linux/block/bio.c
Jens Axboe be4d234d7a bio: add allocation cache abstraction
Add a per-cpu bio_set cache for bio allocations, enabling us to quickly
recycle them instead of going through the slab allocator. This cache
isn't IRQ safe, and hence is only really suitable for polled IO.

Very simple - keeps a count of bio's in the cache, and maintains a max
of 512 with a slack of 64. If we get above max + slack, we drop slack
number of bio's.

Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2021-08-23 13:44:43 -06:00

1755 lines
47 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
*/
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
#include <linux/uio.h>
#include <linux/iocontext.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/export.h>
#include <linux/mempool.h>
#include <linux/workqueue.h>
#include <linux/cgroup.h>
#include <linux/blk-cgroup.h>
#include <linux/highmem.h>
#include <linux/sched/sysctl.h>
#include <linux/blk-crypto.h>
#include <linux/xarray.h>
#include <trace/events/block.h>
#include "blk.h"
#include "blk-rq-qos.h"
struct bio_alloc_cache {
struct bio_list free_list;
unsigned int nr;
};
static struct biovec_slab {
int nr_vecs;
char *name;
struct kmem_cache *slab;
} bvec_slabs[] __read_mostly = {
{ .nr_vecs = 16, .name = "biovec-16" },
{ .nr_vecs = 64, .name = "biovec-64" },
{ .nr_vecs = 128, .name = "biovec-128" },
{ .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" },
};
static struct biovec_slab *biovec_slab(unsigned short nr_vecs)
{
switch (nr_vecs) {
/* smaller bios use inline vecs */
case 5 ... 16:
return &bvec_slabs[0];
case 17 ... 64:
return &bvec_slabs[1];
case 65 ... 128:
return &bvec_slabs[2];
case 129 ... BIO_MAX_VECS:
return &bvec_slabs[3];
default:
BUG();
return NULL;
}
}
/*
* fs_bio_set is the bio_set containing bio and iovec memory pools used by
* IO code that does not need private memory pools.
*/
struct bio_set fs_bio_set;
EXPORT_SYMBOL(fs_bio_set);
/*
* Our slab pool management
*/
struct bio_slab {
struct kmem_cache *slab;
unsigned int slab_ref;
unsigned int slab_size;
char name[8];
};
static DEFINE_MUTEX(bio_slab_lock);
static DEFINE_XARRAY(bio_slabs);
static struct bio_slab *create_bio_slab(unsigned int size)
{
struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);
if (!bslab)
return NULL;
snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
bslab->slab = kmem_cache_create(bslab->name, size,
ARCH_KMALLOC_MINALIGN, SLAB_HWCACHE_ALIGN, NULL);
if (!bslab->slab)
goto fail_alloc_slab;
bslab->slab_ref = 1;
bslab->slab_size = size;
if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
return bslab;
kmem_cache_destroy(bslab->slab);
fail_alloc_slab:
kfree(bslab);
return NULL;
}
static inline unsigned int bs_bio_slab_size(struct bio_set *bs)
{
return bs->front_pad + sizeof(struct bio) + bs->back_pad;
}
static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
{
unsigned int size = bs_bio_slab_size(bs);
struct bio_slab *bslab;
mutex_lock(&bio_slab_lock);
bslab = xa_load(&bio_slabs, size);
if (bslab)
bslab->slab_ref++;
else
bslab = create_bio_slab(size);
mutex_unlock(&bio_slab_lock);
if (bslab)
return bslab->slab;
return NULL;
}
static void bio_put_slab(struct bio_set *bs)
{
struct bio_slab *bslab = NULL;
unsigned int slab_size = bs_bio_slab_size(bs);
mutex_lock(&bio_slab_lock);
bslab = xa_load(&bio_slabs, slab_size);
if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
goto out;
WARN_ON_ONCE(bslab->slab != bs->bio_slab);
WARN_ON(!bslab->slab_ref);
if (--bslab->slab_ref)
goto out;
xa_erase(&bio_slabs, slab_size);
kmem_cache_destroy(bslab->slab);
kfree(bslab);
out:
mutex_unlock(&bio_slab_lock);
}
void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs)
{
BIO_BUG_ON(nr_vecs > BIO_MAX_VECS);
if (nr_vecs == BIO_MAX_VECS)
mempool_free(bv, pool);
else if (nr_vecs > BIO_INLINE_VECS)
kmem_cache_free(biovec_slab(nr_vecs)->slab, bv);
}
/*
* Make the first allocation restricted and don't dump info on allocation
* failures, since we'll fall back to the mempool in case of failure.
*/
static inline gfp_t bvec_alloc_gfp(gfp_t gfp)
{
return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) |
__GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
}
struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
gfp_t gfp_mask)
{
struct biovec_slab *bvs = biovec_slab(*nr_vecs);
if (WARN_ON_ONCE(!bvs))
return NULL;
/*
* Upgrade the nr_vecs request to take full advantage of the allocation.
* We also rely on this in the bvec_free path.
*/
*nr_vecs = bvs->nr_vecs;
/*
* Try a slab allocation first for all smaller allocations. If that
* fails and __GFP_DIRECT_RECLAIM is set retry with the mempool.
* The mempool is sized to handle up to BIO_MAX_VECS entries.
*/
if (*nr_vecs < BIO_MAX_VECS) {
struct bio_vec *bvl;
bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask));
if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM))
return bvl;
*nr_vecs = BIO_MAX_VECS;
}
return mempool_alloc(pool, gfp_mask);
}
void bio_uninit(struct bio *bio)
{
#ifdef CONFIG_BLK_CGROUP
if (bio->bi_blkg) {
blkg_put(bio->bi_blkg);
bio->bi_blkg = NULL;
}
#endif
if (bio_integrity(bio))
bio_integrity_free(bio);
bio_crypt_free_ctx(bio);
}
EXPORT_SYMBOL(bio_uninit);
static void bio_free(struct bio *bio)
{
struct bio_set *bs = bio->bi_pool;
void *p;
bio_uninit(bio);
if (bs) {
bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs);
/*
* If we have front padding, adjust the bio pointer before freeing
*/
p = bio;
p -= bs->front_pad;
mempool_free(p, &bs->bio_pool);
} else {
/* Bio was allocated by bio_kmalloc() */
kfree(bio);
}
}
/*
* Users of this function have their own bio allocation. Subsequently,
* they must remember to pair any call to bio_init() with bio_uninit()
* when IO has completed, or when the bio is released.
*/
void bio_init(struct bio *bio, struct bio_vec *table,
unsigned short max_vecs)
{
bio->bi_next = NULL;
bio->bi_bdev = NULL;
bio->bi_opf = 0;
bio->bi_flags = 0;
bio->bi_ioprio = 0;
bio->bi_write_hint = 0;
bio->bi_status = 0;
bio->bi_iter.bi_sector = 0;
bio->bi_iter.bi_size = 0;
bio->bi_iter.bi_idx = 0;
bio->bi_iter.bi_bvec_done = 0;
bio->bi_end_io = NULL;
bio->bi_private = NULL;
#ifdef CONFIG_BLK_CGROUP
bio->bi_blkg = NULL;
bio->bi_issue.value = 0;
#ifdef CONFIG_BLK_CGROUP_IOCOST
bio->bi_iocost_cost = 0;
#endif
#endif
#ifdef CONFIG_BLK_INLINE_ENCRYPTION
bio->bi_crypt_context = NULL;
#endif
#ifdef CONFIG_BLK_DEV_INTEGRITY
bio->bi_integrity = NULL;
#endif
bio->bi_vcnt = 0;
atomic_set(&bio->__bi_remaining, 1);
atomic_set(&bio->__bi_cnt, 1);
bio->bi_max_vecs = max_vecs;
bio->bi_io_vec = table;
bio->bi_pool = NULL;
}
EXPORT_SYMBOL(bio_init);
/**
* bio_reset - reinitialize a bio
* @bio: bio to reset
*
* Description:
* After calling bio_reset(), @bio will be in the same state as a freshly
* allocated bio returned bio bio_alloc_bioset() - the only fields that are
* preserved are the ones that are initialized by bio_alloc_bioset(). See
* comment in struct bio.
*/
void bio_reset(struct bio *bio)
{
bio_uninit(bio);
memset(bio, 0, BIO_RESET_BYTES);
atomic_set(&bio->__bi_remaining, 1);
}
EXPORT_SYMBOL(bio_reset);
static struct bio *__bio_chain_endio(struct bio *bio)
{
struct bio *parent = bio->bi_private;
if (bio->bi_status && !parent->bi_status)
parent->bi_status = bio->bi_status;
bio_put(bio);
return parent;
}
static void bio_chain_endio(struct bio *bio)
{
bio_endio(__bio_chain_endio(bio));
}
/**
* bio_chain - chain bio completions
* @bio: the target bio
* @parent: the parent bio of @bio
*
* The caller won't have a bi_end_io called when @bio completes - instead,
* @parent's bi_end_io won't be called until both @parent and @bio have
* completed; the chained bio will also be freed when it completes.
*
* The caller must not set bi_private or bi_end_io in @bio.
*/
void bio_chain(struct bio *bio, struct bio *parent)
{
BUG_ON(bio->bi_private || bio->bi_end_io);
bio->bi_private = parent;
bio->bi_end_io = bio_chain_endio;
bio_inc_remaining(parent);
}
EXPORT_SYMBOL(bio_chain);
static void bio_alloc_rescue(struct work_struct *work)
{
struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
struct bio *bio;
while (1) {
spin_lock(&bs->rescue_lock);
bio = bio_list_pop(&bs->rescue_list);
spin_unlock(&bs->rescue_lock);
if (!bio)
break;
submit_bio_noacct(bio);
}
}
static void punt_bios_to_rescuer(struct bio_set *bs)
{
struct bio_list punt, nopunt;
struct bio *bio;
if (WARN_ON_ONCE(!bs->rescue_workqueue))
return;
/*
* In order to guarantee forward progress we must punt only bios that
* were allocated from this bio_set; otherwise, if there was a bio on
* there for a stacking driver higher up in the stack, processing it
* could require allocating bios from this bio_set, and doing that from
* our own rescuer would be bad.
*
* Since bio lists are singly linked, pop them all instead of trying to
* remove from the middle of the list:
*/
bio_list_init(&punt);
bio_list_init(&nopunt);
while ((bio = bio_list_pop(&current->bio_list[0])))
bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
current->bio_list[0] = nopunt;
bio_list_init(&nopunt);
while ((bio = bio_list_pop(&current->bio_list[1])))
bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
current->bio_list[1] = nopunt;
spin_lock(&bs->rescue_lock);
bio_list_merge(&bs->rescue_list, &punt);
spin_unlock(&bs->rescue_lock);
queue_work(bs->rescue_workqueue, &bs->rescue_work);
}
/**
* bio_alloc_bioset - allocate a bio for I/O
* @gfp_mask: the GFP_* mask given to the slab allocator
* @nr_iovecs: number of iovecs to pre-allocate
* @bs: the bio_set to allocate from.
*
* Allocate a bio from the mempools in @bs.
*
* If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to
* allocate a bio. This is due to the mempool guarantees. To make this work,
* callers must never allocate more than 1 bio at a time from the general pool.
* Callers that need to allocate more than 1 bio must always submit the
* previously allocated bio for IO before attempting to allocate a new one.
* Failure to do so can cause deadlocks under memory pressure.
*
* Note that when running under submit_bio_noacct() (i.e. any block driver),
* bios are not submitted until after you return - see the code in
* submit_bio_noacct() that converts recursion into iteration, to prevent
* stack overflows.
*
* This would normally mean allocating multiple bios under submit_bio_noacct()
* would be susceptible to deadlocks, but we have
* deadlock avoidance code that resubmits any blocked bios from a rescuer
* thread.
*
* However, we do not guarantee forward progress for allocations from other
* mempools. Doing multiple allocations from the same mempool under
* submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
* for per bio allocations.
*
* Returns: Pointer to new bio on success, NULL on failure.
*/
struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned short nr_iovecs,
struct bio_set *bs)
{
gfp_t saved_gfp = gfp_mask;
struct bio *bio;
void *p;
/* should not use nobvec bioset for nr_iovecs > 0 */
if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_iovecs > 0))
return NULL;
/*
* submit_bio_noacct() converts recursion to iteration; this means if
* we're running beneath it, any bios we allocate and submit will not be
* submitted (and thus freed) until after we return.
*
* This exposes us to a potential deadlock if we allocate multiple bios
* from the same bio_set() while running underneath submit_bio_noacct().
* If we were to allocate multiple bios (say a stacking block driver
* that was splitting bios), we would deadlock if we exhausted the
* mempool's reserve.
*
* We solve this, and guarantee forward progress, with a rescuer
* workqueue per bio_set. If we go to allocate and there are bios on
* current->bio_list, we first try the allocation without
* __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be
* blocking to the rescuer workqueue before we retry with the original
* gfp_flags.
*/
if (current->bio_list &&
(!bio_list_empty(&current->bio_list[0]) ||
!bio_list_empty(&current->bio_list[1])) &&
bs->rescue_workqueue)
gfp_mask &= ~__GFP_DIRECT_RECLAIM;
p = mempool_alloc(&bs->bio_pool, gfp_mask);
if (!p && gfp_mask != saved_gfp) {
punt_bios_to_rescuer(bs);
gfp_mask = saved_gfp;
p = mempool_alloc(&bs->bio_pool, gfp_mask);
}
if (unlikely(!p))
return NULL;
bio = p + bs->front_pad;
if (nr_iovecs > BIO_INLINE_VECS) {
struct bio_vec *bvl = NULL;
bvl = bvec_alloc(&bs->bvec_pool, &nr_iovecs, gfp_mask);
if (!bvl && gfp_mask != saved_gfp) {
punt_bios_to_rescuer(bs);
gfp_mask = saved_gfp;
bvl = bvec_alloc(&bs->bvec_pool, &nr_iovecs, gfp_mask);
}
if (unlikely(!bvl))
goto err_free;
bio_init(bio, bvl, nr_iovecs);
} else if (nr_iovecs) {
bio_init(bio, bio->bi_inline_vecs, BIO_INLINE_VECS);
} else {
bio_init(bio, NULL, 0);
}
bio->bi_pool = bs;
return bio;
err_free:
mempool_free(p, &bs->bio_pool);
return NULL;
}
EXPORT_SYMBOL(bio_alloc_bioset);
/**
* bio_kmalloc - kmalloc a bio for I/O
* @gfp_mask: the GFP_* mask given to the slab allocator
* @nr_iovecs: number of iovecs to pre-allocate
*
* Use kmalloc to allocate and initialize a bio.
*
* Returns: Pointer to new bio on success, NULL on failure.
*/
struct bio *bio_kmalloc(gfp_t gfp_mask, unsigned short nr_iovecs)
{
struct bio *bio;
if (nr_iovecs > UIO_MAXIOV)
return NULL;
bio = kmalloc(struct_size(bio, bi_inline_vecs, nr_iovecs), gfp_mask);
if (unlikely(!bio))
return NULL;
bio_init(bio, nr_iovecs ? bio->bi_inline_vecs : NULL, nr_iovecs);
bio->bi_pool = NULL;
return bio;
}
EXPORT_SYMBOL(bio_kmalloc);
void zero_fill_bio(struct bio *bio)
{
unsigned long flags;
struct bio_vec bv;
struct bvec_iter iter;
bio_for_each_segment(bv, bio, iter) {
char *data = bvec_kmap_irq(&bv, &flags);
memset(data, 0, bv.bv_len);
flush_dcache_page(bv.bv_page);
bvec_kunmap_irq(data, &flags);
}
}
EXPORT_SYMBOL(zero_fill_bio);
/**
* bio_truncate - truncate the bio to small size of @new_size
* @bio: the bio to be truncated
* @new_size: new size for truncating the bio
*
* Description:
* Truncate the bio to new size of @new_size. If bio_op(bio) is
* REQ_OP_READ, zero the truncated part. This function should only
* be used for handling corner cases, such as bio eod.
*/
void bio_truncate(struct bio *bio, unsigned new_size)
{
struct bio_vec bv;
struct bvec_iter iter;
unsigned int done = 0;
bool truncated = false;
if (new_size >= bio->bi_iter.bi_size)
return;
if (bio_op(bio) != REQ_OP_READ)
goto exit;
bio_for_each_segment(bv, bio, iter) {
if (done + bv.bv_len > new_size) {
unsigned offset;
if (!truncated)
offset = new_size - done;
else
offset = 0;
zero_user(bv.bv_page, offset, bv.bv_len - offset);
truncated = true;
}
done += bv.bv_len;
}
exit:
/*
* Don't touch bvec table here and make it really immutable, since
* fs bio user has to retrieve all pages via bio_for_each_segment_all
* in its .end_bio() callback.
*
* It is enough to truncate bio by updating .bi_size since we can make
* correct bvec with the updated .bi_size for drivers.
*/
bio->bi_iter.bi_size = new_size;
}
/**
* guard_bio_eod - truncate a BIO to fit the block device
* @bio: bio to truncate
*
* This allows us to do IO even on the odd last sectors of a device, even if the
* block size is some multiple of the physical sector size.
*
* We'll just truncate the bio to the size of the device, and clear the end of
* the buffer head manually. Truly out-of-range accesses will turn into actual
* I/O errors, this only handles the "we need to be able to do I/O at the final
* sector" case.
*/
void guard_bio_eod(struct bio *bio)
{
sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
if (!maxsector)
return;
/*
* If the *whole* IO is past the end of the device,
* let it through, and the IO layer will turn it into
* an EIO.
*/
if (unlikely(bio->bi_iter.bi_sector >= maxsector))
return;
maxsector -= bio->bi_iter.bi_sector;
if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
return;
bio_truncate(bio, maxsector << 9);
}
#define ALLOC_CACHE_MAX 512
#define ALLOC_CACHE_SLACK 64
static void bio_alloc_cache_prune(struct bio_alloc_cache *cache,
unsigned int nr)
{
unsigned int i = 0;
struct bio *bio;
while ((bio = bio_list_pop(&cache->free_list)) != NULL) {
cache->nr--;
bio_free(bio);
if (++i == nr)
break;
}
}
static int bio_cpu_dead(unsigned int cpu, struct hlist_node *node)
{
struct bio_set *bs;
bs = hlist_entry_safe(node, struct bio_set, cpuhp_dead);
if (bs->cache) {
struct bio_alloc_cache *cache = per_cpu_ptr(bs->cache, cpu);
bio_alloc_cache_prune(cache, -1U);
}
return 0;
}
static void bio_alloc_cache_destroy(struct bio_set *bs)
{
int cpu;
if (!bs->cache)
return;
cpuhp_state_remove_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
for_each_possible_cpu(cpu) {
struct bio_alloc_cache *cache;
cache = per_cpu_ptr(bs->cache, cpu);
bio_alloc_cache_prune(cache, -1U);
}
free_percpu(bs->cache);
}
/**
* bio_put - release a reference to a bio
* @bio: bio to release reference to
*
* Description:
* Put a reference to a &struct bio, either one you have gotten with
* bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
**/
void bio_put(struct bio *bio)
{
if (unlikely(bio_flagged(bio, BIO_REFFED))) {
BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
if (!atomic_dec_and_test(&bio->__bi_cnt))
return;
}
if (bio_flagged(bio, BIO_PERCPU_CACHE)) {
struct bio_alloc_cache *cache;
bio_uninit(bio);
cache = per_cpu_ptr(bio->bi_pool->cache, get_cpu());
bio_list_add_head(&cache->free_list, bio);
if (++cache->nr > ALLOC_CACHE_MAX + ALLOC_CACHE_SLACK)
bio_alloc_cache_prune(cache, ALLOC_CACHE_SLACK);
put_cpu();
} else {
bio_free(bio);
}
}
EXPORT_SYMBOL(bio_put);
/**
* __bio_clone_fast - clone a bio that shares the original bio's biovec
* @bio: destination bio
* @bio_src: bio to clone
*
* Clone a &bio. Caller will own the returned bio, but not
* the actual data it points to. Reference count of returned
* bio will be one.
*
* Caller must ensure that @bio_src is not freed before @bio.
*/
void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
{
WARN_ON_ONCE(bio->bi_pool && bio->bi_max_vecs);
/*
* most users will be overriding ->bi_bdev with a new target,
* so we don't set nor calculate new physical/hw segment counts here
*/
bio->bi_bdev = bio_src->bi_bdev;
bio_set_flag(bio, BIO_CLONED);
if (bio_flagged(bio_src, BIO_THROTTLED))
bio_set_flag(bio, BIO_THROTTLED);
if (bio_flagged(bio_src, BIO_REMAPPED))
bio_set_flag(bio, BIO_REMAPPED);
bio->bi_opf = bio_src->bi_opf;
bio->bi_ioprio = bio_src->bi_ioprio;
bio->bi_write_hint = bio_src->bi_write_hint;
bio->bi_iter = bio_src->bi_iter;
bio->bi_io_vec = bio_src->bi_io_vec;
bio_clone_blkg_association(bio, bio_src);
blkcg_bio_issue_init(bio);
}
EXPORT_SYMBOL(__bio_clone_fast);
/**
* bio_clone_fast - clone a bio that shares the original bio's biovec
* @bio: bio to clone
* @gfp_mask: allocation priority
* @bs: bio_set to allocate from
*
* Like __bio_clone_fast, only also allocates the returned bio
*/
struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
{
struct bio *b;
b = bio_alloc_bioset(gfp_mask, 0, bs);
if (!b)
return NULL;
__bio_clone_fast(b, bio);
if (bio_crypt_clone(b, bio, gfp_mask) < 0)
goto err_put;
if (bio_integrity(bio) &&
bio_integrity_clone(b, bio, gfp_mask) < 0)
goto err_put;
return b;
err_put:
bio_put(b);
return NULL;
}
EXPORT_SYMBOL(bio_clone_fast);
const char *bio_devname(struct bio *bio, char *buf)
{
return bdevname(bio->bi_bdev, buf);
}
EXPORT_SYMBOL(bio_devname);
static inline bool page_is_mergeable(const struct bio_vec *bv,
struct page *page, unsigned int len, unsigned int off,
bool *same_page)
{
size_t bv_end = bv->bv_offset + bv->bv_len;
phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
phys_addr_t page_addr = page_to_phys(page);
if (vec_end_addr + 1 != page_addr + off)
return false;
if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
return false;
*same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
if (*same_page)
return true;
return (bv->bv_page + bv_end / PAGE_SIZE) == (page + off / PAGE_SIZE);
}
/*
* Try to merge a page into a segment, while obeying the hardware segment
* size limit. This is not for normal read/write bios, but for passthrough
* or Zone Append operations that we can't split.
*/
static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio,
struct page *page, unsigned len,
unsigned offset, bool *same_page)
{
struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
unsigned long mask = queue_segment_boundary(q);
phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
if ((addr1 | mask) != (addr2 | mask))
return false;
if (bv->bv_len + len > queue_max_segment_size(q))
return false;
return __bio_try_merge_page(bio, page, len, offset, same_page);
}
/**
* bio_add_hw_page - attempt to add a page to a bio with hw constraints
* @q: the target queue
* @bio: destination bio
* @page: page to add
* @len: vec entry length
* @offset: vec entry offset
* @max_sectors: maximum number of sectors that can be added
* @same_page: return if the segment has been merged inside the same page
*
* Add a page to a bio while respecting the hardware max_sectors, max_segment
* and gap limitations.
*/
int bio_add_hw_page(struct request_queue *q, struct bio *bio,
struct page *page, unsigned int len, unsigned int offset,
unsigned int max_sectors, bool *same_page)
{
struct bio_vec *bvec;
if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
return 0;
if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
return 0;
if (bio->bi_vcnt > 0) {
if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page))
return len;
/*
* If the queue doesn't support SG gaps and adding this segment
* would create a gap, disallow it.
*/
bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
if (bvec_gap_to_prev(q, bvec, offset))
return 0;
}
if (bio_full(bio, len))
return 0;
if (bio->bi_vcnt >= queue_max_segments(q))
return 0;
bvec = &bio->bi_io_vec[bio->bi_vcnt];
bvec->bv_page = page;
bvec->bv_len = len;
bvec->bv_offset = offset;
bio->bi_vcnt++;
bio->bi_iter.bi_size += len;
return len;
}
/**
* bio_add_pc_page - attempt to add page to passthrough bio
* @q: the target queue
* @bio: destination bio
* @page: page to add
* @len: vec entry length
* @offset: vec entry offset
*
* Attempt to add a page to the bio_vec maplist. This can fail for a
* number of reasons, such as the bio being full or target block device
* limitations. The target block device must allow bio's up to PAGE_SIZE,
* so it is always possible to add a single page to an empty bio.
*
* This should only be used by passthrough bios.
*/
int bio_add_pc_page(struct request_queue *q, struct bio *bio,
struct page *page, unsigned int len, unsigned int offset)
{
bool same_page = false;
return bio_add_hw_page(q, bio, page, len, offset,
queue_max_hw_sectors(q), &same_page);
}
EXPORT_SYMBOL(bio_add_pc_page);
/**
* bio_add_zone_append_page - attempt to add page to zone-append bio
* @bio: destination bio
* @page: page to add
* @len: vec entry length
* @offset: vec entry offset
*
* Attempt to add a page to the bio_vec maplist of a bio that will be submitted
* for a zone-append request. This can fail for a number of reasons, such as the
* bio being full or the target block device is not a zoned block device or
* other limitations of the target block device. The target block device must
* allow bio's up to PAGE_SIZE, so it is always possible to add a single page
* to an empty bio.
*
* Returns: number of bytes added to the bio, or 0 in case of a failure.
*/
int bio_add_zone_append_page(struct bio *bio, struct page *page,
unsigned int len, unsigned int offset)
{
struct request_queue *q = bio->bi_bdev->bd_disk->queue;
bool same_page = false;
if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_ZONE_APPEND))
return 0;
if (WARN_ON_ONCE(!blk_queue_is_zoned(q)))
return 0;
return bio_add_hw_page(q, bio, page, len, offset,
queue_max_zone_append_sectors(q), &same_page);
}
EXPORT_SYMBOL_GPL(bio_add_zone_append_page);
/**
* __bio_try_merge_page - try appending data to an existing bvec.
* @bio: destination bio
* @page: start page to add
* @len: length of the data to add
* @off: offset of the data relative to @page
* @same_page: return if the segment has been merged inside the same page
*
* Try to add the data at @page + @off to the last bvec of @bio. This is a
* useful optimisation for file systems with a block size smaller than the
* page size.
*
* Warn if (@len, @off) crosses pages in case that @same_page is true.
*
* Return %true on success or %false on failure.
*/
bool __bio_try_merge_page(struct bio *bio, struct page *page,
unsigned int len, unsigned int off, bool *same_page)
{
if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
return false;
if (bio->bi_vcnt > 0) {
struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
if (page_is_mergeable(bv, page, len, off, same_page)) {
if (bio->bi_iter.bi_size > UINT_MAX - len) {
*same_page = false;
return false;
}
bv->bv_len += len;
bio->bi_iter.bi_size += len;
return true;
}
}
return false;
}
EXPORT_SYMBOL_GPL(__bio_try_merge_page);
/**
* __bio_add_page - add page(s) to a bio in a new segment
* @bio: destination bio
* @page: start page to add
* @len: length of the data to add, may cross pages
* @off: offset of the data relative to @page, may cross pages
*
* Add the data at @page + @off to @bio as a new bvec. The caller must ensure
* that @bio has space for another bvec.
*/
void __bio_add_page(struct bio *bio, struct page *page,
unsigned int len, unsigned int off)
{
struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
WARN_ON_ONCE(bio_full(bio, len));
bv->bv_page = page;
bv->bv_offset = off;
bv->bv_len = len;
bio->bi_iter.bi_size += len;
bio->bi_vcnt++;
if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
bio_set_flag(bio, BIO_WORKINGSET);
}
EXPORT_SYMBOL_GPL(__bio_add_page);
/**
* bio_add_page - attempt to add page(s) to bio
* @bio: destination bio
* @page: start page to add
* @len: vec entry length, may cross pages
* @offset: vec entry offset relative to @page, may cross pages
*
* Attempt to add page(s) to the bio_vec maplist. This will only fail
* if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
*/
int bio_add_page(struct bio *bio, struct page *page,
unsigned int len, unsigned int offset)
{
bool same_page = false;
if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
if (bio_full(bio, len))
return 0;
__bio_add_page(bio, page, len, offset);
}
return len;
}
EXPORT_SYMBOL(bio_add_page);
void bio_release_pages(struct bio *bio, bool mark_dirty)
{
struct bvec_iter_all iter_all;
struct bio_vec *bvec;
if (bio_flagged(bio, BIO_NO_PAGE_REF))
return;
bio_for_each_segment_all(bvec, bio, iter_all) {
if (mark_dirty && !PageCompound(bvec->bv_page))
set_page_dirty_lock(bvec->bv_page);
put_page(bvec->bv_page);
}
}
EXPORT_SYMBOL_GPL(bio_release_pages);
static void __bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
{
WARN_ON_ONCE(bio->bi_max_vecs);
bio->bi_vcnt = iter->nr_segs;
bio->bi_io_vec = (struct bio_vec *)iter->bvec;
bio->bi_iter.bi_bvec_done = iter->iov_offset;
bio->bi_iter.bi_size = iter->count;
bio_set_flag(bio, BIO_NO_PAGE_REF);
bio_set_flag(bio, BIO_CLONED);
}
static int bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
{
__bio_iov_bvec_set(bio, iter);
iov_iter_advance(iter, iter->count);
return 0;
}
static int bio_iov_bvec_set_append(struct bio *bio, struct iov_iter *iter)
{
struct request_queue *q = bio->bi_bdev->bd_disk->queue;
struct iov_iter i = *iter;
iov_iter_truncate(&i, queue_max_zone_append_sectors(q) << 9);
__bio_iov_bvec_set(bio, &i);
iov_iter_advance(iter, i.count);
return 0;
}
#define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
/**
* __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
* @bio: bio to add pages to
* @iter: iov iterator describing the region to be mapped
*
* Pins pages from *iter and appends them to @bio's bvec array. The
* pages will have to be released using put_page() when done.
* For multi-segment *iter, this function only adds pages from the
* next non-empty segment of the iov iterator.
*/
static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
{
unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
struct page **pages = (struct page **)bv;
bool same_page = false;
ssize_t size, left;
unsigned len, i;
size_t offset;
/*
* Move page array up in the allocated memory for the bio vecs as far as
* possible so that we can start filling biovecs from the beginning
* without overwriting the temporary page array.
*/
BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
if (unlikely(size <= 0))
return size ? size : -EFAULT;
for (left = size, i = 0; left > 0; left -= len, i++) {
struct page *page = pages[i];
len = min_t(size_t, PAGE_SIZE - offset, left);
if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
if (same_page)
put_page(page);
} else {
if (WARN_ON_ONCE(bio_full(bio, len)))
return -EINVAL;
__bio_add_page(bio, page, len, offset);
}
offset = 0;
}
iov_iter_advance(iter, size);
return 0;
}
static int __bio_iov_append_get_pages(struct bio *bio, struct iov_iter *iter)
{
unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
struct request_queue *q = bio->bi_bdev->bd_disk->queue;
unsigned int max_append_sectors = queue_max_zone_append_sectors(q);
struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
struct page **pages = (struct page **)bv;
ssize_t size, left;
unsigned len, i;
size_t offset;
int ret = 0;
if (WARN_ON_ONCE(!max_append_sectors))
return 0;
/*
* Move page array up in the allocated memory for the bio vecs as far as
* possible so that we can start filling biovecs from the beginning
* without overwriting the temporary page array.
*/
BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
if (unlikely(size <= 0))
return size ? size : -EFAULT;
for (left = size, i = 0; left > 0; left -= len, i++) {
struct page *page = pages[i];
bool same_page = false;
len = min_t(size_t, PAGE_SIZE - offset, left);
if (bio_add_hw_page(q, bio, page, len, offset,
max_append_sectors, &same_page) != len) {
ret = -EINVAL;
break;
}
if (same_page)
put_page(page);
offset = 0;
}
iov_iter_advance(iter, size - left);
return ret;
}
/**
* bio_iov_iter_get_pages - add user or kernel pages to a bio
* @bio: bio to add pages to
* @iter: iov iterator describing the region to be added
*
* This takes either an iterator pointing to user memory, or one pointing to
* kernel pages (BVEC iterator). If we're adding user pages, we pin them and
* map them into the kernel. On IO completion, the caller should put those
* pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
* bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
* to ensure the bvecs and pages stay referenced until the submitted I/O is
* completed by a call to ->ki_complete() or returns with an error other than
* -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
* on IO completion. If it isn't, then pages should be released.
*
* The function tries, but does not guarantee, to pin as many pages as
* fit into the bio, or are requested in @iter, whatever is smaller. If
* MM encounters an error pinning the requested pages, it stops. Error
* is returned only if 0 pages could be pinned.
*
* It's intended for direct IO, so doesn't do PSI tracking, the caller is
* responsible for setting BIO_WORKINGSET if necessary.
*/
int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
{
int ret = 0;
if (iov_iter_is_bvec(iter)) {
if (bio_op(bio) == REQ_OP_ZONE_APPEND)
return bio_iov_bvec_set_append(bio, iter);
return bio_iov_bvec_set(bio, iter);
}
do {
if (bio_op(bio) == REQ_OP_ZONE_APPEND)
ret = __bio_iov_append_get_pages(bio, iter);
else
ret = __bio_iov_iter_get_pages(bio, iter);
} while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
/* don't account direct I/O as memory stall */
bio_clear_flag(bio, BIO_WORKINGSET);
return bio->bi_vcnt ? 0 : ret;
}
EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
static void submit_bio_wait_endio(struct bio *bio)
{
complete(bio->bi_private);
}
/**
* submit_bio_wait - submit a bio, and wait until it completes
* @bio: The &struct bio which describes the I/O
*
* Simple wrapper around submit_bio(). Returns 0 on success, or the error from
* bio_endio() on failure.
*
* WARNING: Unlike to how submit_bio() is usually used, this function does not
* result in bio reference to be consumed. The caller must drop the reference
* on his own.
*/
int submit_bio_wait(struct bio *bio)
{
DECLARE_COMPLETION_ONSTACK_MAP(done,
bio->bi_bdev->bd_disk->lockdep_map);
unsigned long hang_check;
bio->bi_private = &done;
bio->bi_end_io = submit_bio_wait_endio;
bio->bi_opf |= REQ_SYNC;
submit_bio(bio);
/* Prevent hang_check timer from firing at us during very long I/O */
hang_check = sysctl_hung_task_timeout_secs;
if (hang_check)
while (!wait_for_completion_io_timeout(&done,
hang_check * (HZ/2)))
;
else
wait_for_completion_io(&done);
return blk_status_to_errno(bio->bi_status);
}
EXPORT_SYMBOL(submit_bio_wait);
/**
* bio_advance - increment/complete a bio by some number of bytes
* @bio: bio to advance
* @bytes: number of bytes to complete
*
* This updates bi_sector, bi_size and bi_idx; if the number of bytes to
* complete doesn't align with a bvec boundary, then bv_len and bv_offset will
* be updated on the last bvec as well.
*
* @bio will then represent the remaining, uncompleted portion of the io.
*/
void bio_advance(struct bio *bio, unsigned bytes)
{
if (bio_integrity(bio))
bio_integrity_advance(bio, bytes);
bio_crypt_advance(bio, bytes);
bio_advance_iter(bio, &bio->bi_iter, bytes);
}
EXPORT_SYMBOL(bio_advance);
void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
struct bio *src, struct bvec_iter *src_iter)
{
struct bio_vec src_bv, dst_bv;
void *src_p, *dst_p;
unsigned bytes;
while (src_iter->bi_size && dst_iter->bi_size) {
src_bv = bio_iter_iovec(src, *src_iter);
dst_bv = bio_iter_iovec(dst, *dst_iter);
bytes = min(src_bv.bv_len, dst_bv.bv_len);
src_p = kmap_atomic(src_bv.bv_page);
dst_p = kmap_atomic(dst_bv.bv_page);
memcpy(dst_p + dst_bv.bv_offset,
src_p + src_bv.bv_offset,
bytes);
kunmap_atomic(dst_p);
kunmap_atomic(src_p);
flush_dcache_page(dst_bv.bv_page);
bio_advance_iter_single(src, src_iter, bytes);
bio_advance_iter_single(dst, dst_iter, bytes);
}
}
EXPORT_SYMBOL(bio_copy_data_iter);
/**
* bio_copy_data - copy contents of data buffers from one bio to another
* @src: source bio
* @dst: destination bio
*
* Stops when it reaches the end of either @src or @dst - that is, copies
* min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
*/
void bio_copy_data(struct bio *dst, struct bio *src)
{
struct bvec_iter src_iter = src->bi_iter;
struct bvec_iter dst_iter = dst->bi_iter;
bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
}
EXPORT_SYMBOL(bio_copy_data);
void bio_free_pages(struct bio *bio)
{
struct bio_vec *bvec;
struct bvec_iter_all iter_all;
bio_for_each_segment_all(bvec, bio, iter_all)
__free_page(bvec->bv_page);
}
EXPORT_SYMBOL(bio_free_pages);
/*
* bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
* for performing direct-IO in BIOs.
*
* The problem is that we cannot run set_page_dirty() from interrupt context
* because the required locks are not interrupt-safe. So what we can do is to
* mark the pages dirty _before_ performing IO. And in interrupt context,
* check that the pages are still dirty. If so, fine. If not, redirty them
* in process context.
*
* We special-case compound pages here: normally this means reads into hugetlb
* pages. The logic in here doesn't really work right for compound pages
* because the VM does not uniformly chase down the head page in all cases.
* But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
* handle them at all. So we skip compound pages here at an early stage.
*
* Note that this code is very hard to test under normal circumstances because
* direct-io pins the pages with get_user_pages(). This makes
* is_page_cache_freeable return false, and the VM will not clean the pages.
* But other code (eg, flusher threads) could clean the pages if they are mapped
* pagecache.
*
* Simply disabling the call to bio_set_pages_dirty() is a good way to test the
* deferred bio dirtying paths.
*/
/*
* bio_set_pages_dirty() will mark all the bio's pages as dirty.
*/
void bio_set_pages_dirty(struct bio *bio)
{
struct bio_vec *bvec;
struct bvec_iter_all iter_all;
bio_for_each_segment_all(bvec, bio, iter_all) {
if (!PageCompound(bvec->bv_page))
set_page_dirty_lock(bvec->bv_page);
}
}
/*
* bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
* If they are, then fine. If, however, some pages are clean then they must
* have been written out during the direct-IO read. So we take another ref on
* the BIO and re-dirty the pages in process context.
*
* It is expected that bio_check_pages_dirty() will wholly own the BIO from
* here on. It will run one put_page() against each page and will run one
* bio_put() against the BIO.
*/
static void bio_dirty_fn(struct work_struct *work);
static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
static DEFINE_SPINLOCK(bio_dirty_lock);
static struct bio *bio_dirty_list;
/*
* This runs in process context
*/
static void bio_dirty_fn(struct work_struct *work)
{
struct bio *bio, *next;
spin_lock_irq(&bio_dirty_lock);
next = bio_dirty_list;
bio_dirty_list = NULL;
spin_unlock_irq(&bio_dirty_lock);
while ((bio = next) != NULL) {
next = bio->bi_private;
bio_release_pages(bio, true);
bio_put(bio);
}
}
void bio_check_pages_dirty(struct bio *bio)
{
struct bio_vec *bvec;
unsigned long flags;
struct bvec_iter_all iter_all;
bio_for_each_segment_all(bvec, bio, iter_all) {
if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
goto defer;
}
bio_release_pages(bio, false);
bio_put(bio);
return;
defer:
spin_lock_irqsave(&bio_dirty_lock, flags);
bio->bi_private = bio_dirty_list;
bio_dirty_list = bio;
spin_unlock_irqrestore(&bio_dirty_lock, flags);
schedule_work(&bio_dirty_work);
}
static inline bool bio_remaining_done(struct bio *bio)
{
/*
* If we're not chaining, then ->__bi_remaining is always 1 and
* we always end io on the first invocation.
*/
if (!bio_flagged(bio, BIO_CHAIN))
return true;
BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
if (atomic_dec_and_test(&bio->__bi_remaining)) {
bio_clear_flag(bio, BIO_CHAIN);
return true;
}
return false;
}
/**
* bio_endio - end I/O on a bio
* @bio: bio
*
* Description:
* bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
* way to end I/O on a bio. No one should call bi_end_io() directly on a
* bio unless they own it and thus know that it has an end_io function.
*
* bio_endio() can be called several times on a bio that has been chained
* using bio_chain(). The ->bi_end_io() function will only be called the
* last time.
**/
void bio_endio(struct bio *bio)
{
again:
if (!bio_remaining_done(bio))
return;
if (!bio_integrity_endio(bio))
return;
if (bio->bi_bdev)
rq_qos_done_bio(bio->bi_bdev->bd_disk->queue, bio);
if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
trace_block_bio_complete(bio->bi_bdev->bd_disk->queue, bio);
bio_clear_flag(bio, BIO_TRACE_COMPLETION);
}
/*
* Need to have a real endio function for chained bios, otherwise
* various corner cases will break (like stacking block devices that
* save/restore bi_end_io) - however, we want to avoid unbounded
* recursion and blowing the stack. Tail call optimization would
* handle this, but compiling with frame pointers also disables
* gcc's sibling call optimization.
*/
if (bio->bi_end_io == bio_chain_endio) {
bio = __bio_chain_endio(bio);
goto again;
}
blk_throtl_bio_endio(bio);
/* release cgroup info */
bio_uninit(bio);
if (bio->bi_end_io)
bio->bi_end_io(bio);
}
EXPORT_SYMBOL(bio_endio);
/**
* bio_split - split a bio
* @bio: bio to split
* @sectors: number of sectors to split from the front of @bio
* @gfp: gfp mask
* @bs: bio set to allocate from
*
* Allocates and returns a new bio which represents @sectors from the start of
* @bio, and updates @bio to represent the remaining sectors.
*
* Unless this is a discard request the newly allocated bio will point
* to @bio's bi_io_vec. It is the caller's responsibility to ensure that
* neither @bio nor @bs are freed before the split bio.
*/
struct bio *bio_split(struct bio *bio, int sectors,
gfp_t gfp, struct bio_set *bs)
{
struct bio *split;
BUG_ON(sectors <= 0);
BUG_ON(sectors >= bio_sectors(bio));
/* Zone append commands cannot be split */
if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
return NULL;
split = bio_clone_fast(bio, gfp, bs);
if (!split)
return NULL;
split->bi_iter.bi_size = sectors << 9;
if (bio_integrity(split))
bio_integrity_trim(split);
bio_advance(bio, split->bi_iter.bi_size);
if (bio_flagged(bio, BIO_TRACE_COMPLETION))
bio_set_flag(split, BIO_TRACE_COMPLETION);
return split;
}
EXPORT_SYMBOL(bio_split);
/**
* bio_trim - trim a bio
* @bio: bio to trim
* @offset: number of sectors to trim from the front of @bio
* @size: size we want to trim @bio to, in sectors
*/
void bio_trim(struct bio *bio, int offset, int size)
{
/* 'bio' is a cloned bio which we need to trim to match
* the given offset and size.
*/
size <<= 9;
if (offset == 0 && size == bio->bi_iter.bi_size)
return;
bio_advance(bio, offset << 9);
bio->bi_iter.bi_size = size;
if (bio_integrity(bio))
bio_integrity_trim(bio);
}
EXPORT_SYMBOL_GPL(bio_trim);
/*
* create memory pools for biovec's in a bio_set.
* use the global biovec slabs created for general use.
*/
int biovec_init_pool(mempool_t *pool, int pool_entries)
{
struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1;
return mempool_init_slab_pool(pool, pool_entries, bp->slab);
}
/*
* bioset_exit - exit a bioset initialized with bioset_init()
*
* May be called on a zeroed but uninitialized bioset (i.e. allocated with
* kzalloc()).
*/
void bioset_exit(struct bio_set *bs)
{
bio_alloc_cache_destroy(bs);
if (bs->rescue_workqueue)
destroy_workqueue(bs->rescue_workqueue);
bs->rescue_workqueue = NULL;
mempool_exit(&bs->bio_pool);
mempool_exit(&bs->bvec_pool);
bioset_integrity_free(bs);
if (bs->bio_slab)
bio_put_slab(bs);
bs->bio_slab = NULL;
}
EXPORT_SYMBOL(bioset_exit);
/**
* bioset_init - Initialize a bio_set
* @bs: pool to initialize
* @pool_size: Number of bio and bio_vecs to cache in the mempool
* @front_pad: Number of bytes to allocate in front of the returned bio
* @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
* and %BIOSET_NEED_RESCUER
*
* Description:
* Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
* to ask for a number of bytes to be allocated in front of the bio.
* Front pad allocation is useful for embedding the bio inside
* another structure, to avoid allocating extra data to go with the bio.
* Note that the bio must be embedded at the END of that structure always,
* or things will break badly.
* If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
* for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
* If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
* dispatch queued requests when the mempool runs out of space.
*
*/
int bioset_init(struct bio_set *bs,
unsigned int pool_size,
unsigned int front_pad,
int flags)
{
bs->front_pad = front_pad;
if (flags & BIOSET_NEED_BVECS)
bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
else
bs->back_pad = 0;
spin_lock_init(&bs->rescue_lock);
bio_list_init(&bs->rescue_list);
INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
bs->bio_slab = bio_find_or_create_slab(bs);
if (!bs->bio_slab)
return -ENOMEM;
if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
goto bad;
if ((flags & BIOSET_NEED_BVECS) &&
biovec_init_pool(&bs->bvec_pool, pool_size))
goto bad;
if (flags & BIOSET_NEED_RESCUER) {
bs->rescue_workqueue = alloc_workqueue("bioset",
WQ_MEM_RECLAIM, 0);
if (!bs->rescue_workqueue)
goto bad;
}
if (flags & BIOSET_PERCPU_CACHE) {
bs->cache = alloc_percpu(struct bio_alloc_cache);
if (!bs->cache)
goto bad;
cpuhp_state_add_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
}
return 0;
bad:
bioset_exit(bs);
return -ENOMEM;
}
EXPORT_SYMBOL(bioset_init);
/*
* Initialize and setup a new bio_set, based on the settings from
* another bio_set.
*/
int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
{
int flags;
flags = 0;
if (src->bvec_pool.min_nr)
flags |= BIOSET_NEED_BVECS;
if (src->rescue_workqueue)
flags |= BIOSET_NEED_RESCUER;
return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
}
EXPORT_SYMBOL(bioset_init_from_src);
/**
* bio_alloc_kiocb - Allocate a bio from bio_set based on kiocb
* @kiocb: kiocb describing the IO
* @bs: bio_set to allocate from
*
* Description:
* Like @bio_alloc_bioset, but pass in the kiocb. The kiocb is only
* used to check if we should dip into the per-cpu bio_set allocation
* cache. The allocation uses GFP_KERNEL internally.
*
*/
struct bio *bio_alloc_kiocb(struct kiocb *kiocb, unsigned short nr_vecs,
struct bio_set *bs)
{
struct bio_alloc_cache *cache;
struct bio *bio;
if (!(kiocb->ki_flags & IOCB_ALLOC_CACHE) || nr_vecs > BIO_INLINE_VECS)
return bio_alloc_bioset(GFP_KERNEL, nr_vecs, bs);
cache = per_cpu_ptr(bs->cache, get_cpu());
bio = bio_list_pop(&cache->free_list);
if (bio) {
cache->nr--;
put_cpu();
bio_init(bio, nr_vecs ? bio->bi_inline_vecs : NULL, nr_vecs);
bio->bi_pool = bs;
bio_set_flag(bio, BIO_PERCPU_CACHE);
return bio;
}
put_cpu();
bio = bio_alloc_bioset(GFP_KERNEL, nr_vecs, bs);
bio_set_flag(bio, BIO_PERCPU_CACHE);
return bio;
}
EXPORT_SYMBOL_GPL(bio_alloc_kiocb);
static int __init init_bio(void)
{
int i;
bio_integrity_init();
for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) {
struct biovec_slab *bvs = bvec_slabs + i;
bvs->slab = kmem_cache_create(bvs->name,
bvs->nr_vecs * sizeof(struct bio_vec), 0,
SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
}
cpuhp_setup_state_multi(CPUHP_BIO_DEAD, "block/bio:dead", NULL,
bio_cpu_dead);
if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
panic("bio: can't allocate bios\n");
if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
panic("bio: can't create integrity pool\n");
return 0;
}
subsys_initcall(init_bio);