Commit:0d95981438
("x86: efi/random: Invoke EFI_RNG_PROTOCOL to seed the UEFI RNG table") causes the drivers/efi/libstub/random.c code to get used on x86 for the first time. But this code was not written with EFI mixed mode in mind (running a 64 bit kernel on 32 bit EFI firmware), this causes the kernel to crash during early boot when running in mixed mode. The problem is that in mixed mode pointers are 64 bit, but when running on a 32 bit firmware, EFI calls which return a pointer value by reference only fill the lower 32 bits of the passed pointer, leaving the upper 32 bits uninitialized which leads to crashes. This commit fixes this by initializing pointers which are passed by reference to EFI calls to NULL before passing them, so that the upper 32 bits are initialized to 0. Signed-off-by: Hans de Goede <hdegoede@redhat.com> Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Cc: Arvind Sankar <nivedita@alum.mit.edu> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-efi@vger.kernel.org Fixes:0d95981438
("x86: efi/random: Invoke EFI_RNG_PROTOCOL to seed the UEFI RNG table") Link: https://lkml.kernel.org/r/20191224132909.102540-3-ardb@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
206 lines
5.6 KiB
C
206 lines
5.6 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) 2016 Linaro Ltd; <ard.biesheuvel@linaro.org>
|
|
*/
|
|
|
|
#include <linux/efi.h>
|
|
#include <linux/log2.h>
|
|
#include <asm/efi.h>
|
|
|
|
#include "efistub.h"
|
|
|
|
typedef struct efi_rng_protocol efi_rng_protocol_t;
|
|
|
|
typedef struct {
|
|
u32 get_info;
|
|
u32 get_rng;
|
|
} efi_rng_protocol_32_t;
|
|
|
|
typedef struct {
|
|
u64 get_info;
|
|
u64 get_rng;
|
|
} efi_rng_protocol_64_t;
|
|
|
|
struct efi_rng_protocol {
|
|
efi_status_t (*get_info)(struct efi_rng_protocol *,
|
|
unsigned long *, efi_guid_t *);
|
|
efi_status_t (*get_rng)(struct efi_rng_protocol *,
|
|
efi_guid_t *, unsigned long, u8 *out);
|
|
};
|
|
|
|
efi_status_t efi_get_random_bytes(efi_system_table_t *sys_table_arg,
|
|
unsigned long size, u8 *out)
|
|
{
|
|
efi_guid_t rng_proto = EFI_RNG_PROTOCOL_GUID;
|
|
efi_status_t status;
|
|
struct efi_rng_protocol *rng = NULL;
|
|
|
|
status = efi_call_early(locate_protocol, &rng_proto, NULL,
|
|
(void **)&rng);
|
|
if (status != EFI_SUCCESS)
|
|
return status;
|
|
|
|
return efi_call_proto(efi_rng_protocol, get_rng, rng, NULL, size, out);
|
|
}
|
|
|
|
/*
|
|
* Return the number of slots covered by this entry, i.e., the number of
|
|
* addresses it covers that are suitably aligned and supply enough room
|
|
* for the allocation.
|
|
*/
|
|
static unsigned long get_entry_num_slots(efi_memory_desc_t *md,
|
|
unsigned long size,
|
|
unsigned long align_shift)
|
|
{
|
|
unsigned long align = 1UL << align_shift;
|
|
u64 first_slot, last_slot, region_end;
|
|
|
|
if (md->type != EFI_CONVENTIONAL_MEMORY)
|
|
return 0;
|
|
|
|
if (efi_soft_reserve_enabled() &&
|
|
(md->attribute & EFI_MEMORY_SP))
|
|
return 0;
|
|
|
|
region_end = min((u64)ULONG_MAX, md->phys_addr + md->num_pages*EFI_PAGE_SIZE - 1);
|
|
|
|
first_slot = round_up(md->phys_addr, align);
|
|
last_slot = round_down(region_end - size + 1, align);
|
|
|
|
if (first_slot > last_slot)
|
|
return 0;
|
|
|
|
return ((unsigned long)(last_slot - first_slot) >> align_shift) + 1;
|
|
}
|
|
|
|
/*
|
|
* The UEFI memory descriptors have a virtual address field that is only used
|
|
* when installing the virtual mapping using SetVirtualAddressMap(). Since it
|
|
* is unused here, we can reuse it to keep track of each descriptor's slot
|
|
* count.
|
|
*/
|
|
#define MD_NUM_SLOTS(md) ((md)->virt_addr)
|
|
|
|
efi_status_t efi_random_alloc(efi_system_table_t *sys_table_arg,
|
|
unsigned long size,
|
|
unsigned long align,
|
|
unsigned long *addr,
|
|
unsigned long random_seed)
|
|
{
|
|
unsigned long map_size, desc_size, total_slots = 0, target_slot;
|
|
unsigned long buff_size;
|
|
efi_status_t status;
|
|
efi_memory_desc_t *memory_map;
|
|
int map_offset;
|
|
struct efi_boot_memmap map;
|
|
|
|
map.map = &memory_map;
|
|
map.map_size = &map_size;
|
|
map.desc_size = &desc_size;
|
|
map.desc_ver = NULL;
|
|
map.key_ptr = NULL;
|
|
map.buff_size = &buff_size;
|
|
|
|
status = efi_get_memory_map(sys_table_arg, &map);
|
|
if (status != EFI_SUCCESS)
|
|
return status;
|
|
|
|
if (align < EFI_ALLOC_ALIGN)
|
|
align = EFI_ALLOC_ALIGN;
|
|
|
|
/* count the suitable slots in each memory map entry */
|
|
for (map_offset = 0; map_offset < map_size; map_offset += desc_size) {
|
|
efi_memory_desc_t *md = (void *)memory_map + map_offset;
|
|
unsigned long slots;
|
|
|
|
slots = get_entry_num_slots(md, size, ilog2(align));
|
|
MD_NUM_SLOTS(md) = slots;
|
|
total_slots += slots;
|
|
}
|
|
|
|
/* find a random number between 0 and total_slots */
|
|
target_slot = (total_slots * (u16)random_seed) >> 16;
|
|
|
|
/*
|
|
* target_slot is now a value in the range [0, total_slots), and so
|
|
* it corresponds with exactly one of the suitable slots we recorded
|
|
* when iterating over the memory map the first time around.
|
|
*
|
|
* So iterate over the memory map again, subtracting the number of
|
|
* slots of each entry at each iteration, until we have found the entry
|
|
* that covers our chosen slot. Use the residual value of target_slot
|
|
* to calculate the randomly chosen address, and allocate it directly
|
|
* using EFI_ALLOCATE_ADDRESS.
|
|
*/
|
|
for (map_offset = 0; map_offset < map_size; map_offset += desc_size) {
|
|
efi_memory_desc_t *md = (void *)memory_map + map_offset;
|
|
efi_physical_addr_t target;
|
|
unsigned long pages;
|
|
|
|
if (target_slot >= MD_NUM_SLOTS(md)) {
|
|
target_slot -= MD_NUM_SLOTS(md);
|
|
continue;
|
|
}
|
|
|
|
target = round_up(md->phys_addr, align) + target_slot * align;
|
|
pages = round_up(size, EFI_PAGE_SIZE) / EFI_PAGE_SIZE;
|
|
|
|
status = efi_call_early(allocate_pages, EFI_ALLOCATE_ADDRESS,
|
|
EFI_LOADER_DATA, pages, &target);
|
|
if (status == EFI_SUCCESS)
|
|
*addr = target;
|
|
break;
|
|
}
|
|
|
|
efi_call_early(free_pool, memory_map);
|
|
|
|
return status;
|
|
}
|
|
|
|
efi_status_t efi_random_get_seed(efi_system_table_t *sys_table_arg)
|
|
{
|
|
efi_guid_t rng_proto = EFI_RNG_PROTOCOL_GUID;
|
|
efi_guid_t rng_algo_raw = EFI_RNG_ALGORITHM_RAW;
|
|
efi_guid_t rng_table_guid = LINUX_EFI_RANDOM_SEED_TABLE_GUID;
|
|
struct efi_rng_protocol *rng = NULL;
|
|
struct linux_efi_random_seed *seed = NULL;
|
|
efi_status_t status;
|
|
|
|
status = efi_call_early(locate_protocol, &rng_proto, NULL,
|
|
(void **)&rng);
|
|
if (status != EFI_SUCCESS)
|
|
return status;
|
|
|
|
status = efi_call_early(allocate_pool, EFI_RUNTIME_SERVICES_DATA,
|
|
sizeof(*seed) + EFI_RANDOM_SEED_SIZE,
|
|
(void **)&seed);
|
|
if (status != EFI_SUCCESS)
|
|
return status;
|
|
|
|
status = efi_call_proto(efi_rng_protocol, get_rng, rng, &rng_algo_raw,
|
|
EFI_RANDOM_SEED_SIZE, seed->bits);
|
|
|
|
if (status == EFI_UNSUPPORTED)
|
|
/*
|
|
* Use whatever algorithm we have available if the raw algorithm
|
|
* is not implemented.
|
|
*/
|
|
status = efi_call_proto(efi_rng_protocol, get_rng, rng, NULL,
|
|
EFI_RANDOM_SEED_SIZE, seed->bits);
|
|
|
|
if (status != EFI_SUCCESS)
|
|
goto err_freepool;
|
|
|
|
seed->size = EFI_RANDOM_SEED_SIZE;
|
|
status = efi_call_early(install_configuration_table, &rng_table_guid,
|
|
seed);
|
|
if (status != EFI_SUCCESS)
|
|
goto err_freepool;
|
|
|
|
return EFI_SUCCESS;
|
|
|
|
err_freepool:
|
|
efi_call_early(free_pool, seed);
|
|
return status;
|
|
}
|