Instead of hacking the configuration of the FPI bus into the arch code add an own bus driver for this internal bus. The FPI bus is the main bus of the SoC. This bus driver makes sure the bus is configured correctly before the child drivers are getting initialized. This driver will probably also be used on different SoCs later. Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de> Signed-off-by: Martin Blumenstingl <martin.blumenstingl@googlemail.com> Acked-by: Rob Herring <robh@kernel.org> Reviewed-by: Andy Shevchenko <andy.shevchenko@gmail.com> Cc: john@phrozen.org Cc: p.zabel@pengutronix.de Cc: kishon@ti.com Cc: mark.rutland@arm.com Cc: linux-mips@linux-mips.org Cc: linux-mtd@lists.infradead.org Cc: linux-watchdog@vger.kernel.org Cc: devicetree@vger.kernel.org Cc: linux-spi@vger.kernel.org Patchwork: https://patchwork.linux-mips.org/patch/17122/ Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
384 lines
9.6 KiB
C
384 lines
9.6 KiB
C
/*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 as published
|
|
* by the Free Software Foundation.
|
|
*
|
|
* Copyright (C) 2010 John Crispin <john@phrozen.org>
|
|
* Copyright (C) 2013-2015 Lantiq Beteiligungs-GmbH & Co.KG
|
|
*/
|
|
|
|
#include <linux/init.h>
|
|
#include <linux/io.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/pm.h>
|
|
#include <linux/export.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/of_address.h>
|
|
#include <linux/of_platform.h>
|
|
#include <linux/reset-controller.h>
|
|
|
|
#include <asm/reboot.h>
|
|
|
|
#include <lantiq_soc.h>
|
|
|
|
#include "../prom.h"
|
|
|
|
/* reset request register */
|
|
#define RCU_RST_REQ 0x0010
|
|
/* reset status register */
|
|
#define RCU_RST_STAT 0x0014
|
|
/* vr9 gphy registers */
|
|
#define RCU_GFS_ADD0_XRX200 0x0020
|
|
#define RCU_GFS_ADD1_XRX200 0x0068
|
|
/* xRX300 gphy registers */
|
|
#define RCU_GFS_ADD0_XRX300 0x0020
|
|
#define RCU_GFS_ADD1_XRX300 0x0058
|
|
#define RCU_GFS_ADD2_XRX300 0x00AC
|
|
/* xRX330 gphy registers */
|
|
#define RCU_GFS_ADD0_XRX330 0x0020
|
|
#define RCU_GFS_ADD1_XRX330 0x0058
|
|
#define RCU_GFS_ADD2_XRX330 0x00AC
|
|
#define RCU_GFS_ADD3_XRX330 0x0264
|
|
|
|
/* xbar BE flag */
|
|
#define RCU_AHB_ENDIAN 0x004C
|
|
#define RCU_VR9_BE_AHB1S 0x00000008
|
|
|
|
/* reboot bit */
|
|
#define RCU_RD_GPHY0_XRX200 BIT(31)
|
|
#define RCU_RD_SRST BIT(30)
|
|
#define RCU_RD_GPHY1_XRX200 BIT(29)
|
|
/* xRX300 bits */
|
|
#define RCU_RD_GPHY0_XRX300 BIT(31)
|
|
#define RCU_RD_GPHY1_XRX300 BIT(29)
|
|
#define RCU_RD_GPHY2_XRX300 BIT(28)
|
|
/* xRX330 bits */
|
|
#define RCU_RD_GPHY0_XRX330 BIT(31)
|
|
#define RCU_RD_GPHY1_XRX330 BIT(29)
|
|
#define RCU_RD_GPHY2_XRX330 BIT(28)
|
|
#define RCU_RD_GPHY3_XRX330 BIT(10)
|
|
|
|
/* reset cause */
|
|
#define RCU_STAT_SHIFT 26
|
|
/* boot selection */
|
|
#define RCU_BOOT_SEL(x) ((x >> 18) & 0x7)
|
|
#define RCU_BOOT_SEL_XRX200(x) (((x >> 17) & 0xf) | ((x >> 8) & 0x10))
|
|
|
|
/* dwc2 USB configuration registers */
|
|
#define RCU_USB1CFG 0x0018
|
|
#define RCU_USB2CFG 0x0034
|
|
|
|
/* USB DMA endianness bits */
|
|
#define RCU_USBCFG_HDSEL_BIT BIT(11)
|
|
#define RCU_USBCFG_HOST_END_BIT BIT(10)
|
|
#define RCU_USBCFG_SLV_END_BIT BIT(9)
|
|
|
|
/* USB reset bits */
|
|
#define RCU_USBRESET 0x0010
|
|
|
|
#define USBRESET_BIT BIT(4)
|
|
|
|
#define RCU_USBRESET2 0x0048
|
|
|
|
#define USB1RESET_BIT BIT(4)
|
|
#define USB2RESET_BIT BIT(5)
|
|
|
|
#define RCU_CFG1A 0x0038
|
|
#define RCU_CFG1B 0x003C
|
|
|
|
/* USB PMU devices */
|
|
#define PMU_AHBM BIT(15)
|
|
#define PMU_USB0 BIT(6)
|
|
#define PMU_USB1 BIT(27)
|
|
|
|
/* USB PHY PMU devices */
|
|
#define PMU_USB0_P BIT(0)
|
|
#define PMU_USB1_P BIT(26)
|
|
|
|
/* remapped base addr of the reset control unit */
|
|
static void __iomem *ltq_rcu_membase;
|
|
static struct device_node *ltq_rcu_np;
|
|
static DEFINE_SPINLOCK(ltq_rcu_lock);
|
|
|
|
static void ltq_rcu_w32(uint32_t val, uint32_t reg_off)
|
|
{
|
|
ltq_w32(val, ltq_rcu_membase + reg_off);
|
|
}
|
|
|
|
static uint32_t ltq_rcu_r32(uint32_t reg_off)
|
|
{
|
|
return ltq_r32(ltq_rcu_membase + reg_off);
|
|
}
|
|
|
|
static void ltq_rcu_w32_mask(uint32_t clr, uint32_t set, uint32_t reg_off)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(<q_rcu_lock, flags);
|
|
ltq_rcu_w32((ltq_rcu_r32(reg_off) & ~(clr)) | (set), reg_off);
|
|
spin_unlock_irqrestore(<q_rcu_lock, flags);
|
|
}
|
|
|
|
/* This function is used by the watchdog driver */
|
|
int ltq_reset_cause(void)
|
|
{
|
|
u32 val = ltq_rcu_r32(RCU_RST_STAT);
|
|
return val >> RCU_STAT_SHIFT;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ltq_reset_cause);
|
|
|
|
/* allow platform code to find out what source we booted from */
|
|
unsigned char ltq_boot_select(void)
|
|
{
|
|
u32 val = ltq_rcu_r32(RCU_RST_STAT);
|
|
|
|
if (of_device_is_compatible(ltq_rcu_np, "lantiq,rcu-xrx200"))
|
|
return RCU_BOOT_SEL_XRX200(val);
|
|
|
|
return RCU_BOOT_SEL(val);
|
|
}
|
|
|
|
struct ltq_gphy_reset {
|
|
u32 rd;
|
|
u32 addr;
|
|
};
|
|
|
|
/* reset / boot a gphy */
|
|
static struct ltq_gphy_reset xrx200_gphy[] = {
|
|
{RCU_RD_GPHY0_XRX200, RCU_GFS_ADD0_XRX200},
|
|
{RCU_RD_GPHY1_XRX200, RCU_GFS_ADD1_XRX200},
|
|
};
|
|
|
|
/* reset / boot a gphy */
|
|
static struct ltq_gphy_reset xrx300_gphy[] = {
|
|
{RCU_RD_GPHY0_XRX300, RCU_GFS_ADD0_XRX300},
|
|
{RCU_RD_GPHY1_XRX300, RCU_GFS_ADD1_XRX300},
|
|
{RCU_RD_GPHY2_XRX300, RCU_GFS_ADD2_XRX300},
|
|
};
|
|
|
|
/* reset / boot a gphy */
|
|
static struct ltq_gphy_reset xrx330_gphy[] = {
|
|
{RCU_RD_GPHY0_XRX330, RCU_GFS_ADD0_XRX330},
|
|
{RCU_RD_GPHY1_XRX330, RCU_GFS_ADD1_XRX330},
|
|
{RCU_RD_GPHY2_XRX330, RCU_GFS_ADD2_XRX330},
|
|
{RCU_RD_GPHY3_XRX330, RCU_GFS_ADD3_XRX330},
|
|
};
|
|
|
|
static void xrx200_gphy_boot_addr(struct ltq_gphy_reset *phy_regs,
|
|
dma_addr_t dev_addr)
|
|
{
|
|
ltq_rcu_w32_mask(0, phy_regs->rd, RCU_RST_REQ);
|
|
ltq_rcu_w32(dev_addr, phy_regs->addr);
|
|
ltq_rcu_w32_mask(phy_regs->rd, 0, RCU_RST_REQ);
|
|
}
|
|
|
|
/* reset and boot a gphy. these phys only exist on xrx200 SoC */
|
|
int xrx200_gphy_boot(struct device *dev, unsigned int id, dma_addr_t dev_addr)
|
|
{
|
|
struct clk *clk;
|
|
|
|
if (!of_device_is_compatible(ltq_rcu_np, "lantiq,rcu-xrx200")) {
|
|
dev_err(dev, "this SoC has no GPHY\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (of_machine_is_compatible("lantiq,vr9")) {
|
|
clk = clk_get_sys("1f203000.rcu", "gphy");
|
|
if (IS_ERR(clk))
|
|
return PTR_ERR(clk);
|
|
clk_enable(clk);
|
|
}
|
|
|
|
dev_info(dev, "booting GPHY%u firmware at %X\n", id, dev_addr);
|
|
|
|
if (of_machine_is_compatible("lantiq,vr9")) {
|
|
if (id >= ARRAY_SIZE(xrx200_gphy)) {
|
|
dev_err(dev, "%u is an invalid gphy id\n", id);
|
|
return -EINVAL;
|
|
}
|
|
xrx200_gphy_boot_addr(&xrx200_gphy[id], dev_addr);
|
|
} else if (of_machine_is_compatible("lantiq,ar10")) {
|
|
if (id >= ARRAY_SIZE(xrx300_gphy)) {
|
|
dev_err(dev, "%u is an invalid gphy id\n", id);
|
|
return -EINVAL;
|
|
}
|
|
xrx200_gphy_boot_addr(&xrx300_gphy[id], dev_addr);
|
|
} else if (of_machine_is_compatible("lantiq,grx390")) {
|
|
if (id >= ARRAY_SIZE(xrx330_gphy)) {
|
|
dev_err(dev, "%u is an invalid gphy id\n", id);
|
|
return -EINVAL;
|
|
}
|
|
xrx200_gphy_boot_addr(&xrx330_gphy[id], dev_addr);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* reset a io domain for u micro seconds */
|
|
void ltq_reset_once(unsigned int module, ulong u)
|
|
{
|
|
ltq_rcu_w32(ltq_rcu_r32(RCU_RST_REQ) | module, RCU_RST_REQ);
|
|
udelay(u);
|
|
ltq_rcu_w32(ltq_rcu_r32(RCU_RST_REQ) & ~module, RCU_RST_REQ);
|
|
}
|
|
|
|
static int ltq_assert_device(struct reset_controller_dev *rcdev,
|
|
unsigned long id)
|
|
{
|
|
u32 val;
|
|
|
|
if (id < 8)
|
|
return -1;
|
|
|
|
val = ltq_rcu_r32(RCU_RST_REQ);
|
|
val |= BIT(id);
|
|
ltq_rcu_w32(val, RCU_RST_REQ);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ltq_deassert_device(struct reset_controller_dev *rcdev,
|
|
unsigned long id)
|
|
{
|
|
u32 val;
|
|
|
|
if (id < 8)
|
|
return -1;
|
|
|
|
val = ltq_rcu_r32(RCU_RST_REQ);
|
|
val &= ~BIT(id);
|
|
ltq_rcu_w32(val, RCU_RST_REQ);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ltq_reset_device(struct reset_controller_dev *rcdev,
|
|
unsigned long id)
|
|
{
|
|
ltq_assert_device(rcdev, id);
|
|
return ltq_deassert_device(rcdev, id);
|
|
}
|
|
|
|
static const struct reset_control_ops reset_ops = {
|
|
.reset = ltq_reset_device,
|
|
.assert = ltq_assert_device,
|
|
.deassert = ltq_deassert_device,
|
|
};
|
|
|
|
static struct reset_controller_dev reset_dev = {
|
|
.ops = &reset_ops,
|
|
.owner = THIS_MODULE,
|
|
.nr_resets = 32,
|
|
.of_reset_n_cells = 1,
|
|
};
|
|
|
|
void ltq_rst_init(void)
|
|
{
|
|
reset_dev.of_node = of_find_compatible_node(NULL, NULL,
|
|
"lantiq,xway-reset");
|
|
if (!reset_dev.of_node)
|
|
pr_err("Failed to find reset controller node");
|
|
else
|
|
reset_controller_register(&reset_dev);
|
|
}
|
|
|
|
static void ltq_machine_restart(char *command)
|
|
{
|
|
u32 val = ltq_rcu_r32(RCU_RST_REQ);
|
|
|
|
if (of_device_is_compatible(ltq_rcu_np, "lantiq,rcu-xrx200"))
|
|
val |= RCU_RD_GPHY1_XRX200 | RCU_RD_GPHY0_XRX200;
|
|
|
|
val |= RCU_RD_SRST;
|
|
|
|
local_irq_disable();
|
|
ltq_rcu_w32(val, RCU_RST_REQ);
|
|
unreachable();
|
|
}
|
|
|
|
static void ltq_machine_halt(void)
|
|
{
|
|
local_irq_disable();
|
|
unreachable();
|
|
}
|
|
|
|
static void ltq_machine_power_off(void)
|
|
{
|
|
local_irq_disable();
|
|
unreachable();
|
|
}
|
|
|
|
static void ltq_usb_init(void)
|
|
{
|
|
/* Power for USB cores 1 & 2 */
|
|
ltq_pmu_enable(PMU_AHBM);
|
|
ltq_pmu_enable(PMU_USB0);
|
|
ltq_pmu_enable(PMU_USB1);
|
|
|
|
ltq_rcu_w32(ltq_rcu_r32(RCU_CFG1A) | BIT(0), RCU_CFG1A);
|
|
ltq_rcu_w32(ltq_rcu_r32(RCU_CFG1B) | BIT(0), RCU_CFG1B);
|
|
|
|
/* Enable USB PHY power for cores 1 & 2 */
|
|
ltq_pmu_enable(PMU_USB0_P);
|
|
ltq_pmu_enable(PMU_USB1_P);
|
|
|
|
/* Configure cores to host mode */
|
|
ltq_rcu_w32(ltq_rcu_r32(RCU_USB1CFG) & ~RCU_USBCFG_HDSEL_BIT,
|
|
RCU_USB1CFG);
|
|
ltq_rcu_w32(ltq_rcu_r32(RCU_USB2CFG) & ~RCU_USBCFG_HDSEL_BIT,
|
|
RCU_USB2CFG);
|
|
|
|
/* Select DMA endianness (Host-endian: big-endian) */
|
|
ltq_rcu_w32((ltq_rcu_r32(RCU_USB1CFG) & ~RCU_USBCFG_SLV_END_BIT)
|
|
| RCU_USBCFG_HOST_END_BIT, RCU_USB1CFG);
|
|
ltq_rcu_w32(ltq_rcu_r32((RCU_USB2CFG) & ~RCU_USBCFG_SLV_END_BIT)
|
|
| RCU_USBCFG_HOST_END_BIT, RCU_USB2CFG);
|
|
|
|
/* Hard reset USB state machines */
|
|
ltq_rcu_w32(ltq_rcu_r32(RCU_USBRESET) | USBRESET_BIT, RCU_USBRESET);
|
|
udelay(50 * 1000);
|
|
ltq_rcu_w32(ltq_rcu_r32(RCU_USBRESET) & ~USBRESET_BIT, RCU_USBRESET);
|
|
|
|
/* Soft reset USB state machines */
|
|
ltq_rcu_w32(ltq_rcu_r32(RCU_USBRESET2)
|
|
| USB1RESET_BIT | USB2RESET_BIT, RCU_USBRESET2);
|
|
udelay(50 * 1000);
|
|
ltq_rcu_w32(ltq_rcu_r32(RCU_USBRESET2)
|
|
& ~(USB1RESET_BIT | USB2RESET_BIT), RCU_USBRESET2);
|
|
}
|
|
|
|
static int __init mips_reboot_setup(void)
|
|
{
|
|
struct resource res;
|
|
|
|
ltq_rcu_np = of_find_compatible_node(NULL, NULL, "lantiq,rcu-xway");
|
|
if (!ltq_rcu_np)
|
|
ltq_rcu_np = of_find_compatible_node(NULL, NULL,
|
|
"lantiq,rcu-xrx200");
|
|
|
|
/* check if all the reset register range is available */
|
|
if (!ltq_rcu_np)
|
|
panic("Failed to load reset resources from devicetree");
|
|
|
|
if (of_address_to_resource(ltq_rcu_np, 0, &res))
|
|
panic("Failed to get rcu memory range");
|
|
|
|
if (!request_mem_region(res.start, resource_size(&res), res.name))
|
|
pr_err("Failed to request rcu memory");
|
|
|
|
ltq_rcu_membase = ioremap_nocache(res.start, resource_size(&res));
|
|
if (!ltq_rcu_membase)
|
|
panic("Failed to remap core memory");
|
|
|
|
if (of_machine_is_compatible("lantiq,ar9") ||
|
|
of_machine_is_compatible("lantiq,vr9"))
|
|
ltq_usb_init();
|
|
|
|
_machine_restart = ltq_machine_restart;
|
|
_machine_halt = ltq_machine_halt;
|
|
pm_power_off = ltq_machine_power_off;
|
|
|
|
return 0;
|
|
}
|
|
|
|
arch_initcall(mips_reboot_setup);
|