
do_balance_mark_internal_dirty(dest_bi->tb, dest_bi->bi_parent,
|
|
0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Insert d_key'th (delimiting) key from buffer cfl to tail of dest.
|
|
* Copy pointer_amount node pointers and pointer_amount - 1 items from
|
|
* buffer src to buffer dest.
|
|
* Replace d_key'th key in buffer cfl.
|
|
* Delete pointer_amount items and node pointers from buffer src.
|
|
*/
|
|
/* this can be invoked both to shift from S to L and from R to S */
|
|
static void internal_shift_left(
|
|
/*
|
|
* INTERNAL_FROM_S_TO_L | INTERNAL_FROM_R_TO_S
|
|
*/
|
|
int mode,
|
|
struct tree_balance *tb,
|
|
int h, int pointer_amount)
|
|
{
|
|
struct buffer_info dest_bi, src_bi;
|
|
struct buffer_head *cf;
|
|
int d_key_position;
|
|
|
|
internal_define_dest_src_infos(mode, tb, h, &dest_bi, &src_bi,
|
|
&d_key_position, &cf);
|
|
|
|
/*printk("pointer_amount = %d\n",pointer_amount); */
|
|
|
|
if (pointer_amount) {
|
|
/*
|
|
* insert delimiting key from common father of dest and
|
|
* src to node dest into position B_NR_ITEM(dest)
|
|
*/
|
|
internal_insert_key(&dest_bi, B_NR_ITEMS(dest_bi.bi_bh), cf,
|
|
d_key_position);
|
|
|
|
if (B_NR_ITEMS(src_bi.bi_bh) == pointer_amount - 1) {
|
|
if (src_bi.bi_position /*src->b_item_order */ == 0)
|
|
replace_key(tb, cf, d_key_position,
|
|
src_bi.
|
|
bi_parent /*src->b_parent */ , 0);
|
|
} else
|
|
replace_key(tb, cf, d_key_position, src_bi.bi_bh,
|
|
pointer_amount - 1);
|
|
}
|
|
/* last parameter is del_parameter */
|
|
internal_move_pointers_items(&dest_bi, &src_bi, FIRST_TO_LAST,
|
|
pointer_amount, 0);
|
|
|
|
}
|
|
|
|
/*
|
|
* Insert delimiting key to L[h].
|
|
* Copy n node pointers and n - 1 items from buffer S[h] to L[h].
|
|
* Delete n - 1 items and node pointers from buffer S[h].
|
|
*/
|
|
/* it always shifts from S[h] to L[h] */
|
|
static void internal_shift1_left(struct tree_balance *tb,
|
|
int h, int pointer_amount)
|
|
{
|
|
struct buffer_info dest_bi, src_bi;
|
|
struct buffer_head *cf;
|
|
int d_key_position;
|
|
|
|
internal_define_dest_src_infos(INTERNAL_SHIFT_FROM_S_TO_L, tb, h,
|
|
&dest_bi, &src_bi, &d_key_position, &cf);
|
|
|
|
/* insert lkey[h]-th key from CFL[h] to left neighbor L[h] */
|
|
if (pointer_amount > 0)
|
|
internal_insert_key(&dest_bi, B_NR_ITEMS(dest_bi.bi_bh), cf,
|
|
d_key_position);
|
|
|
|
/* last parameter is del_parameter */
|
|
internal_move_pointers_items(&dest_bi, &src_bi, FIRST_TO_LAST,
|
|
pointer_amount, 1);
|
|
}
|
|
|
|
/*
|
|
* Insert d_key'th (delimiting) key from buffer cfr to head of dest.
|
|
* Copy n node pointers and n - 1 items from buffer src to buffer dest.
|
|
* Replace d_key'th key in buffer cfr.
|
|
* Delete n items and node pointers from buffer src.
|
|
*/
|
|
static void internal_shift_right(
|
|
/*
|
|
* INTERNAL_FROM_S_TO_R | INTERNAL_FROM_L_TO_S
|
|
*/
|
|
int mode,
|
|
struct tree_balance *tb,
|
|
int h, int pointer_amount)
|
|
{
|
|
struct buffer_info dest_bi, src_bi;
|
|
struct buffer_head *cf;
|
|
int d_key_position;
|
|
int nr;
|
|
|
|
internal_define_dest_src_infos(mode, tb, h, &dest_bi, &src_bi,
|
|
&d_key_position, &cf);
|
|
|
|
nr = B_NR_ITEMS(src_bi.bi_bh);
|
|
|
|
if (pointer_amount > 0) {
|
|
/*
|
|
* insert delimiting key from common father of dest
|
|
* and src to dest node into position 0
|
|
*/
|
|
internal_insert_key(&dest_bi, 0, cf, d_key_position);
|
|
if (nr == pointer_amount - 1) {
|
|
RFALSE(src_bi.bi_bh != PATH_H_PBUFFER(tb->tb_path, h) /*tb->S[h] */ ||
|
|
dest_bi.bi_bh != tb->R[h],
|
|
"src (%p) must be == tb->S[h](%p) when it disappears",
|
|
src_bi.bi_bh, PATH_H_PBUFFER(tb->tb_path, h));
|
|
/* when S[h] disappers replace left delemiting key as well */
|
|
if (tb->CFL[h])
|
|
replace_key(tb, cf, d_key_position, tb->CFL[h],
|
|
tb->lkey[h]);
|
|
} else
|
|
replace_key(tb, cf, d_key_position, src_bi.bi_bh,
|
|
nr - pointer_amount);
|
|
}
|
|
|
|
/* last parameter is del_parameter */
|
|
internal_move_pointers_items(&dest_bi, &src_bi, LAST_TO_FIRST,
|
|
pointer_amount, 0);
|
|
}
|
|
|
|
/*
|
|
* Insert delimiting key to R[h].
|
|
* Copy n node pointers and n - 1 items from buffer S[h] to R[h].
|
|
* Delete n - 1 items and node pointers from buffer S[h].
|
|
*/
|
|
/* it always shift from S[h] to R[h] */
|
|
static void internal_shift1_right(struct tree_balance *tb,
|
|
int h, int pointer_amount)
|
|
{
|
|
struct buffer_info dest_bi, src_bi;
|
|
struct buffer_head *cf;
|
|
int d_key_position;
|
|
|
|
internal_define_dest_src_infos(INTERNAL_SHIFT_FROM_S_TO_R, tb, h,
|
|
&dest_bi, &src_bi, &d_key_position, &cf);
|
|
|
|
/* insert rkey from CFR[h] to right neighbor R[h] */
|
|
if (pointer_amount > 0)
|
|
internal_insert_key(&dest_bi, 0, cf, d_key_position);
|
|
|
|
/* last parameter is del_parameter */
|
|
internal_move_pointers_items(&dest_bi, &src_bi, LAST_TO_FIRST,
|
|
pointer_amount, 1);
|
|
}
|
|
|
|
/*
|
|
* Delete insert_num node pointers together with their left items
|
|
* and balance current node.
|
|
*/
|
|
static void balance_internal_when_delete(struct tree_balance *tb,
|
|
int h, int child_pos)
|
|
{
|
|
int insert_num;
|
|
int n;
|
|
struct buffer_head *tbSh = PATH_H_PBUFFER(tb->tb_path, h);
|
|
struct buffer_info bi;
|
|
|
|
insert_num = tb->insert_size[h] / ((int)(DC_SIZE + KEY_SIZE));
|
|
|
|
/* delete child-node-pointer(s) together with their left item(s) */
|
|
bi.tb = tb;
|
|
bi.bi_bh = tbSh;
|
|
bi.bi_parent = PATH_H_PPARENT(tb->tb_path, h);
|
|
bi.bi_position = PATH_H_POSITION(tb->tb_path, h + 1);
|
|
|
|
internal_delete_childs(&bi, child_pos, -insert_num);
|
|
|
|
RFALSE(tb->blknum[h] > 1,
|
|
"tb->blknum[%d]=%d when insert_size < 0", h, tb->blknum[h]);
|
|
|
|
n = B_NR_ITEMS(tbSh);
|
|
|
|
if (tb->lnum[h] == 0 && tb->rnum[h] == 0) {
|
|
if (tb->blknum[h] == 0) {
|
|
/* node S[h] (root of the tree) is empty now */
|
|
struct buffer_head *new_root;
|
|
|
|
RFALSE(n
|
|
|| B_FREE_SPACE(tbSh) !=
|
|
MAX_CHILD_SIZE(tbSh) - DC_SIZE,
|
|
"buffer must have only 0 keys (%d)", n);
|
|
RFALSE(bi.bi_parent, "root has parent (%p)",
|
|
bi.bi_parent);
|
|
|
|
/* choose a new root */
|
|
if (!tb->L[h - 1] || !B_NR_ITEMS(tb->L[h - 1]))
|
|
new_root = tb->R[h - 1];
|
|
else
|
|
new_root = tb->L[h - 1];
|
|
/*
|
|
* switch super block's tree root block
|
|
* number to the new value */
|
|
PUT_SB_ROOT_BLOCK(tb->tb_sb, new_root->b_blocknr);
|
|
/*REISERFS_SB(tb->tb_sb)->s_rs->s_tree_height --; */
|
|
PUT_SB_TREE_HEIGHT(tb->tb_sb,
|
|
SB_TREE_HEIGHT(tb->tb_sb) - 1);
|
|
|
|
do_balance_mark_sb_dirty(tb,
|
|
REISERFS_SB(tb->tb_sb)->s_sbh,
|
|
1);
|
|
/*&&&&&&&&&&&&&&&&&&&&&& */
|
|
/* use check_internal if new root is an internal node */
|
|
if (h > 1)
|
|
check_internal(new_root);
|
|
/*&&&&&&&&&&&&&&&&&&&&&& */
|
|
|
|
/* do what is needed for buffer thrown from tree */
|
|
reiserfs_invalidate_buffer(tb, tbSh);
|
|
return;
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* join S[h] with L[h] */
|
|
if (tb->L[h] && tb->lnum[h] == -B_NR_ITEMS(tb->L[h]) - 1) {
|
|
|
|
RFALSE(tb->rnum[h] != 0,
|
|
"invalid tb->rnum[%d]==%d when joining S[h] with L[h]",
|
|
h, tb->rnum[h]);
|
|
|
|
internal_shift_left(INTERNAL_SHIFT_FROM_S_TO_L, tb, h, n + 1);
|
|
reiserfs_invalidate_buffer(tb, tbSh);
|
|
|
|
return;
|
|
}
|
|
|
|
/* join S[h] with R[h] */
|
|
if (tb->R[h] && tb->rnum[h] == -B_NR_ITEMS(tb->R[h]) - 1) {
|
|
RFALSE(tb->lnum[h] != 0,
|
|
"invalid tb->lnum[%d]==%d when joining S[h] with R[h]",
|
|
h, tb->lnum[h]);
|
|
|
|
internal_shift_right(INTERNAL_SHIFT_FROM_S_TO_R, tb, h, n + 1);
|
|
|
|
reiserfs_invalidate_buffer(tb, tbSh);
|
|
return;
|
|
}
|
|
|
|
/* borrow from left neighbor L[h] */
|
|
if (tb->lnum[h] < 0) {
|
|
RFALSE(tb->rnum[h] != 0,
|
|
"wrong tb->rnum[%d]==%d when borrow from L[h]", h,
|
|
tb->rnum[h]);
|
|
internal_shift_right(INTERNAL_SHIFT_FROM_L_TO_S, tb, h,
|
|
-tb->lnum[h]);
|
|
return;
|
|
}
|
|
|
|
/* borrow from right neighbor R[h] */
|
|
if (tb->rnum[h] < 0) {
|
|
RFALSE(tb->lnum[h] != 0,
|
|
"invalid tb->lnum[%d]==%d when borrow from R[h]",
|
|
h, tb->lnum[h]);
|
|
internal_shift_left(INTERNAL_SHIFT_FROM_R_TO_S, tb, h, -tb->rnum[h]); /*tb->S[h], tb->CFR[h], tb->rkey[h], tb->R[h], -tb->rnum[h]); */
|
|
return;
|
|
}
|
|
|
|
/* split S[h] into two parts and put them into neighbors */
|
|
if (tb->lnum[h] > 0) {
|
|
RFALSE(tb->rnum[h] == 0 || tb->lnum[h] + tb->rnum[h] != n + 1,
|
|
"invalid tb->lnum[%d]==%d or tb->rnum[%d]==%d when S[h](item number == %d) is split between them",
|
|
h, tb->lnum[h], h, tb->rnum[h], n);
|
|
|
|
internal_shift_left(INTERNAL_SHIFT_FROM_S_TO_L, tb, h, tb->lnum[h]); /*tb->L[h], tb->CFL[h], tb->lkey[h], tb->S[h], tb->lnum[h]); */
|
|
internal_shift_right(INTERNAL_SHIFT_FROM_S_TO_R, tb, h,
|
|
tb->rnum[h]);
|
|
|
|
reiserfs_invalidate_buffer(tb, tbSh);
|
|
|
|
return;
|
|
}
|
|
reiserfs_panic(tb->tb_sb, "ibalance-2",
|
|
"unexpected tb->lnum[%d]==%d or tb->rnum[%d]==%d",
|
|
h, tb->lnum[h], h, tb->rnum[h]);
|
|
}
|
|
|
|
/* Replace delimiting key of buffers L[h] and S[h] by the given key.*/
|
|
static void replace_lkey(struct tree_balance *tb, int h, struct item_head *key)
|
|
{
|
|
RFALSE(tb->L[h] == NULL || tb->CFL[h] == NULL,
|
|
"L[h](%p) and CFL[h](%p) must exist in replace_lkey",
|
|
tb->L[h], tb->CFL[h]);
|
|
|
|
if (B_NR_ITEMS(PATH_H_PBUFFER(tb->tb_path, h)) == 0)
|
|
return;
|
|
|
|
memcpy(internal_key(tb->CFL[h], tb->lkey[h]), key, KEY_SIZE);
|
|
|
|
do_balance_mark_internal_dirty(tb, tb->CFL[h], 0);
|
|
}
|
|
|
|
/* Replace delimiting key of buffers S[h] and R[h] by the given key.*/
|
|
static void replace_rkey(struct tree_balance *tb, int h, struct item_head *key)
|
|
{
|
|
RFALSE(tb->R[h] == NULL || tb->CFR[h] == NULL,
|
|
"R[h](%p) and CFR[h](%p) must exist in replace_rkey",
|
|
tb->R[h], tb->CFR[h]);
|
|
RFALSE(B_NR_ITEMS(tb->R[h]) == 0,
|
|
"R[h] can not be empty if it exists (item number=%d)",
|
|
B_NR_ITEMS(tb->R[h]));
|
|
|
|
memcpy(internal_key(tb->CFR[h], tb->rkey[h]), key, KEY_SIZE);
|
|
|
|
do_balance_mark_internal_dirty(tb, tb->CFR[h], 0);
|
|
}
|
|
|
|
|
|
/*
|
|
* if inserting/pasting {
|
|
* child_pos is the position of the node-pointer in S[h] that
|
|
* pointed to S[h-1] before balancing of the h-1 level;
|
|
* this means that new pointers and items must be inserted AFTER
|
|
* child_pos
|
|
* } else {
|
|
* it is the position of the leftmost pointer that must be deleted
|
|
* (together with its corresponding key to the left of the pointer)
|
|
* as a result of the previous level's balancing.
|
|
* }
|
|
*/
|
|
|
|
int balance_internal(struct tree_balance *tb,
|
|
int h, /* level of the tree */
|
|
int child_pos,
|
|
/* key for insertion on higher level */
|
|
struct item_head *insert_key,
|
|
/* node for insertion on higher level */
|
|
struct buffer_head **insert_ptr)
|
|
{
|
|
struct buffer_head *tbSh = PATH_H_PBUFFER(tb->tb_path, h);
|
|
struct buffer_info bi;
|
|
|
|
/*
|
|
* we return this: it is 0 if there is no S[h],
|
|
* else it is tb->S[h]->b_item_order
|
|
*/
|
|
int order;
|
|
int insert_num, n, k;
|
|
struct buffer_head *S_new;
|
|
struct item_head new_insert_key;
|
|
struct buffer_head *new_insert_ptr = NULL;
|
|
struct item_head *new_insert_key_addr = insert_key;
|
|
|
|
RFALSE(h < 1, "h (%d) can not be < 1 on internal level", h);
|
|
|
|
PROC_INFO_INC(tb->tb_sb, balance_at[h]);
|
|
|
|
order =
|
|
(tbSh) ? PATH_H_POSITION(tb->tb_path,
|
|
h + 1) /*tb->S[h]->b_item_order */ : 0;
|
|
|
|
/*
|
|
* Using insert_size[h] calculate the number insert_num of items
|
|
* that must be inserted to or deleted from S[h].
|
|
*/
|
|
insert_num = tb->insert_size[h] / ((int)(KEY_SIZE + DC_SIZE));
|
|
|
|
/* Check whether insert_num is proper * */
|
|
RFALSE(insert_num < -2 || insert_num > 2,
|
|
"incorrect number of items inserted to the internal node (%d)",
|
|
insert_num);
|
|
RFALSE(h > 1 && (insert_num > 1 || insert_num < -1),
|
|
"incorrect number of items (%d) inserted to the internal node on a level (h=%d) higher than last internal level",
|
|
insert_num, h);
|
|
|
|
/* Make balance in case insert_num < 0 */
|
|
if (insert_num < 0) {
|
|
balance_internal_when_delete(tb, h, child_pos);
|
|
return order;
|
|
}
|
|
|
|
k = 0;
|
|
if (tb->lnum[h] > 0) {
|
|
/*
|
|
* shift lnum[h] items from S[h] to the left neighbor L[h].
|
|
* check how many of new items fall into L[h] or CFL[h] after
|
|
* shifting
|
|
*/
|
|
n = B_NR_ITEMS(tb->L[h]); /* number of items in L[h] */
|
|
if (tb->lnum[h] <= child_pos) {
|
|
/* new items don't fall into L[h] or CFL[h] */
|
|
internal_shift_left(INTERNAL_SHIFT_FROM_S_TO_L, tb, h,
|
|
tb->lnum[h]);
|
|
child_pos -= tb->lnum[h];
|
|
} else if (tb->lnum[h] > child_pos + insert_num) {
|
|
/* all new items fall into L[h] */
|
|
internal_shift_left(INTERNAL_SHIFT_FROM_S_TO_L, tb, h,
|
|
tb->lnum[h] - insert_num);
|
|
/* insert insert_num keys and node-pointers into L[h] */
|
|
bi.tb = tb;
|
|
bi.bi_bh = tb->L[h];
|
|
bi.bi_parent = tb->FL[h];
|
|
bi.bi_position = get_left_neighbor_position(tb, h);
|
|
internal_insert_childs(&bi,
|
|
/*tb->L[h], tb->S[h-1]->b_next */
|
|
n + child_pos + 1,
|
|
insert_num, insert_key,
|
|
insert_ptr);
|
|
|
|
insert_num = 0;
|
|
} else {
|
|
struct disk_child *dc;
|
|
|
|
/*
|
|
* some items fall into L[h] or CFL[h],
|
|
* but some don't fall
|
|
*/
|
|
internal_shift1_left(tb, h, child_pos + 1);
|
|
/* calculate number of new items that fall into L[h] */
|
|
k = tb->lnum[h] - child_pos - 1;
|
|
bi.tb = tb;
|
|
bi.bi_bh = tb->L[h];
|
|
bi.bi_parent = tb->FL[h];
|
|
bi.bi_position = get_left_neighbor_position(tb, h);
|
|
internal_insert_childs(&bi,
|
|
/*tb->L[h], tb->S[h-1]->b_next, */
|
|
n + child_pos + 1, k,
|
|
insert_key, insert_ptr);
|
|
|
|
replace_lkey(tb, h, insert_key + k);
|
|
|
|
/*
|
|
* replace the first node-ptr in S[h] by
|
|
* node-ptr to insert_ptr[k]
|
|
*/
|
|
dc = B_N_CHILD(tbSh, 0);
|
|
put_dc_size(dc,
|
|
MAX_CHILD_SIZE(insert_ptr[k]) -
|
|
B_FREE_SPACE(insert_ptr[k]));
|
|
put_dc_block_number(dc, insert_ptr[k]->b_blocknr);
|
|
|
|
do_balance_mark_internal_dirty(tb, tbSh, 0);
|
|
|
|
k++;
|
|
insert_key += k;
|
|
insert_ptr += k;
|
|
insert_num -= k;
|
|
child_pos = 0;
|
|
}
|
|
}
|
|
/* tb->lnum[h] > 0 */
|
|
if (tb->rnum[h] > 0) {
|
|
/*shift rnum[h] items from S[h] to the right neighbor R[h] */
|
|
/*
|
|
* check how many of new items fall into R or CFR
|
|
* after shifting
|
|
*/
|
|
n = B_NR_ITEMS(tbSh); /* number of items in S[h] */
|
|
if (n - tb->rnum[h] >= child_pos)
|
|
/* new items fall into S[h] */
|
|
internal_shift_right(INTERNAL_SHIFT_FROM_S_TO_R, tb, h,
|
|
tb->rnum[h]);
|
|
else if (n + insert_num - tb->rnum[h] < child_pos) {
|
|
/* all new items fall into R[h] */
|
|
internal_shift_right(INTERNAL_SHIFT_FROM_S_TO_R, tb, h,
|
|
tb->rnum[h] - insert_num);
|
|
|
|
/* insert insert_num keys and node-pointers into R[h] */
|
|
bi.tb = tb;
|
|
bi.bi_bh = tb->R[h];
|
|
bi.bi_parent = tb->FR[h];
|
|
bi.bi_position = get_right_neighbor_position(tb, h);
|
|
internal_insert_childs(&bi,
|
|
/*tb->R[h],tb->S[h-1]->b_next */
|
|
child_pos - n - insert_num +
|
|
tb->rnum[h] - 1,
|
|
insert_num, insert_key,
|
|
insert_ptr);
|
|
insert_num = 0;
|
|
} else {
|
|
struct disk_child *dc;
|
|
|
|
/* one of the items falls into CFR[h] */
|
|
internal_shift1_right(tb, h, n - child_pos + 1);
|
|
/* calculate number of new items that fall into R[h] */
|
|
k = tb->rnum[h] - n + child_pos - 1;
|
|
bi.tb = tb;
|
|
bi.bi_bh = tb->R[h];
|
|
bi.bi_parent = tb->FR[h];
|
|
bi.bi_position = get_right_neighbor_position(tb, h);
|
|
internal_insert_childs(&bi,
|
|
/*tb->R[h], tb->R[h]->b_child, */
|
|
0, k, insert_key + 1,
|
|
insert_ptr + 1);
|
|
|
|
replace_rkey(tb, h, insert_key + insert_num - k - 1);
|
|
|
|
/*
|
|
* replace the first node-ptr in R[h] by
|
|
* node-ptr insert_ptr[insert_num-k-1]
|
|
*/
|
|
dc = B_N_CHILD(tb->R[h], 0);
|
|
put_dc_size(dc,
|
|
MAX_CHILD_SIZE(insert_ptr
|
|
[insert_num - k - 1]) -
|
|
B_FREE_SPACE(insert_ptr
|
|
[insert_num - k - 1]));
|
|
put_dc_block_number(dc,
|
|
insert_ptr[insert_num - k -
|
|
1]->b_blocknr);
|
|
|
|
do_balance_mark_internal_dirty(tb, tb->R[h], 0);
|
|
|
|
insert_num -= (k + 1);
|
|
}
|
|
}
|
|
|
|
/** Fill new node that appears instead of S[h] **/
|
|
RFALSE(tb->blknum[h] > 2, "blknum can not be > 2 for internal level");
|
|
RFALSE(tb->blknum[h] < 0, "blknum can not be < 0");
|
|
|
|
if (!tb->blknum[h]) { /* node S[h] is empty now */
|
|
RFALSE(!tbSh, "S[h] is equal NULL");
|
|
|
|
/* do what is needed for buffer thrown from tree */
|
|
reiserfs_invalidate_buffer(tb, tbSh);
|
|
return order;
|
|
}
|
|
|
|
if (!tbSh) {
|
|
/* create new root */
|
|
struct disk_child *dc;
|
|
struct buffer_head *tbSh_1 = PATH_H_PBUFFER(tb->tb_path, h - 1);
|
|
struct block_head *blkh;
|
|
|
|
if (tb->blknum[h] != 1)
|
|
reiserfs_panic(NULL, "ibalance-3", "One new node "
|
|
"required for creating the new root");
|
|
/* S[h] = empty buffer from the list FEB. */
|
|
tbSh = get_FEB(tb);
|
|
blkh = B_BLK_HEAD(tbSh);
|
|
set_blkh_level(blkh, h + 1);
|
|
|
|
/* Put the unique node-pointer to S[h] that points to S[h-1]. */
|
|
|
|
dc = B_N_CHILD(tbSh, 0);
|
|
put_dc_block_number(dc, tbSh_1->b_blocknr);
|
|
put_dc_size(dc,
|
|
(MAX_CHILD_SIZE(tbSh_1) - B_FREE_SPACE(tbSh_1)));
|
|
|
|
tb->insert_size[h] -= DC_SIZE;
|
|
set_blkh_free_space(blkh, blkh_free_space(blkh) - DC_SIZE);
|
|
|
|
do_balance_mark_internal_dirty(tb, tbSh, 0);
|
|
|
|
/*&&&&&&&&&&&&&&&&&&&&&&&& */
|
|
check_internal(tbSh);
|
|
/*&&&&&&&&&&&&&&&&&&&&&&&& */
|
|
|
|
/* put new root into path structure */
|
|
PATH_OFFSET_PBUFFER(tb->tb_path, ILLEGAL_PATH_ELEMENT_OFFSET) =
|
|
tbSh;
|
|
|
|
/* Change root in structure super block. */
|
|
PUT_SB_ROOT_BLOCK(tb->tb_sb, tbSh->b_blocknr);
|
|
PUT_SB_TREE_HEIGHT(tb->tb_sb, SB_TREE_HEIGHT(tb->tb_sb) + 1);
|
|
do_balance_mark_sb_dirty(tb, REISERFS_SB(tb->tb_sb)->s_sbh, 1);
|
|
}
|
|
|
|
if (tb->blknum[h] == 2) {
|
|
int snum;
|
|
struct buffer_info dest_bi, src_bi;
|
|
|
|
/* S_new = free buffer from list FEB */
|
|
S_new = get_FEB(tb);
|
|
|
|
set_blkh_level(B_BLK_HEAD(S_new), h + 1);
|
|
|
|
dest_bi.tb = tb;
|
|
dest_bi.bi_bh = S_new;
|
|
dest_bi.bi_parent = NULL;
|
|
dest_bi.bi_position = 0;
|
|
src_bi.tb = tb;
|
|
src_bi.bi_bh = tbSh;
|
|
src_bi.bi_parent = PATH_H_PPARENT(tb->tb_path, h);
|
|
src_bi.bi_position = PATH_H_POSITION(tb->tb_path, h + 1);
|
|
|
|
n = B_NR_ITEMS(tbSh); /* number of items in S[h] */
|
|
snum = (insert_num + n + 1) / 2;
|
|
if (n - snum >= child_pos) {
|
|
/* new items don't fall into S_new */
|
|
/* store the delimiting key for the next level */
|
|
/* new_insert_key = (n - snum)'th key in S[h] */
|
|
memcpy(&new_insert_key, internal_key(tbSh, n - snum),
|
|
KEY_SIZE);
|
|
/* last parameter is del_par */
|
|
internal_move_pointers_items(&dest_bi, &src_bi,
|
|
LAST_TO_FIRST, snum, 0);
|
|
} else if (n + insert_num - snum < child_pos) {
|
|
/* all new items fall into S_new */
|
|
/* store the delimiting key for the next level */
|
|
/*
|
|
* new_insert_key = (n + insert_item - snum)'th
|
|
* key in S[h]
|
|
*/
|
|
memcpy(&new_insert_key,
|
|
internal_key(tbSh, n + insert_num - snum),
|
|
KEY_SIZE);
|
|
/* last parameter is del_par */
|
|
internal_move_pointers_items(&dest_bi, &src_bi,
|
|
LAST_TO_FIRST,
|
|
snum - insert_num, 0);
|
|
|
|
/*
|
|
* insert insert_num keys and node-pointers
|
|
* into S_new
|
|
*/
|
|
internal_insert_childs(&dest_bi,
|
|
/*S_new,tb->S[h-1]->b_next, */
|
|
child_pos - n - insert_num +
|
|
snum - 1,
|
|
insert_num, insert_key,
|
|
insert_ptr);
|
|
|
|
insert_num = 0;
|
|
} else {
|
|
struct disk_child *dc;
|
|
|
|
/* some items fall into S_new, but some don't fall */
|
|
/* last parameter is del_par */
|
|
internal_move_pointers_items(&dest_bi, &src_bi,
|
|
LAST_TO_FIRST,
|
|
n - child_pos + 1, 1);
|
|
/* calculate number of new items that fall into S_new */
|
|
k = snum - n + child_pos - 1;
|
|
|
|
internal_insert_childs(&dest_bi, /*S_new, */ 0, k,
|
|
insert_key + 1, insert_ptr + 1);
|
|
|
|
/* new_insert_key = insert_key[insert_num - k - 1] */
|
|
memcpy(&new_insert_key, insert_key + insert_num - k - 1,
|
|
KEY_SIZE);
|
|
/*
|
|
* replace first node-ptr in S_new by node-ptr
|
|
* to insert_ptr[insert_num-k-1]
|
|
*/
|
|
|
|
dc = B_N_CHILD(S_new, 0);
|
|
put_dc_size(dc,
|
|
(MAX_CHILD_SIZE
|
|
(insert_ptr[insert_num - k - 1]) -
|
|
B_FREE_SPACE(insert_ptr
|
|
[insert_num - k - 1])));
|
|
put_dc_block_number(dc,
|
|
insert_ptr[insert_num - k -
|
|
1]->b_blocknr);
|
|
|
|
do_balance_mark_internal_dirty(tb, S_new, 0);
|
|
|
|
insert_num -= (k + 1);
|
|
}
|
|
/* new_insert_ptr = node_pointer to S_new */
|
|
new_insert_ptr = S_new;
|
|
|
|
RFALSE(!buffer_journaled(S_new) || buffer_journal_dirty(S_new)
|
|
|| buffer_dirty(S_new), "cm-00001: bad S_new (%b)",
|
|
S_new);
|
|
|
|
/* S_new is released in unfix_nodes */
|
|
}
|
|
|
|
n = B_NR_ITEMS(tbSh); /*number of items in S[h] */
|
|
|
|
if (0 <= child_pos && child_pos <= n && insert_num > 0) {
|
|
bi.tb = tb;
|
|
bi.bi_bh = tbSh;
|
|
bi.bi_parent = PATH_H_PPARENT(tb->tb_path, h);
|
|
bi.bi_position = PATH_H_POSITION(tb->tb_path, h + 1);
|
|
internal_insert_childs(&bi, /*tbSh, */
|
|
/* ( tb->S[h-1]->b_parent == tb->S[h] ) ? tb->S[h-1]->b_next : tb->S[h]->b_child->b_next, */
|
|
child_pos, insert_num, insert_key,
|
|
insert_ptr);
|
|
}
|
|
|
|
memcpy(new_insert_key_addr, &new_insert_key, KEY_SIZE);
|
|
insert_ptr[0] = new_insert_ptr;
|
|
|
|
return order;
|
|
}
|