e16ec34039
Lockdep found a potential deadlock between cpu_hotplug_lock, bpf_event_mutex, and cpuctx_mutex:
[ 13.007000] WARNING: possible circular locking dependency detected
[ 13.007587] 5.0.0-rc3-00018-g2fa53f892422-dirty #477 Not tainted
[ 13.008124] ------------------------------------------------------
[ 13.008624] test_progs/246 is trying to acquire lock:
[ 13.009030] 0000000094160d1d (tracepoints_mutex){+.+.}, at: tracepoint_probe_register_prio+0x2d/0x300
[ 13.009770]
[ 13.009770] but task is already holding lock:
[ 13.010239] 00000000d663ef86 (bpf_event_mutex){+.+.}, at: bpf_probe_register+0x1d/0x60
[ 13.010877]
[ 13.010877] which lock already depends on the new lock.
[ 13.010877]
[ 13.011532]
[ 13.011532] the existing dependency chain (in reverse order) is:
[ 13.012129]
[ 13.012129] -> #4 (bpf_event_mutex){+.+.}:
[ 13.012582] perf_event_query_prog_array+0x9b/0x130
[ 13.013016] _perf_ioctl+0x3aa/0x830
[ 13.013354] perf_ioctl+0x2e/0x50
[ 13.013668] do_vfs_ioctl+0x8f/0x6a0
[ 13.014003] ksys_ioctl+0x70/0x80
[ 13.014320] __x64_sys_ioctl+0x16/0x20
[ 13.014668] do_syscall_64+0x4a/0x180
[ 13.015007] entry_SYSCALL_64_after_hwframe+0x49/0xbe
[ 13.015469]
[ 13.015469] -> #3 (&cpuctx_mutex){+.+.}:
[ 13.015910] perf_event_init_cpu+0x5a/0x90
[ 13.016291] perf_event_init+0x1b2/0x1de
[ 13.016654] start_kernel+0x2b8/0x42a
[ 13.016995] secondary_startup_64+0xa4/0xb0
[ 13.017382]
[ 13.017382] -> #2 (pmus_lock){+.+.}:
[ 13.017794] perf_event_init_cpu+0x21/0x90
[ 13.018172] cpuhp_invoke_callback+0xb3/0x960
[ 13.018573] _cpu_up+0xa7/0x140
[ 13.018871] do_cpu_up+0xa4/0xc0
[ 13.019178] smp_init+0xcd/0xd2
[ 13.019483] kernel_init_freeable+0x123/0x24f
[ 13.019878] kernel_init+0xa/0x110
[ 13.020201] ret_from_fork+0x24/0x30
[ 13.020541]
[ 13.020541] -> #1 (cpu_hotplug_lock.rw_sem){++++}:
[ 13.021051] static_key_slow_inc+0xe/0x20
[ 13.021424] tracepoint_probe_register_prio+0x28c/0x300
[ 13.021891] perf_trace_event_init+0x11f/0x250
[ 13.022297] perf_trace_init+0x6b/0xa0
[ 13.022644] perf_tp_event_init+0x25/0x40
[ 13.023011] perf_try_init_event+0x6b/0x90
[ 13.023386] perf_event_alloc+0x9a8/0xc40
[ 13.023754] __do_sys_perf_event_open+0x1dd/0xd30
[ 13.024173] do_syscall_64+0x4a/0x180
[ 13.024519] entry_SYSCALL_64_after_hwframe+0x49/0xbe
[ 13.024968]
[ 13.024968] -> #0 (tracepoints_mutex){+.+.}:
[ 13.025434] __mutex_lock+0x86/0x970
[ 13.025764] tracepoint_probe_register_prio+0x2d/0x300
[ 13.026215] bpf_probe_register+0x40/0x60
[ 13.026584] bpf_raw_tracepoint_open.isra.34+0xa4/0x130
[ 13.027042] __do_sys_bpf+0x94f/0x1a90
[ 13.027389] do_syscall_64+0x4a/0x180
[ 13.027727] entry_SYSCALL_64_after_hwframe+0x49/0xbe
[ 13.028171]
[ 13.028171] other info that might help us debug this:
[ 13.028171]
[ 13.028807] Chain exists of:
[ 13.028807] tracepoints_mutex --> &cpuctx_mutex --> bpf_event_mutex
[ 13.028807]
[ 13.029666] Possible unsafe locking scenario:
[ 13.029666]
[ 13.030140] CPU0 CPU1
[ 13.030510] ---- ----
[ 13.030875] lock(bpf_event_mutex);
[ 13.031166] lock(&cpuctx_mutex);
[ 13.031645] lock(bpf_event_mutex);
[ 13.032135] lock(tracepoints_mutex);
[ 13.032441]
[ 13.032441] *** DEADLOCK ***
[ 13.032441]
[ 13.032911] 1 lock held by test_progs/246:
[ 13.033239] #0: 00000000d663ef86 (bpf_event_mutex){+.+.}, at: bpf_probe_register+0x1d/0x60
[ 13.033909]
[ 13.033909] stack backtrace:
[ 13.034258] CPU: 1 PID: 246 Comm: test_progs Not tainted 5.0.0-rc3-00018-g2fa53f892422-dirty #477
[ 13.034964] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.11.0-2.el7 04/01/2014
[ 13.035657] Call Trace:
[ 13.035859] dump_stack+0x5f/0x8b
[ 13.036130] print_circular_bug.isra.37+0x1ce/0x1db
[ 13.036526] __lock_acquire+0x1158/0x1350
[ 13.036852] ? lock_acquire+0x98/0x190
[ 13.037154] lock_acquire+0x98/0x190
[ 13.037447] ? tracepoint_probe_register_prio+0x2d/0x300
[ 13.037876] __mutex_lock+0x86/0x970
[ 13.038167] ? tracepoint_probe_register_prio+0x2d/0x300
[ 13.038600] ? tracepoint_probe_register_prio+0x2d/0x300
[ 13.039028] ? __mutex_lock+0x86/0x970
[ 13.039337] ? __mutex_lock+0x24a/0x970
[ 13.039649] ? bpf_probe_register+0x1d/0x60
[ 13.039992] ? __bpf_trace_sched_wake_idle_without_ipi+0x10/0x10
[ 13.040478] ? tracepoint_probe_register_prio+0x2d/0x300
[ 13.040906] tracepoint_probe_register_prio+0x2d/0x300
[ 13.041325] bpf_probe_register+0x40/0x60
[ 13.041649] bpf_raw_tracepoint_open.isra.34+0xa4/0x130
[ 13.042068] ? __might_fault+0x3e/0x90
[ 13.042374] __do_sys_bpf+0x94f/0x1a90
[ 13.042678] do_syscall_64+0x4a/0x180
[ 13.042975] entry_SYSCALL_64_after_hwframe+0x49/0xbe
[ 13.043382] RIP: 0033:0x7f23b10a07f9
[ 13.045155] RSP: 002b:00007ffdef42fdd8 EFLAGS: 00000202 ORIG_RAX: 0000000000000141
[ 13.045759] RAX: ffffffffffffffda RBX: 00007ffdef42ff70 RCX: 00007f23b10a07f9
[ 13.046326] RDX: 0000000000000070 RSI: 00007ffdef42fe10 RDI: 0000000000000011
[ 13.046893] RBP: 00007ffdef42fdf0 R08: 0000000000000038 R09: 00007ffdef42fe10
[ 13.047462] R10: 0000000000000000 R11: 0000000000000202 R12: 0000000000000000
[ 13.048029] R13: 0000000000000016 R14: 00007f23b1db4690 R15: 0000000000000000
Since tracepoints_mutex will be taken in tracepoint_probe_register/unregister()
there is no need to take bpf_event_mutex too.
bpf_event_mutex is protecting modifications to prog array used in kprobe/perf bpf progs.
bpf_raw_tracepoints don't need to take this mutex.
Fixes: c4f6699dfc
("bpf: introduce BPF_RAW_TRACEPOINT")
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
1310 lines
35 KiB
C
1310 lines
35 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com
|
|
* Copyright (c) 2016 Facebook
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/types.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/bpf.h>
|
|
#include <linux/bpf_perf_event.h>
|
|
#include <linux/filter.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/ctype.h>
|
|
#include <linux/kprobes.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/error-injection.h>
|
|
|
|
#include "trace_probe.h"
|
|
#include "trace.h"
|
|
|
|
#ifdef CONFIG_MODULES
|
|
struct bpf_trace_module {
|
|
struct module *module;
|
|
struct list_head list;
|
|
};
|
|
|
|
static LIST_HEAD(bpf_trace_modules);
|
|
static DEFINE_MUTEX(bpf_module_mutex);
|
|
|
|
static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
|
|
{
|
|
struct bpf_raw_event_map *btp, *ret = NULL;
|
|
struct bpf_trace_module *btm;
|
|
unsigned int i;
|
|
|
|
mutex_lock(&bpf_module_mutex);
|
|
list_for_each_entry(btm, &bpf_trace_modules, list) {
|
|
for (i = 0; i < btm->module->num_bpf_raw_events; ++i) {
|
|
btp = &btm->module->bpf_raw_events[i];
|
|
if (!strcmp(btp->tp->name, name)) {
|
|
if (try_module_get(btm->module))
|
|
ret = btp;
|
|
goto out;
|
|
}
|
|
}
|
|
}
|
|
out:
|
|
mutex_unlock(&bpf_module_mutex);
|
|
return ret;
|
|
}
|
|
#else
|
|
static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
|
|
{
|
|
return NULL;
|
|
}
|
|
#endif /* CONFIG_MODULES */
|
|
|
|
u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
|
|
u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
|
|
|
|
/**
|
|
* trace_call_bpf - invoke BPF program
|
|
* @call: tracepoint event
|
|
* @ctx: opaque context pointer
|
|
*
|
|
* kprobe handlers execute BPF programs via this helper.
|
|
* Can be used from static tracepoints in the future.
|
|
*
|
|
* Return: BPF programs always return an integer which is interpreted by
|
|
* kprobe handler as:
|
|
* 0 - return from kprobe (event is filtered out)
|
|
* 1 - store kprobe event into ring buffer
|
|
* Other values are reserved and currently alias to 1
|
|
*/
|
|
unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx)
|
|
{
|
|
unsigned int ret;
|
|
|
|
if (in_nmi()) /* not supported yet */
|
|
return 1;
|
|
|
|
preempt_disable();
|
|
|
|
if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
|
|
/*
|
|
* since some bpf program is already running on this cpu,
|
|
* don't call into another bpf program (same or different)
|
|
* and don't send kprobe event into ring-buffer,
|
|
* so return zero here
|
|
*/
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock
|
|
* to all call sites, we did a bpf_prog_array_valid() there to check
|
|
* whether call->prog_array is empty or not, which is
|
|
* a heurisitc to speed up execution.
|
|
*
|
|
* If bpf_prog_array_valid() fetched prog_array was
|
|
* non-NULL, we go into trace_call_bpf() and do the actual
|
|
* proper rcu_dereference() under RCU lock.
|
|
* If it turns out that prog_array is NULL then, we bail out.
|
|
* For the opposite, if the bpf_prog_array_valid() fetched pointer
|
|
* was NULL, you'll skip the prog_array with the risk of missing
|
|
* out of events when it was updated in between this and the
|
|
* rcu_dereference() which is accepted risk.
|
|
*/
|
|
ret = BPF_PROG_RUN_ARRAY_CHECK(call->prog_array, ctx, BPF_PROG_RUN);
|
|
|
|
out:
|
|
__this_cpu_dec(bpf_prog_active);
|
|
preempt_enable();
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(trace_call_bpf);
|
|
|
|
#ifdef CONFIG_BPF_KPROBE_OVERRIDE
|
|
BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc)
|
|
{
|
|
regs_set_return_value(regs, rc);
|
|
override_function_with_return(regs);
|
|
return 0;
|
|
}
|
|
|
|
static const struct bpf_func_proto bpf_override_return_proto = {
|
|
.func = bpf_override_return,
|
|
.gpl_only = true,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_PTR_TO_CTX,
|
|
.arg2_type = ARG_ANYTHING,
|
|
};
|
|
#endif
|
|
|
|
BPF_CALL_3(bpf_probe_read, void *, dst, u32, size, const void *, unsafe_ptr)
|
|
{
|
|
int ret;
|
|
|
|
ret = probe_kernel_read(dst, unsafe_ptr, size);
|
|
if (unlikely(ret < 0))
|
|
memset(dst, 0, size);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const struct bpf_func_proto bpf_probe_read_proto = {
|
|
.func = bpf_probe_read,
|
|
.gpl_only = true,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_PTR_TO_UNINIT_MEM,
|
|
.arg2_type = ARG_CONST_SIZE_OR_ZERO,
|
|
.arg3_type = ARG_ANYTHING,
|
|
};
|
|
|
|
BPF_CALL_3(bpf_probe_write_user, void *, unsafe_ptr, const void *, src,
|
|
u32, size)
|
|
{
|
|
/*
|
|
* Ensure we're in user context which is safe for the helper to
|
|
* run. This helper has no business in a kthread.
|
|
*
|
|
* access_ok() should prevent writing to non-user memory, but in
|
|
* some situations (nommu, temporary switch, etc) access_ok() does
|
|
* not provide enough validation, hence the check on KERNEL_DS.
|
|
*/
|
|
|
|
if (unlikely(in_interrupt() ||
|
|
current->flags & (PF_KTHREAD | PF_EXITING)))
|
|
return -EPERM;
|
|
if (unlikely(uaccess_kernel()))
|
|
return -EPERM;
|
|
if (!access_ok(unsafe_ptr, size))
|
|
return -EPERM;
|
|
|
|
return probe_kernel_write(unsafe_ptr, src, size);
|
|
}
|
|
|
|
static const struct bpf_func_proto bpf_probe_write_user_proto = {
|
|
.func = bpf_probe_write_user,
|
|
.gpl_only = true,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_ANYTHING,
|
|
.arg2_type = ARG_PTR_TO_MEM,
|
|
.arg3_type = ARG_CONST_SIZE,
|
|
};
|
|
|
|
static const struct bpf_func_proto *bpf_get_probe_write_proto(void)
|
|
{
|
|
pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!",
|
|
current->comm, task_pid_nr(current));
|
|
|
|
return &bpf_probe_write_user_proto;
|
|
}
|
|
|
|
/*
|
|
* Only limited trace_printk() conversion specifiers allowed:
|
|
* %d %i %u %x %ld %li %lu %lx %lld %lli %llu %llx %p %s
|
|
*/
|
|
BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1,
|
|
u64, arg2, u64, arg3)
|
|
{
|
|
bool str_seen = false;
|
|
int mod[3] = {};
|
|
int fmt_cnt = 0;
|
|
u64 unsafe_addr;
|
|
char buf[64];
|
|
int i;
|
|
|
|
/*
|
|
* bpf_check()->check_func_arg()->check_stack_boundary()
|
|
* guarantees that fmt points to bpf program stack,
|
|
* fmt_size bytes of it were initialized and fmt_size > 0
|
|
*/
|
|
if (fmt[--fmt_size] != 0)
|
|
return -EINVAL;
|
|
|
|
/* check format string for allowed specifiers */
|
|
for (i = 0; i < fmt_size; i++) {
|
|
if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i]))
|
|
return -EINVAL;
|
|
|
|
if (fmt[i] != '%')
|
|
continue;
|
|
|
|
if (fmt_cnt >= 3)
|
|
return -EINVAL;
|
|
|
|
/* fmt[i] != 0 && fmt[last] == 0, so we can access fmt[i + 1] */
|
|
i++;
|
|
if (fmt[i] == 'l') {
|
|
mod[fmt_cnt]++;
|
|
i++;
|
|
} else if (fmt[i] == 'p' || fmt[i] == 's') {
|
|
mod[fmt_cnt]++;
|
|
/* disallow any further format extensions */
|
|
if (fmt[i + 1] != 0 &&
|
|
!isspace(fmt[i + 1]) &&
|
|
!ispunct(fmt[i + 1]))
|
|
return -EINVAL;
|
|
fmt_cnt++;
|
|
if (fmt[i] == 's') {
|
|
if (str_seen)
|
|
/* allow only one '%s' per fmt string */
|
|
return -EINVAL;
|
|
str_seen = true;
|
|
|
|
switch (fmt_cnt) {
|
|
case 1:
|
|
unsafe_addr = arg1;
|
|
arg1 = (long) buf;
|
|
break;
|
|
case 2:
|
|
unsafe_addr = arg2;
|
|
arg2 = (long) buf;
|
|
break;
|
|
case 3:
|
|
unsafe_addr = arg3;
|
|
arg3 = (long) buf;
|
|
break;
|
|
}
|
|
buf[0] = 0;
|
|
strncpy_from_unsafe(buf,
|
|
(void *) (long) unsafe_addr,
|
|
sizeof(buf));
|
|
}
|
|
continue;
|
|
}
|
|
|
|
if (fmt[i] == 'l') {
|
|
mod[fmt_cnt]++;
|
|
i++;
|
|
}
|
|
|
|
if (fmt[i] != 'i' && fmt[i] != 'd' &&
|
|
fmt[i] != 'u' && fmt[i] != 'x')
|
|
return -EINVAL;
|
|
fmt_cnt++;
|
|
}
|
|
|
|
/* Horrid workaround for getting va_list handling working with different
|
|
* argument type combinations generically for 32 and 64 bit archs.
|
|
*/
|
|
#define __BPF_TP_EMIT() __BPF_ARG3_TP()
|
|
#define __BPF_TP(...) \
|
|
__trace_printk(0 /* Fake ip */, \
|
|
fmt, ##__VA_ARGS__)
|
|
|
|
#define __BPF_ARG1_TP(...) \
|
|
((mod[0] == 2 || (mod[0] == 1 && __BITS_PER_LONG == 64)) \
|
|
? __BPF_TP(arg1, ##__VA_ARGS__) \
|
|
: ((mod[0] == 1 || (mod[0] == 0 && __BITS_PER_LONG == 32)) \
|
|
? __BPF_TP((long)arg1, ##__VA_ARGS__) \
|
|
: __BPF_TP((u32)arg1, ##__VA_ARGS__)))
|
|
|
|
#define __BPF_ARG2_TP(...) \
|
|
((mod[1] == 2 || (mod[1] == 1 && __BITS_PER_LONG == 64)) \
|
|
? __BPF_ARG1_TP(arg2, ##__VA_ARGS__) \
|
|
: ((mod[1] == 1 || (mod[1] == 0 && __BITS_PER_LONG == 32)) \
|
|
? __BPF_ARG1_TP((long)arg2, ##__VA_ARGS__) \
|
|
: __BPF_ARG1_TP((u32)arg2, ##__VA_ARGS__)))
|
|
|
|
#define __BPF_ARG3_TP(...) \
|
|
((mod[2] == 2 || (mod[2] == 1 && __BITS_PER_LONG == 64)) \
|
|
? __BPF_ARG2_TP(arg3, ##__VA_ARGS__) \
|
|
: ((mod[2] == 1 || (mod[2] == 0 && __BITS_PER_LONG == 32)) \
|
|
? __BPF_ARG2_TP((long)arg3, ##__VA_ARGS__) \
|
|
: __BPF_ARG2_TP((u32)arg3, ##__VA_ARGS__)))
|
|
|
|
return __BPF_TP_EMIT();
|
|
}
|
|
|
|
static const struct bpf_func_proto bpf_trace_printk_proto = {
|
|
.func = bpf_trace_printk,
|
|
.gpl_only = true,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_PTR_TO_MEM,
|
|
.arg2_type = ARG_CONST_SIZE,
|
|
};
|
|
|
|
const struct bpf_func_proto *bpf_get_trace_printk_proto(void)
|
|
{
|
|
/*
|
|
* this program might be calling bpf_trace_printk,
|
|
* so allocate per-cpu printk buffers
|
|
*/
|
|
trace_printk_init_buffers();
|
|
|
|
return &bpf_trace_printk_proto;
|
|
}
|
|
|
|
static __always_inline int
|
|
get_map_perf_counter(struct bpf_map *map, u64 flags,
|
|
u64 *value, u64 *enabled, u64 *running)
|
|
{
|
|
struct bpf_array *array = container_of(map, struct bpf_array, map);
|
|
unsigned int cpu = smp_processor_id();
|
|
u64 index = flags & BPF_F_INDEX_MASK;
|
|
struct bpf_event_entry *ee;
|
|
|
|
if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
|
|
return -EINVAL;
|
|
if (index == BPF_F_CURRENT_CPU)
|
|
index = cpu;
|
|
if (unlikely(index >= array->map.max_entries))
|
|
return -E2BIG;
|
|
|
|
ee = READ_ONCE(array->ptrs[index]);
|
|
if (!ee)
|
|
return -ENOENT;
|
|
|
|
return perf_event_read_local(ee->event, value, enabled, running);
|
|
}
|
|
|
|
BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags)
|
|
{
|
|
u64 value = 0;
|
|
int err;
|
|
|
|
err = get_map_perf_counter(map, flags, &value, NULL, NULL);
|
|
/*
|
|
* this api is ugly since we miss [-22..-2] range of valid
|
|
* counter values, but that's uapi
|
|
*/
|
|
if (err)
|
|
return err;
|
|
return value;
|
|
}
|
|
|
|
static const struct bpf_func_proto bpf_perf_event_read_proto = {
|
|
.func = bpf_perf_event_read,
|
|
.gpl_only = true,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_CONST_MAP_PTR,
|
|
.arg2_type = ARG_ANYTHING,
|
|
};
|
|
|
|
BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags,
|
|
struct bpf_perf_event_value *, buf, u32, size)
|
|
{
|
|
int err = -EINVAL;
|
|
|
|
if (unlikely(size != sizeof(struct bpf_perf_event_value)))
|
|
goto clear;
|
|
err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled,
|
|
&buf->running);
|
|
if (unlikely(err))
|
|
goto clear;
|
|
return 0;
|
|
clear:
|
|
memset(buf, 0, size);
|
|
return err;
|
|
}
|
|
|
|
static const struct bpf_func_proto bpf_perf_event_read_value_proto = {
|
|
.func = bpf_perf_event_read_value,
|
|
.gpl_only = true,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_CONST_MAP_PTR,
|
|
.arg2_type = ARG_ANYTHING,
|
|
.arg3_type = ARG_PTR_TO_UNINIT_MEM,
|
|
.arg4_type = ARG_CONST_SIZE,
|
|
};
|
|
|
|
static DEFINE_PER_CPU(struct perf_sample_data, bpf_trace_sd);
|
|
|
|
static __always_inline u64
|
|
__bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map,
|
|
u64 flags, struct perf_sample_data *sd)
|
|
{
|
|
struct bpf_array *array = container_of(map, struct bpf_array, map);
|
|
unsigned int cpu = smp_processor_id();
|
|
u64 index = flags & BPF_F_INDEX_MASK;
|
|
struct bpf_event_entry *ee;
|
|
struct perf_event *event;
|
|
|
|
if (index == BPF_F_CURRENT_CPU)
|
|
index = cpu;
|
|
if (unlikely(index >= array->map.max_entries))
|
|
return -E2BIG;
|
|
|
|
ee = READ_ONCE(array->ptrs[index]);
|
|
if (!ee)
|
|
return -ENOENT;
|
|
|
|
event = ee->event;
|
|
if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE ||
|
|
event->attr.config != PERF_COUNT_SW_BPF_OUTPUT))
|
|
return -EINVAL;
|
|
|
|
if (unlikely(event->oncpu != cpu))
|
|
return -EOPNOTSUPP;
|
|
|
|
perf_event_output(event, sd, regs);
|
|
return 0;
|
|
}
|
|
|
|
BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map,
|
|
u64, flags, void *, data, u64, size)
|
|
{
|
|
struct perf_sample_data *sd = this_cpu_ptr(&bpf_trace_sd);
|
|
struct perf_raw_record raw = {
|
|
.frag = {
|
|
.size = size,
|
|
.data = data,
|
|
},
|
|
};
|
|
|
|
if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
|
|
return -EINVAL;
|
|
|
|
perf_sample_data_init(sd, 0, 0);
|
|
sd->raw = &raw;
|
|
|
|
return __bpf_perf_event_output(regs, map, flags, sd);
|
|
}
|
|
|
|
static const struct bpf_func_proto bpf_perf_event_output_proto = {
|
|
.func = bpf_perf_event_output,
|
|
.gpl_only = true,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_PTR_TO_CTX,
|
|
.arg2_type = ARG_CONST_MAP_PTR,
|
|
.arg3_type = ARG_ANYTHING,
|
|
.arg4_type = ARG_PTR_TO_MEM,
|
|
.arg5_type = ARG_CONST_SIZE_OR_ZERO,
|
|
};
|
|
|
|
static DEFINE_PER_CPU(struct pt_regs, bpf_pt_regs);
|
|
static DEFINE_PER_CPU(struct perf_sample_data, bpf_misc_sd);
|
|
|
|
u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
|
|
void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
|
|
{
|
|
struct perf_sample_data *sd = this_cpu_ptr(&bpf_misc_sd);
|
|
struct pt_regs *regs = this_cpu_ptr(&bpf_pt_regs);
|
|
struct perf_raw_frag frag = {
|
|
.copy = ctx_copy,
|
|
.size = ctx_size,
|
|
.data = ctx,
|
|
};
|
|
struct perf_raw_record raw = {
|
|
.frag = {
|
|
{
|
|
.next = ctx_size ? &frag : NULL,
|
|
},
|
|
.size = meta_size,
|
|
.data = meta,
|
|
},
|
|
};
|
|
|
|
perf_fetch_caller_regs(regs);
|
|
perf_sample_data_init(sd, 0, 0);
|
|
sd->raw = &raw;
|
|
|
|
return __bpf_perf_event_output(regs, map, flags, sd);
|
|
}
|
|
|
|
BPF_CALL_0(bpf_get_current_task)
|
|
{
|
|
return (long) current;
|
|
}
|
|
|
|
static const struct bpf_func_proto bpf_get_current_task_proto = {
|
|
.func = bpf_get_current_task,
|
|
.gpl_only = true,
|
|
.ret_type = RET_INTEGER,
|
|
};
|
|
|
|
BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx)
|
|
{
|
|
struct bpf_array *array = container_of(map, struct bpf_array, map);
|
|
struct cgroup *cgrp;
|
|
|
|
if (unlikely(idx >= array->map.max_entries))
|
|
return -E2BIG;
|
|
|
|
cgrp = READ_ONCE(array->ptrs[idx]);
|
|
if (unlikely(!cgrp))
|
|
return -EAGAIN;
|
|
|
|
return task_under_cgroup_hierarchy(current, cgrp);
|
|
}
|
|
|
|
static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = {
|
|
.func = bpf_current_task_under_cgroup,
|
|
.gpl_only = false,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_CONST_MAP_PTR,
|
|
.arg2_type = ARG_ANYTHING,
|
|
};
|
|
|
|
BPF_CALL_3(bpf_probe_read_str, void *, dst, u32, size,
|
|
const void *, unsafe_ptr)
|
|
{
|
|
int ret;
|
|
|
|
/*
|
|
* The strncpy_from_unsafe() call will likely not fill the entire
|
|
* buffer, but that's okay in this circumstance as we're probing
|
|
* arbitrary memory anyway similar to bpf_probe_read() and might
|
|
* as well probe the stack. Thus, memory is explicitly cleared
|
|
* only in error case, so that improper users ignoring return
|
|
* code altogether don't copy garbage; otherwise length of string
|
|
* is returned that can be used for bpf_perf_event_output() et al.
|
|
*/
|
|
ret = strncpy_from_unsafe(dst, unsafe_ptr, size);
|
|
if (unlikely(ret < 0))
|
|
memset(dst, 0, size);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const struct bpf_func_proto bpf_probe_read_str_proto = {
|
|
.func = bpf_probe_read_str,
|
|
.gpl_only = true,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_PTR_TO_UNINIT_MEM,
|
|
.arg2_type = ARG_CONST_SIZE_OR_ZERO,
|
|
.arg3_type = ARG_ANYTHING,
|
|
};
|
|
|
|
static const struct bpf_func_proto *
|
|
tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
|
|
{
|
|
switch (func_id) {
|
|
case BPF_FUNC_map_lookup_elem:
|
|
return &bpf_map_lookup_elem_proto;
|
|
case BPF_FUNC_map_update_elem:
|
|
return &bpf_map_update_elem_proto;
|
|
case BPF_FUNC_map_delete_elem:
|
|
return &bpf_map_delete_elem_proto;
|
|
case BPF_FUNC_probe_read:
|
|
return &bpf_probe_read_proto;
|
|
case BPF_FUNC_ktime_get_ns:
|
|
return &bpf_ktime_get_ns_proto;
|
|
case BPF_FUNC_tail_call:
|
|
return &bpf_tail_call_proto;
|
|
case BPF_FUNC_get_current_pid_tgid:
|
|
return &bpf_get_current_pid_tgid_proto;
|
|
case BPF_FUNC_get_current_task:
|
|
return &bpf_get_current_task_proto;
|
|
case BPF_FUNC_get_current_uid_gid:
|
|
return &bpf_get_current_uid_gid_proto;
|
|
case BPF_FUNC_get_current_comm:
|
|
return &bpf_get_current_comm_proto;
|
|
case BPF_FUNC_trace_printk:
|
|
return bpf_get_trace_printk_proto();
|
|
case BPF_FUNC_get_smp_processor_id:
|
|
return &bpf_get_smp_processor_id_proto;
|
|
case BPF_FUNC_get_numa_node_id:
|
|
return &bpf_get_numa_node_id_proto;
|
|
case BPF_FUNC_perf_event_read:
|
|
return &bpf_perf_event_read_proto;
|
|
case BPF_FUNC_probe_write_user:
|
|
return bpf_get_probe_write_proto();
|
|
case BPF_FUNC_current_task_under_cgroup:
|
|
return &bpf_current_task_under_cgroup_proto;
|
|
case BPF_FUNC_get_prandom_u32:
|
|
return &bpf_get_prandom_u32_proto;
|
|
case BPF_FUNC_probe_read_str:
|
|
return &bpf_probe_read_str_proto;
|
|
#ifdef CONFIG_CGROUPS
|
|
case BPF_FUNC_get_current_cgroup_id:
|
|
return &bpf_get_current_cgroup_id_proto;
|
|
#endif
|
|
default:
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
static const struct bpf_func_proto *
|
|
kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
|
|
{
|
|
switch (func_id) {
|
|
case BPF_FUNC_perf_event_output:
|
|
return &bpf_perf_event_output_proto;
|
|
case BPF_FUNC_get_stackid:
|
|
return &bpf_get_stackid_proto;
|
|
case BPF_FUNC_get_stack:
|
|
return &bpf_get_stack_proto;
|
|
case BPF_FUNC_perf_event_read_value:
|
|
return &bpf_perf_event_read_value_proto;
|
|
#ifdef CONFIG_BPF_KPROBE_OVERRIDE
|
|
case BPF_FUNC_override_return:
|
|
return &bpf_override_return_proto;
|
|
#endif
|
|
default:
|
|
return tracing_func_proto(func_id, prog);
|
|
}
|
|
}
|
|
|
|
/* bpf+kprobe programs can access fields of 'struct pt_regs' */
|
|
static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
|
|
const struct bpf_prog *prog,
|
|
struct bpf_insn_access_aux *info)
|
|
{
|
|
if (off < 0 || off >= sizeof(struct pt_regs))
|
|
return false;
|
|
if (type != BPF_READ)
|
|
return false;
|
|
if (off % size != 0)
|
|
return false;
|
|
/*
|
|
* Assertion for 32 bit to make sure last 8 byte access
|
|
* (BPF_DW) to the last 4 byte member is disallowed.
|
|
*/
|
|
if (off + size > sizeof(struct pt_regs))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
const struct bpf_verifier_ops kprobe_verifier_ops = {
|
|
.get_func_proto = kprobe_prog_func_proto,
|
|
.is_valid_access = kprobe_prog_is_valid_access,
|
|
};
|
|
|
|
const struct bpf_prog_ops kprobe_prog_ops = {
|
|
};
|
|
|
|
BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map,
|
|
u64, flags, void *, data, u64, size)
|
|
{
|
|
struct pt_regs *regs = *(struct pt_regs **)tp_buff;
|
|
|
|
/*
|
|
* r1 points to perf tracepoint buffer where first 8 bytes are hidden
|
|
* from bpf program and contain a pointer to 'struct pt_regs'. Fetch it
|
|
* from there and call the same bpf_perf_event_output() helper inline.
|
|
*/
|
|
return ____bpf_perf_event_output(regs, map, flags, data, size);
|
|
}
|
|
|
|
static const struct bpf_func_proto bpf_perf_event_output_proto_tp = {
|
|
.func = bpf_perf_event_output_tp,
|
|
.gpl_only = true,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_PTR_TO_CTX,
|
|
.arg2_type = ARG_CONST_MAP_PTR,
|
|
.arg3_type = ARG_ANYTHING,
|
|
.arg4_type = ARG_PTR_TO_MEM,
|
|
.arg5_type = ARG_CONST_SIZE_OR_ZERO,
|
|
};
|
|
|
|
BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map,
|
|
u64, flags)
|
|
{
|
|
struct pt_regs *regs = *(struct pt_regs **)tp_buff;
|
|
|
|
/*
|
|
* Same comment as in bpf_perf_event_output_tp(), only that this time
|
|
* the other helper's function body cannot be inlined due to being
|
|
* external, thus we need to call raw helper function.
|
|
*/
|
|
return bpf_get_stackid((unsigned long) regs, (unsigned long) map,
|
|
flags, 0, 0);
|
|
}
|
|
|
|
static const struct bpf_func_proto bpf_get_stackid_proto_tp = {
|
|
.func = bpf_get_stackid_tp,
|
|
.gpl_only = true,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_PTR_TO_CTX,
|
|
.arg2_type = ARG_CONST_MAP_PTR,
|
|
.arg3_type = ARG_ANYTHING,
|
|
};
|
|
|
|
BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size,
|
|
u64, flags)
|
|
{
|
|
struct pt_regs *regs = *(struct pt_regs **)tp_buff;
|
|
|
|
return bpf_get_stack((unsigned long) regs, (unsigned long) buf,
|
|
(unsigned long) size, flags, 0);
|
|
}
|
|
|
|
static const struct bpf_func_proto bpf_get_stack_proto_tp = {
|
|
.func = bpf_get_stack_tp,
|
|
.gpl_only = true,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_PTR_TO_CTX,
|
|
.arg2_type = ARG_PTR_TO_UNINIT_MEM,
|
|
.arg3_type = ARG_CONST_SIZE_OR_ZERO,
|
|
.arg4_type = ARG_ANYTHING,
|
|
};
|
|
|
|
static const struct bpf_func_proto *
|
|
tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
|
|
{
|
|
switch (func_id) {
|
|
case BPF_FUNC_perf_event_output:
|
|
return &bpf_perf_event_output_proto_tp;
|
|
case BPF_FUNC_get_stackid:
|
|
return &bpf_get_stackid_proto_tp;
|
|
case BPF_FUNC_get_stack:
|
|
return &bpf_get_stack_proto_tp;
|
|
default:
|
|
return tracing_func_proto(func_id, prog);
|
|
}
|
|
}
|
|
|
|
static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type,
|
|
const struct bpf_prog *prog,
|
|
struct bpf_insn_access_aux *info)
|
|
{
|
|
if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE)
|
|
return false;
|
|
if (type != BPF_READ)
|
|
return false;
|
|
if (off % size != 0)
|
|
return false;
|
|
|
|
BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64));
|
|
return true;
|
|
}
|
|
|
|
const struct bpf_verifier_ops tracepoint_verifier_ops = {
|
|
.get_func_proto = tp_prog_func_proto,
|
|
.is_valid_access = tp_prog_is_valid_access,
|
|
};
|
|
|
|
const struct bpf_prog_ops tracepoint_prog_ops = {
|
|
};
|
|
|
|
BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx,
|
|
struct bpf_perf_event_value *, buf, u32, size)
|
|
{
|
|
int err = -EINVAL;
|
|
|
|
if (unlikely(size != sizeof(struct bpf_perf_event_value)))
|
|
goto clear;
|
|
err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled,
|
|
&buf->running);
|
|
if (unlikely(err))
|
|
goto clear;
|
|
return 0;
|
|
clear:
|
|
memset(buf, 0, size);
|
|
return err;
|
|
}
|
|
|
|
static const struct bpf_func_proto bpf_perf_prog_read_value_proto = {
|
|
.func = bpf_perf_prog_read_value,
|
|
.gpl_only = true,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_PTR_TO_CTX,
|
|
.arg2_type = ARG_PTR_TO_UNINIT_MEM,
|
|
.arg3_type = ARG_CONST_SIZE,
|
|
};
|
|
|
|
static const struct bpf_func_proto *
|
|
pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
|
|
{
|
|
switch (func_id) {
|
|
case BPF_FUNC_perf_event_output:
|
|
return &bpf_perf_event_output_proto_tp;
|
|
case BPF_FUNC_get_stackid:
|
|
return &bpf_get_stackid_proto_tp;
|
|
case BPF_FUNC_get_stack:
|
|
return &bpf_get_stack_proto_tp;
|
|
case BPF_FUNC_perf_prog_read_value:
|
|
return &bpf_perf_prog_read_value_proto;
|
|
default:
|
|
return tracing_func_proto(func_id, prog);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp
|
|
* to avoid potential recursive reuse issue when/if tracepoints are added
|
|
* inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack
|
|
*/
|
|
static DEFINE_PER_CPU(struct pt_regs, bpf_raw_tp_regs);
|
|
BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args,
|
|
struct bpf_map *, map, u64, flags, void *, data, u64, size)
|
|
{
|
|
struct pt_regs *regs = this_cpu_ptr(&bpf_raw_tp_regs);
|
|
|
|
perf_fetch_caller_regs(regs);
|
|
return ____bpf_perf_event_output(regs, map, flags, data, size);
|
|
}
|
|
|
|
static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = {
|
|
.func = bpf_perf_event_output_raw_tp,
|
|
.gpl_only = true,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_PTR_TO_CTX,
|
|
.arg2_type = ARG_CONST_MAP_PTR,
|
|
.arg3_type = ARG_ANYTHING,
|
|
.arg4_type = ARG_PTR_TO_MEM,
|
|
.arg5_type = ARG_CONST_SIZE_OR_ZERO,
|
|
};
|
|
|
|
BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args,
|
|
struct bpf_map *, map, u64, flags)
|
|
{
|
|
struct pt_regs *regs = this_cpu_ptr(&bpf_raw_tp_regs);
|
|
|
|
perf_fetch_caller_regs(regs);
|
|
/* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */
|
|
return bpf_get_stackid((unsigned long) regs, (unsigned long) map,
|
|
flags, 0, 0);
|
|
}
|
|
|
|
static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = {
|
|
.func = bpf_get_stackid_raw_tp,
|
|
.gpl_only = true,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_PTR_TO_CTX,
|
|
.arg2_type = ARG_CONST_MAP_PTR,
|
|
.arg3_type = ARG_ANYTHING,
|
|
};
|
|
|
|
BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args,
|
|
void *, buf, u32, size, u64, flags)
|
|
{
|
|
struct pt_regs *regs = this_cpu_ptr(&bpf_raw_tp_regs);
|
|
|
|
perf_fetch_caller_regs(regs);
|
|
return bpf_get_stack((unsigned long) regs, (unsigned long) buf,
|
|
(unsigned long) size, flags, 0);
|
|
}
|
|
|
|
static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = {
|
|
.func = bpf_get_stack_raw_tp,
|
|
.gpl_only = true,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_PTR_TO_CTX,
|
|
.arg2_type = ARG_PTR_TO_MEM,
|
|
.arg3_type = ARG_CONST_SIZE_OR_ZERO,
|
|
.arg4_type = ARG_ANYTHING,
|
|
};
|
|
|
|
static const struct bpf_func_proto *
|
|
raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
|
|
{
|
|
switch (func_id) {
|
|
case BPF_FUNC_perf_event_output:
|
|
return &bpf_perf_event_output_proto_raw_tp;
|
|
case BPF_FUNC_get_stackid:
|
|
return &bpf_get_stackid_proto_raw_tp;
|
|
case BPF_FUNC_get_stack:
|
|
return &bpf_get_stack_proto_raw_tp;
|
|
default:
|
|
return tracing_func_proto(func_id, prog);
|
|
}
|
|
}
|
|
|
|
static bool raw_tp_prog_is_valid_access(int off, int size,
|
|
enum bpf_access_type type,
|
|
const struct bpf_prog *prog,
|
|
struct bpf_insn_access_aux *info)
|
|
{
|
|
/* largest tracepoint in the kernel has 12 args */
|
|
if (off < 0 || off >= sizeof(__u64) * 12)
|
|
return false;
|
|
if (type != BPF_READ)
|
|
return false;
|
|
if (off % size != 0)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
const struct bpf_verifier_ops raw_tracepoint_verifier_ops = {
|
|
.get_func_proto = raw_tp_prog_func_proto,
|
|
.is_valid_access = raw_tp_prog_is_valid_access,
|
|
};
|
|
|
|
const struct bpf_prog_ops raw_tracepoint_prog_ops = {
|
|
};
|
|
|
|
static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
|
|
const struct bpf_prog *prog,
|
|
struct bpf_insn_access_aux *info)
|
|
{
|
|
const int size_u64 = sizeof(u64);
|
|
|
|
if (off < 0 || off >= sizeof(struct bpf_perf_event_data))
|
|
return false;
|
|
if (type != BPF_READ)
|
|
return false;
|
|
if (off % size != 0) {
|
|
if (sizeof(unsigned long) != 4)
|
|
return false;
|
|
if (size != 8)
|
|
return false;
|
|
if (off % size != 4)
|
|
return false;
|
|
}
|
|
|
|
switch (off) {
|
|
case bpf_ctx_range(struct bpf_perf_event_data, sample_period):
|
|
bpf_ctx_record_field_size(info, size_u64);
|
|
if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
|
|
return false;
|
|
break;
|
|
case bpf_ctx_range(struct bpf_perf_event_data, addr):
|
|
bpf_ctx_record_field_size(info, size_u64);
|
|
if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
|
|
return false;
|
|
break;
|
|
default:
|
|
if (size != sizeof(long))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static u32 pe_prog_convert_ctx_access(enum bpf_access_type type,
|
|
const struct bpf_insn *si,
|
|
struct bpf_insn *insn_buf,
|
|
struct bpf_prog *prog, u32 *target_size)
|
|
{
|
|
struct bpf_insn *insn = insn_buf;
|
|
|
|
switch (si->off) {
|
|
case offsetof(struct bpf_perf_event_data, sample_period):
|
|
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
|
|
data), si->dst_reg, si->src_reg,
|
|
offsetof(struct bpf_perf_event_data_kern, data));
|
|
*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
|
|
bpf_target_off(struct perf_sample_data, period, 8,
|
|
target_size));
|
|
break;
|
|
case offsetof(struct bpf_perf_event_data, addr):
|
|
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
|
|
data), si->dst_reg, si->src_reg,
|
|
offsetof(struct bpf_perf_event_data_kern, data));
|
|
*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
|
|
bpf_target_off(struct perf_sample_data, addr, 8,
|
|
target_size));
|
|
break;
|
|
default:
|
|
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
|
|
regs), si->dst_reg, si->src_reg,
|
|
offsetof(struct bpf_perf_event_data_kern, regs));
|
|
*insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg,
|
|
si->off);
|
|
break;
|
|
}
|
|
|
|
return insn - insn_buf;
|
|
}
|
|
|
|
const struct bpf_verifier_ops perf_event_verifier_ops = {
|
|
.get_func_proto = pe_prog_func_proto,
|
|
.is_valid_access = pe_prog_is_valid_access,
|
|
.convert_ctx_access = pe_prog_convert_ctx_access,
|
|
};
|
|
|
|
const struct bpf_prog_ops perf_event_prog_ops = {
|
|
};
|
|
|
|
static DEFINE_MUTEX(bpf_event_mutex);
|
|
|
|
#define BPF_TRACE_MAX_PROGS 64
|
|
|
|
int perf_event_attach_bpf_prog(struct perf_event *event,
|
|
struct bpf_prog *prog)
|
|
{
|
|
struct bpf_prog_array __rcu *old_array;
|
|
struct bpf_prog_array *new_array;
|
|
int ret = -EEXIST;
|
|
|
|
/*
|
|
* Kprobe override only works if they are on the function entry,
|
|
* and only if they are on the opt-in list.
|
|
*/
|
|
if (prog->kprobe_override &&
|
|
(!trace_kprobe_on_func_entry(event->tp_event) ||
|
|
!trace_kprobe_error_injectable(event->tp_event)))
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&bpf_event_mutex);
|
|
|
|
if (event->prog)
|
|
goto unlock;
|
|
|
|
old_array = event->tp_event->prog_array;
|
|
if (old_array &&
|
|
bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) {
|
|
ret = -E2BIG;
|
|
goto unlock;
|
|
}
|
|
|
|
ret = bpf_prog_array_copy(old_array, NULL, prog, &new_array);
|
|
if (ret < 0)
|
|
goto unlock;
|
|
|
|
/* set the new array to event->tp_event and set event->prog */
|
|
event->prog = prog;
|
|
rcu_assign_pointer(event->tp_event->prog_array, new_array);
|
|
bpf_prog_array_free(old_array);
|
|
|
|
unlock:
|
|
mutex_unlock(&bpf_event_mutex);
|
|
return ret;
|
|
}
|
|
|
|
void perf_event_detach_bpf_prog(struct perf_event *event)
|
|
{
|
|
struct bpf_prog_array __rcu *old_array;
|
|
struct bpf_prog_array *new_array;
|
|
int ret;
|
|
|
|
mutex_lock(&bpf_event_mutex);
|
|
|
|
if (!event->prog)
|
|
goto unlock;
|
|
|
|
old_array = event->tp_event->prog_array;
|
|
ret = bpf_prog_array_copy(old_array, event->prog, NULL, &new_array);
|
|
if (ret == -ENOENT)
|
|
goto unlock;
|
|
if (ret < 0) {
|
|
bpf_prog_array_delete_safe(old_array, event->prog);
|
|
} else {
|
|
rcu_assign_pointer(event->tp_event->prog_array, new_array);
|
|
bpf_prog_array_free(old_array);
|
|
}
|
|
|
|
bpf_prog_put(event->prog);
|
|
event->prog = NULL;
|
|
|
|
unlock:
|
|
mutex_unlock(&bpf_event_mutex);
|
|
}
|
|
|
|
int perf_event_query_prog_array(struct perf_event *event, void __user *info)
|
|
{
|
|
struct perf_event_query_bpf __user *uquery = info;
|
|
struct perf_event_query_bpf query = {};
|
|
u32 *ids, prog_cnt, ids_len;
|
|
int ret;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
if (event->attr.type != PERF_TYPE_TRACEPOINT)
|
|
return -EINVAL;
|
|
if (copy_from_user(&query, uquery, sizeof(query)))
|
|
return -EFAULT;
|
|
|
|
ids_len = query.ids_len;
|
|
if (ids_len > BPF_TRACE_MAX_PROGS)
|
|
return -E2BIG;
|
|
ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN);
|
|
if (!ids)
|
|
return -ENOMEM;
|
|
/*
|
|
* The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which
|
|
* is required when user only wants to check for uquery->prog_cnt.
|
|
* There is no need to check for it since the case is handled
|
|
* gracefully in bpf_prog_array_copy_info.
|
|
*/
|
|
|
|
mutex_lock(&bpf_event_mutex);
|
|
ret = bpf_prog_array_copy_info(event->tp_event->prog_array,
|
|
ids,
|
|
ids_len,
|
|
&prog_cnt);
|
|
mutex_unlock(&bpf_event_mutex);
|
|
|
|
if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) ||
|
|
copy_to_user(uquery->ids, ids, ids_len * sizeof(u32)))
|
|
ret = -EFAULT;
|
|
|
|
kfree(ids);
|
|
return ret;
|
|
}
|
|
|
|
extern struct bpf_raw_event_map __start__bpf_raw_tp[];
|
|
extern struct bpf_raw_event_map __stop__bpf_raw_tp[];
|
|
|
|
struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name)
|
|
{
|
|
struct bpf_raw_event_map *btp = __start__bpf_raw_tp;
|
|
|
|
for (; btp < __stop__bpf_raw_tp; btp++) {
|
|
if (!strcmp(btp->tp->name, name))
|
|
return btp;
|
|
}
|
|
|
|
return bpf_get_raw_tracepoint_module(name);
|
|
}
|
|
|
|
void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp)
|
|
{
|
|
struct module *mod = __module_address((unsigned long)btp);
|
|
|
|
if (mod)
|
|
module_put(mod);
|
|
}
|
|
|
|
static __always_inline
|
|
void __bpf_trace_run(struct bpf_prog *prog, u64 *args)
|
|
{
|
|
rcu_read_lock();
|
|
preempt_disable();
|
|
(void) BPF_PROG_RUN(prog, args);
|
|
preempt_enable();
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
#define UNPACK(...) __VA_ARGS__
|
|
#define REPEAT_1(FN, DL, X, ...) FN(X)
|
|
#define REPEAT_2(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__)
|
|
#define REPEAT_3(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__)
|
|
#define REPEAT_4(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__)
|
|
#define REPEAT_5(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__)
|
|
#define REPEAT_6(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__)
|
|
#define REPEAT_7(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__)
|
|
#define REPEAT_8(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__)
|
|
#define REPEAT_9(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__)
|
|
#define REPEAT_10(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__)
|
|
#define REPEAT_11(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__)
|
|
#define REPEAT_12(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__)
|
|
#define REPEAT(X, FN, DL, ...) REPEAT_##X(FN, DL, __VA_ARGS__)
|
|
|
|
#define SARG(X) u64 arg##X
|
|
#define COPY(X) args[X] = arg##X
|
|
|
|
#define __DL_COM (,)
|
|
#define __DL_SEM (;)
|
|
|
|
#define __SEQ_0_11 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
|
|
|
|
#define BPF_TRACE_DEFN_x(x) \
|
|
void bpf_trace_run##x(struct bpf_prog *prog, \
|
|
REPEAT(x, SARG, __DL_COM, __SEQ_0_11)) \
|
|
{ \
|
|
u64 args[x]; \
|
|
REPEAT(x, COPY, __DL_SEM, __SEQ_0_11); \
|
|
__bpf_trace_run(prog, args); \
|
|
} \
|
|
EXPORT_SYMBOL_GPL(bpf_trace_run##x)
|
|
BPF_TRACE_DEFN_x(1);
|
|
BPF_TRACE_DEFN_x(2);
|
|
BPF_TRACE_DEFN_x(3);
|
|
BPF_TRACE_DEFN_x(4);
|
|
BPF_TRACE_DEFN_x(5);
|
|
BPF_TRACE_DEFN_x(6);
|
|
BPF_TRACE_DEFN_x(7);
|
|
BPF_TRACE_DEFN_x(8);
|
|
BPF_TRACE_DEFN_x(9);
|
|
BPF_TRACE_DEFN_x(10);
|
|
BPF_TRACE_DEFN_x(11);
|
|
BPF_TRACE_DEFN_x(12);
|
|
|
|
static int __bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
|
|
{
|
|
struct tracepoint *tp = btp->tp;
|
|
|
|
/*
|
|
* check that program doesn't access arguments beyond what's
|
|
* available in this tracepoint
|
|
*/
|
|
if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64))
|
|
return -EINVAL;
|
|
|
|
return tracepoint_probe_register(tp, (void *)btp->bpf_func, prog);
|
|
}
|
|
|
|
int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
|
|
{
|
|
return __bpf_probe_register(btp, prog);
|
|
}
|
|
|
|
int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
|
|
{
|
|
return tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, prog);
|
|
}
|
|
|
|
int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id,
|
|
u32 *fd_type, const char **buf,
|
|
u64 *probe_offset, u64 *probe_addr)
|
|
{
|
|
bool is_tracepoint, is_syscall_tp;
|
|
struct bpf_prog *prog;
|
|
int flags, err = 0;
|
|
|
|
prog = event->prog;
|
|
if (!prog)
|
|
return -ENOENT;
|
|
|
|
/* not supporting BPF_PROG_TYPE_PERF_EVENT yet */
|
|
if (prog->type == BPF_PROG_TYPE_PERF_EVENT)
|
|
return -EOPNOTSUPP;
|
|
|
|
*prog_id = prog->aux->id;
|
|
flags = event->tp_event->flags;
|
|
is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT;
|
|
is_syscall_tp = is_syscall_trace_event(event->tp_event);
|
|
|
|
if (is_tracepoint || is_syscall_tp) {
|
|
*buf = is_tracepoint ? event->tp_event->tp->name
|
|
: event->tp_event->name;
|
|
*fd_type = BPF_FD_TYPE_TRACEPOINT;
|
|
*probe_offset = 0x0;
|
|
*probe_addr = 0x0;
|
|
} else {
|
|
/* kprobe/uprobe */
|
|
err = -EOPNOTSUPP;
|
|
#ifdef CONFIG_KPROBE_EVENTS
|
|
if (flags & TRACE_EVENT_FL_KPROBE)
|
|
err = bpf_get_kprobe_info(event, fd_type, buf,
|
|
probe_offset, probe_addr,
|
|
event->attr.type == PERF_TYPE_TRACEPOINT);
|
|
#endif
|
|
#ifdef CONFIG_UPROBE_EVENTS
|
|
if (flags & TRACE_EVENT_FL_UPROBE)
|
|
err = bpf_get_uprobe_info(event, fd_type, buf,
|
|
probe_offset,
|
|
event->attr.type == PERF_TYPE_TRACEPOINT);
|
|
#endif
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
#ifdef CONFIG_MODULES
|
|
int bpf_event_notify(struct notifier_block *nb, unsigned long op, void *module)
|
|
{
|
|
struct bpf_trace_module *btm, *tmp;
|
|
struct module *mod = module;
|
|
|
|
if (mod->num_bpf_raw_events == 0 ||
|
|
(op != MODULE_STATE_COMING && op != MODULE_STATE_GOING))
|
|
return 0;
|
|
|
|
mutex_lock(&bpf_module_mutex);
|
|
|
|
switch (op) {
|
|
case MODULE_STATE_COMING:
|
|
btm = kzalloc(sizeof(*btm), GFP_KERNEL);
|
|
if (btm) {
|
|
btm->module = module;
|
|
list_add(&btm->list, &bpf_trace_modules);
|
|
}
|
|
break;
|
|
case MODULE_STATE_GOING:
|
|
list_for_each_entry_safe(btm, tmp, &bpf_trace_modules, list) {
|
|
if (btm->module == module) {
|
|
list_del(&btm->list);
|
|
kfree(btm);
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
mutex_unlock(&bpf_module_mutex);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct notifier_block bpf_module_nb = {
|
|
.notifier_call = bpf_event_notify,
|
|
};
|
|
|
|
int __init bpf_event_init(void)
|
|
{
|
|
register_module_notifier(&bpf_module_nb);
|
|
return 0;
|
|
}
|
|
|
|
fs_initcall(bpf_event_init);
|
|
#endif /* CONFIG_MODULES */
|