linux/drivers/dma/dw/core.c
Andy Shevchenko c072e113b8 dmaengine: dw: set polarity of handshake interface
Intel Quark UART uses DesignWare DMA IP. Though the DMA IP is connected in such
way that handshake interface uses inverted polarity. We have to provide a
possibility to set this in the DMA driver when configuring a channel.

Introduce a new member of custom slave configuration called 'hs_polarity' and
set active low polarity in case this value is 'true'.

Acked-by: Vinod Koul <vinod.koul@intel.com>
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Tested-by: Bryan O'Donoghue <pure.logic@nexus-software.ie>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-08-31 16:13:29 +02:00

1683 lines
43 KiB
C

/*
* Core driver for the Synopsys DesignWare DMA Controller
*
* Copyright (C) 2007-2008 Atmel Corporation
* Copyright (C) 2010-2011 ST Microelectronics
* Copyright (C) 2013 Intel Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/dmapool.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/pm_runtime.h>
#include "../dmaengine.h"
#include "internal.h"
/*
* This supports the Synopsys "DesignWare AHB Central DMA Controller",
* (DW_ahb_dmac) which is used with various AMBA 2.0 systems (not all
* of which use ARM any more). See the "Databook" from Synopsys for
* information beyond what licensees probably provide.
*
* The driver has been tested with the Atmel AT32AP7000, which does not
* support descriptor writeback.
*/
#define DWC_DEFAULT_CTLLO(_chan) ({ \
struct dw_dma_chan *_dwc = to_dw_dma_chan(_chan); \
struct dma_slave_config *_sconfig = &_dwc->dma_sconfig; \
bool _is_slave = is_slave_direction(_dwc->direction); \
u8 _smsize = _is_slave ? _sconfig->src_maxburst : \
DW_DMA_MSIZE_16; \
u8 _dmsize = _is_slave ? _sconfig->dst_maxburst : \
DW_DMA_MSIZE_16; \
u8 _dms = (_dwc->direction == DMA_MEM_TO_DEV) ? \
_dwc->dws.p_master : _dwc->dws.m_master; \
u8 _sms = (_dwc->direction == DMA_DEV_TO_MEM) ? \
_dwc->dws.p_master : _dwc->dws.m_master; \
\
(DWC_CTLL_DST_MSIZE(_dmsize) \
| DWC_CTLL_SRC_MSIZE(_smsize) \
| DWC_CTLL_LLP_D_EN \
| DWC_CTLL_LLP_S_EN \
| DWC_CTLL_DMS(_dms) \
| DWC_CTLL_SMS(_sms)); \
})
/* The set of bus widths supported by the DMA controller */
#define DW_DMA_BUSWIDTHS \
BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)
/*----------------------------------------------------------------------*/
static struct device *chan2dev(struct dma_chan *chan)
{
return &chan->dev->device;
}
static struct dw_desc *dwc_first_active(struct dw_dma_chan *dwc)
{
return to_dw_desc(dwc->active_list.next);
}
static dma_cookie_t dwc_tx_submit(struct dma_async_tx_descriptor *tx)
{
struct dw_desc *desc = txd_to_dw_desc(tx);
struct dw_dma_chan *dwc = to_dw_dma_chan(tx->chan);
dma_cookie_t cookie;
unsigned long flags;
spin_lock_irqsave(&dwc->lock, flags);
cookie = dma_cookie_assign(tx);
/*
* REVISIT: We should attempt to chain as many descriptors as
* possible, perhaps even appending to those already submitted
* for DMA. But this is hard to do in a race-free manner.
*/
list_add_tail(&desc->desc_node, &dwc->queue);
spin_unlock_irqrestore(&dwc->lock, flags);
dev_vdbg(chan2dev(tx->chan), "%s: queued %u\n",
__func__, desc->txd.cookie);
return cookie;
}
static struct dw_desc *dwc_desc_get(struct dw_dma_chan *dwc)
{
struct dw_dma *dw = to_dw_dma(dwc->chan.device);
struct dw_desc *desc;
dma_addr_t phys;
desc = dma_pool_zalloc(dw->desc_pool, GFP_ATOMIC, &phys);
if (!desc)
return NULL;
dwc->descs_allocated++;
INIT_LIST_HEAD(&desc->tx_list);
dma_async_tx_descriptor_init(&desc->txd, &dwc->chan);
desc->txd.tx_submit = dwc_tx_submit;
desc->txd.flags = DMA_CTRL_ACK;
desc->txd.phys = phys;
return desc;
}
static void dwc_desc_put(struct dw_dma_chan *dwc, struct dw_desc *desc)
{
struct dw_dma *dw = to_dw_dma(dwc->chan.device);
struct dw_desc *child, *_next;
if (unlikely(!desc))
return;
list_for_each_entry_safe(child, _next, &desc->tx_list, desc_node) {
list_del(&child->desc_node);
dma_pool_free(dw->desc_pool, child, child->txd.phys);
dwc->descs_allocated--;
}
dma_pool_free(dw->desc_pool, desc, desc->txd.phys);
dwc->descs_allocated--;
}
static void dwc_initialize(struct dw_dma_chan *dwc)
{
struct dw_dma *dw = to_dw_dma(dwc->chan.device);
u32 cfghi = DWC_CFGH_FIFO_MODE;
u32 cfglo = DWC_CFGL_CH_PRIOR(dwc->priority);
bool hs_polarity = dwc->dws.hs_polarity;
if (test_bit(DW_DMA_IS_INITIALIZED, &dwc->flags))
return;
cfghi |= DWC_CFGH_DST_PER(dwc->dws.dst_id);
cfghi |= DWC_CFGH_SRC_PER(dwc->dws.src_id);
/* Set polarity of handshake interface */
cfglo |= hs_polarity ? DWC_CFGL_HS_DST_POL | DWC_CFGL_HS_SRC_POL : 0;
channel_writel(dwc, CFG_LO, cfglo);
channel_writel(dwc, CFG_HI, cfghi);
/* Enable interrupts */
channel_set_bit(dw, MASK.XFER, dwc->mask);
channel_set_bit(dw, MASK.ERROR, dwc->mask);
set_bit(DW_DMA_IS_INITIALIZED, &dwc->flags);
}
/*----------------------------------------------------------------------*/
static inline void dwc_dump_chan_regs(struct dw_dma_chan *dwc)
{
dev_err(chan2dev(&dwc->chan),
" SAR: 0x%x DAR: 0x%x LLP: 0x%x CTL: 0x%x:%08x\n",
channel_readl(dwc, SAR),
channel_readl(dwc, DAR),
channel_readl(dwc, LLP),
channel_readl(dwc, CTL_HI),
channel_readl(dwc, CTL_LO));
}
static inline void dwc_chan_disable(struct dw_dma *dw, struct dw_dma_chan *dwc)
{
channel_clear_bit(dw, CH_EN, dwc->mask);
while (dma_readl(dw, CH_EN) & dwc->mask)
cpu_relax();
}
/*----------------------------------------------------------------------*/
/* Perform single block transfer */
static inline void dwc_do_single_block(struct dw_dma_chan *dwc,
struct dw_desc *desc)
{
struct dw_dma *dw = to_dw_dma(dwc->chan.device);
u32 ctllo;
/*
* Software emulation of LLP mode relies on interrupts to continue
* multi block transfer.
*/
ctllo = lli_read(desc, ctllo) | DWC_CTLL_INT_EN;
channel_writel(dwc, SAR, lli_read(desc, sar));
channel_writel(dwc, DAR, lli_read(desc, dar));
channel_writel(dwc, CTL_LO, ctllo);
channel_writel(dwc, CTL_HI, lli_read(desc, ctlhi));
channel_set_bit(dw, CH_EN, dwc->mask);
/* Move pointer to next descriptor */
dwc->tx_node_active = dwc->tx_node_active->next;
}
/* Called with dwc->lock held and bh disabled */
static void dwc_dostart(struct dw_dma_chan *dwc, struct dw_desc *first)
{
struct dw_dma *dw = to_dw_dma(dwc->chan.device);
u8 lms = DWC_LLP_LMS(dwc->dws.m_master);
unsigned long was_soft_llp;
/* ASSERT: channel is idle */
if (dma_readl(dw, CH_EN) & dwc->mask) {
dev_err(chan2dev(&dwc->chan),
"%s: BUG: Attempted to start non-idle channel\n",
__func__);
dwc_dump_chan_regs(dwc);
/* The tasklet will hopefully advance the queue... */
return;
}
if (dwc->nollp) {
was_soft_llp = test_and_set_bit(DW_DMA_IS_SOFT_LLP,
&dwc->flags);
if (was_soft_llp) {
dev_err(chan2dev(&dwc->chan),
"BUG: Attempted to start new LLP transfer inside ongoing one\n");
return;
}
dwc_initialize(dwc);
first->residue = first->total_len;
dwc->tx_node_active = &first->tx_list;
/* Submit first block */
dwc_do_single_block(dwc, first);
return;
}
dwc_initialize(dwc);
channel_writel(dwc, LLP, first->txd.phys | lms);
channel_writel(dwc, CTL_LO, DWC_CTLL_LLP_D_EN | DWC_CTLL_LLP_S_EN);
channel_writel(dwc, CTL_HI, 0);
channel_set_bit(dw, CH_EN, dwc->mask);
}
static void dwc_dostart_first_queued(struct dw_dma_chan *dwc)
{
struct dw_desc *desc;
if (list_empty(&dwc->queue))
return;
list_move(dwc->queue.next, &dwc->active_list);
desc = dwc_first_active(dwc);
dev_vdbg(chan2dev(&dwc->chan), "%s: started %u\n", __func__, desc->txd.cookie);
dwc_dostart(dwc, desc);
}
/*----------------------------------------------------------------------*/
static void
dwc_descriptor_complete(struct dw_dma_chan *dwc, struct dw_desc *desc,
bool callback_required)
{
dma_async_tx_callback callback = NULL;
void *param = NULL;
struct dma_async_tx_descriptor *txd = &desc->txd;
struct dw_desc *child;
unsigned long flags;
dev_vdbg(chan2dev(&dwc->chan), "descriptor %u complete\n", txd->cookie);
spin_lock_irqsave(&dwc->lock, flags);
dma_cookie_complete(txd);
if (callback_required) {
callback = txd->callback;
param = txd->callback_param;
}
/* async_tx_ack */
list_for_each_entry(child, &desc->tx_list, desc_node)
async_tx_ack(&child->txd);
async_tx_ack(&desc->txd);
dwc_desc_put(dwc, desc);
spin_unlock_irqrestore(&dwc->lock, flags);
if (callback)
callback(param);
}
static void dwc_complete_all(struct dw_dma *dw, struct dw_dma_chan *dwc)
{
struct dw_desc *desc, *_desc;
LIST_HEAD(list);
unsigned long flags;
spin_lock_irqsave(&dwc->lock, flags);
if (dma_readl(dw, CH_EN) & dwc->mask) {
dev_err(chan2dev(&dwc->chan),
"BUG: XFER bit set, but channel not idle!\n");
/* Try to continue after resetting the channel... */
dwc_chan_disable(dw, dwc);
}
/*
* Submit queued descriptors ASAP, i.e. before we go through
* the completed ones.
*/
list_splice_init(&dwc->active_list, &list);
dwc_dostart_first_queued(dwc);
spin_unlock_irqrestore(&dwc->lock, flags);
list_for_each_entry_safe(desc, _desc, &list, desc_node)
dwc_descriptor_complete(dwc, desc, true);
}
/* Returns how many bytes were already received from source */
static inline u32 dwc_get_sent(struct dw_dma_chan *dwc)
{
u32 ctlhi = channel_readl(dwc, CTL_HI);
u32 ctllo = channel_readl(dwc, CTL_LO);
return (ctlhi & DWC_CTLH_BLOCK_TS_MASK) * (1 << (ctllo >> 4 & 7));
}
static void dwc_scan_descriptors(struct dw_dma *dw, struct dw_dma_chan *dwc)
{
dma_addr_t llp;
struct dw_desc *desc, *_desc;
struct dw_desc *child;
u32 status_xfer;
unsigned long flags;
spin_lock_irqsave(&dwc->lock, flags);
llp = channel_readl(dwc, LLP);
status_xfer = dma_readl(dw, RAW.XFER);
if (status_xfer & dwc->mask) {
/* Everything we've submitted is done */
dma_writel(dw, CLEAR.XFER, dwc->mask);
if (test_bit(DW_DMA_IS_SOFT_LLP, &dwc->flags)) {
struct list_head *head, *active = dwc->tx_node_active;
/*
* We are inside first active descriptor.
* Otherwise something is really wrong.
*/
desc = dwc_first_active(dwc);
head = &desc->tx_list;
if (active != head) {
/* Update residue to reflect last sent descriptor */
if (active == head->next)
desc->residue -= desc->len;
else
desc->residue -= to_dw_desc(active->prev)->len;
child = to_dw_desc(active);
/* Submit next block */
dwc_do_single_block(dwc, child);
spin_unlock_irqrestore(&dwc->lock, flags);
return;
}
/* We are done here */
clear_bit(DW_DMA_IS_SOFT_LLP, &dwc->flags);
}
spin_unlock_irqrestore(&dwc->lock, flags);
dwc_complete_all(dw, dwc);
return;
}
if (list_empty(&dwc->active_list)) {
spin_unlock_irqrestore(&dwc->lock, flags);
return;
}
if (test_bit(DW_DMA_IS_SOFT_LLP, &dwc->flags)) {
dev_vdbg(chan2dev(&dwc->chan), "%s: soft LLP mode\n", __func__);
spin_unlock_irqrestore(&dwc->lock, flags);
return;
}
dev_vdbg(chan2dev(&dwc->chan), "%s: llp=%pad\n", __func__, &llp);
list_for_each_entry_safe(desc, _desc, &dwc->active_list, desc_node) {
/* Initial residue value */
desc->residue = desc->total_len;
/* Check first descriptors addr */
if (desc->txd.phys == DWC_LLP_LOC(llp)) {
spin_unlock_irqrestore(&dwc->lock, flags);
return;
}
/* Check first descriptors llp */
if (lli_read(desc, llp) == llp) {
/* This one is currently in progress */
desc->residue -= dwc_get_sent(dwc);
spin_unlock_irqrestore(&dwc->lock, flags);
return;
}
desc->residue -= desc->len;
list_for_each_entry(child, &desc->tx_list, desc_node) {
if (lli_read(child, llp) == llp) {
/* Currently in progress */
desc->residue -= dwc_get_sent(dwc);
spin_unlock_irqrestore(&dwc->lock, flags);
return;
}
desc->residue -= child->len;
}
/*
* No descriptors so far seem to be in progress, i.e.
* this one must be done.
*/
spin_unlock_irqrestore(&dwc->lock, flags);
dwc_descriptor_complete(dwc, desc, true);
spin_lock_irqsave(&dwc->lock, flags);
}
dev_err(chan2dev(&dwc->chan),
"BUG: All descriptors done, but channel not idle!\n");
/* Try to continue after resetting the channel... */
dwc_chan_disable(dw, dwc);
dwc_dostart_first_queued(dwc);
spin_unlock_irqrestore(&dwc->lock, flags);
}
static inline void dwc_dump_lli(struct dw_dma_chan *dwc, struct dw_desc *desc)
{
dev_crit(chan2dev(&dwc->chan), " desc: s0x%x d0x%x l0x%x c0x%x:%x\n",
lli_read(desc, sar),
lli_read(desc, dar),
lli_read(desc, llp),
lli_read(desc, ctlhi),
lli_read(desc, ctllo));
}
static void dwc_handle_error(struct dw_dma *dw, struct dw_dma_chan *dwc)
{
struct dw_desc *bad_desc;
struct dw_desc *child;
unsigned long flags;
dwc_scan_descriptors(dw, dwc);
spin_lock_irqsave(&dwc->lock, flags);
/*
* The descriptor currently at the head of the active list is
* borked. Since we don't have any way to report errors, we'll
* just have to scream loudly and try to carry on.
*/
bad_desc = dwc_first_active(dwc);
list_del_init(&bad_desc->desc_node);
list_move(dwc->queue.next, dwc->active_list.prev);
/* Clear the error flag and try to restart the controller */
dma_writel(dw, CLEAR.ERROR, dwc->mask);
if (!list_empty(&dwc->active_list))
dwc_dostart(dwc, dwc_first_active(dwc));
/*
* WARN may seem harsh, but since this only happens
* when someone submits a bad physical address in a
* descriptor, we should consider ourselves lucky that the
* controller flagged an error instead of scribbling over
* random memory locations.
*/
dev_WARN(chan2dev(&dwc->chan), "Bad descriptor submitted for DMA!\n"
" cookie: %d\n", bad_desc->txd.cookie);
dwc_dump_lli(dwc, bad_desc);
list_for_each_entry(child, &bad_desc->tx_list, desc_node)
dwc_dump_lli(dwc, child);
spin_unlock_irqrestore(&dwc->lock, flags);
/* Pretend the descriptor completed successfully */
dwc_descriptor_complete(dwc, bad_desc, true);
}
/* --------------------- Cyclic DMA API extensions -------------------- */
dma_addr_t dw_dma_get_src_addr(struct dma_chan *chan)
{
struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
return channel_readl(dwc, SAR);
}
EXPORT_SYMBOL(dw_dma_get_src_addr);
dma_addr_t dw_dma_get_dst_addr(struct dma_chan *chan)
{
struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
return channel_readl(dwc, DAR);
}
EXPORT_SYMBOL(dw_dma_get_dst_addr);
/* Called with dwc->lock held and all DMAC interrupts disabled */
static void dwc_handle_cyclic(struct dw_dma *dw, struct dw_dma_chan *dwc,
u32 status_block, u32 status_err, u32 status_xfer)
{
unsigned long flags;
if (status_block & dwc->mask) {
void (*callback)(void *param);
void *callback_param;
dev_vdbg(chan2dev(&dwc->chan), "new cyclic period llp 0x%08x\n",
channel_readl(dwc, LLP));
dma_writel(dw, CLEAR.BLOCK, dwc->mask);
callback = dwc->cdesc->period_callback;
callback_param = dwc->cdesc->period_callback_param;
if (callback)
callback(callback_param);
}
/*
* Error and transfer complete are highly unlikely, and will most
* likely be due to a configuration error by the user.
*/
if (unlikely(status_err & dwc->mask) ||
unlikely(status_xfer & dwc->mask)) {
unsigned int i;
dev_err(chan2dev(&dwc->chan),
"cyclic DMA unexpected %s interrupt, stopping DMA transfer\n",
status_xfer ? "xfer" : "error");
spin_lock_irqsave(&dwc->lock, flags);
dwc_dump_chan_regs(dwc);
dwc_chan_disable(dw, dwc);
/* Make sure DMA does not restart by loading a new list */
channel_writel(dwc, LLP, 0);
channel_writel(dwc, CTL_LO, 0);
channel_writel(dwc, CTL_HI, 0);
dma_writel(dw, CLEAR.BLOCK, dwc->mask);
dma_writel(dw, CLEAR.ERROR, dwc->mask);
dma_writel(dw, CLEAR.XFER, dwc->mask);
for (i = 0; i < dwc->cdesc->periods; i++)
dwc_dump_lli(dwc, dwc->cdesc->desc[i]);
spin_unlock_irqrestore(&dwc->lock, flags);
}
/* Re-enable interrupts */
channel_set_bit(dw, MASK.BLOCK, dwc->mask);
}
/* ------------------------------------------------------------------------- */
static void dw_dma_tasklet(unsigned long data)
{
struct dw_dma *dw = (struct dw_dma *)data;
struct dw_dma_chan *dwc;
u32 status_block;
u32 status_xfer;
u32 status_err;
unsigned int i;
status_block = dma_readl(dw, RAW.BLOCK);
status_xfer = dma_readl(dw, RAW.XFER);
status_err = dma_readl(dw, RAW.ERROR);
dev_vdbg(dw->dma.dev, "%s: status_err=%x\n", __func__, status_err);
for (i = 0; i < dw->dma.chancnt; i++) {
dwc = &dw->chan[i];
if (test_bit(DW_DMA_IS_CYCLIC, &dwc->flags))
dwc_handle_cyclic(dw, dwc, status_block, status_err,
status_xfer);
else if (status_err & (1 << i))
dwc_handle_error(dw, dwc);
else if (status_xfer & (1 << i))
dwc_scan_descriptors(dw, dwc);
}
/* Re-enable interrupts */
channel_set_bit(dw, MASK.XFER, dw->all_chan_mask);
channel_set_bit(dw, MASK.ERROR, dw->all_chan_mask);
}
static irqreturn_t dw_dma_interrupt(int irq, void *dev_id)
{
struct dw_dma *dw = dev_id;
u32 status;
/* Check if we have any interrupt from the DMAC which is not in use */
if (!dw->in_use)
return IRQ_NONE;
status = dma_readl(dw, STATUS_INT);
dev_vdbg(dw->dma.dev, "%s: status=0x%x\n", __func__, status);
/* Check if we have any interrupt from the DMAC */
if (!status)
return IRQ_NONE;
/*
* Just disable the interrupts. We'll turn them back on in the
* softirq handler.
*/
channel_clear_bit(dw, MASK.XFER, dw->all_chan_mask);
channel_clear_bit(dw, MASK.BLOCK, dw->all_chan_mask);
channel_clear_bit(dw, MASK.ERROR, dw->all_chan_mask);
status = dma_readl(dw, STATUS_INT);
if (status) {
dev_err(dw->dma.dev,
"BUG: Unexpected interrupts pending: 0x%x\n",
status);
/* Try to recover */
channel_clear_bit(dw, MASK.XFER, (1 << 8) - 1);
channel_clear_bit(dw, MASK.BLOCK, (1 << 8) - 1);
channel_clear_bit(dw, MASK.SRC_TRAN, (1 << 8) - 1);
channel_clear_bit(dw, MASK.DST_TRAN, (1 << 8) - 1);
channel_clear_bit(dw, MASK.ERROR, (1 << 8) - 1);
}
tasklet_schedule(&dw->tasklet);
return IRQ_HANDLED;
}
/*----------------------------------------------------------------------*/
static struct dma_async_tx_descriptor *
dwc_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
size_t len, unsigned long flags)
{
struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
struct dw_dma *dw = to_dw_dma(chan->device);
struct dw_desc *desc;
struct dw_desc *first;
struct dw_desc *prev;
size_t xfer_count;
size_t offset;
u8 m_master = dwc->dws.m_master;
unsigned int src_width;
unsigned int dst_width;
unsigned int data_width = dw->pdata->data_width[m_master];
u32 ctllo;
u8 lms = DWC_LLP_LMS(m_master);
dev_vdbg(chan2dev(chan),
"%s: d%pad s%pad l0x%zx f0x%lx\n", __func__,
&dest, &src, len, flags);
if (unlikely(!len)) {
dev_dbg(chan2dev(chan), "%s: length is zero!\n", __func__);
return NULL;
}
dwc->direction = DMA_MEM_TO_MEM;
src_width = dst_width = __ffs(data_width | src | dest | len);
ctllo = DWC_DEFAULT_CTLLO(chan)
| DWC_CTLL_DST_WIDTH(dst_width)
| DWC_CTLL_SRC_WIDTH(src_width)
| DWC_CTLL_DST_INC
| DWC_CTLL_SRC_INC
| DWC_CTLL_FC_M2M;
prev = first = NULL;
for (offset = 0; offset < len; offset += xfer_count << src_width) {
xfer_count = min_t(size_t, (len - offset) >> src_width,
dwc->block_size);
desc = dwc_desc_get(dwc);
if (!desc)
goto err_desc_get;
lli_write(desc, sar, src + offset);
lli_write(desc, dar, dest + offset);
lli_write(desc, ctllo, ctllo);
lli_write(desc, ctlhi, xfer_count);
desc->len = xfer_count << src_width;
if (!first) {
first = desc;
} else {
lli_write(prev, llp, desc->txd.phys | lms);
list_add_tail(&desc->desc_node, &first->tx_list);
}
prev = desc;
}
if (flags & DMA_PREP_INTERRUPT)
/* Trigger interrupt after last block */
lli_set(prev, ctllo, DWC_CTLL_INT_EN);
prev->lli.llp = 0;
lli_clear(prev, ctllo, DWC_CTLL_LLP_D_EN | DWC_CTLL_LLP_S_EN);
first->txd.flags = flags;
first->total_len = len;
return &first->txd;
err_desc_get:
dwc_desc_put(dwc, first);
return NULL;
}
static struct dma_async_tx_descriptor *
dwc_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
unsigned int sg_len, enum dma_transfer_direction direction,
unsigned long flags, void *context)
{
struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
struct dw_dma *dw = to_dw_dma(chan->device);
struct dma_slave_config *sconfig = &dwc->dma_sconfig;
struct dw_desc *prev;
struct dw_desc *first;
u32 ctllo;
u8 m_master = dwc->dws.m_master;
u8 lms = DWC_LLP_LMS(m_master);
dma_addr_t reg;
unsigned int reg_width;
unsigned int mem_width;
unsigned int data_width = dw->pdata->data_width[m_master];
unsigned int i;
struct scatterlist *sg;
size_t total_len = 0;
dev_vdbg(chan2dev(chan), "%s\n", __func__);
if (unlikely(!is_slave_direction(direction) || !sg_len))
return NULL;
dwc->direction = direction;
prev = first = NULL;
switch (direction) {
case DMA_MEM_TO_DEV:
reg_width = __ffs(sconfig->dst_addr_width);
reg = sconfig->dst_addr;
ctllo = (DWC_DEFAULT_CTLLO(chan)
| DWC_CTLL_DST_WIDTH(reg_width)
| DWC_CTLL_DST_FIX
| DWC_CTLL_SRC_INC);
ctllo |= sconfig->device_fc ? DWC_CTLL_FC(DW_DMA_FC_P_M2P) :
DWC_CTLL_FC(DW_DMA_FC_D_M2P);
for_each_sg(sgl, sg, sg_len, i) {
struct dw_desc *desc;
u32 len, dlen, mem;
mem = sg_dma_address(sg);
len = sg_dma_len(sg);
mem_width = __ffs(data_width | mem | len);
slave_sg_todev_fill_desc:
desc = dwc_desc_get(dwc);
if (!desc)
goto err_desc_get;
lli_write(desc, sar, mem);
lli_write(desc, dar, reg);
lli_write(desc, ctllo, ctllo | DWC_CTLL_SRC_WIDTH(mem_width));
if ((len >> mem_width) > dwc->block_size) {
dlen = dwc->block_size << mem_width;
mem += dlen;
len -= dlen;
} else {
dlen = len;
len = 0;
}
lli_write(desc, ctlhi, dlen >> mem_width);
desc->len = dlen;
if (!first) {
first = desc;
} else {
lli_write(prev, llp, desc->txd.phys | lms);
list_add_tail(&desc->desc_node, &first->tx_list);
}
prev = desc;
total_len += dlen;
if (len)
goto slave_sg_todev_fill_desc;
}
break;
case DMA_DEV_TO_MEM:
reg_width = __ffs(sconfig->src_addr_width);
reg = sconfig->src_addr;
ctllo = (DWC_DEFAULT_CTLLO(chan)
| DWC_CTLL_SRC_WIDTH(reg_width)
| DWC_CTLL_DST_INC
| DWC_CTLL_SRC_FIX);
ctllo |= sconfig->device_fc ? DWC_CTLL_FC(DW_DMA_FC_P_P2M) :
DWC_CTLL_FC(DW_DMA_FC_D_P2M);
for_each_sg(sgl, sg, sg_len, i) {
struct dw_desc *desc;
u32 len, dlen, mem;
mem = sg_dma_address(sg);
len = sg_dma_len(sg);
mem_width = __ffs(data_width | mem | len);
slave_sg_fromdev_fill_desc:
desc = dwc_desc_get(dwc);
if (!desc)
goto err_desc_get;
lli_write(desc, sar, reg);
lli_write(desc, dar, mem);
lli_write(desc, ctllo, ctllo | DWC_CTLL_DST_WIDTH(mem_width));
if ((len >> reg_width) > dwc->block_size) {
dlen = dwc->block_size << reg_width;
mem += dlen;
len -= dlen;
} else {
dlen = len;
len = 0;
}
lli_write(desc, ctlhi, dlen >> reg_width);
desc->len = dlen;
if (!first) {
first = desc;
} else {
lli_write(prev, llp, desc->txd.phys | lms);
list_add_tail(&desc->desc_node, &first->tx_list);
}
prev = desc;
total_len += dlen;
if (len)
goto slave_sg_fromdev_fill_desc;
}
break;
default:
return NULL;
}
if (flags & DMA_PREP_INTERRUPT)
/* Trigger interrupt after last block */
lli_set(prev, ctllo, DWC_CTLL_INT_EN);
prev->lli.llp = 0;
lli_clear(prev, ctllo, DWC_CTLL_LLP_D_EN | DWC_CTLL_LLP_S_EN);
first->total_len = total_len;
return &first->txd;
err_desc_get:
dev_err(chan2dev(chan),
"not enough descriptors available. Direction %d\n", direction);
dwc_desc_put(dwc, first);
return NULL;
}
bool dw_dma_filter(struct dma_chan *chan, void *param)
{
struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
struct dw_dma_slave *dws = param;
if (dws->dma_dev != chan->device->dev)
return false;
/* We have to copy data since dws can be temporary storage */
memcpy(&dwc->dws, dws, sizeof(struct dw_dma_slave));
return true;
}
EXPORT_SYMBOL_GPL(dw_dma_filter);
/*
* Fix sconfig's burst size according to dw_dmac. We need to convert them as:
* 1 -> 0, 4 -> 1, 8 -> 2, 16 -> 3.
*
* NOTE: burst size 2 is not supported by controller.
*
* This can be done by finding least significant bit set: n & (n - 1)
*/
static inline void convert_burst(u32 *maxburst)
{
if (*maxburst > 1)
*maxburst = fls(*maxburst) - 2;
else
*maxburst = 0;
}
static int dwc_config(struct dma_chan *chan, struct dma_slave_config *sconfig)
{
struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
/* Check if chan will be configured for slave transfers */
if (!is_slave_direction(sconfig->direction))
return -EINVAL;
memcpy(&dwc->dma_sconfig, sconfig, sizeof(*sconfig));
dwc->direction = sconfig->direction;
convert_burst(&dwc->dma_sconfig.src_maxburst);
convert_burst(&dwc->dma_sconfig.dst_maxburst);
return 0;
}
static int dwc_pause(struct dma_chan *chan)
{
struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
unsigned long flags;
unsigned int count = 20; /* timeout iterations */
u32 cfglo;
spin_lock_irqsave(&dwc->lock, flags);
cfglo = channel_readl(dwc, CFG_LO);
channel_writel(dwc, CFG_LO, cfglo | DWC_CFGL_CH_SUSP);
while (!(channel_readl(dwc, CFG_LO) & DWC_CFGL_FIFO_EMPTY) && count--)
udelay(2);
set_bit(DW_DMA_IS_PAUSED, &dwc->flags);
spin_unlock_irqrestore(&dwc->lock, flags);
return 0;
}
static inline void dwc_chan_resume(struct dw_dma_chan *dwc)
{
u32 cfglo = channel_readl(dwc, CFG_LO);
channel_writel(dwc, CFG_LO, cfglo & ~DWC_CFGL_CH_SUSP);
clear_bit(DW_DMA_IS_PAUSED, &dwc->flags);
}
static int dwc_resume(struct dma_chan *chan)
{
struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
unsigned long flags;
spin_lock_irqsave(&dwc->lock, flags);
if (test_bit(DW_DMA_IS_PAUSED, &dwc->flags))
dwc_chan_resume(dwc);
spin_unlock_irqrestore(&dwc->lock, flags);
return 0;
}
static int dwc_terminate_all(struct dma_chan *chan)
{
struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
struct dw_dma *dw = to_dw_dma(chan->device);
struct dw_desc *desc, *_desc;
unsigned long flags;
LIST_HEAD(list);
spin_lock_irqsave(&dwc->lock, flags);
clear_bit(DW_DMA_IS_SOFT_LLP, &dwc->flags);
dwc_chan_disable(dw, dwc);
dwc_chan_resume(dwc);
/* active_list entries will end up before queued entries */
list_splice_init(&dwc->queue, &list);
list_splice_init(&dwc->active_list, &list);
spin_unlock_irqrestore(&dwc->lock, flags);
/* Flush all pending and queued descriptors */
list_for_each_entry_safe(desc, _desc, &list, desc_node)
dwc_descriptor_complete(dwc, desc, false);
return 0;
}
static struct dw_desc *dwc_find_desc(struct dw_dma_chan *dwc, dma_cookie_t c)
{
struct dw_desc *desc;
list_for_each_entry(desc, &dwc->active_list, desc_node)
if (desc->txd.cookie == c)
return desc;
return NULL;
}
static u32 dwc_get_residue(struct dw_dma_chan *dwc, dma_cookie_t cookie)
{
struct dw_desc *desc;
unsigned long flags;
u32 residue;
spin_lock_irqsave(&dwc->lock, flags);
desc = dwc_find_desc(dwc, cookie);
if (desc) {
if (desc == dwc_first_active(dwc)) {
residue = desc->residue;
if (test_bit(DW_DMA_IS_SOFT_LLP, &dwc->flags) && residue)
residue -= dwc_get_sent(dwc);
} else {
residue = desc->total_len;
}
} else {
residue = 0;
}
spin_unlock_irqrestore(&dwc->lock, flags);
return residue;
}
static enum dma_status
dwc_tx_status(struct dma_chan *chan,
dma_cookie_t cookie,
struct dma_tx_state *txstate)
{
struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
enum dma_status ret;
ret = dma_cookie_status(chan, cookie, txstate);
if (ret == DMA_COMPLETE)
return ret;
dwc_scan_descriptors(to_dw_dma(chan->device), dwc);
ret = dma_cookie_status(chan, cookie, txstate);
if (ret == DMA_COMPLETE)
return ret;
dma_set_residue(txstate, dwc_get_residue(dwc, cookie));
if (test_bit(DW_DMA_IS_PAUSED, &dwc->flags) && ret == DMA_IN_PROGRESS)
return DMA_PAUSED;
return ret;
}
static void dwc_issue_pending(struct dma_chan *chan)
{
struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
unsigned long flags;
spin_lock_irqsave(&dwc->lock, flags);
if (list_empty(&dwc->active_list))
dwc_dostart_first_queued(dwc);
spin_unlock_irqrestore(&dwc->lock, flags);
}
/*----------------------------------------------------------------------*/
static void dw_dma_off(struct dw_dma *dw)
{
unsigned int i;
dma_writel(dw, CFG, 0);
channel_clear_bit(dw, MASK.XFER, dw->all_chan_mask);
channel_clear_bit(dw, MASK.BLOCK, dw->all_chan_mask);
channel_clear_bit(dw, MASK.SRC_TRAN, dw->all_chan_mask);
channel_clear_bit(dw, MASK.DST_TRAN, dw->all_chan_mask);
channel_clear_bit(dw, MASK.ERROR, dw->all_chan_mask);
while (dma_readl(dw, CFG) & DW_CFG_DMA_EN)
cpu_relax();
for (i = 0; i < dw->dma.chancnt; i++)
clear_bit(DW_DMA_IS_INITIALIZED, &dw->chan[i].flags);
}
static void dw_dma_on(struct dw_dma *dw)
{
dma_writel(dw, CFG, DW_CFG_DMA_EN);
}
static int dwc_alloc_chan_resources(struct dma_chan *chan)
{
struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
struct dw_dma *dw = to_dw_dma(chan->device);
dev_vdbg(chan2dev(chan), "%s\n", __func__);
/* ASSERT: channel is idle */
if (dma_readl(dw, CH_EN) & dwc->mask) {
dev_dbg(chan2dev(chan), "DMA channel not idle?\n");
return -EIO;
}
dma_cookie_init(chan);
/*
* NOTE: some controllers may have additional features that we
* need to initialize here, like "scatter-gather" (which
* doesn't mean what you think it means), and status writeback.
*/
/*
* We need controller-specific data to set up slave transfers.
*/
if (chan->private && !dw_dma_filter(chan, chan->private)) {
dev_warn(chan2dev(chan), "Wrong controller-specific data\n");
return -EINVAL;
}
/* Enable controller here if needed */
if (!dw->in_use)
dw_dma_on(dw);
dw->in_use |= dwc->mask;
return 0;
}
static void dwc_free_chan_resources(struct dma_chan *chan)
{
struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
struct dw_dma *dw = to_dw_dma(chan->device);
unsigned long flags;
LIST_HEAD(list);
dev_dbg(chan2dev(chan), "%s: descs allocated=%u\n", __func__,
dwc->descs_allocated);
/* ASSERT: channel is idle */
BUG_ON(!list_empty(&dwc->active_list));
BUG_ON(!list_empty(&dwc->queue));
BUG_ON(dma_readl(to_dw_dma(chan->device), CH_EN) & dwc->mask);
spin_lock_irqsave(&dwc->lock, flags);
/* Clear custom channel configuration */
memset(&dwc->dws, 0, sizeof(struct dw_dma_slave));
clear_bit(DW_DMA_IS_INITIALIZED, &dwc->flags);
/* Disable interrupts */
channel_clear_bit(dw, MASK.XFER, dwc->mask);
channel_clear_bit(dw, MASK.BLOCK, dwc->mask);
channel_clear_bit(dw, MASK.ERROR, dwc->mask);
spin_unlock_irqrestore(&dwc->lock, flags);
/* Disable controller in case it was a last user */
dw->in_use &= ~dwc->mask;
if (!dw->in_use)
dw_dma_off(dw);
dev_vdbg(chan2dev(chan), "%s: done\n", __func__);
}
/* --------------------- Cyclic DMA API extensions -------------------- */
/**
* dw_dma_cyclic_start - start the cyclic DMA transfer
* @chan: the DMA channel to start
*
* Must be called with soft interrupts disabled. Returns zero on success or
* -errno on failure.
*/
int dw_dma_cyclic_start(struct dma_chan *chan)
{
struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
struct dw_dma *dw = to_dw_dma(chan->device);
unsigned long flags;
if (!test_bit(DW_DMA_IS_CYCLIC, &dwc->flags)) {
dev_err(chan2dev(&dwc->chan), "missing prep for cyclic DMA\n");
return -ENODEV;
}
spin_lock_irqsave(&dwc->lock, flags);
/* Enable interrupts to perform cyclic transfer */
channel_set_bit(dw, MASK.BLOCK, dwc->mask);
dwc_dostart(dwc, dwc->cdesc->desc[0]);
spin_unlock_irqrestore(&dwc->lock, flags);
return 0;
}
EXPORT_SYMBOL(dw_dma_cyclic_start);
/**
* dw_dma_cyclic_stop - stop the cyclic DMA transfer
* @chan: the DMA channel to stop
*
* Must be called with soft interrupts disabled.
*/
void dw_dma_cyclic_stop(struct dma_chan *chan)
{
struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
struct dw_dma *dw = to_dw_dma(dwc->chan.device);
unsigned long flags;
spin_lock_irqsave(&dwc->lock, flags);
dwc_chan_disable(dw, dwc);
spin_unlock_irqrestore(&dwc->lock, flags);
}
EXPORT_SYMBOL(dw_dma_cyclic_stop);
/**
* dw_dma_cyclic_prep - prepare the cyclic DMA transfer
* @chan: the DMA channel to prepare
* @buf_addr: physical DMA address where the buffer starts
* @buf_len: total number of bytes for the entire buffer
* @period_len: number of bytes for each period
* @direction: transfer direction, to or from device
*
* Must be called before trying to start the transfer. Returns a valid struct
* dw_cyclic_desc if successful or an ERR_PTR(-errno) if not successful.
*/
struct dw_cyclic_desc *dw_dma_cyclic_prep(struct dma_chan *chan,
dma_addr_t buf_addr, size_t buf_len, size_t period_len,
enum dma_transfer_direction direction)
{
struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
struct dma_slave_config *sconfig = &dwc->dma_sconfig;
struct dw_cyclic_desc *cdesc;
struct dw_cyclic_desc *retval = NULL;
struct dw_desc *desc;
struct dw_desc *last = NULL;
u8 lms = DWC_LLP_LMS(dwc->dws.m_master);
unsigned long was_cyclic;
unsigned int reg_width;
unsigned int periods;
unsigned int i;
unsigned long flags;
spin_lock_irqsave(&dwc->lock, flags);
if (dwc->nollp) {
spin_unlock_irqrestore(&dwc->lock, flags);
dev_dbg(chan2dev(&dwc->chan),
"channel doesn't support LLP transfers\n");
return ERR_PTR(-EINVAL);
}
if (!list_empty(&dwc->queue) || !list_empty(&dwc->active_list)) {
spin_unlock_irqrestore(&dwc->lock, flags);
dev_dbg(chan2dev(&dwc->chan),
"queue and/or active list are not empty\n");
return ERR_PTR(-EBUSY);
}
was_cyclic = test_and_set_bit(DW_DMA_IS_CYCLIC, &dwc->flags);
spin_unlock_irqrestore(&dwc->lock, flags);
if (was_cyclic) {
dev_dbg(chan2dev(&dwc->chan),
"channel already prepared for cyclic DMA\n");
return ERR_PTR(-EBUSY);
}
retval = ERR_PTR(-EINVAL);
if (unlikely(!is_slave_direction(direction)))
goto out_err;
dwc->direction = direction;
if (direction == DMA_MEM_TO_DEV)
reg_width = __ffs(sconfig->dst_addr_width);
else
reg_width = __ffs(sconfig->src_addr_width);
periods = buf_len / period_len;
/* Check for too big/unaligned periods and unaligned DMA buffer. */
if (period_len > (dwc->block_size << reg_width))
goto out_err;
if (unlikely(period_len & ((1 << reg_width) - 1)))
goto out_err;
if (unlikely(buf_addr & ((1 << reg_width) - 1)))
goto out_err;
retval = ERR_PTR(-ENOMEM);
cdesc = kzalloc(sizeof(struct dw_cyclic_desc), GFP_KERNEL);
if (!cdesc)
goto out_err;
cdesc->desc = kzalloc(sizeof(struct dw_desc *) * periods, GFP_KERNEL);
if (!cdesc->desc)
goto out_err_alloc;
for (i = 0; i < periods; i++) {
desc = dwc_desc_get(dwc);
if (!desc)
goto out_err_desc_get;
switch (direction) {
case DMA_MEM_TO_DEV:
lli_write(desc, dar, sconfig->dst_addr);
lli_write(desc, sar, buf_addr + period_len * i);
lli_write(desc, ctllo, (DWC_DEFAULT_CTLLO(chan)
| DWC_CTLL_DST_WIDTH(reg_width)
| DWC_CTLL_SRC_WIDTH(reg_width)
| DWC_CTLL_DST_FIX
| DWC_CTLL_SRC_INC
| DWC_CTLL_INT_EN));
lli_set(desc, ctllo, sconfig->device_fc ?
DWC_CTLL_FC(DW_DMA_FC_P_M2P) :
DWC_CTLL_FC(DW_DMA_FC_D_M2P));
break;
case DMA_DEV_TO_MEM:
lli_write(desc, dar, buf_addr + period_len * i);
lli_write(desc, sar, sconfig->src_addr);
lli_write(desc, ctllo, (DWC_DEFAULT_CTLLO(chan)
| DWC_CTLL_SRC_WIDTH(reg_width)
| DWC_CTLL_DST_WIDTH(reg_width)
| DWC_CTLL_DST_INC
| DWC_CTLL_SRC_FIX
| DWC_CTLL_INT_EN));
lli_set(desc, ctllo, sconfig->device_fc ?
DWC_CTLL_FC(DW_DMA_FC_P_P2M) :
DWC_CTLL_FC(DW_DMA_FC_D_P2M));
break;
default:
break;
}
lli_write(desc, ctlhi, period_len >> reg_width);
cdesc->desc[i] = desc;
if (last)
lli_write(last, llp, desc->txd.phys | lms);
last = desc;
}
/* Let's make a cyclic list */
lli_write(last, llp, cdesc->desc[0]->txd.phys | lms);
dev_dbg(chan2dev(&dwc->chan),
"cyclic prepared buf %pad len %zu period %zu periods %d\n",
&buf_addr, buf_len, period_len, periods);
cdesc->periods = periods;
dwc->cdesc = cdesc;
return cdesc;
out_err_desc_get:
while (i--)
dwc_desc_put(dwc, cdesc->desc[i]);
out_err_alloc:
kfree(cdesc);
out_err:
clear_bit(DW_DMA_IS_CYCLIC, &dwc->flags);
return (struct dw_cyclic_desc *)retval;
}
EXPORT_SYMBOL(dw_dma_cyclic_prep);
/**
* dw_dma_cyclic_free - free a prepared cyclic DMA transfer
* @chan: the DMA channel to free
*/
void dw_dma_cyclic_free(struct dma_chan *chan)
{
struct dw_dma_chan *dwc = to_dw_dma_chan(chan);
struct dw_dma *dw = to_dw_dma(dwc->chan.device);
struct dw_cyclic_desc *cdesc = dwc->cdesc;
unsigned int i;
unsigned long flags;
dev_dbg(chan2dev(&dwc->chan), "%s\n", __func__);
if (!cdesc)
return;
spin_lock_irqsave(&dwc->lock, flags);
dwc_chan_disable(dw, dwc);
dma_writel(dw, CLEAR.BLOCK, dwc->mask);
dma_writel(dw, CLEAR.ERROR, dwc->mask);
dma_writel(dw, CLEAR.XFER, dwc->mask);
spin_unlock_irqrestore(&dwc->lock, flags);
for (i = 0; i < cdesc->periods; i++)
dwc_desc_put(dwc, cdesc->desc[i]);
kfree(cdesc->desc);
kfree(cdesc);
dwc->cdesc = NULL;
clear_bit(DW_DMA_IS_CYCLIC, &dwc->flags);
}
EXPORT_SYMBOL(dw_dma_cyclic_free);
/*----------------------------------------------------------------------*/
int dw_dma_probe(struct dw_dma_chip *chip)
{
struct dw_dma_platform_data *pdata;
struct dw_dma *dw;
bool autocfg = false;
unsigned int dw_params;
unsigned int i;
int err;
dw = devm_kzalloc(chip->dev, sizeof(*dw), GFP_KERNEL);
if (!dw)
return -ENOMEM;
dw->pdata = devm_kzalloc(chip->dev, sizeof(*dw->pdata), GFP_KERNEL);
if (!dw->pdata)
return -ENOMEM;
dw->regs = chip->regs;
chip->dw = dw;
pm_runtime_get_sync(chip->dev);
if (!chip->pdata) {
dw_params = dma_readl(dw, DW_PARAMS);
dev_dbg(chip->dev, "DW_PARAMS: 0x%08x\n", dw_params);
autocfg = dw_params >> DW_PARAMS_EN & 1;
if (!autocfg) {
err = -EINVAL;
goto err_pdata;
}
/* Reassign the platform data pointer */
pdata = dw->pdata;
/* Get hardware configuration parameters */
pdata->nr_channels = (dw_params >> DW_PARAMS_NR_CHAN & 7) + 1;
pdata->nr_masters = (dw_params >> DW_PARAMS_NR_MASTER & 3) + 1;
for (i = 0; i < pdata->nr_masters; i++) {
pdata->data_width[i] =
4 << (dw_params >> DW_PARAMS_DATA_WIDTH(i) & 3);
}
pdata->block_size = dma_readl(dw, MAX_BLK_SIZE);
/* Fill platform data with the default values */
pdata->is_private = true;
pdata->is_memcpy = true;
pdata->chan_allocation_order = CHAN_ALLOCATION_ASCENDING;
pdata->chan_priority = CHAN_PRIORITY_ASCENDING;
} else if (chip->pdata->nr_channels > DW_DMA_MAX_NR_CHANNELS) {
err = -EINVAL;
goto err_pdata;
} else {
memcpy(dw->pdata, chip->pdata, sizeof(*dw->pdata));
/* Reassign the platform data pointer */
pdata = dw->pdata;
}
dw->chan = devm_kcalloc(chip->dev, pdata->nr_channels, sizeof(*dw->chan),
GFP_KERNEL);
if (!dw->chan) {
err = -ENOMEM;
goto err_pdata;
}
/* Calculate all channel mask before DMA setup */
dw->all_chan_mask = (1 << pdata->nr_channels) - 1;
/* Force dma off, just in case */
dw_dma_off(dw);
/* Create a pool of consistent memory blocks for hardware descriptors */
dw->desc_pool = dmam_pool_create("dw_dmac_desc_pool", chip->dev,
sizeof(struct dw_desc), 4, 0);
if (!dw->desc_pool) {
dev_err(chip->dev, "No memory for descriptors dma pool\n");
err = -ENOMEM;
goto err_pdata;
}
tasklet_init(&dw->tasklet, dw_dma_tasklet, (unsigned long)dw);
err = request_irq(chip->irq, dw_dma_interrupt, IRQF_SHARED,
"dw_dmac", dw);
if (err)
goto err_pdata;
INIT_LIST_HEAD(&dw->dma.channels);
for (i = 0; i < pdata->nr_channels; i++) {
struct dw_dma_chan *dwc = &dw->chan[i];
dwc->chan.device = &dw->dma;
dma_cookie_init(&dwc->chan);
if (pdata->chan_allocation_order == CHAN_ALLOCATION_ASCENDING)
list_add_tail(&dwc->chan.device_node,
&dw->dma.channels);
else
list_add(&dwc->chan.device_node, &dw->dma.channels);
/* 7 is highest priority & 0 is lowest. */
if (pdata->chan_priority == CHAN_PRIORITY_ASCENDING)
dwc->priority = pdata->nr_channels - i - 1;
else
dwc->priority = i;
dwc->ch_regs = &__dw_regs(dw)->CHAN[i];
spin_lock_init(&dwc->lock);
dwc->mask = 1 << i;
INIT_LIST_HEAD(&dwc->active_list);
INIT_LIST_HEAD(&dwc->queue);
channel_clear_bit(dw, CH_EN, dwc->mask);
dwc->direction = DMA_TRANS_NONE;
/* Hardware configuration */
if (autocfg) {
unsigned int r = DW_DMA_MAX_NR_CHANNELS - i - 1;
void __iomem *addr = &__dw_regs(dw)->DWC_PARAMS[r];
unsigned int dwc_params = dma_readl_native(addr);
dev_dbg(chip->dev, "DWC_PARAMS[%d]: 0x%08x\n", i,
dwc_params);
/*
* Decode maximum block size for given channel. The
* stored 4 bit value represents blocks from 0x00 for 3
* up to 0x0a for 4095.
*/
dwc->block_size =
(4 << ((pdata->block_size >> 4 * i) & 0xf)) - 1;
dwc->nollp =
(dwc_params >> DWC_PARAMS_MBLK_EN & 0x1) == 0;
} else {
dwc->block_size = pdata->block_size;
/* Check if channel supports multi block transfer */
channel_writel(dwc, LLP, DWC_LLP_LOC(0xffffffff));
dwc->nollp = DWC_LLP_LOC(channel_readl(dwc, LLP)) == 0;
channel_writel(dwc, LLP, 0);
}
}
/* Clear all interrupts on all channels. */
dma_writel(dw, CLEAR.XFER, dw->all_chan_mask);
dma_writel(dw, CLEAR.BLOCK, dw->all_chan_mask);
dma_writel(dw, CLEAR.SRC_TRAN, dw->all_chan_mask);
dma_writel(dw, CLEAR.DST_TRAN, dw->all_chan_mask);
dma_writel(dw, CLEAR.ERROR, dw->all_chan_mask);
/* Set capabilities */
dma_cap_set(DMA_SLAVE, dw->dma.cap_mask);
if (pdata->is_private)
dma_cap_set(DMA_PRIVATE, dw->dma.cap_mask);
if (pdata->is_memcpy)
dma_cap_set(DMA_MEMCPY, dw->dma.cap_mask);
dw->dma.dev = chip->dev;
dw->dma.device_alloc_chan_resources = dwc_alloc_chan_resources;
dw->dma.device_free_chan_resources = dwc_free_chan_resources;
dw->dma.device_prep_dma_memcpy = dwc_prep_dma_memcpy;
dw->dma.device_prep_slave_sg = dwc_prep_slave_sg;
dw->dma.device_config = dwc_config;
dw->dma.device_pause = dwc_pause;
dw->dma.device_resume = dwc_resume;
dw->dma.device_terminate_all = dwc_terminate_all;
dw->dma.device_tx_status = dwc_tx_status;
dw->dma.device_issue_pending = dwc_issue_pending;
/* DMA capabilities */
dw->dma.src_addr_widths = DW_DMA_BUSWIDTHS;
dw->dma.dst_addr_widths = DW_DMA_BUSWIDTHS;
dw->dma.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV) |
BIT(DMA_MEM_TO_MEM);
dw->dma.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
err = dma_async_device_register(&dw->dma);
if (err)
goto err_dma_register;
dev_info(chip->dev, "DesignWare DMA Controller, %d channels\n",
pdata->nr_channels);
pm_runtime_put_sync_suspend(chip->dev);
return 0;
err_dma_register:
free_irq(chip->irq, dw);
err_pdata:
pm_runtime_put_sync_suspend(chip->dev);
return err;
}
EXPORT_SYMBOL_GPL(dw_dma_probe);
int dw_dma_remove(struct dw_dma_chip *chip)
{
struct dw_dma *dw = chip->dw;
struct dw_dma_chan *dwc, *_dwc;
pm_runtime_get_sync(chip->dev);
dw_dma_off(dw);
dma_async_device_unregister(&dw->dma);
free_irq(chip->irq, dw);
tasklet_kill(&dw->tasklet);
list_for_each_entry_safe(dwc, _dwc, &dw->dma.channels,
chan.device_node) {
list_del(&dwc->chan.device_node);
channel_clear_bit(dw, CH_EN, dwc->mask);
}
pm_runtime_put_sync_suspend(chip->dev);
return 0;
}
EXPORT_SYMBOL_GPL(dw_dma_remove);
int dw_dma_disable(struct dw_dma_chip *chip)
{
struct dw_dma *dw = chip->dw;
dw_dma_off(dw);
return 0;
}
EXPORT_SYMBOL_GPL(dw_dma_disable);
int dw_dma_enable(struct dw_dma_chip *chip)
{
struct dw_dma *dw = chip->dw;
dw_dma_on(dw);
return 0;
}
EXPORT_SYMBOL_GPL(dw_dma_enable);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("Synopsys DesignWare DMA Controller core driver");
MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
MODULE_AUTHOR("Viresh Kumar <vireshk@kernel.org>");