forked from Minki/linux
6396bb2215
The kzalloc() function has a 2-factor argument form, kcalloc(). This patch replaces cases of: kzalloc(a * b, gfp) with: kcalloc(a * b, gfp) as well as handling cases of: kzalloc(a * b * c, gfp) with: kzalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kzalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kzalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kzalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kzalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kzalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(char) * COUNT + COUNT , ...) | kzalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kzalloc + kcalloc ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kzalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kzalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kzalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kzalloc(C1 * C2 * C3, ...) | kzalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kzalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kzalloc(sizeof(THING) * C2, ...) | kzalloc(sizeof(TYPE) * C2, ...) | kzalloc(C1 * C2 * C3, ...) | kzalloc(C1 * C2, ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - (E1) * E2 + E1, E2 , ...) | - kzalloc + kcalloc ( - (E1) * (E2) + E1, E2 , ...) | - kzalloc + kcalloc ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
716 lines
20 KiB
C
716 lines
20 KiB
C
/*
|
|
* Copyright (C) 2004 Red Hat
|
|
* Copyright (C) 2007 Bartlomiej Zolnierkiewicz
|
|
*
|
|
* May be copied or modified under the terms of the GNU General Public License
|
|
* Based in part on the ITE vendor provided SCSI driver.
|
|
*
|
|
* Documentation:
|
|
* Datasheet is freely available, some other documents under NDA.
|
|
*
|
|
* The ITE8212 isn't exactly a standard IDE controller. It has two
|
|
* modes. In pass through mode then it is an IDE controller. In its smart
|
|
* mode its actually quite a capable hardware raid controller disguised
|
|
* as an IDE controller. Smart mode only understands DMA read/write and
|
|
* identify, none of the fancier commands apply. The IT8211 is identical
|
|
* in other respects but lacks the raid mode.
|
|
*
|
|
* Errata:
|
|
* o Rev 0x10 also requires master/slave hold the same DMA timings and
|
|
* cannot do ATAPI MWDMA.
|
|
* o The identify data for raid volumes lacks CHS info (technically ok)
|
|
* but also fails to set the LBA28 and other bits. We fix these in
|
|
* the IDE probe quirk code.
|
|
* o If you write LBA48 sized I/O's (ie > 256 sector) in smart mode
|
|
* raid then the controller firmware dies
|
|
* o Smart mode without RAID doesn't clear all the necessary identify
|
|
* bits to reduce the command set to the one used
|
|
*
|
|
* This has a few impacts on the driver
|
|
* - In pass through mode we do all the work you would expect
|
|
* - In smart mode the clocking set up is done by the controller generally
|
|
* but we must watch the other limits and filter.
|
|
* - There are a few extra vendor commands that actually talk to the
|
|
* controller but only work PIO with no IRQ.
|
|
*
|
|
* Vendor areas of the identify block in smart mode are used for the
|
|
* timing and policy set up. Each HDD in raid mode also has a serial
|
|
* block on the disk. The hardware extra commands are get/set chip status,
|
|
* rebuild, get rebuild status.
|
|
*
|
|
* In Linux the driver supports pass through mode as if the device was
|
|
* just another IDE controller. If the smart mode is running then
|
|
* volumes are managed by the controller firmware and each IDE "disk"
|
|
* is a raid volume. Even more cute - the controller can do automated
|
|
* hotplug and rebuild.
|
|
*
|
|
* The pass through controller itself is a little demented. It has a
|
|
* flaw that it has a single set of PIO/MWDMA timings per channel so
|
|
* non UDMA devices restrict each others performance. It also has a
|
|
* single clock source per channel so mixed UDMA100/133 performance
|
|
* isn't perfect and we have to pick a clock. Thankfully none of this
|
|
* matters in smart mode. ATAPI DMA is not currently supported.
|
|
*
|
|
* It seems the smart mode is a win for RAID1/RAID10 but otherwise not.
|
|
*
|
|
* TODO
|
|
* - ATAPI UDMA is ok but not MWDMA it seems
|
|
* - RAID configuration ioctls
|
|
* - Move to libata once it grows up
|
|
*/
|
|
|
|
#include <linux/types.h>
|
|
#include <linux/module.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/ide.h>
|
|
#include <linux/init.h>
|
|
|
|
#define DRV_NAME "it821x"
|
|
|
|
#define QUIRK_VORTEX86 1
|
|
|
|
struct it821x_dev
|
|
{
|
|
unsigned int smart:1, /* Are we in smart raid mode */
|
|
timing10:1; /* Rev 0x10 */
|
|
u8 clock_mode; /* 0, ATA_50 or ATA_66 */
|
|
u8 want[2][2]; /* Mode/Pri log for master slave */
|
|
/* We need these for switching the clock when DMA goes on/off
|
|
The high byte is the 66Mhz timing */
|
|
u16 pio[2]; /* Cached PIO values */
|
|
u16 mwdma[2]; /* Cached MWDMA values */
|
|
u16 udma[2]; /* Cached UDMA values (per drive) */
|
|
u16 quirks;
|
|
};
|
|
|
|
#define ATA_66 0
|
|
#define ATA_50 1
|
|
#define ATA_ANY 2
|
|
|
|
#define UDMA_OFF 0
|
|
#define MWDMA_OFF 0
|
|
|
|
/*
|
|
* We allow users to force the card into non raid mode without
|
|
* flashing the alternative BIOS. This is also necessary right now
|
|
* for embedded platforms that cannot run a PC BIOS but are using this
|
|
* device.
|
|
*/
|
|
|
|
static int it8212_noraid;
|
|
|
|
/**
|
|
* it821x_program - program the PIO/MWDMA registers
|
|
* @drive: drive to tune
|
|
* @timing: timing info
|
|
*
|
|
* Program the PIO/MWDMA timing for this channel according to the
|
|
* current clock.
|
|
*/
|
|
|
|
static void it821x_program(ide_drive_t *drive, u16 timing)
|
|
{
|
|
ide_hwif_t *hwif = drive->hwif;
|
|
struct pci_dev *dev = to_pci_dev(hwif->dev);
|
|
struct it821x_dev *itdev = ide_get_hwifdata(hwif);
|
|
int channel = hwif->channel;
|
|
u8 conf;
|
|
|
|
/* Program PIO/MWDMA timing bits */
|
|
if(itdev->clock_mode == ATA_66)
|
|
conf = timing >> 8;
|
|
else
|
|
conf = timing & 0xFF;
|
|
|
|
pci_write_config_byte(dev, 0x54 + 4 * channel, conf);
|
|
}
|
|
|
|
/**
|
|
* it821x_program_udma - program the UDMA registers
|
|
* @drive: drive to tune
|
|
* @timing: timing info
|
|
*
|
|
* Program the UDMA timing for this drive according to the
|
|
* current clock.
|
|
*/
|
|
|
|
static void it821x_program_udma(ide_drive_t *drive, u16 timing)
|
|
{
|
|
ide_hwif_t *hwif = drive->hwif;
|
|
struct pci_dev *dev = to_pci_dev(hwif->dev);
|
|
struct it821x_dev *itdev = ide_get_hwifdata(hwif);
|
|
int channel = hwif->channel;
|
|
u8 unit = drive->dn & 1, conf;
|
|
|
|
/* Program UDMA timing bits */
|
|
if(itdev->clock_mode == ATA_66)
|
|
conf = timing >> 8;
|
|
else
|
|
conf = timing & 0xFF;
|
|
|
|
if (itdev->timing10 == 0)
|
|
pci_write_config_byte(dev, 0x56 + 4 * channel + unit, conf);
|
|
else {
|
|
pci_write_config_byte(dev, 0x56 + 4 * channel, conf);
|
|
pci_write_config_byte(dev, 0x56 + 4 * channel + 1, conf);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* it821x_clock_strategy
|
|
* @drive: drive to set up
|
|
*
|
|
* Select between the 50 and 66Mhz base clocks to get the best
|
|
* results for this interface.
|
|
*/
|
|
|
|
static void it821x_clock_strategy(ide_drive_t *drive)
|
|
{
|
|
ide_hwif_t *hwif = drive->hwif;
|
|
struct pci_dev *dev = to_pci_dev(hwif->dev);
|
|
struct it821x_dev *itdev = ide_get_hwifdata(hwif);
|
|
ide_drive_t *pair = ide_get_pair_dev(drive);
|
|
int clock, altclock, sel = 0;
|
|
u8 unit = drive->dn & 1, v;
|
|
|
|
if(itdev->want[0][0] > itdev->want[1][0]) {
|
|
clock = itdev->want[0][1];
|
|
altclock = itdev->want[1][1];
|
|
} else {
|
|
clock = itdev->want[1][1];
|
|
altclock = itdev->want[0][1];
|
|
}
|
|
|
|
/*
|
|
* if both clocks can be used for the mode with the higher priority
|
|
* use the clock needed by the mode with the lower priority
|
|
*/
|
|
if (clock == ATA_ANY)
|
|
clock = altclock;
|
|
|
|
/* Nobody cares - keep the same clock */
|
|
if(clock == ATA_ANY)
|
|
return;
|
|
/* No change */
|
|
if(clock == itdev->clock_mode)
|
|
return;
|
|
|
|
/* Load this into the controller ? */
|
|
if(clock == ATA_66)
|
|
itdev->clock_mode = ATA_66;
|
|
else {
|
|
itdev->clock_mode = ATA_50;
|
|
sel = 1;
|
|
}
|
|
|
|
pci_read_config_byte(dev, 0x50, &v);
|
|
v &= ~(1 << (1 + hwif->channel));
|
|
v |= sel << (1 + hwif->channel);
|
|
pci_write_config_byte(dev, 0x50, v);
|
|
|
|
/*
|
|
* Reprogram the UDMA/PIO of the pair drive for the switch
|
|
* MWDMA will be dealt with by the dma switcher
|
|
*/
|
|
if(pair && itdev->udma[1-unit] != UDMA_OFF) {
|
|
it821x_program_udma(pair, itdev->udma[1-unit]);
|
|
it821x_program(pair, itdev->pio[1-unit]);
|
|
}
|
|
/*
|
|
* Reprogram the UDMA/PIO of our drive for the switch.
|
|
* MWDMA will be dealt with by the dma switcher
|
|
*/
|
|
if(itdev->udma[unit] != UDMA_OFF) {
|
|
it821x_program_udma(drive, itdev->udma[unit]);
|
|
it821x_program(drive, itdev->pio[unit]);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* it821x_set_pio_mode - set host controller for PIO mode
|
|
* @hwif: port
|
|
* @drive: drive
|
|
*
|
|
* Tune the host to the desired PIO mode taking into the consideration
|
|
* the maximum PIO mode supported by the other device on the cable.
|
|
*/
|
|
|
|
static void it821x_set_pio_mode(ide_hwif_t *hwif, ide_drive_t *drive)
|
|
{
|
|
struct it821x_dev *itdev = ide_get_hwifdata(hwif);
|
|
ide_drive_t *pair = ide_get_pair_dev(drive);
|
|
const u8 pio = drive->pio_mode - XFER_PIO_0;
|
|
u8 unit = drive->dn & 1, set_pio = pio;
|
|
|
|
/* Spec says 89 ref driver uses 88 */
|
|
static u16 pio_timings[]= { 0xAA88, 0xA382, 0xA181, 0x3332, 0x3121 };
|
|
static u8 pio_want[] = { ATA_66, ATA_66, ATA_66, ATA_66, ATA_ANY };
|
|
|
|
/*
|
|
* Compute the best PIO mode we can for a given device. We must
|
|
* pick a speed that does not cause problems with the other device
|
|
* on the cable.
|
|
*/
|
|
if (pair) {
|
|
u8 pair_pio = pair->pio_mode - XFER_PIO_0;
|
|
/* trim PIO to the slowest of the master/slave */
|
|
if (pair_pio < set_pio)
|
|
set_pio = pair_pio;
|
|
}
|
|
|
|
/* We prefer 66Mhz clock for PIO 0-3, don't care for PIO4 */
|
|
itdev->want[unit][1] = pio_want[set_pio];
|
|
itdev->want[unit][0] = 1; /* PIO is lowest priority */
|
|
itdev->pio[unit] = pio_timings[set_pio];
|
|
it821x_clock_strategy(drive);
|
|
it821x_program(drive, itdev->pio[unit]);
|
|
}
|
|
|
|
/**
|
|
* it821x_tune_mwdma - tune a channel for MWDMA
|
|
* @drive: drive to set up
|
|
* @mode_wanted: the target operating mode
|
|
*
|
|
* Load the timing settings for this device mode into the
|
|
* controller when doing MWDMA in pass through mode. The caller
|
|
* must manage the whole lack of per device MWDMA/PIO timings and
|
|
* the shared MWDMA/PIO timing register.
|
|
*/
|
|
|
|
static void it821x_tune_mwdma(ide_drive_t *drive, u8 mode_wanted)
|
|
{
|
|
ide_hwif_t *hwif = drive->hwif;
|
|
struct pci_dev *dev = to_pci_dev(hwif->dev);
|
|
struct it821x_dev *itdev = (void *)ide_get_hwifdata(hwif);
|
|
u8 unit = drive->dn & 1, channel = hwif->channel, conf;
|
|
|
|
static u16 dma[] = { 0x8866, 0x3222, 0x3121 };
|
|
static u8 mwdma_want[] = { ATA_ANY, ATA_66, ATA_ANY };
|
|
|
|
itdev->want[unit][1] = mwdma_want[mode_wanted];
|
|
itdev->want[unit][0] = 2; /* MWDMA is low priority */
|
|
itdev->mwdma[unit] = dma[mode_wanted];
|
|
itdev->udma[unit] = UDMA_OFF;
|
|
|
|
/* UDMA bits off - Revision 0x10 do them in pairs */
|
|
pci_read_config_byte(dev, 0x50, &conf);
|
|
if (itdev->timing10)
|
|
conf |= channel ? 0x60: 0x18;
|
|
else
|
|
conf |= 1 << (3 + 2 * channel + unit);
|
|
pci_write_config_byte(dev, 0x50, conf);
|
|
|
|
it821x_clock_strategy(drive);
|
|
/* FIXME: do we need to program this ? */
|
|
/* it821x_program(drive, itdev->mwdma[unit]); */
|
|
}
|
|
|
|
/**
|
|
* it821x_tune_udma - tune a channel for UDMA
|
|
* @drive: drive to set up
|
|
* @mode_wanted: the target operating mode
|
|
*
|
|
* Load the timing settings for this device mode into the
|
|
* controller when doing UDMA modes in pass through.
|
|
*/
|
|
|
|
static void it821x_tune_udma(ide_drive_t *drive, u8 mode_wanted)
|
|
{
|
|
ide_hwif_t *hwif = drive->hwif;
|
|
struct pci_dev *dev = to_pci_dev(hwif->dev);
|
|
struct it821x_dev *itdev = ide_get_hwifdata(hwif);
|
|
u8 unit = drive->dn & 1, channel = hwif->channel, conf;
|
|
|
|
static u16 udma[] = { 0x4433, 0x4231, 0x3121, 0x2121, 0x1111, 0x2211, 0x1111 };
|
|
static u8 udma_want[] = { ATA_ANY, ATA_50, ATA_ANY, ATA_66, ATA_66, ATA_50, ATA_66 };
|
|
|
|
itdev->want[unit][1] = udma_want[mode_wanted];
|
|
itdev->want[unit][0] = 3; /* UDMA is high priority */
|
|
itdev->mwdma[unit] = MWDMA_OFF;
|
|
itdev->udma[unit] = udma[mode_wanted];
|
|
if(mode_wanted >= 5)
|
|
itdev->udma[unit] |= 0x8080; /* UDMA 5/6 select on */
|
|
|
|
/* UDMA on. Again revision 0x10 must do the pair */
|
|
pci_read_config_byte(dev, 0x50, &conf);
|
|
if (itdev->timing10)
|
|
conf &= channel ? 0x9F: 0xE7;
|
|
else
|
|
conf &= ~ (1 << (3 + 2 * channel + unit));
|
|
pci_write_config_byte(dev, 0x50, conf);
|
|
|
|
it821x_clock_strategy(drive);
|
|
it821x_program_udma(drive, itdev->udma[unit]);
|
|
|
|
}
|
|
|
|
/**
|
|
* it821x_dma_read - DMA hook
|
|
* @drive: drive for DMA
|
|
*
|
|
* The IT821x has a single timing register for MWDMA and for PIO
|
|
* operations. As we flip back and forth we have to reload the
|
|
* clock. In addition the rev 0x10 device only works if the same
|
|
* timing value is loaded into the master and slave UDMA clock
|
|
* so we must also reload that.
|
|
*
|
|
* FIXME: we could figure out in advance if we need to do reloads
|
|
*/
|
|
|
|
static void it821x_dma_start(ide_drive_t *drive)
|
|
{
|
|
ide_hwif_t *hwif = drive->hwif;
|
|
struct it821x_dev *itdev = ide_get_hwifdata(hwif);
|
|
u8 unit = drive->dn & 1;
|
|
|
|
if(itdev->mwdma[unit] != MWDMA_OFF)
|
|
it821x_program(drive, itdev->mwdma[unit]);
|
|
else if(itdev->udma[unit] != UDMA_OFF && itdev->timing10)
|
|
it821x_program_udma(drive, itdev->udma[unit]);
|
|
ide_dma_start(drive);
|
|
}
|
|
|
|
/**
|
|
* it821x_dma_write - DMA hook
|
|
* @drive: drive for DMA stop
|
|
*
|
|
* The IT821x has a single timing register for MWDMA and for PIO
|
|
* operations. As we flip back and forth we have to reload the
|
|
* clock.
|
|
*/
|
|
|
|
static int it821x_dma_end(ide_drive_t *drive)
|
|
{
|
|
ide_hwif_t *hwif = drive->hwif;
|
|
struct it821x_dev *itdev = ide_get_hwifdata(hwif);
|
|
int ret = ide_dma_end(drive);
|
|
u8 unit = drive->dn & 1;
|
|
|
|
if(itdev->mwdma[unit] != MWDMA_OFF)
|
|
it821x_program(drive, itdev->pio[unit]);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* it821x_set_dma_mode - set host controller for DMA mode
|
|
* @hwif: port
|
|
* @drive: drive
|
|
*
|
|
* Tune the ITE chipset for the desired DMA mode.
|
|
*/
|
|
|
|
static void it821x_set_dma_mode(ide_hwif_t *hwif, ide_drive_t *drive)
|
|
{
|
|
const u8 speed = drive->dma_mode;
|
|
|
|
/*
|
|
* MWDMA tuning is really hard because our MWDMA and PIO
|
|
* timings are kept in the same place. We can switch in the
|
|
* host dma on/off callbacks.
|
|
*/
|
|
if (speed >= XFER_UDMA_0 && speed <= XFER_UDMA_6)
|
|
it821x_tune_udma(drive, speed - XFER_UDMA_0);
|
|
else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
|
|
it821x_tune_mwdma(drive, speed - XFER_MW_DMA_0);
|
|
}
|
|
|
|
/**
|
|
* it821x_cable_detect - cable detection
|
|
* @hwif: interface to check
|
|
*
|
|
* Check for the presence of an ATA66 capable cable on the
|
|
* interface. Problematic as it seems some cards don't have
|
|
* the needed logic onboard.
|
|
*/
|
|
|
|
static u8 it821x_cable_detect(ide_hwif_t *hwif)
|
|
{
|
|
/* The reference driver also only does disk side */
|
|
return ATA_CBL_PATA80;
|
|
}
|
|
|
|
/**
|
|
* it821x_quirkproc - post init callback
|
|
* @drive: drive
|
|
*
|
|
* This callback is run after the drive has been probed but
|
|
* before anything gets attached. It allows drivers to do any
|
|
* final tuning that is needed, or fixups to work around bugs.
|
|
*/
|
|
|
|
static void it821x_quirkproc(ide_drive_t *drive)
|
|
{
|
|
struct it821x_dev *itdev = ide_get_hwifdata(drive->hwif);
|
|
u16 *id = drive->id;
|
|
|
|
if (!itdev->smart) {
|
|
/*
|
|
* If we are in pass through mode then not much
|
|
* needs to be done, but we do bother to clear the
|
|
* IRQ mask as we may well be in PIO (eg rev 0x10)
|
|
* for now and we know unmasking is safe on this chipset.
|
|
*/
|
|
drive->dev_flags |= IDE_DFLAG_UNMASK;
|
|
} else {
|
|
/*
|
|
* Perform fixups on smart mode. We need to "lose" some
|
|
* capabilities the firmware lacks but does not filter, and
|
|
* also patch up some capability bits that it forgets to set
|
|
* in RAID mode.
|
|
*/
|
|
|
|
/* Check for RAID v native */
|
|
if (strstr((char *)&id[ATA_ID_PROD],
|
|
"Integrated Technology Express")) {
|
|
/* In raid mode the ident block is slightly buggy
|
|
We need to set the bits so that the IDE layer knows
|
|
LBA28. LBA48 and DMA ar valid */
|
|
id[ATA_ID_CAPABILITY] |= (3 << 8); /* LBA28, DMA */
|
|
id[ATA_ID_COMMAND_SET_2] |= 0x0400; /* LBA48 valid */
|
|
id[ATA_ID_CFS_ENABLE_2] |= 0x0400; /* LBA48 on */
|
|
/* Reporting logic */
|
|
printk(KERN_INFO "%s: IT8212 %sRAID %d volume",
|
|
drive->name, id[147] ? "Bootable " : "",
|
|
id[ATA_ID_CSFO]);
|
|
if (id[ATA_ID_CSFO] != 1)
|
|
printk(KERN_CONT "(%dK stripe)", id[146]);
|
|
printk(KERN_CONT ".\n");
|
|
} else {
|
|
/* Non RAID volume. Fixups to stop the core code
|
|
doing unsupported things */
|
|
id[ATA_ID_FIELD_VALID] &= 3;
|
|
id[ATA_ID_QUEUE_DEPTH] = 0;
|
|
id[ATA_ID_COMMAND_SET_1] = 0;
|
|
id[ATA_ID_COMMAND_SET_2] &= 0xC400;
|
|
id[ATA_ID_CFSSE] &= 0xC000;
|
|
id[ATA_ID_CFS_ENABLE_1] = 0;
|
|
id[ATA_ID_CFS_ENABLE_2] &= 0xC400;
|
|
id[ATA_ID_CSF_DEFAULT] &= 0xC000;
|
|
id[127] = 0;
|
|
id[ATA_ID_DLF] = 0;
|
|
id[ATA_ID_CSFO] = 0;
|
|
id[ATA_ID_CFA_POWER] = 0;
|
|
printk(KERN_INFO "%s: Performing identify fixups.\n",
|
|
drive->name);
|
|
}
|
|
|
|
/*
|
|
* Set MWDMA0 mode as enabled/support - just to tell
|
|
* IDE core that DMA is supported (it821x hardware
|
|
* takes care of DMA mode programming).
|
|
*/
|
|
if (ata_id_has_dma(id)) {
|
|
id[ATA_ID_MWDMA_MODES] |= 0x0101;
|
|
drive->current_speed = XFER_MW_DMA_0;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
static const struct ide_dma_ops it821x_pass_through_dma_ops = {
|
|
.dma_host_set = ide_dma_host_set,
|
|
.dma_setup = ide_dma_setup,
|
|
.dma_start = it821x_dma_start,
|
|
.dma_end = it821x_dma_end,
|
|
.dma_test_irq = ide_dma_test_irq,
|
|
.dma_lost_irq = ide_dma_lost_irq,
|
|
.dma_timer_expiry = ide_dma_sff_timer_expiry,
|
|
.dma_sff_read_status = ide_dma_sff_read_status,
|
|
};
|
|
|
|
/**
|
|
* init_hwif_it821x - set up hwif structs
|
|
* @hwif: interface to set up
|
|
*
|
|
* We do the basic set up of the interface structure. The IT8212
|
|
* requires several custom handlers so we override the default
|
|
* ide DMA handlers appropriately
|
|
*/
|
|
|
|
static void init_hwif_it821x(ide_hwif_t *hwif)
|
|
{
|
|
struct pci_dev *dev = to_pci_dev(hwif->dev);
|
|
struct ide_host *host = pci_get_drvdata(dev);
|
|
struct it821x_dev *itdevs = host->host_priv;
|
|
struct it821x_dev *idev = itdevs + hwif->channel;
|
|
u8 conf;
|
|
|
|
ide_set_hwifdata(hwif, idev);
|
|
|
|
pci_read_config_byte(dev, 0x50, &conf);
|
|
if (conf & 1) {
|
|
idev->smart = 1;
|
|
hwif->host_flags |= IDE_HFLAG_NO_ATAPI_DMA;
|
|
/* Long I/O's although allowed in LBA48 space cause the
|
|
onboard firmware to enter the twighlight zone */
|
|
hwif->rqsize = 256;
|
|
}
|
|
|
|
/* Pull the current clocks from 0x50 also */
|
|
if (conf & (1 << (1 + hwif->channel)))
|
|
idev->clock_mode = ATA_50;
|
|
else
|
|
idev->clock_mode = ATA_66;
|
|
|
|
idev->want[0][1] = ATA_ANY;
|
|
idev->want[1][1] = ATA_ANY;
|
|
|
|
/*
|
|
* Not in the docs but according to the reference driver
|
|
* this is necessary.
|
|
*/
|
|
|
|
if (dev->revision == 0x10) {
|
|
idev->timing10 = 1;
|
|
hwif->host_flags |= IDE_HFLAG_NO_ATAPI_DMA;
|
|
if (idev->smart == 0)
|
|
printk(KERN_WARNING DRV_NAME " %s: revision 0x10, "
|
|
"workarounds activated\n", pci_name(dev));
|
|
}
|
|
|
|
if (idev->smart == 0) {
|
|
/* MWDMA/PIO clock switching for pass through mode */
|
|
hwif->dma_ops = &it821x_pass_through_dma_ops;
|
|
} else
|
|
hwif->host_flags |= IDE_HFLAG_NO_SET_MODE;
|
|
|
|
if (hwif->dma_base == 0)
|
|
return;
|
|
|
|
hwif->ultra_mask = ATA_UDMA6;
|
|
hwif->mwdma_mask = ATA_MWDMA2;
|
|
|
|
/* Vortex86SX quirk: prevent Ultra-DMA mode to fix BadCRC issue */
|
|
if (idev->quirks & QUIRK_VORTEX86) {
|
|
if (dev->revision == 0x11)
|
|
hwif->ultra_mask = 0;
|
|
}
|
|
}
|
|
|
|
static void it8212_disable_raid(struct pci_dev *dev)
|
|
{
|
|
/* Reset local CPU, and set BIOS not ready */
|
|
pci_write_config_byte(dev, 0x5E, 0x01);
|
|
|
|
/* Set to bypass mode, and reset PCI bus */
|
|
pci_write_config_byte(dev, 0x50, 0x00);
|
|
pci_write_config_word(dev, PCI_COMMAND,
|
|
PCI_COMMAND_PARITY | PCI_COMMAND_IO |
|
|
PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
|
|
pci_write_config_word(dev, 0x40, 0xA0F3);
|
|
|
|
pci_write_config_dword(dev,0x4C, 0x02040204);
|
|
pci_write_config_byte(dev, 0x42, 0x36);
|
|
pci_write_config_byte(dev, PCI_LATENCY_TIMER, 0x20);
|
|
}
|
|
|
|
static int init_chipset_it821x(struct pci_dev *dev)
|
|
{
|
|
u8 conf;
|
|
static char *mode[2] = { "pass through", "smart" };
|
|
|
|
/* Force the card into bypass mode if so requested */
|
|
if (it8212_noraid) {
|
|
printk(KERN_INFO DRV_NAME " %s: forcing bypass mode\n",
|
|
pci_name(dev));
|
|
it8212_disable_raid(dev);
|
|
}
|
|
pci_read_config_byte(dev, 0x50, &conf);
|
|
printk(KERN_INFO DRV_NAME " %s: controller in %s mode\n",
|
|
pci_name(dev), mode[conf & 1]);
|
|
return 0;
|
|
}
|
|
|
|
static const struct ide_port_ops it821x_port_ops = {
|
|
/* it821x_set_{pio,dma}_mode() are only used in pass-through mode */
|
|
.set_pio_mode = it821x_set_pio_mode,
|
|
.set_dma_mode = it821x_set_dma_mode,
|
|
.quirkproc = it821x_quirkproc,
|
|
.cable_detect = it821x_cable_detect,
|
|
};
|
|
|
|
static const struct ide_port_info it821x_chipset = {
|
|
.name = DRV_NAME,
|
|
.init_chipset = init_chipset_it821x,
|
|
.init_hwif = init_hwif_it821x,
|
|
.port_ops = &it821x_port_ops,
|
|
.pio_mask = ATA_PIO4,
|
|
};
|
|
|
|
/**
|
|
* it821x_init_one - pci layer discovery entry
|
|
* @dev: PCI device
|
|
* @id: ident table entry
|
|
*
|
|
* Called by the PCI code when it finds an ITE821x controller.
|
|
* We then use the IDE PCI generic helper to do most of the work.
|
|
*/
|
|
|
|
static int it821x_init_one(struct pci_dev *dev, const struct pci_device_id *id)
|
|
{
|
|
struct it821x_dev *itdevs;
|
|
int rc;
|
|
|
|
itdevs = kcalloc(2, sizeof(*itdevs), GFP_KERNEL);
|
|
if (itdevs == NULL) {
|
|
printk(KERN_ERR DRV_NAME " %s: out of memory\n", pci_name(dev));
|
|
return -ENOMEM;
|
|
}
|
|
|
|
itdevs->quirks = id->driver_data;
|
|
|
|
rc = ide_pci_init_one(dev, &it821x_chipset, itdevs);
|
|
if (rc)
|
|
kfree(itdevs);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void it821x_remove(struct pci_dev *dev)
|
|
{
|
|
struct ide_host *host = pci_get_drvdata(dev);
|
|
struct it821x_dev *itdevs = host->host_priv;
|
|
|
|
ide_pci_remove(dev);
|
|
kfree(itdevs);
|
|
}
|
|
|
|
static const struct pci_device_id it821x_pci_tbl[] = {
|
|
{ PCI_VDEVICE(ITE, PCI_DEVICE_ID_ITE_8211), 0 },
|
|
{ PCI_VDEVICE(ITE, PCI_DEVICE_ID_ITE_8212), 0 },
|
|
{ PCI_VDEVICE(RDC, PCI_DEVICE_ID_RDC_D1010), QUIRK_VORTEX86 },
|
|
{ 0, },
|
|
};
|
|
|
|
MODULE_DEVICE_TABLE(pci, it821x_pci_tbl);
|
|
|
|
static struct pci_driver it821x_pci_driver = {
|
|
.name = "ITE821x IDE",
|
|
.id_table = it821x_pci_tbl,
|
|
.probe = it821x_init_one,
|
|
.remove = it821x_remove,
|
|
.suspend = ide_pci_suspend,
|
|
.resume = ide_pci_resume,
|
|
};
|
|
|
|
static int __init it821x_ide_init(void)
|
|
{
|
|
return ide_pci_register_driver(&it821x_pci_driver);
|
|
}
|
|
|
|
static void __exit it821x_ide_exit(void)
|
|
{
|
|
pci_unregister_driver(&it821x_pci_driver);
|
|
}
|
|
|
|
module_init(it821x_ide_init);
|
|
module_exit(it821x_ide_exit);
|
|
|
|
module_param_named(noraid, it8212_noraid, int, S_IRUGO);
|
|
MODULE_PARM_DESC(noraid, "Force card into bypass mode");
|
|
|
|
MODULE_AUTHOR("Alan Cox");
|
|
MODULE_DESCRIPTION("PCI driver module for the ITE 821x");
|
|
MODULE_LICENSE("GPL");
|