linux/net/core/rtnetlink.c
Linus Torvalds 86c6a2fddf Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
 "The main changes in this cycle are:

   - 'Nested Sleep Debugging', activated when CONFIG_DEBUG_ATOMIC_SLEEP=y.

     This instruments might_sleep() checks to catch places that nest
     blocking primitives - such as mutex usage in a wait loop.  Such
     bugs can result in hard to debug races/hangs.

     Another category of invalid nesting that this facility will detect
     is the calling of blocking functions from within schedule() ->
     sched_submit_work() -> blk_schedule_flush_plug().

     There's some potential for false positives (if secondary blocking
     primitives themselves are not ready yet for this facility), but the
     kernel will warn once about such bugs per bootup, so the warning
     isn't much of a nuisance.

     This feature comes with a number of fixes, for problems uncovered
     with it, so no messages are expected normally.

   - Another round of sched/numa optimizations and refinements, for
     CONFIG_NUMA_BALANCING=y.

   - Another round of sched/dl fixes and refinements.

  Plus various smaller fixes and cleanups"

* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (54 commits)
  sched: Add missing rcu protection to wake_up_all_idle_cpus
  sched/deadline: Introduce start_hrtick_dl() for !CONFIG_SCHED_HRTICK
  sched/numa: Init numa balancing fields of init_task
  sched/deadline: Remove unnecessary definitions in cpudeadline.h
  sched/cpupri: Remove unnecessary definitions in cpupri.h
  sched/deadline: Fix rq->dl.pushable_tasks bug in push_dl_task()
  sched/fair: Fix stale overloaded status in the busiest group finding logic
  sched: Move p->nr_cpus_allowed check to select_task_rq()
  sched/completion: Document when to use wait_for_completion_io_*()
  sched: Update comments about CLONE_NEWUTS and CLONE_NEWIPC
  sched/fair: Kill task_struct::numa_entry and numa_group::task_list
  sched: Refactor task_struct to use numa_faults instead of numa_* pointers
  sched/deadline: Don't check CONFIG_SMP in switched_from_dl()
  sched/deadline: Reschedule from switched_from_dl() after a successful pull
  sched/deadline: Push task away if the deadline is equal to curr during wakeup
  sched/deadline: Add deadline rq status print
  sched/deadline: Fix artificial overrun introduced by yield_task_dl()
  sched/rt: Clean up check_preempt_equal_prio()
  sched/core: Use dl_bw_of() under rcu_read_lock_sched()
  sched: Check if we got a shallowest_idle_cpu before searching for least_loaded_cpu
  ...
2014-12-09 21:21:34 -08:00

3079 lines
75 KiB
C

/*
* INET An implementation of the TCP/IP protocol suite for the LINUX
* operating system. INET is implemented using the BSD Socket
* interface as the means of communication with the user level.
*
* Routing netlink socket interface: protocol independent part.
*
* Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* Fixes:
* Vitaly E. Lavrov RTA_OK arithmetics was wrong.
*/
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/socket.h>
#include <linux/kernel.h>
#include <linux/timer.h>
#include <linux/string.h>
#include <linux/sockios.h>
#include <linux/net.h>
#include <linux/fcntl.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/capability.h>
#include <linux/skbuff.h>
#include <linux/init.h>
#include <linux/security.h>
#include <linux/mutex.h>
#include <linux/if_addr.h>
#include <linux/if_bridge.h>
#include <linux/pci.h>
#include <linux/etherdevice.h>
#include <asm/uaccess.h>
#include <linux/inet.h>
#include <linux/netdevice.h>
#include <net/ip.h>
#include <net/protocol.h>
#include <net/arp.h>
#include <net/route.h>
#include <net/udp.h>
#include <net/sock.h>
#include <net/pkt_sched.h>
#include <net/fib_rules.h>
#include <net/rtnetlink.h>
#include <net/net_namespace.h>
struct rtnl_link {
rtnl_doit_func doit;
rtnl_dumpit_func dumpit;
rtnl_calcit_func calcit;
};
static DEFINE_MUTEX(rtnl_mutex);
void rtnl_lock(void)
{
mutex_lock(&rtnl_mutex);
}
EXPORT_SYMBOL(rtnl_lock);
void __rtnl_unlock(void)
{
mutex_unlock(&rtnl_mutex);
}
void rtnl_unlock(void)
{
/* This fellow will unlock it for us. */
netdev_run_todo();
}
EXPORT_SYMBOL(rtnl_unlock);
int rtnl_trylock(void)
{
return mutex_trylock(&rtnl_mutex);
}
EXPORT_SYMBOL(rtnl_trylock);
int rtnl_is_locked(void)
{
return mutex_is_locked(&rtnl_mutex);
}
EXPORT_SYMBOL(rtnl_is_locked);
#ifdef CONFIG_PROVE_LOCKING
int lockdep_rtnl_is_held(void)
{
return lockdep_is_held(&rtnl_mutex);
}
EXPORT_SYMBOL(lockdep_rtnl_is_held);
#endif /* #ifdef CONFIG_PROVE_LOCKING */
static struct rtnl_link *rtnl_msg_handlers[RTNL_FAMILY_MAX + 1];
static inline int rtm_msgindex(int msgtype)
{
int msgindex = msgtype - RTM_BASE;
/*
* msgindex < 0 implies someone tried to register a netlink
* control code. msgindex >= RTM_NR_MSGTYPES may indicate that
* the message type has not been added to linux/rtnetlink.h
*/
BUG_ON(msgindex < 0 || msgindex >= RTM_NR_MSGTYPES);
return msgindex;
}
static rtnl_doit_func rtnl_get_doit(int protocol, int msgindex)
{
struct rtnl_link *tab;
if (protocol <= RTNL_FAMILY_MAX)
tab = rtnl_msg_handlers[protocol];
else
tab = NULL;
if (tab == NULL || tab[msgindex].doit == NULL)
tab = rtnl_msg_handlers[PF_UNSPEC];
return tab[msgindex].doit;
}
static rtnl_dumpit_func rtnl_get_dumpit(int protocol, int msgindex)
{
struct rtnl_link *tab;
if (protocol <= RTNL_FAMILY_MAX)
tab = rtnl_msg_handlers[protocol];
else
tab = NULL;
if (tab == NULL || tab[msgindex].dumpit == NULL)
tab = rtnl_msg_handlers[PF_UNSPEC];
return tab[msgindex].dumpit;
}
static rtnl_calcit_func rtnl_get_calcit(int protocol, int msgindex)
{
struct rtnl_link *tab;
if (protocol <= RTNL_FAMILY_MAX)
tab = rtnl_msg_handlers[protocol];
else
tab = NULL;
if (tab == NULL || tab[msgindex].calcit == NULL)
tab = rtnl_msg_handlers[PF_UNSPEC];
return tab[msgindex].calcit;
}
/**
* __rtnl_register - Register a rtnetlink message type
* @protocol: Protocol family or PF_UNSPEC
* @msgtype: rtnetlink message type
* @doit: Function pointer called for each request message
* @dumpit: Function pointer called for each dump request (NLM_F_DUMP) message
* @calcit: Function pointer to calc size of dump message
*
* Registers the specified function pointers (at least one of them has
* to be non-NULL) to be called whenever a request message for the
* specified protocol family and message type is received.
*
* The special protocol family PF_UNSPEC may be used to define fallback
* function pointers for the case when no entry for the specific protocol
* family exists.
*
* Returns 0 on success or a negative error code.
*/
int __rtnl_register(int protocol, int msgtype,
rtnl_doit_func doit, rtnl_dumpit_func dumpit,
rtnl_calcit_func calcit)
{
struct rtnl_link *tab;
int msgindex;
BUG_ON(protocol < 0 || protocol > RTNL_FAMILY_MAX);
msgindex = rtm_msgindex(msgtype);
tab = rtnl_msg_handlers[protocol];
if (tab == NULL) {
tab = kcalloc(RTM_NR_MSGTYPES, sizeof(*tab), GFP_KERNEL);
if (tab == NULL)
return -ENOBUFS;
rtnl_msg_handlers[protocol] = tab;
}
if (doit)
tab[msgindex].doit = doit;
if (dumpit)
tab[msgindex].dumpit = dumpit;
if (calcit)
tab[msgindex].calcit = calcit;
return 0;
}
EXPORT_SYMBOL_GPL(__rtnl_register);
/**
* rtnl_register - Register a rtnetlink message type
*
* Identical to __rtnl_register() but panics on failure. This is useful
* as failure of this function is very unlikely, it can only happen due
* to lack of memory when allocating the chain to store all message
* handlers for a protocol. Meant for use in init functions where lack
* of memory implies no sense in continuing.
*/
void rtnl_register(int protocol, int msgtype,
rtnl_doit_func doit, rtnl_dumpit_func dumpit,
rtnl_calcit_func calcit)
{
if (__rtnl_register(protocol, msgtype, doit, dumpit, calcit) < 0)
panic("Unable to register rtnetlink message handler, "
"protocol = %d, message type = %d\n",
protocol, msgtype);
}
EXPORT_SYMBOL_GPL(rtnl_register);
/**
* rtnl_unregister - Unregister a rtnetlink message type
* @protocol: Protocol family or PF_UNSPEC
* @msgtype: rtnetlink message type
*
* Returns 0 on success or a negative error code.
*/
int rtnl_unregister(int protocol, int msgtype)
{
int msgindex;
BUG_ON(protocol < 0 || protocol > RTNL_FAMILY_MAX);
msgindex = rtm_msgindex(msgtype);
if (rtnl_msg_handlers[protocol] == NULL)
return -ENOENT;
rtnl_msg_handlers[protocol][msgindex].doit = NULL;
rtnl_msg_handlers[protocol][msgindex].dumpit = NULL;
return 0;
}
EXPORT_SYMBOL_GPL(rtnl_unregister);
/**
* rtnl_unregister_all - Unregister all rtnetlink message type of a protocol
* @protocol : Protocol family or PF_UNSPEC
*
* Identical to calling rtnl_unregster() for all registered message types
* of a certain protocol family.
*/
void rtnl_unregister_all(int protocol)
{
BUG_ON(protocol < 0 || protocol > RTNL_FAMILY_MAX);
kfree(rtnl_msg_handlers[protocol]);
rtnl_msg_handlers[protocol] = NULL;
}
EXPORT_SYMBOL_GPL(rtnl_unregister_all);
static LIST_HEAD(link_ops);
static const struct rtnl_link_ops *rtnl_link_ops_get(const char *kind)
{
const struct rtnl_link_ops *ops;
list_for_each_entry(ops, &link_ops, list) {
if (!strcmp(ops->kind, kind))
return ops;
}
return NULL;
}
/**
* __rtnl_link_register - Register rtnl_link_ops with rtnetlink.
* @ops: struct rtnl_link_ops * to register
*
* The caller must hold the rtnl_mutex. This function should be used
* by drivers that create devices during module initialization. It
* must be called before registering the devices.
*
* Returns 0 on success or a negative error code.
*/
int __rtnl_link_register(struct rtnl_link_ops *ops)
{
if (rtnl_link_ops_get(ops->kind))
return -EEXIST;
/* The check for setup is here because if ops
* does not have that filled up, it is not possible
* to use the ops for creating device. So do not
* fill up dellink as well. That disables rtnl_dellink.
*/
if (ops->setup && !ops->dellink)
ops->dellink = unregister_netdevice_queue;
list_add_tail(&ops->list, &link_ops);
return 0;
}
EXPORT_SYMBOL_GPL(__rtnl_link_register);
/**
* rtnl_link_register - Register rtnl_link_ops with rtnetlink.
* @ops: struct rtnl_link_ops * to register
*
* Returns 0 on success or a negative error code.
*/
int rtnl_link_register(struct rtnl_link_ops *ops)
{
int err;
rtnl_lock();
err = __rtnl_link_register(ops);
rtnl_unlock();
return err;
}
EXPORT_SYMBOL_GPL(rtnl_link_register);
static void __rtnl_kill_links(struct net *net, struct rtnl_link_ops *ops)
{
struct net_device *dev;
LIST_HEAD(list_kill);
for_each_netdev(net, dev) {
if (dev->rtnl_link_ops == ops)
ops->dellink(dev, &list_kill);
}
unregister_netdevice_many(&list_kill);
}
/**
* __rtnl_link_unregister - Unregister rtnl_link_ops from rtnetlink.
* @ops: struct rtnl_link_ops * to unregister
*
* The caller must hold the rtnl_mutex.
*/
void __rtnl_link_unregister(struct rtnl_link_ops *ops)
{
struct net *net;
for_each_net(net) {
__rtnl_kill_links(net, ops);
}
list_del(&ops->list);
}
EXPORT_SYMBOL_GPL(__rtnl_link_unregister);
/* Return with the rtnl_lock held when there are no network
* devices unregistering in any network namespace.
*/
static void rtnl_lock_unregistering_all(void)
{
struct net *net;
bool unregistering;
DEFINE_WAIT_FUNC(wait, woken_wake_function);
add_wait_queue(&netdev_unregistering_wq, &wait);
for (;;) {
unregistering = false;
rtnl_lock();
for_each_net(net) {
if (net->dev_unreg_count > 0) {
unregistering = true;
break;
}
}
if (!unregistering)
break;
__rtnl_unlock();
wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
}
remove_wait_queue(&netdev_unregistering_wq, &wait);
}
/**
* rtnl_link_unregister - Unregister rtnl_link_ops from rtnetlink.
* @ops: struct rtnl_link_ops * to unregister
*/
void rtnl_link_unregister(struct rtnl_link_ops *ops)
{
/* Close the race with cleanup_net() */
mutex_lock(&net_mutex);
rtnl_lock_unregistering_all();
__rtnl_link_unregister(ops);
rtnl_unlock();
mutex_unlock(&net_mutex);
}
EXPORT_SYMBOL_GPL(rtnl_link_unregister);
static size_t rtnl_link_get_slave_info_data_size(const struct net_device *dev)
{
struct net_device *master_dev;
const struct rtnl_link_ops *ops;
master_dev = netdev_master_upper_dev_get((struct net_device *) dev);
if (!master_dev)
return 0;
ops = master_dev->rtnl_link_ops;
if (!ops || !ops->get_slave_size)
return 0;
/* IFLA_INFO_SLAVE_DATA + nested data */
return nla_total_size(sizeof(struct nlattr)) +
ops->get_slave_size(master_dev, dev);
}
static size_t rtnl_link_get_size(const struct net_device *dev)
{
const struct rtnl_link_ops *ops = dev->rtnl_link_ops;
size_t size;
if (!ops)
return 0;
size = nla_total_size(sizeof(struct nlattr)) + /* IFLA_LINKINFO */
nla_total_size(strlen(ops->kind) + 1); /* IFLA_INFO_KIND */
if (ops->get_size)
/* IFLA_INFO_DATA + nested data */
size += nla_total_size(sizeof(struct nlattr)) +
ops->get_size(dev);
if (ops->get_xstats_size)
/* IFLA_INFO_XSTATS */
size += nla_total_size(ops->get_xstats_size(dev));
size += rtnl_link_get_slave_info_data_size(dev);
return size;
}
static LIST_HEAD(rtnl_af_ops);
static const struct rtnl_af_ops *rtnl_af_lookup(const int family)
{
const struct rtnl_af_ops *ops;
list_for_each_entry(ops, &rtnl_af_ops, list) {
if (ops->family == family)
return ops;
}
return NULL;
}
/**
* rtnl_af_register - Register rtnl_af_ops with rtnetlink.
* @ops: struct rtnl_af_ops * to register
*
* Returns 0 on success or a negative error code.
*/
void rtnl_af_register(struct rtnl_af_ops *ops)
{
rtnl_lock();
list_add_tail(&ops->list, &rtnl_af_ops);
rtnl_unlock();
}
EXPORT_SYMBOL_GPL(rtnl_af_register);
/**
* __rtnl_af_unregister - Unregister rtnl_af_ops from rtnetlink.
* @ops: struct rtnl_af_ops * to unregister
*
* The caller must hold the rtnl_mutex.
*/
void __rtnl_af_unregister(struct rtnl_af_ops *ops)
{
list_del(&ops->list);
}
EXPORT_SYMBOL_GPL(__rtnl_af_unregister);
/**
* rtnl_af_unregister - Unregister rtnl_af_ops from rtnetlink.
* @ops: struct rtnl_af_ops * to unregister
*/
void rtnl_af_unregister(struct rtnl_af_ops *ops)
{
rtnl_lock();
__rtnl_af_unregister(ops);
rtnl_unlock();
}
EXPORT_SYMBOL_GPL(rtnl_af_unregister);
static size_t rtnl_link_get_af_size(const struct net_device *dev)
{
struct rtnl_af_ops *af_ops;
size_t size;
/* IFLA_AF_SPEC */
size = nla_total_size(sizeof(struct nlattr));
list_for_each_entry(af_ops, &rtnl_af_ops, list) {
if (af_ops->get_link_af_size) {
/* AF_* + nested data */
size += nla_total_size(sizeof(struct nlattr)) +
af_ops->get_link_af_size(dev);
}
}
return size;
}
static bool rtnl_have_link_slave_info(const struct net_device *dev)
{
struct net_device *master_dev;
master_dev = netdev_master_upper_dev_get((struct net_device *) dev);
if (master_dev && master_dev->rtnl_link_ops)
return true;
return false;
}
static int rtnl_link_slave_info_fill(struct sk_buff *skb,
const struct net_device *dev)
{
struct net_device *master_dev;
const struct rtnl_link_ops *ops;
struct nlattr *slave_data;
int err;
master_dev = netdev_master_upper_dev_get((struct net_device *) dev);
if (!master_dev)
return 0;
ops = master_dev->rtnl_link_ops;
if (!ops)
return 0;
if (nla_put_string(skb, IFLA_INFO_SLAVE_KIND, ops->kind) < 0)
return -EMSGSIZE;
if (ops->fill_slave_info) {
slave_data = nla_nest_start(skb, IFLA_INFO_SLAVE_DATA);
if (!slave_data)
return -EMSGSIZE;
err = ops->fill_slave_info(skb, master_dev, dev);
if (err < 0)
goto err_cancel_slave_data;
nla_nest_end(skb, slave_data);
}
return 0;
err_cancel_slave_data:
nla_nest_cancel(skb, slave_data);
return err;
}
static int rtnl_link_info_fill(struct sk_buff *skb,
const struct net_device *dev)
{
const struct rtnl_link_ops *ops = dev->rtnl_link_ops;
struct nlattr *data;
int err;
if (!ops)
return 0;
if (nla_put_string(skb, IFLA_INFO_KIND, ops->kind) < 0)
return -EMSGSIZE;
if (ops->fill_xstats) {
err = ops->fill_xstats(skb, dev);
if (err < 0)
return err;
}
if (ops->fill_info) {
data = nla_nest_start(skb, IFLA_INFO_DATA);
if (data == NULL)
return -EMSGSIZE;
err = ops->fill_info(skb, dev);
if (err < 0)
goto err_cancel_data;
nla_nest_end(skb, data);
}
return 0;
err_cancel_data:
nla_nest_cancel(skb, data);
return err;
}
static int rtnl_link_fill(struct sk_buff *skb, const struct net_device *dev)
{
struct nlattr *linkinfo;
int err = -EMSGSIZE;
linkinfo = nla_nest_start(skb, IFLA_LINKINFO);
if (linkinfo == NULL)
goto out;
err = rtnl_link_info_fill(skb, dev);
if (err < 0)
goto err_cancel_link;
err = rtnl_link_slave_info_fill(skb, dev);
if (err < 0)
goto err_cancel_link;
nla_nest_end(skb, linkinfo);
return 0;
err_cancel_link:
nla_nest_cancel(skb, linkinfo);
out:
return err;
}
int rtnetlink_send(struct sk_buff *skb, struct net *net, u32 pid, unsigned int group, int echo)
{
struct sock *rtnl = net->rtnl;
int err = 0;
NETLINK_CB(skb).dst_group = group;
if (echo)
atomic_inc(&skb->users);
netlink_broadcast(rtnl, skb, pid, group, GFP_KERNEL);
if (echo)
err = netlink_unicast(rtnl, skb, pid, MSG_DONTWAIT);
return err;
}
int rtnl_unicast(struct sk_buff *skb, struct net *net, u32 pid)
{
struct sock *rtnl = net->rtnl;
return nlmsg_unicast(rtnl, skb, pid);
}
EXPORT_SYMBOL(rtnl_unicast);
void rtnl_notify(struct sk_buff *skb, struct net *net, u32 pid, u32 group,
struct nlmsghdr *nlh, gfp_t flags)
{
struct sock *rtnl = net->rtnl;
int report = 0;
if (nlh)
report = nlmsg_report(nlh);
nlmsg_notify(rtnl, skb, pid, group, report, flags);
}
EXPORT_SYMBOL(rtnl_notify);
void rtnl_set_sk_err(struct net *net, u32 group, int error)
{
struct sock *rtnl = net->rtnl;
netlink_set_err(rtnl, 0, group, error);
}
EXPORT_SYMBOL(rtnl_set_sk_err);
int rtnetlink_put_metrics(struct sk_buff *skb, u32 *metrics)
{
struct nlattr *mx;
int i, valid = 0;
mx = nla_nest_start(skb, RTA_METRICS);
if (mx == NULL)
return -ENOBUFS;
for (i = 0; i < RTAX_MAX; i++) {
if (metrics[i]) {
valid++;
if (nla_put_u32(skb, i+1, metrics[i]))
goto nla_put_failure;
}
}
if (!valid) {
nla_nest_cancel(skb, mx);
return 0;
}
return nla_nest_end(skb, mx);
nla_put_failure:
nla_nest_cancel(skb, mx);
return -EMSGSIZE;
}
EXPORT_SYMBOL(rtnetlink_put_metrics);
int rtnl_put_cacheinfo(struct sk_buff *skb, struct dst_entry *dst, u32 id,
long expires, u32 error)
{
struct rta_cacheinfo ci = {
.rta_lastuse = jiffies_delta_to_clock_t(jiffies - dst->lastuse),
.rta_used = dst->__use,
.rta_clntref = atomic_read(&(dst->__refcnt)),
.rta_error = error,
.rta_id = id,
};
if (expires) {
unsigned long clock;
clock = jiffies_to_clock_t(abs(expires));
clock = min_t(unsigned long, clock, INT_MAX);
ci.rta_expires = (expires > 0) ? clock : -clock;
}
return nla_put(skb, RTA_CACHEINFO, sizeof(ci), &ci);
}
EXPORT_SYMBOL_GPL(rtnl_put_cacheinfo);
static void set_operstate(struct net_device *dev, unsigned char transition)
{
unsigned char operstate = dev->operstate;
switch (transition) {
case IF_OPER_UP:
if ((operstate == IF_OPER_DORMANT ||
operstate == IF_OPER_UNKNOWN) &&
!netif_dormant(dev))
operstate = IF_OPER_UP;
break;
case IF_OPER_DORMANT:
if (operstate == IF_OPER_UP ||
operstate == IF_OPER_UNKNOWN)
operstate = IF_OPER_DORMANT;
break;
}
if (dev->operstate != operstate) {
write_lock_bh(&dev_base_lock);
dev->operstate = operstate;
write_unlock_bh(&dev_base_lock);
netdev_state_change(dev);
}
}
static unsigned int rtnl_dev_get_flags(const struct net_device *dev)
{
return (dev->flags & ~(IFF_PROMISC | IFF_ALLMULTI)) |
(dev->gflags & (IFF_PROMISC | IFF_ALLMULTI));
}
static unsigned int rtnl_dev_combine_flags(const struct net_device *dev,
const struct ifinfomsg *ifm)
{
unsigned int flags = ifm->ifi_flags;
/* bugwards compatibility: ifi_change == 0 is treated as ~0 */
if (ifm->ifi_change)
flags = (flags & ifm->ifi_change) |
(rtnl_dev_get_flags(dev) & ~ifm->ifi_change);
return flags;
}
static void copy_rtnl_link_stats(struct rtnl_link_stats *a,
const struct rtnl_link_stats64 *b)
{
a->rx_packets = b->rx_packets;
a->tx_packets = b->tx_packets;
a->rx_bytes = b->rx_bytes;
a->tx_bytes = b->tx_bytes;
a->rx_errors = b->rx_errors;
a->tx_errors = b->tx_errors;
a->rx_dropped = b->rx_dropped;
a->tx_dropped = b->tx_dropped;
a->multicast = b->multicast;
a->collisions = b->collisions;
a->rx_length_errors = b->rx_length_errors;
a->rx_over_errors = b->rx_over_errors;
a->rx_crc_errors = b->rx_crc_errors;
a->rx_frame_errors = b->rx_frame_errors;
a->rx_fifo_errors = b->rx_fifo_errors;
a->rx_missed_errors = b->rx_missed_errors;
a->tx_aborted_errors = b->tx_aborted_errors;
a->tx_carrier_errors = b->tx_carrier_errors;
a->tx_fifo_errors = b->tx_fifo_errors;
a->tx_heartbeat_errors = b->tx_heartbeat_errors;
a->tx_window_errors = b->tx_window_errors;
a->rx_compressed = b->rx_compressed;
a->tx_compressed = b->tx_compressed;
}
static void copy_rtnl_link_stats64(void *v, const struct rtnl_link_stats64 *b)
{
memcpy(v, b, sizeof(*b));
}
/* All VF info */
static inline int rtnl_vfinfo_size(const struct net_device *dev,
u32 ext_filter_mask)
{
if (dev->dev.parent && dev_is_pci(dev->dev.parent) &&
(ext_filter_mask & RTEXT_FILTER_VF)) {
int num_vfs = dev_num_vf(dev->dev.parent);
size_t size = nla_total_size(sizeof(struct nlattr));
size += nla_total_size(num_vfs * sizeof(struct nlattr));
size += num_vfs *
(nla_total_size(sizeof(struct ifla_vf_mac)) +
nla_total_size(sizeof(struct ifla_vf_vlan)) +
nla_total_size(sizeof(struct ifla_vf_spoofchk)) +
nla_total_size(sizeof(struct ifla_vf_rate)) +
nla_total_size(sizeof(struct ifla_vf_link_state)));
return size;
} else
return 0;
}
static size_t rtnl_port_size(const struct net_device *dev,
u32 ext_filter_mask)
{
size_t port_size = nla_total_size(4) /* PORT_VF */
+ nla_total_size(PORT_PROFILE_MAX) /* PORT_PROFILE */
+ nla_total_size(sizeof(struct ifla_port_vsi))
/* PORT_VSI_TYPE */
+ nla_total_size(PORT_UUID_MAX) /* PORT_INSTANCE_UUID */
+ nla_total_size(PORT_UUID_MAX) /* PORT_HOST_UUID */
+ nla_total_size(1) /* PROT_VDP_REQUEST */
+ nla_total_size(2); /* PORT_VDP_RESPONSE */
size_t vf_ports_size = nla_total_size(sizeof(struct nlattr));
size_t vf_port_size = nla_total_size(sizeof(struct nlattr))
+ port_size;
size_t port_self_size = nla_total_size(sizeof(struct nlattr))
+ port_size;
if (!dev->netdev_ops->ndo_get_vf_port || !dev->dev.parent ||
!(ext_filter_mask & RTEXT_FILTER_VF))
return 0;
if (dev_num_vf(dev->dev.parent))
return port_self_size + vf_ports_size +
vf_port_size * dev_num_vf(dev->dev.parent);
else
return port_self_size;
}
static noinline size_t if_nlmsg_size(const struct net_device *dev,
u32 ext_filter_mask)
{
return NLMSG_ALIGN(sizeof(struct ifinfomsg))
+ nla_total_size(IFNAMSIZ) /* IFLA_IFNAME */
+ nla_total_size(IFALIASZ) /* IFLA_IFALIAS */
+ nla_total_size(IFNAMSIZ) /* IFLA_QDISC */
+ nla_total_size(sizeof(struct rtnl_link_ifmap))
+ nla_total_size(sizeof(struct rtnl_link_stats))
+ nla_total_size(sizeof(struct rtnl_link_stats64))
+ nla_total_size(MAX_ADDR_LEN) /* IFLA_ADDRESS */
+ nla_total_size(MAX_ADDR_LEN) /* IFLA_BROADCAST */
+ nla_total_size(4) /* IFLA_TXQLEN */
+ nla_total_size(4) /* IFLA_WEIGHT */
+ nla_total_size(4) /* IFLA_MTU */
+ nla_total_size(4) /* IFLA_LINK */
+ nla_total_size(4) /* IFLA_MASTER */
+ nla_total_size(1) /* IFLA_CARRIER */
+ nla_total_size(4) /* IFLA_PROMISCUITY */
+ nla_total_size(4) /* IFLA_NUM_TX_QUEUES */
+ nla_total_size(4) /* IFLA_NUM_RX_QUEUES */
+ nla_total_size(1) /* IFLA_OPERSTATE */
+ nla_total_size(1) /* IFLA_LINKMODE */
+ nla_total_size(4) /* IFLA_CARRIER_CHANGES */
+ nla_total_size(ext_filter_mask
& RTEXT_FILTER_VF ? 4 : 0) /* IFLA_NUM_VF */
+ rtnl_vfinfo_size(dev, ext_filter_mask) /* IFLA_VFINFO_LIST */
+ rtnl_port_size(dev, ext_filter_mask) /* IFLA_VF_PORTS + IFLA_PORT_SELF */
+ rtnl_link_get_size(dev) /* IFLA_LINKINFO */
+ rtnl_link_get_af_size(dev) /* IFLA_AF_SPEC */
+ nla_total_size(MAX_PHYS_PORT_ID_LEN); /* IFLA_PHYS_PORT_ID */
}
static int rtnl_vf_ports_fill(struct sk_buff *skb, struct net_device *dev)
{
struct nlattr *vf_ports;
struct nlattr *vf_port;
int vf;
int err;
vf_ports = nla_nest_start(skb, IFLA_VF_PORTS);
if (!vf_ports)
return -EMSGSIZE;
for (vf = 0; vf < dev_num_vf(dev->dev.parent); vf++) {
vf_port = nla_nest_start(skb, IFLA_VF_PORT);
if (!vf_port)
goto nla_put_failure;
if (nla_put_u32(skb, IFLA_PORT_VF, vf))
goto nla_put_failure;
err = dev->netdev_ops->ndo_get_vf_port(dev, vf, skb);
if (err == -EMSGSIZE)
goto nla_put_failure;
if (err) {
nla_nest_cancel(skb, vf_port);
continue;
}
nla_nest_end(skb, vf_port);
}
nla_nest_end(skb, vf_ports);
return 0;
nla_put_failure:
nla_nest_cancel(skb, vf_ports);
return -EMSGSIZE;
}
static int rtnl_port_self_fill(struct sk_buff *skb, struct net_device *dev)
{
struct nlattr *port_self;
int err;
port_self = nla_nest_start(skb, IFLA_PORT_SELF);
if (!port_self)
return -EMSGSIZE;
err = dev->netdev_ops->ndo_get_vf_port(dev, PORT_SELF_VF, skb);
if (err) {
nla_nest_cancel(skb, port_self);
return (err == -EMSGSIZE) ? err : 0;
}
nla_nest_end(skb, port_self);
return 0;
}
static int rtnl_port_fill(struct sk_buff *skb, struct net_device *dev,
u32 ext_filter_mask)
{
int err;
if (!dev->netdev_ops->ndo_get_vf_port || !dev->dev.parent ||
!(ext_filter_mask & RTEXT_FILTER_VF))
return 0;
err = rtnl_port_self_fill(skb, dev);
if (err)
return err;
if (dev_num_vf(dev->dev.parent)) {
err = rtnl_vf_ports_fill(skb, dev);
if (err)
return err;
}
return 0;
}
static int rtnl_phys_port_id_fill(struct sk_buff *skb, struct net_device *dev)
{
int err;
struct netdev_phys_port_id ppid;
err = dev_get_phys_port_id(dev, &ppid);
if (err) {
if (err == -EOPNOTSUPP)
return 0;
return err;
}
if (nla_put(skb, IFLA_PHYS_PORT_ID, ppid.id_len, ppid.id))
return -EMSGSIZE;
return 0;
}
static int rtnl_fill_ifinfo(struct sk_buff *skb, struct net_device *dev,
int type, u32 pid, u32 seq, u32 change,
unsigned int flags, u32 ext_filter_mask)
{
struct ifinfomsg *ifm;
struct nlmsghdr *nlh;
struct rtnl_link_stats64 temp;
const struct rtnl_link_stats64 *stats;
struct nlattr *attr, *af_spec;
struct rtnl_af_ops *af_ops;
struct net_device *upper_dev = netdev_master_upper_dev_get(dev);
ASSERT_RTNL();
nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ifm), flags);
if (nlh == NULL)
return -EMSGSIZE;
ifm = nlmsg_data(nlh);
ifm->ifi_family = AF_UNSPEC;
ifm->__ifi_pad = 0;
ifm->ifi_type = dev->type;
ifm->ifi_index = dev->ifindex;
ifm->ifi_flags = dev_get_flags(dev);
ifm->ifi_change = change;
if (nla_put_string(skb, IFLA_IFNAME, dev->name) ||
nla_put_u32(skb, IFLA_TXQLEN, dev->tx_queue_len) ||
nla_put_u8(skb, IFLA_OPERSTATE,
netif_running(dev) ? dev->operstate : IF_OPER_DOWN) ||
nla_put_u8(skb, IFLA_LINKMODE, dev->link_mode) ||
nla_put_u32(skb, IFLA_MTU, dev->mtu) ||
nla_put_u32(skb, IFLA_GROUP, dev->group) ||
nla_put_u32(skb, IFLA_PROMISCUITY, dev->promiscuity) ||
nla_put_u32(skb, IFLA_NUM_TX_QUEUES, dev->num_tx_queues) ||
#ifdef CONFIG_RPS
nla_put_u32(skb, IFLA_NUM_RX_QUEUES, dev->num_rx_queues) ||
#endif
(dev->ifindex != dev->iflink &&
nla_put_u32(skb, IFLA_LINK, dev->iflink)) ||
(upper_dev &&
nla_put_u32(skb, IFLA_MASTER, upper_dev->ifindex)) ||
nla_put_u8(skb, IFLA_CARRIER, netif_carrier_ok(dev)) ||
(dev->qdisc &&
nla_put_string(skb, IFLA_QDISC, dev->qdisc->ops->id)) ||
(dev->ifalias &&
nla_put_string(skb, IFLA_IFALIAS, dev->ifalias)) ||
nla_put_u32(skb, IFLA_CARRIER_CHANGES,
atomic_read(&dev->carrier_changes)))
goto nla_put_failure;
if (1) {
struct rtnl_link_ifmap map = {
.mem_start = dev->mem_start,
.mem_end = dev->mem_end,
.base_addr = dev->base_addr,
.irq = dev->irq,
.dma = dev->dma,
.port = dev->if_port,
};
if (nla_put(skb, IFLA_MAP, sizeof(map), &map))
goto nla_put_failure;
}
if (dev->addr_len) {
if (nla_put(skb, IFLA_ADDRESS, dev->addr_len, dev->dev_addr) ||
nla_put(skb, IFLA_BROADCAST, dev->addr_len, dev->broadcast))
goto nla_put_failure;
}
if (rtnl_phys_port_id_fill(skb, dev))
goto nla_put_failure;
attr = nla_reserve(skb, IFLA_STATS,
sizeof(struct rtnl_link_stats));
if (attr == NULL)
goto nla_put_failure;
stats = dev_get_stats(dev, &temp);
copy_rtnl_link_stats(nla_data(attr), stats);
attr = nla_reserve(skb, IFLA_STATS64,
sizeof(struct rtnl_link_stats64));
if (attr == NULL)
goto nla_put_failure;
copy_rtnl_link_stats64(nla_data(attr), stats);
if (dev->dev.parent && (ext_filter_mask & RTEXT_FILTER_VF) &&
nla_put_u32(skb, IFLA_NUM_VF, dev_num_vf(dev->dev.parent)))
goto nla_put_failure;
if (dev->netdev_ops->ndo_get_vf_config && dev->dev.parent
&& (ext_filter_mask & RTEXT_FILTER_VF)) {
int i;
struct nlattr *vfinfo, *vf;
int num_vfs = dev_num_vf(dev->dev.parent);
vfinfo = nla_nest_start(skb, IFLA_VFINFO_LIST);
if (!vfinfo)
goto nla_put_failure;
for (i = 0; i < num_vfs; i++) {
struct ifla_vf_info ivi;
struct ifla_vf_mac vf_mac;
struct ifla_vf_vlan vf_vlan;
struct ifla_vf_rate vf_rate;
struct ifla_vf_tx_rate vf_tx_rate;
struct ifla_vf_spoofchk vf_spoofchk;
struct ifla_vf_link_state vf_linkstate;
/*
* Not all SR-IOV capable drivers support the
* spoofcheck query. Preset to -1 so the user
* space tool can detect that the driver didn't
* report anything.
*/
ivi.spoofchk = -1;
memset(ivi.mac, 0, sizeof(ivi.mac));
/* The default value for VF link state is "auto"
* IFLA_VF_LINK_STATE_AUTO which equals zero
*/
ivi.linkstate = 0;
if (dev->netdev_ops->ndo_get_vf_config(dev, i, &ivi))
break;
vf_mac.vf =
vf_vlan.vf =
vf_rate.vf =
vf_tx_rate.vf =
vf_spoofchk.vf =
vf_linkstate.vf = ivi.vf;
memcpy(vf_mac.mac, ivi.mac, sizeof(ivi.mac));
vf_vlan.vlan = ivi.vlan;
vf_vlan.qos = ivi.qos;
vf_tx_rate.rate = ivi.max_tx_rate;
vf_rate.min_tx_rate = ivi.min_tx_rate;
vf_rate.max_tx_rate = ivi.max_tx_rate;
vf_spoofchk.setting = ivi.spoofchk;
vf_linkstate.link_state = ivi.linkstate;
vf = nla_nest_start(skb, IFLA_VF_INFO);
if (!vf) {
nla_nest_cancel(skb, vfinfo);
goto nla_put_failure;
}
if (nla_put(skb, IFLA_VF_MAC, sizeof(vf_mac), &vf_mac) ||
nla_put(skb, IFLA_VF_VLAN, sizeof(vf_vlan), &vf_vlan) ||
nla_put(skb, IFLA_VF_RATE, sizeof(vf_rate),
&vf_rate) ||
nla_put(skb, IFLA_VF_TX_RATE, sizeof(vf_tx_rate),
&vf_tx_rate) ||
nla_put(skb, IFLA_VF_SPOOFCHK, sizeof(vf_spoofchk),
&vf_spoofchk) ||
nla_put(skb, IFLA_VF_LINK_STATE, sizeof(vf_linkstate),
&vf_linkstate))
goto nla_put_failure;
nla_nest_end(skb, vf);
}
nla_nest_end(skb, vfinfo);
}
if (rtnl_port_fill(skb, dev, ext_filter_mask))
goto nla_put_failure;
if (dev->rtnl_link_ops || rtnl_have_link_slave_info(dev)) {
if (rtnl_link_fill(skb, dev) < 0)
goto nla_put_failure;
}
if (!(af_spec = nla_nest_start(skb, IFLA_AF_SPEC)))
goto nla_put_failure;
list_for_each_entry(af_ops, &rtnl_af_ops, list) {
if (af_ops->fill_link_af) {
struct nlattr *af;
int err;
if (!(af = nla_nest_start(skb, af_ops->family)))
goto nla_put_failure;
err = af_ops->fill_link_af(skb, dev);
/*
* Caller may return ENODATA to indicate that there
* was no data to be dumped. This is not an error, it
* means we should trim the attribute header and
* continue.
*/
if (err == -ENODATA)
nla_nest_cancel(skb, af);
else if (err < 0)
goto nla_put_failure;
nla_nest_end(skb, af);
}
}
nla_nest_end(skb, af_spec);
return nlmsg_end(skb, nlh);
nla_put_failure:
nlmsg_cancel(skb, nlh);
return -EMSGSIZE;
}
static const struct nla_policy ifla_policy[IFLA_MAX+1] = {
[IFLA_IFNAME] = { .type = NLA_STRING, .len = IFNAMSIZ-1 },
[IFLA_ADDRESS] = { .type = NLA_BINARY, .len = MAX_ADDR_LEN },
[IFLA_BROADCAST] = { .type = NLA_BINARY, .len = MAX_ADDR_LEN },
[IFLA_MAP] = { .len = sizeof(struct rtnl_link_ifmap) },
[IFLA_MTU] = { .type = NLA_U32 },
[IFLA_LINK] = { .type = NLA_U32 },
[IFLA_MASTER] = { .type = NLA_U32 },
[IFLA_CARRIER] = { .type = NLA_U8 },
[IFLA_TXQLEN] = { .type = NLA_U32 },
[IFLA_WEIGHT] = { .type = NLA_U32 },
[IFLA_OPERSTATE] = { .type = NLA_U8 },
[IFLA_LINKMODE] = { .type = NLA_U8 },
[IFLA_LINKINFO] = { .type = NLA_NESTED },
[IFLA_NET_NS_PID] = { .type = NLA_U32 },
[IFLA_NET_NS_FD] = { .type = NLA_U32 },
[IFLA_IFALIAS] = { .type = NLA_STRING, .len = IFALIASZ-1 },
[IFLA_VFINFO_LIST] = {. type = NLA_NESTED },
[IFLA_VF_PORTS] = { .type = NLA_NESTED },
[IFLA_PORT_SELF] = { .type = NLA_NESTED },
[IFLA_AF_SPEC] = { .type = NLA_NESTED },
[IFLA_EXT_MASK] = { .type = NLA_U32 },
[IFLA_PROMISCUITY] = { .type = NLA_U32 },
[IFLA_NUM_TX_QUEUES] = { .type = NLA_U32 },
[IFLA_NUM_RX_QUEUES] = { .type = NLA_U32 },
[IFLA_PHYS_PORT_ID] = { .type = NLA_BINARY, .len = MAX_PHYS_PORT_ID_LEN },
[IFLA_CARRIER_CHANGES] = { .type = NLA_U32 }, /* ignored */
};
static const struct nla_policy ifla_info_policy[IFLA_INFO_MAX+1] = {
[IFLA_INFO_KIND] = { .type = NLA_STRING },
[IFLA_INFO_DATA] = { .type = NLA_NESTED },
[IFLA_INFO_SLAVE_KIND] = { .type = NLA_STRING },
[IFLA_INFO_SLAVE_DATA] = { .type = NLA_NESTED },
};
static const struct nla_policy ifla_vfinfo_policy[IFLA_VF_INFO_MAX+1] = {
[IFLA_VF_INFO] = { .type = NLA_NESTED },
};
static const struct nla_policy ifla_vf_policy[IFLA_VF_MAX+1] = {
[IFLA_VF_MAC] = { .type = NLA_BINARY,
.len = sizeof(struct ifla_vf_mac) },
[IFLA_VF_VLAN] = { .type = NLA_BINARY,
.len = sizeof(struct ifla_vf_vlan) },
[IFLA_VF_TX_RATE] = { .type = NLA_BINARY,
.len = sizeof(struct ifla_vf_tx_rate) },
[IFLA_VF_SPOOFCHK] = { .type = NLA_BINARY,
.len = sizeof(struct ifla_vf_spoofchk) },
[IFLA_VF_RATE] = { .type = NLA_BINARY,
.len = sizeof(struct ifla_vf_rate) },
[IFLA_VF_LINK_STATE] = { .type = NLA_BINARY,
.len = sizeof(struct ifla_vf_link_state) },
};
static const struct nla_policy ifla_port_policy[IFLA_PORT_MAX+1] = {
[IFLA_PORT_VF] = { .type = NLA_U32 },
[IFLA_PORT_PROFILE] = { .type = NLA_STRING,
.len = PORT_PROFILE_MAX },
[IFLA_PORT_VSI_TYPE] = { .type = NLA_BINARY,
.len = sizeof(struct ifla_port_vsi)},
[IFLA_PORT_INSTANCE_UUID] = { .type = NLA_BINARY,
.len = PORT_UUID_MAX },
[IFLA_PORT_HOST_UUID] = { .type = NLA_STRING,
.len = PORT_UUID_MAX },
[IFLA_PORT_REQUEST] = { .type = NLA_U8, },
[IFLA_PORT_RESPONSE] = { .type = NLA_U16, },
};
static int rtnl_dump_ifinfo(struct sk_buff *skb, struct netlink_callback *cb)
{
struct net *net = sock_net(skb->sk);
int h, s_h;
int idx = 0, s_idx;
struct net_device *dev;
struct hlist_head *head;
struct nlattr *tb[IFLA_MAX+1];
u32 ext_filter_mask = 0;
int err;
int hdrlen;
s_h = cb->args[0];
s_idx = cb->args[1];
rcu_read_lock();
cb->seq = net->dev_base_seq;
/* A hack to preserve kernel<->userspace interface.
* The correct header is ifinfomsg. It is consistent with rtnl_getlink.
* However, before Linux v3.9 the code here assumed rtgenmsg and that's
* what iproute2 < v3.9.0 used.
* We can detect the old iproute2. Even including the IFLA_EXT_MASK
* attribute, its netlink message is shorter than struct ifinfomsg.
*/
hdrlen = nlmsg_len(cb->nlh) < sizeof(struct ifinfomsg) ?
sizeof(struct rtgenmsg) : sizeof(struct ifinfomsg);
if (nlmsg_parse(cb->nlh, hdrlen, tb, IFLA_MAX, ifla_policy) >= 0) {
if (tb[IFLA_EXT_MASK])
ext_filter_mask = nla_get_u32(tb[IFLA_EXT_MASK]);
}
for (h = s_h; h < NETDEV_HASHENTRIES; h++, s_idx = 0) {
idx = 0;
head = &net->dev_index_head[h];
hlist_for_each_entry_rcu(dev, head, index_hlist) {
if (idx < s_idx)
goto cont;
err = rtnl_fill_ifinfo(skb, dev, RTM_NEWLINK,
NETLINK_CB(cb->skb).portid,
cb->nlh->nlmsg_seq, 0,
NLM_F_MULTI,
ext_filter_mask);
/* If we ran out of room on the first message,
* we're in trouble
*/
WARN_ON((err == -EMSGSIZE) && (skb->len == 0));
if (err <= 0)
goto out;
nl_dump_check_consistent(cb, nlmsg_hdr(skb));
cont:
idx++;
}
}
out:
rcu_read_unlock();
cb->args[1] = idx;
cb->args[0] = h;
return skb->len;
}
int rtnl_nla_parse_ifla(struct nlattr **tb, const struct nlattr *head, int len)
{
return nla_parse(tb, IFLA_MAX, head, len, ifla_policy);
}
EXPORT_SYMBOL(rtnl_nla_parse_ifla);
struct net *rtnl_link_get_net(struct net *src_net, struct nlattr *tb[])
{
struct net *net;
/* Examine the link attributes and figure out which
* network namespace we are talking about.
*/
if (tb[IFLA_NET_NS_PID])
net = get_net_ns_by_pid(nla_get_u32(tb[IFLA_NET_NS_PID]));
else if (tb[IFLA_NET_NS_FD])
net = get_net_ns_by_fd(nla_get_u32(tb[IFLA_NET_NS_FD]));
else
net = get_net(src_net);
return net;
}
EXPORT_SYMBOL(rtnl_link_get_net);
static int validate_linkmsg(struct net_device *dev, struct nlattr *tb[])
{
if (dev) {
if (tb[IFLA_ADDRESS] &&
nla_len(tb[IFLA_ADDRESS]) < dev->addr_len)
return -EINVAL;
if (tb[IFLA_BROADCAST] &&
nla_len(tb[IFLA_BROADCAST]) < dev->addr_len)
return -EINVAL;
}
if (tb[IFLA_AF_SPEC]) {
struct nlattr *af;
int rem, err;
nla_for_each_nested(af, tb[IFLA_AF_SPEC], rem) {
const struct rtnl_af_ops *af_ops;
if (!(af_ops = rtnl_af_lookup(nla_type(af))))
return -EAFNOSUPPORT;
if (!af_ops->set_link_af)
return -EOPNOTSUPP;
if (af_ops->validate_link_af) {
err = af_ops->validate_link_af(dev, af);
if (err < 0)
return err;
}
}
}
return 0;
}
static int do_setvfinfo(struct net_device *dev, struct nlattr *attr)
{
int rem, err = -EINVAL;
struct nlattr *vf;
const struct net_device_ops *ops = dev->netdev_ops;
nla_for_each_nested(vf, attr, rem) {
switch (nla_type(vf)) {
case IFLA_VF_MAC: {
struct ifla_vf_mac *ivm;
ivm = nla_data(vf);
err = -EOPNOTSUPP;
if (ops->ndo_set_vf_mac)
err = ops->ndo_set_vf_mac(dev, ivm->vf,
ivm->mac);
break;
}
case IFLA_VF_VLAN: {
struct ifla_vf_vlan *ivv;
ivv = nla_data(vf);
err = -EOPNOTSUPP;
if (ops->ndo_set_vf_vlan)
err = ops->ndo_set_vf_vlan(dev, ivv->vf,
ivv->vlan,
ivv->qos);
break;
}
case IFLA_VF_TX_RATE: {
struct ifla_vf_tx_rate *ivt;
struct ifla_vf_info ivf;
ivt = nla_data(vf);
err = -EOPNOTSUPP;
if (ops->ndo_get_vf_config)
err = ops->ndo_get_vf_config(dev, ivt->vf,
&ivf);
if (err)
break;
err = -EOPNOTSUPP;
if (ops->ndo_set_vf_rate)
err = ops->ndo_set_vf_rate(dev, ivt->vf,
ivf.min_tx_rate,
ivt->rate);
break;
}
case IFLA_VF_RATE: {
struct ifla_vf_rate *ivt;
ivt = nla_data(vf);
err = -EOPNOTSUPP;
if (ops->ndo_set_vf_rate)
err = ops->ndo_set_vf_rate(dev, ivt->vf,
ivt->min_tx_rate,
ivt->max_tx_rate);
break;
}
case IFLA_VF_SPOOFCHK: {
struct ifla_vf_spoofchk *ivs;
ivs = nla_data(vf);
err = -EOPNOTSUPP;
if (ops->ndo_set_vf_spoofchk)
err = ops->ndo_set_vf_spoofchk(dev, ivs->vf,
ivs->setting);
break;
}
case IFLA_VF_LINK_STATE: {
struct ifla_vf_link_state *ivl;
ivl = nla_data(vf);
err = -EOPNOTSUPP;
if (ops->ndo_set_vf_link_state)
err = ops->ndo_set_vf_link_state(dev, ivl->vf,
ivl->link_state);
break;
}
default:
err = -EINVAL;
break;
}
if (err)
break;
}
return err;
}
static int do_set_master(struct net_device *dev, int ifindex)
{
struct net_device *upper_dev = netdev_master_upper_dev_get(dev);
const struct net_device_ops *ops;
int err;
if (upper_dev) {
if (upper_dev->ifindex == ifindex)
return 0;
ops = upper_dev->netdev_ops;
if (ops->ndo_del_slave) {
err = ops->ndo_del_slave(upper_dev, dev);
if (err)
return err;
} else {
return -EOPNOTSUPP;
}
}
if (ifindex) {
upper_dev = __dev_get_by_index(dev_net(dev), ifindex);
if (!upper_dev)
return -EINVAL;
ops = upper_dev->netdev_ops;
if (ops->ndo_add_slave) {
err = ops->ndo_add_slave(upper_dev, dev);
if (err)
return err;
} else {
return -EOPNOTSUPP;
}
}
return 0;
}
#define DO_SETLINK_MODIFIED 0x01
/* notify flag means notify + modified. */
#define DO_SETLINK_NOTIFY 0x03
static int do_setlink(const struct sk_buff *skb,
struct net_device *dev, struct ifinfomsg *ifm,
struct nlattr **tb, char *ifname, int status)
{
const struct net_device_ops *ops = dev->netdev_ops;
int err;
if (tb[IFLA_NET_NS_PID] || tb[IFLA_NET_NS_FD]) {
struct net *net = rtnl_link_get_net(dev_net(dev), tb);
if (IS_ERR(net)) {
err = PTR_ERR(net);
goto errout;
}
if (!netlink_ns_capable(skb, net->user_ns, CAP_NET_ADMIN)) {
put_net(net);
err = -EPERM;
goto errout;
}
err = dev_change_net_namespace(dev, net, ifname);
put_net(net);
if (err)
goto errout;
status |= DO_SETLINK_MODIFIED;
}
if (tb[IFLA_MAP]) {
struct rtnl_link_ifmap *u_map;
struct ifmap k_map;
if (!ops->ndo_set_config) {
err = -EOPNOTSUPP;
goto errout;
}
if (!netif_device_present(dev)) {
err = -ENODEV;
goto errout;
}
u_map = nla_data(tb[IFLA_MAP]);
k_map.mem_start = (unsigned long) u_map->mem_start;
k_map.mem_end = (unsigned long) u_map->mem_end;
k_map.base_addr = (unsigned short) u_map->base_addr;
k_map.irq = (unsigned char) u_map->irq;
k_map.dma = (unsigned char) u_map->dma;
k_map.port = (unsigned char) u_map->port;
err = ops->ndo_set_config(dev, &k_map);
if (err < 0)
goto errout;
status |= DO_SETLINK_NOTIFY;
}
if (tb[IFLA_ADDRESS]) {
struct sockaddr *sa;
int len;
len = sizeof(sa_family_t) + dev->addr_len;
sa = kmalloc(len, GFP_KERNEL);
if (!sa) {
err = -ENOMEM;
goto errout;
}
sa->sa_family = dev->type;
memcpy(sa->sa_data, nla_data(tb[IFLA_ADDRESS]),
dev->addr_len);
err = dev_set_mac_address(dev, sa);
kfree(sa);
if (err)
goto errout;
status |= DO_SETLINK_MODIFIED;
}
if (tb[IFLA_MTU]) {
err = dev_set_mtu(dev, nla_get_u32(tb[IFLA_MTU]));
if (err < 0)
goto errout;
status |= DO_SETLINK_MODIFIED;
}
if (tb[IFLA_GROUP]) {
dev_set_group(dev, nla_get_u32(tb[IFLA_GROUP]));
status |= DO_SETLINK_NOTIFY;
}
/*
* Interface selected by interface index but interface
* name provided implies that a name change has been
* requested.
*/
if (ifm->ifi_index > 0 && ifname[0]) {
err = dev_change_name(dev, ifname);
if (err < 0)
goto errout;
status |= DO_SETLINK_MODIFIED;
}
if (tb[IFLA_IFALIAS]) {
err = dev_set_alias(dev, nla_data(tb[IFLA_IFALIAS]),
nla_len(tb[IFLA_IFALIAS]));
if (err < 0)
goto errout;
status |= DO_SETLINK_NOTIFY;
}
if (tb[IFLA_BROADCAST]) {
nla_memcpy(dev->broadcast, tb[IFLA_BROADCAST], dev->addr_len);
call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
}
if (ifm->ifi_flags || ifm->ifi_change) {
err = dev_change_flags(dev, rtnl_dev_combine_flags(dev, ifm));
if (err < 0)
goto errout;
}
if (tb[IFLA_MASTER]) {
err = do_set_master(dev, nla_get_u32(tb[IFLA_MASTER]));
if (err)
goto errout;
status |= DO_SETLINK_MODIFIED;
}
if (tb[IFLA_CARRIER]) {
err = dev_change_carrier(dev, nla_get_u8(tb[IFLA_CARRIER]));
if (err)
goto errout;
status |= DO_SETLINK_MODIFIED;
}
if (tb[IFLA_TXQLEN]) {
unsigned long value = nla_get_u32(tb[IFLA_TXQLEN]);
if (dev->tx_queue_len ^ value)
status |= DO_SETLINK_NOTIFY;
dev->tx_queue_len = value;
}
if (tb[IFLA_OPERSTATE])
set_operstate(dev, nla_get_u8(tb[IFLA_OPERSTATE]));
if (tb[IFLA_LINKMODE]) {
unsigned char value = nla_get_u8(tb[IFLA_LINKMODE]);
write_lock_bh(&dev_base_lock);
if (dev->link_mode ^ value)
status |= DO_SETLINK_NOTIFY;
dev->link_mode = value;
write_unlock_bh(&dev_base_lock);
}
if (tb[IFLA_VFINFO_LIST]) {
struct nlattr *attr;
int rem;
nla_for_each_nested(attr, tb[IFLA_VFINFO_LIST], rem) {
if (nla_type(attr) != IFLA_VF_INFO) {
err = -EINVAL;
goto errout;
}
err = do_setvfinfo(dev, attr);
if (err < 0)
goto errout;
status |= DO_SETLINK_NOTIFY;
}
}
err = 0;
if (tb[IFLA_VF_PORTS]) {
struct nlattr *port[IFLA_PORT_MAX+1];
struct nlattr *attr;
int vf;
int rem;
err = -EOPNOTSUPP;
if (!ops->ndo_set_vf_port)
goto errout;
nla_for_each_nested(attr, tb[IFLA_VF_PORTS], rem) {
if (nla_type(attr) != IFLA_VF_PORT)
continue;
err = nla_parse_nested(port, IFLA_PORT_MAX,
attr, ifla_port_policy);
if (err < 0)
goto errout;
if (!port[IFLA_PORT_VF]) {
err = -EOPNOTSUPP;
goto errout;
}
vf = nla_get_u32(port[IFLA_PORT_VF]);
err = ops->ndo_set_vf_port(dev, vf, port);
if (err < 0)
goto errout;
status |= DO_SETLINK_NOTIFY;
}
}
err = 0;
if (tb[IFLA_PORT_SELF]) {
struct nlattr *port[IFLA_PORT_MAX+1];
err = nla_parse_nested(port, IFLA_PORT_MAX,
tb[IFLA_PORT_SELF], ifla_port_policy);
if (err < 0)
goto errout;
err = -EOPNOTSUPP;
if (ops->ndo_set_vf_port)
err = ops->ndo_set_vf_port(dev, PORT_SELF_VF, port);
if (err < 0)
goto errout;
status |= DO_SETLINK_NOTIFY;
}
if (tb[IFLA_AF_SPEC]) {
struct nlattr *af;
int rem;
nla_for_each_nested(af, tb[IFLA_AF_SPEC], rem) {
const struct rtnl_af_ops *af_ops;
if (!(af_ops = rtnl_af_lookup(nla_type(af))))
BUG();
err = af_ops->set_link_af(dev, af);
if (err < 0)
goto errout;
status |= DO_SETLINK_NOTIFY;
}
}
err = 0;
errout:
if (status & DO_SETLINK_MODIFIED) {
if (status & DO_SETLINK_NOTIFY)
netdev_state_change(dev);
if (err < 0)
net_warn_ratelimited("A link change request failed with some changes committed already. Interface %s may have been left with an inconsistent configuration, please check.\n",
dev->name);
}
return err;
}
static int rtnl_setlink(struct sk_buff *skb, struct nlmsghdr *nlh)
{
struct net *net = sock_net(skb->sk);
struct ifinfomsg *ifm;
struct net_device *dev;
int err;
struct nlattr *tb[IFLA_MAX+1];
char ifname[IFNAMSIZ];
err = nlmsg_parse(nlh, sizeof(*ifm), tb, IFLA_MAX, ifla_policy);
if (err < 0)
goto errout;
if (tb[IFLA_IFNAME])
nla_strlcpy(ifname, tb[IFLA_IFNAME], IFNAMSIZ);
else
ifname[0] = '\0';
err = -EINVAL;
ifm = nlmsg_data(nlh);
if (ifm->ifi_index > 0)
dev = __dev_get_by_index(net, ifm->ifi_index);
else if (tb[IFLA_IFNAME])
dev = __dev_get_by_name(net, ifname);
else
goto errout;
if (dev == NULL) {
err = -ENODEV;
goto errout;
}
err = validate_linkmsg(dev, tb);
if (err < 0)
goto errout;
err = do_setlink(skb, dev, ifm, tb, ifname, 0);
errout:
return err;
}
static int rtnl_dellink(struct sk_buff *skb, struct nlmsghdr *nlh)
{
struct net *net = sock_net(skb->sk);
const struct rtnl_link_ops *ops;
struct net_device *dev;
struct ifinfomsg *ifm;
char ifname[IFNAMSIZ];
struct nlattr *tb[IFLA_MAX+1];
int err;
LIST_HEAD(list_kill);
err = nlmsg_parse(nlh, sizeof(*ifm), tb, IFLA_MAX, ifla_policy);
if (err < 0)
return err;
if (tb[IFLA_IFNAME])
nla_strlcpy(ifname, tb[IFLA_IFNAME], IFNAMSIZ);
ifm = nlmsg_data(nlh);
if (ifm->ifi_index > 0)
dev = __dev_get_by_index(net, ifm->ifi_index);
else if (tb[IFLA_IFNAME])
dev = __dev_get_by_name(net, ifname);
else
return -EINVAL;
if (!dev)
return -ENODEV;
ops = dev->rtnl_link_ops;
if (!ops || !ops->dellink)
return -EOPNOTSUPP;
ops->dellink(dev, &list_kill);
unregister_netdevice_many(&list_kill);
return 0;
}
int rtnl_configure_link(struct net_device *dev, const struct ifinfomsg *ifm)
{
unsigned int old_flags;
int err;
old_flags = dev->flags;
if (ifm && (ifm->ifi_flags || ifm->ifi_change)) {
err = __dev_change_flags(dev, rtnl_dev_combine_flags(dev, ifm));
if (err < 0)
return err;
}
dev->rtnl_link_state = RTNL_LINK_INITIALIZED;
__dev_notify_flags(dev, old_flags, ~0U);
return 0;
}
EXPORT_SYMBOL(rtnl_configure_link);
struct net_device *rtnl_create_link(struct net *net,
char *ifname, unsigned char name_assign_type,
const struct rtnl_link_ops *ops, struct nlattr *tb[])
{
int err;
struct net_device *dev;
unsigned int num_tx_queues = 1;
unsigned int num_rx_queues = 1;
if (tb[IFLA_NUM_TX_QUEUES])
num_tx_queues = nla_get_u32(tb[IFLA_NUM_TX_QUEUES]);
else if (ops->get_num_tx_queues)
num_tx_queues = ops->get_num_tx_queues();
if (tb[IFLA_NUM_RX_QUEUES])
num_rx_queues = nla_get_u32(tb[IFLA_NUM_RX_QUEUES]);
else if (ops->get_num_rx_queues)
num_rx_queues = ops->get_num_rx_queues();
err = -ENOMEM;
dev = alloc_netdev_mqs(ops->priv_size, ifname, name_assign_type,
ops->setup, num_tx_queues, num_rx_queues);
if (!dev)
goto err;
dev_net_set(dev, net);
dev->rtnl_link_ops = ops;
dev->rtnl_link_state = RTNL_LINK_INITIALIZING;
if (tb[IFLA_MTU])
dev->mtu = nla_get_u32(tb[IFLA_MTU]);
if (tb[IFLA_ADDRESS]) {
memcpy(dev->dev_addr, nla_data(tb[IFLA_ADDRESS]),
nla_len(tb[IFLA_ADDRESS]));
dev->addr_assign_type = NET_ADDR_SET;
}
if (tb[IFLA_BROADCAST])
memcpy(dev->broadcast, nla_data(tb[IFLA_BROADCAST]),
nla_len(tb[IFLA_BROADCAST]));
if (tb[IFLA_TXQLEN])
dev->tx_queue_len = nla_get_u32(tb[IFLA_TXQLEN]);
if (tb[IFLA_OPERSTATE])
set_operstate(dev, nla_get_u8(tb[IFLA_OPERSTATE]));
if (tb[IFLA_LINKMODE])
dev->link_mode = nla_get_u8(tb[IFLA_LINKMODE]);
if (tb[IFLA_GROUP])
dev_set_group(dev, nla_get_u32(tb[IFLA_GROUP]));
return dev;
err:
return ERR_PTR(err);
}
EXPORT_SYMBOL(rtnl_create_link);
static int rtnl_group_changelink(const struct sk_buff *skb,
struct net *net, int group,
struct ifinfomsg *ifm,
struct nlattr **tb)
{
struct net_device *dev;
int err;
for_each_netdev(net, dev) {
if (dev->group == group) {
err = do_setlink(skb, dev, ifm, tb, NULL, 0);
if (err < 0)
return err;
}
}
return 0;
}
static int rtnl_newlink(struct sk_buff *skb, struct nlmsghdr *nlh)
{
struct net *net = sock_net(skb->sk);
const struct rtnl_link_ops *ops;
const struct rtnl_link_ops *m_ops = NULL;
struct net_device *dev;
struct net_device *master_dev = NULL;
struct ifinfomsg *ifm;
char kind[MODULE_NAME_LEN];
char ifname[IFNAMSIZ];
struct nlattr *tb[IFLA_MAX+1];
struct nlattr *linkinfo[IFLA_INFO_MAX+1];
unsigned char name_assign_type = NET_NAME_USER;
int err;
#ifdef CONFIG_MODULES
replay:
#endif
err = nlmsg_parse(nlh, sizeof(*ifm), tb, IFLA_MAX, ifla_policy);
if (err < 0)
return err;
if (tb[IFLA_IFNAME])
nla_strlcpy(ifname, tb[IFLA_IFNAME], IFNAMSIZ);
else
ifname[0] = '\0';
ifm = nlmsg_data(nlh);
if (ifm->ifi_index > 0)
dev = __dev_get_by_index(net, ifm->ifi_index);
else {
if (ifname[0])
dev = __dev_get_by_name(net, ifname);
else
dev = NULL;
}
if (dev) {
master_dev = netdev_master_upper_dev_get(dev);
if (master_dev)
m_ops = master_dev->rtnl_link_ops;
}
err = validate_linkmsg(dev, tb);
if (err < 0)
return err;
if (tb[IFLA_LINKINFO]) {
err = nla_parse_nested(linkinfo, IFLA_INFO_MAX,
tb[IFLA_LINKINFO], ifla_info_policy);
if (err < 0)
return err;
} else
memset(linkinfo, 0, sizeof(linkinfo));
if (linkinfo[IFLA_INFO_KIND]) {
nla_strlcpy(kind, linkinfo[IFLA_INFO_KIND], sizeof(kind));
ops = rtnl_link_ops_get(kind);
} else {
kind[0] = '\0';
ops = NULL;
}
if (1) {
struct nlattr *attr[ops ? ops->maxtype + 1 : 0];
struct nlattr *slave_attr[m_ops ? m_ops->slave_maxtype + 1 : 0];
struct nlattr **data = NULL;
struct nlattr **slave_data = NULL;
struct net *dest_net;
if (ops) {
if (ops->maxtype && linkinfo[IFLA_INFO_DATA]) {
err = nla_parse_nested(attr, ops->maxtype,
linkinfo[IFLA_INFO_DATA],
ops->policy);
if (err < 0)
return err;
data = attr;
}
if (ops->validate) {
err = ops->validate(tb, data);
if (err < 0)
return err;
}
}
if (m_ops) {
if (m_ops->slave_maxtype &&
linkinfo[IFLA_INFO_SLAVE_DATA]) {
err = nla_parse_nested(slave_attr,
m_ops->slave_maxtype,
linkinfo[IFLA_INFO_SLAVE_DATA],
m_ops->slave_policy);
if (err < 0)
return err;
slave_data = slave_attr;
}
if (m_ops->slave_validate) {
err = m_ops->slave_validate(tb, slave_data);
if (err < 0)
return err;
}
}
if (dev) {
int status = 0;
if (nlh->nlmsg_flags & NLM_F_EXCL)
return -EEXIST;
if (nlh->nlmsg_flags & NLM_F_REPLACE)
return -EOPNOTSUPP;
if (linkinfo[IFLA_INFO_DATA]) {
if (!ops || ops != dev->rtnl_link_ops ||
!ops->changelink)
return -EOPNOTSUPP;
err = ops->changelink(dev, tb, data);
if (err < 0)
return err;
status |= DO_SETLINK_NOTIFY;
}
if (linkinfo[IFLA_INFO_SLAVE_DATA]) {
if (!m_ops || !m_ops->slave_changelink)
return -EOPNOTSUPP;
err = m_ops->slave_changelink(master_dev, dev,
tb, slave_data);
if (err < 0)
return err;
status |= DO_SETLINK_NOTIFY;
}
return do_setlink(skb, dev, ifm, tb, ifname, status);
}
if (!(nlh->nlmsg_flags & NLM_F_CREATE)) {
if (ifm->ifi_index == 0 && tb[IFLA_GROUP])
return rtnl_group_changelink(skb, net,
nla_get_u32(tb[IFLA_GROUP]),
ifm, tb);
return -ENODEV;
}
if (tb[IFLA_MAP] || tb[IFLA_MASTER] || tb[IFLA_PROTINFO])
return -EOPNOTSUPP;
if (!ops) {
#ifdef CONFIG_MODULES
if (kind[0]) {
__rtnl_unlock();
request_module("rtnl-link-%s", kind);
rtnl_lock();
ops = rtnl_link_ops_get(kind);
if (ops)
goto replay;
}
#endif
return -EOPNOTSUPP;
}
if (!ops->setup)
return -EOPNOTSUPP;
if (!ifname[0]) {
snprintf(ifname, IFNAMSIZ, "%s%%d", ops->kind);
name_assign_type = NET_NAME_ENUM;
}
dest_net = rtnl_link_get_net(net, tb);
if (IS_ERR(dest_net))
return PTR_ERR(dest_net);
dev = rtnl_create_link(dest_net, ifname, name_assign_type, ops, tb);
if (IS_ERR(dev)) {
err = PTR_ERR(dev);
goto out;
}
dev->ifindex = ifm->ifi_index;
if (ops->newlink) {
err = ops->newlink(net, dev, tb, data);
/* Drivers should call free_netdev() in ->destructor
* and unregister it on failure after registration
* so that device could be finally freed in rtnl_unlock.
*/
if (err < 0) {
/* If device is not registered at all, free it now */
if (dev->reg_state == NETREG_UNINITIALIZED)
free_netdev(dev);
goto out;
}
} else {
err = register_netdevice(dev);
if (err < 0) {
free_netdev(dev);
goto out;
}
}
err = rtnl_configure_link(dev, ifm);
if (err < 0)
unregister_netdevice(dev);
out:
put_net(dest_net);
return err;
}
}
static int rtnl_getlink(struct sk_buff *skb, struct nlmsghdr* nlh)
{
struct net *net = sock_net(skb->sk);
struct ifinfomsg *ifm;
char ifname[IFNAMSIZ];
struct nlattr *tb[IFLA_MAX+1];
struct net_device *dev = NULL;
struct sk_buff *nskb;
int err;
u32 ext_filter_mask = 0;
err = nlmsg_parse(nlh, sizeof(*ifm), tb, IFLA_MAX, ifla_policy);
if (err < 0)
return err;
if (tb[IFLA_IFNAME])
nla_strlcpy(ifname, tb[IFLA_IFNAME], IFNAMSIZ);
if (tb[IFLA_EXT_MASK])
ext_filter_mask = nla_get_u32(tb[IFLA_EXT_MASK]);
ifm = nlmsg_data(nlh);
if (ifm->ifi_index > 0)
dev = __dev_get_by_index(net, ifm->ifi_index);
else if (tb[IFLA_IFNAME])
dev = __dev_get_by_name(net, ifname);
else
return -EINVAL;
if (dev == NULL)
return -ENODEV;
nskb = nlmsg_new(if_nlmsg_size(dev, ext_filter_mask), GFP_KERNEL);
if (nskb == NULL)
return -ENOBUFS;
err = rtnl_fill_ifinfo(nskb, dev, RTM_NEWLINK, NETLINK_CB(skb).portid,
nlh->nlmsg_seq, 0, 0, ext_filter_mask);
if (err < 0) {
/* -EMSGSIZE implies BUG in if_nlmsg_size */
WARN_ON(err == -EMSGSIZE);
kfree_skb(nskb);
} else
err = rtnl_unicast(nskb, net, NETLINK_CB(skb).portid);
return err;
}
static u16 rtnl_calcit(struct sk_buff *skb, struct nlmsghdr *nlh)
{
struct net *net = sock_net(skb->sk);
struct net_device *dev;
struct nlattr *tb[IFLA_MAX+1];
u32 ext_filter_mask = 0;
u16 min_ifinfo_dump_size = 0;
int hdrlen;
/* Same kernel<->userspace interface hack as in rtnl_dump_ifinfo. */
hdrlen = nlmsg_len(nlh) < sizeof(struct ifinfomsg) ?
sizeof(struct rtgenmsg) : sizeof(struct ifinfomsg);
if (nlmsg_parse(nlh, hdrlen, tb, IFLA_MAX, ifla_policy) >= 0) {
if (tb[IFLA_EXT_MASK])
ext_filter_mask = nla_get_u32(tb[IFLA_EXT_MASK]);
}
if (!ext_filter_mask)
return NLMSG_GOODSIZE;
/*
* traverse the list of net devices and compute the minimum
* buffer size based upon the filter mask.
*/
list_for_each_entry(dev, &net->dev_base_head, dev_list) {
min_ifinfo_dump_size = max_t(u16, min_ifinfo_dump_size,
if_nlmsg_size(dev,
ext_filter_mask));
}
return min_ifinfo_dump_size;
}
static int rtnl_dump_all(struct sk_buff *skb, struct netlink_callback *cb)
{
int idx;
int s_idx = cb->family;
if (s_idx == 0)
s_idx = 1;
for (idx = 1; idx <= RTNL_FAMILY_MAX; idx++) {
int type = cb->nlh->nlmsg_type-RTM_BASE;
if (idx < s_idx || idx == PF_PACKET)
continue;
if (rtnl_msg_handlers[idx] == NULL ||
rtnl_msg_handlers[idx][type].dumpit == NULL)
continue;
if (idx > s_idx) {
memset(&cb->args[0], 0, sizeof(cb->args));
cb->prev_seq = 0;
cb->seq = 0;
}
if (rtnl_msg_handlers[idx][type].dumpit(skb, cb))
break;
}
cb->family = idx;
return skb->len;
}
void rtmsg_ifinfo(int type, struct net_device *dev, unsigned int change,
gfp_t flags)
{
struct net *net = dev_net(dev);
struct sk_buff *skb;
int err = -ENOBUFS;
size_t if_info_size;
skb = nlmsg_new((if_info_size = if_nlmsg_size(dev, 0)), flags);
if (skb == NULL)
goto errout;
err = rtnl_fill_ifinfo(skb, dev, type, 0, 0, change, 0, 0);
if (err < 0) {
/* -EMSGSIZE implies BUG in if_nlmsg_size() */
WARN_ON(err == -EMSGSIZE);
kfree_skb(skb);
goto errout;
}
rtnl_notify(skb, net, 0, RTNLGRP_LINK, NULL, flags);
return;
errout:
if (err < 0)
rtnl_set_sk_err(net, RTNLGRP_LINK, err);
}
EXPORT_SYMBOL(rtmsg_ifinfo);
static int nlmsg_populate_fdb_fill(struct sk_buff *skb,
struct net_device *dev,
u8 *addr, u32 pid, u32 seq,
int type, unsigned int flags,
int nlflags)
{
struct nlmsghdr *nlh;
struct ndmsg *ndm;
nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), nlflags);
if (!nlh)
return -EMSGSIZE;
ndm = nlmsg_data(nlh);
ndm->ndm_family = AF_BRIDGE;
ndm->ndm_pad1 = 0;
ndm->ndm_pad2 = 0;
ndm->ndm_flags = flags;
ndm->ndm_type = 0;
ndm->ndm_ifindex = dev->ifindex;
ndm->ndm_state = NUD_PERMANENT;
if (nla_put(skb, NDA_LLADDR, ETH_ALEN, addr))
goto nla_put_failure;
return nlmsg_end(skb, nlh);
nla_put_failure:
nlmsg_cancel(skb, nlh);
return -EMSGSIZE;
}
static inline size_t rtnl_fdb_nlmsg_size(void)
{
return NLMSG_ALIGN(sizeof(struct ndmsg)) + nla_total_size(ETH_ALEN);
}
static void rtnl_fdb_notify(struct net_device *dev, u8 *addr, int type)
{
struct net *net = dev_net(dev);
struct sk_buff *skb;
int err = -ENOBUFS;
skb = nlmsg_new(rtnl_fdb_nlmsg_size(), GFP_ATOMIC);
if (!skb)
goto errout;
err = nlmsg_populate_fdb_fill(skb, dev, addr, 0, 0, type, NTF_SELF, 0);
if (err < 0) {
kfree_skb(skb);
goto errout;
}
rtnl_notify(skb, net, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC);
return;
errout:
rtnl_set_sk_err(net, RTNLGRP_NEIGH, err);
}
/**
* ndo_dflt_fdb_add - default netdevice operation to add an FDB entry
*/
int ndo_dflt_fdb_add(struct ndmsg *ndm,
struct nlattr *tb[],
struct net_device *dev,
const unsigned char *addr,
u16 flags)
{
int err = -EINVAL;
/* If aging addresses are supported device will need to
* implement its own handler for this.
*/
if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
pr_info("%s: FDB only supports static addresses\n", dev->name);
return err;
}
if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
err = dev_uc_add_excl(dev, addr);
else if (is_multicast_ether_addr(addr))
err = dev_mc_add_excl(dev, addr);
/* Only return duplicate errors if NLM_F_EXCL is set */
if (err == -EEXIST && !(flags & NLM_F_EXCL))
err = 0;
return err;
}
EXPORT_SYMBOL(ndo_dflt_fdb_add);
static int rtnl_fdb_add(struct sk_buff *skb, struct nlmsghdr *nlh)
{
struct net *net = sock_net(skb->sk);
struct ndmsg *ndm;
struct nlattr *tb[NDA_MAX+1];
struct net_device *dev;
u8 *addr;
int err;
err = nlmsg_parse(nlh, sizeof(*ndm), tb, NDA_MAX, NULL);
if (err < 0)
return err;
ndm = nlmsg_data(nlh);
if (ndm->ndm_ifindex == 0) {
pr_info("PF_BRIDGE: RTM_NEWNEIGH with invalid ifindex\n");
return -EINVAL;
}
dev = __dev_get_by_index(net, ndm->ndm_ifindex);
if (dev == NULL) {
pr_info("PF_BRIDGE: RTM_NEWNEIGH with unknown ifindex\n");
return -ENODEV;
}
if (!tb[NDA_LLADDR] || nla_len(tb[NDA_LLADDR]) != ETH_ALEN) {
pr_info("PF_BRIDGE: RTM_NEWNEIGH with invalid address\n");
return -EINVAL;
}
addr = nla_data(tb[NDA_LLADDR]);
err = -EOPNOTSUPP;
/* Support fdb on master device the net/bridge default case */
if ((!ndm->ndm_flags || ndm->ndm_flags & NTF_MASTER) &&
(dev->priv_flags & IFF_BRIDGE_PORT)) {
struct net_device *br_dev = netdev_master_upper_dev_get(dev);
const struct net_device_ops *ops = br_dev->netdev_ops;
err = ops->ndo_fdb_add(ndm, tb, dev, addr, nlh->nlmsg_flags);
if (err)
goto out;
else
ndm->ndm_flags &= ~NTF_MASTER;
}
/* Embedded bridge, macvlan, and any other device support */
if ((ndm->ndm_flags & NTF_SELF)) {
if (dev->netdev_ops->ndo_fdb_add)
err = dev->netdev_ops->ndo_fdb_add(ndm, tb, dev, addr,
nlh->nlmsg_flags);
else
err = ndo_dflt_fdb_add(ndm, tb, dev, addr,
nlh->nlmsg_flags);
if (!err) {
rtnl_fdb_notify(dev, addr, RTM_NEWNEIGH);
ndm->ndm_flags &= ~NTF_SELF;
}
}
out:
return err;
}
/**
* ndo_dflt_fdb_del - default netdevice operation to delete an FDB entry
*/
int ndo_dflt_fdb_del(struct ndmsg *ndm,
struct nlattr *tb[],
struct net_device *dev,
const unsigned char *addr)
{
int err = -EINVAL;
/* If aging addresses are supported device will need to
* implement its own handler for this.
*/
if (!(ndm->ndm_state & NUD_PERMANENT)) {
pr_info("%s: FDB only supports static addresses\n", dev->name);
return err;
}
if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
err = dev_uc_del(dev, addr);
else if (is_multicast_ether_addr(addr))
err = dev_mc_del(dev, addr);
return err;
}
EXPORT_SYMBOL(ndo_dflt_fdb_del);
static int rtnl_fdb_del(struct sk_buff *skb, struct nlmsghdr *nlh)
{
struct net *net = sock_net(skb->sk);
struct ndmsg *ndm;
struct nlattr *tb[NDA_MAX+1];
struct net_device *dev;
int err = -EINVAL;
__u8 *addr;
if (!netlink_capable(skb, CAP_NET_ADMIN))
return -EPERM;
err = nlmsg_parse(nlh, sizeof(*ndm), tb, NDA_MAX, NULL);
if (err < 0)
return err;
ndm = nlmsg_data(nlh);
if (ndm->ndm_ifindex == 0) {
pr_info("PF_BRIDGE: RTM_DELNEIGH with invalid ifindex\n");
return -EINVAL;
}
dev = __dev_get_by_index(net, ndm->ndm_ifindex);
if (dev == NULL) {
pr_info("PF_BRIDGE: RTM_DELNEIGH with unknown ifindex\n");
return -ENODEV;
}
if (!tb[NDA_LLADDR] || nla_len(tb[NDA_LLADDR]) != ETH_ALEN) {
pr_info("PF_BRIDGE: RTM_DELNEIGH with invalid address\n");
return -EINVAL;
}
addr = nla_data(tb[NDA_LLADDR]);
err = -EOPNOTSUPP;
/* Support fdb on master device the net/bridge default case */
if ((!ndm->ndm_flags || ndm->ndm_flags & NTF_MASTER) &&
(dev->priv_flags & IFF_BRIDGE_PORT)) {
struct net_device *br_dev = netdev_master_upper_dev_get(dev);
const struct net_device_ops *ops = br_dev->netdev_ops;
if (ops->ndo_fdb_del)
err = ops->ndo_fdb_del(ndm, tb, dev, addr);
if (err)
goto out;
else
ndm->ndm_flags &= ~NTF_MASTER;
}
/* Embedded bridge, macvlan, and any other device support */
if (ndm->ndm_flags & NTF_SELF) {
if (dev->netdev_ops->ndo_fdb_del)
err = dev->netdev_ops->ndo_fdb_del(ndm, tb, dev, addr);
else
err = ndo_dflt_fdb_del(ndm, tb, dev, addr);
if (!err) {
rtnl_fdb_notify(dev, addr, RTM_DELNEIGH);
ndm->ndm_flags &= ~NTF_SELF;
}
}
out:
return err;
}
static int nlmsg_populate_fdb(struct sk_buff *skb,
struct netlink_callback *cb,
struct net_device *dev,
int *idx,
struct netdev_hw_addr_list *list)
{
struct netdev_hw_addr *ha;
int err;
u32 portid, seq;
portid = NETLINK_CB(cb->skb).portid;
seq = cb->nlh->nlmsg_seq;
list_for_each_entry(ha, &list->list, list) {
if (*idx < cb->args[0])
goto skip;
err = nlmsg_populate_fdb_fill(skb, dev, ha->addr,
portid, seq,
RTM_NEWNEIGH, NTF_SELF,
NLM_F_MULTI);
if (err < 0)
return err;
skip:
*idx += 1;
}
return 0;
}
/**
* ndo_dflt_fdb_dump - default netdevice operation to dump an FDB table.
* @nlh: netlink message header
* @dev: netdevice
*
* Default netdevice operation to dump the existing unicast address list.
* Returns number of addresses from list put in skb.
*/
int ndo_dflt_fdb_dump(struct sk_buff *skb,
struct netlink_callback *cb,
struct net_device *dev,
struct net_device *filter_dev,
int idx)
{
int err;
netif_addr_lock_bh(dev);
err = nlmsg_populate_fdb(skb, cb, dev, &idx, &dev->uc);
if (err)
goto out;
nlmsg_populate_fdb(skb, cb, dev, &idx, &dev->mc);
out:
netif_addr_unlock_bh(dev);
return idx;
}
EXPORT_SYMBOL(ndo_dflt_fdb_dump);
static int rtnl_fdb_dump(struct sk_buff *skb, struct netlink_callback *cb)
{
struct net_device *dev;
struct nlattr *tb[IFLA_MAX+1];
struct net_device *bdev = NULL;
struct net_device *br_dev = NULL;
const struct net_device_ops *ops = NULL;
const struct net_device_ops *cops = NULL;
struct ifinfomsg *ifm = nlmsg_data(cb->nlh);
struct net *net = sock_net(skb->sk);
int brport_idx = 0;
int br_idx = 0;
int idx = 0;
if (nlmsg_parse(cb->nlh, sizeof(struct ifinfomsg), tb, IFLA_MAX,
ifla_policy) == 0) {
if (tb[IFLA_MASTER])
br_idx = nla_get_u32(tb[IFLA_MASTER]);
}
brport_idx = ifm->ifi_index;
if (br_idx) {
br_dev = __dev_get_by_index(net, br_idx);
if (!br_dev)
return -ENODEV;
ops = br_dev->netdev_ops;
bdev = br_dev;
}
for_each_netdev(net, dev) {
if (brport_idx && (dev->ifindex != brport_idx))
continue;
if (!br_idx) { /* user did not specify a specific bridge */
if (dev->priv_flags & IFF_BRIDGE_PORT) {
br_dev = netdev_master_upper_dev_get(dev);
cops = br_dev->netdev_ops;
}
bdev = dev;
} else {
if (dev != br_dev &&
!(dev->priv_flags & IFF_BRIDGE_PORT))
continue;
if (br_dev != netdev_master_upper_dev_get(dev) &&
!(dev->priv_flags & IFF_EBRIDGE))
continue;
bdev = br_dev;
cops = ops;
}
if (dev->priv_flags & IFF_BRIDGE_PORT) {
if (cops && cops->ndo_fdb_dump)
idx = cops->ndo_fdb_dump(skb, cb, br_dev, dev,
idx);
}
idx = ndo_dflt_fdb_dump(skb, cb, dev, NULL, idx);
if (dev->netdev_ops->ndo_fdb_dump)
idx = dev->netdev_ops->ndo_fdb_dump(skb, cb, bdev, dev,
idx);
cops = NULL;
}
cb->args[0] = idx;
return skb->len;
}
int ndo_dflt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
struct net_device *dev, u16 mode)
{
struct nlmsghdr *nlh;
struct ifinfomsg *ifm;
struct nlattr *br_afspec;
u8 operstate = netif_running(dev) ? dev->operstate : IF_OPER_DOWN;
struct net_device *br_dev = netdev_master_upper_dev_get(dev);
nlh = nlmsg_put(skb, pid, seq, RTM_NEWLINK, sizeof(*ifm), NLM_F_MULTI);
if (nlh == NULL)
return -EMSGSIZE;
ifm = nlmsg_data(nlh);
ifm->ifi_family = AF_BRIDGE;
ifm->__ifi_pad = 0;
ifm->ifi_type = dev->type;
ifm->ifi_index = dev->ifindex;
ifm->ifi_flags = dev_get_flags(dev);
ifm->ifi_change = 0;
if (nla_put_string(skb, IFLA_IFNAME, dev->name) ||
nla_put_u32(skb, IFLA_MTU, dev->mtu) ||
nla_put_u8(skb, IFLA_OPERSTATE, operstate) ||
(br_dev &&
nla_put_u32(skb, IFLA_MASTER, br_dev->ifindex)) ||
(dev->addr_len &&
nla_put(skb, IFLA_ADDRESS, dev->addr_len, dev->dev_addr)) ||
(dev->ifindex != dev->iflink &&
nla_put_u32(skb, IFLA_LINK, dev->iflink)))
goto nla_put_failure;
br_afspec = nla_nest_start(skb, IFLA_AF_SPEC);
if (!br_afspec)
goto nla_put_failure;
if (nla_put_u16(skb, IFLA_BRIDGE_FLAGS, BRIDGE_FLAGS_SELF) ||
nla_put_u16(skb, IFLA_BRIDGE_MODE, mode)) {
nla_nest_cancel(skb, br_afspec);
goto nla_put_failure;
}
nla_nest_end(skb, br_afspec);
return nlmsg_end(skb, nlh);
nla_put_failure:
nlmsg_cancel(skb, nlh);
return -EMSGSIZE;
}
EXPORT_SYMBOL(ndo_dflt_bridge_getlink);
static int rtnl_bridge_getlink(struct sk_buff *skb, struct netlink_callback *cb)
{
struct net *net = sock_net(skb->sk);
struct net_device *dev;
int idx = 0;
u32 portid = NETLINK_CB(cb->skb).portid;
u32 seq = cb->nlh->nlmsg_seq;
u32 filter_mask = 0;
if (nlmsg_len(cb->nlh) > sizeof(struct ifinfomsg)) {
struct nlattr *extfilt;
extfilt = nlmsg_find_attr(cb->nlh, sizeof(struct ifinfomsg),
IFLA_EXT_MASK);
if (extfilt) {
if (nla_len(extfilt) < sizeof(filter_mask))
return -EINVAL;
filter_mask = nla_get_u32(extfilt);
}
}
rcu_read_lock();
for_each_netdev_rcu(net, dev) {
const struct net_device_ops *ops = dev->netdev_ops;
struct net_device *br_dev = netdev_master_upper_dev_get(dev);
if (br_dev && br_dev->netdev_ops->ndo_bridge_getlink) {
if (idx >= cb->args[0] &&
br_dev->netdev_ops->ndo_bridge_getlink(
skb, portid, seq, dev, filter_mask) < 0)
break;
idx++;
}
if (ops->ndo_bridge_getlink) {
if (idx >= cb->args[0] &&
ops->ndo_bridge_getlink(skb, portid, seq, dev,
filter_mask) < 0)
break;
idx++;
}
}
rcu_read_unlock();
cb->args[0] = idx;
return skb->len;
}
static inline size_t bridge_nlmsg_size(void)
{
return NLMSG_ALIGN(sizeof(struct ifinfomsg))
+ nla_total_size(IFNAMSIZ) /* IFLA_IFNAME */
+ nla_total_size(MAX_ADDR_LEN) /* IFLA_ADDRESS */
+ nla_total_size(sizeof(u32)) /* IFLA_MASTER */
+ nla_total_size(sizeof(u32)) /* IFLA_MTU */
+ nla_total_size(sizeof(u32)) /* IFLA_LINK */
+ nla_total_size(sizeof(u32)) /* IFLA_OPERSTATE */
+ nla_total_size(sizeof(u8)) /* IFLA_PROTINFO */
+ nla_total_size(sizeof(struct nlattr)) /* IFLA_AF_SPEC */
+ nla_total_size(sizeof(u16)) /* IFLA_BRIDGE_FLAGS */
+ nla_total_size(sizeof(u16)); /* IFLA_BRIDGE_MODE */
}
static int rtnl_bridge_notify(struct net_device *dev, u16 flags)
{
struct net *net = dev_net(dev);
struct net_device *br_dev = netdev_master_upper_dev_get(dev);
struct sk_buff *skb;
int err = -EOPNOTSUPP;
skb = nlmsg_new(bridge_nlmsg_size(), GFP_ATOMIC);
if (!skb) {
err = -ENOMEM;
goto errout;
}
if ((!flags || (flags & BRIDGE_FLAGS_MASTER)) &&
br_dev && br_dev->netdev_ops->ndo_bridge_getlink) {
err = br_dev->netdev_ops->ndo_bridge_getlink(skb, 0, 0, dev, 0);
if (err < 0)
goto errout;
}
if ((flags & BRIDGE_FLAGS_SELF) &&
dev->netdev_ops->ndo_bridge_getlink) {
err = dev->netdev_ops->ndo_bridge_getlink(skb, 0, 0, dev, 0);
if (err < 0)
goto errout;
}
rtnl_notify(skb, net, 0, RTNLGRP_LINK, NULL, GFP_ATOMIC);
return 0;
errout:
WARN_ON(err == -EMSGSIZE);
kfree_skb(skb);
rtnl_set_sk_err(net, RTNLGRP_LINK, err);
return err;
}
static int rtnl_bridge_setlink(struct sk_buff *skb, struct nlmsghdr *nlh)
{
struct net *net = sock_net(skb->sk);
struct ifinfomsg *ifm;
struct net_device *dev;
struct nlattr *br_spec, *attr = NULL;
int rem, err = -EOPNOTSUPP;
u16 oflags, flags = 0;
bool have_flags = false;
if (nlmsg_len(nlh) < sizeof(*ifm))
return -EINVAL;
ifm = nlmsg_data(nlh);
if (ifm->ifi_family != AF_BRIDGE)
return -EPFNOSUPPORT;
dev = __dev_get_by_index(net, ifm->ifi_index);
if (!dev) {
pr_info("PF_BRIDGE: RTM_SETLINK with unknown ifindex\n");
return -ENODEV;
}
br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
if (br_spec) {
nla_for_each_nested(attr, br_spec, rem) {
if (nla_type(attr) == IFLA_BRIDGE_FLAGS) {
if (nla_len(attr) < sizeof(flags))
return -EINVAL;
have_flags = true;
flags = nla_get_u16(attr);
break;
}
}
}
oflags = flags;
if (!flags || (flags & BRIDGE_FLAGS_MASTER)) {
struct net_device *br_dev = netdev_master_upper_dev_get(dev);
if (!br_dev || !br_dev->netdev_ops->ndo_bridge_setlink) {
err = -EOPNOTSUPP;
goto out;
}
err = br_dev->netdev_ops->ndo_bridge_setlink(dev, nlh);
if (err)
goto out;
flags &= ~BRIDGE_FLAGS_MASTER;
}
if ((flags & BRIDGE_FLAGS_SELF)) {
if (!dev->netdev_ops->ndo_bridge_setlink)
err = -EOPNOTSUPP;
else
err = dev->netdev_ops->ndo_bridge_setlink(dev, nlh);
if (!err)
flags &= ~BRIDGE_FLAGS_SELF;
}
if (have_flags)
memcpy(nla_data(attr), &flags, sizeof(flags));
/* Generate event to notify upper layer of bridge change */
if (!err)
err = rtnl_bridge_notify(dev, oflags);
out:
return err;
}
static int rtnl_bridge_dellink(struct sk_buff *skb, struct nlmsghdr *nlh)
{
struct net *net = sock_net(skb->sk);
struct ifinfomsg *ifm;
struct net_device *dev;
struct nlattr *br_spec, *attr = NULL;
int rem, err = -EOPNOTSUPP;
u16 oflags, flags = 0;
bool have_flags = false;
if (nlmsg_len(nlh) < sizeof(*ifm))
return -EINVAL;
ifm = nlmsg_data(nlh);
if (ifm->ifi_family != AF_BRIDGE)
return -EPFNOSUPPORT;
dev = __dev_get_by_index(net, ifm->ifi_index);
if (!dev) {
pr_info("PF_BRIDGE: RTM_SETLINK with unknown ifindex\n");
return -ENODEV;
}
br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
if (br_spec) {
nla_for_each_nested(attr, br_spec, rem) {
if (nla_type(attr) == IFLA_BRIDGE_FLAGS) {
if (nla_len(attr) < sizeof(flags))
return -EINVAL;
have_flags = true;
flags = nla_get_u16(attr);
break;
}
}
}
oflags = flags;
if (!flags || (flags & BRIDGE_FLAGS_MASTER)) {
struct net_device *br_dev = netdev_master_upper_dev_get(dev);
if (!br_dev || !br_dev->netdev_ops->ndo_bridge_dellink) {
err = -EOPNOTSUPP;
goto out;
}
err = br_dev->netdev_ops->ndo_bridge_dellink(dev, nlh);
if (err)
goto out;
flags &= ~BRIDGE_FLAGS_MASTER;
}
if ((flags & BRIDGE_FLAGS_SELF)) {
if (!dev->netdev_ops->ndo_bridge_dellink)
err = -EOPNOTSUPP;
else
err = dev->netdev_ops->ndo_bridge_dellink(dev, nlh);
if (!err)
flags &= ~BRIDGE_FLAGS_SELF;
}
if (have_flags)
memcpy(nla_data(attr), &flags, sizeof(flags));
/* Generate event to notify upper layer of bridge change */
if (!err)
err = rtnl_bridge_notify(dev, oflags);
out:
return err;
}
/* Process one rtnetlink message. */
static int rtnetlink_rcv_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
{
struct net *net = sock_net(skb->sk);
rtnl_doit_func doit;
int sz_idx, kind;
int family;
int type;
int err;
type = nlh->nlmsg_type;
if (type > RTM_MAX)
return -EOPNOTSUPP;
type -= RTM_BASE;
/* All the messages must have at least 1 byte length */
if (nlmsg_len(nlh) < sizeof(struct rtgenmsg))
return 0;
family = ((struct rtgenmsg *)nlmsg_data(nlh))->rtgen_family;
sz_idx = type>>2;
kind = type&3;
if (kind != 2 && !netlink_net_capable(skb, CAP_NET_ADMIN))
return -EPERM;
if (kind == 2 && nlh->nlmsg_flags&NLM_F_DUMP) {
struct sock *rtnl;
rtnl_dumpit_func dumpit;
rtnl_calcit_func calcit;
u16 min_dump_alloc = 0;
dumpit = rtnl_get_dumpit(family, type);
if (dumpit == NULL)
return -EOPNOTSUPP;
calcit = rtnl_get_calcit(family, type);
if (calcit)
min_dump_alloc = calcit(skb, nlh);
__rtnl_unlock();
rtnl = net->rtnl;
{
struct netlink_dump_control c = {
.dump = dumpit,
.min_dump_alloc = min_dump_alloc,
};
err = netlink_dump_start(rtnl, skb, nlh, &c);
}
rtnl_lock();
return err;
}
doit = rtnl_get_doit(family, type);
if (doit == NULL)
return -EOPNOTSUPP;
return doit(skb, nlh);
}
static void rtnetlink_rcv(struct sk_buff *skb)
{
rtnl_lock();
netlink_rcv_skb(skb, &rtnetlink_rcv_msg);
rtnl_unlock();
}
static int rtnetlink_event(struct notifier_block *this, unsigned long event, void *ptr)
{
struct net_device *dev = netdev_notifier_info_to_dev(ptr);
switch (event) {
case NETDEV_UP:
case NETDEV_DOWN:
case NETDEV_PRE_UP:
case NETDEV_POST_INIT:
case NETDEV_REGISTER:
case NETDEV_CHANGE:
case NETDEV_PRE_TYPE_CHANGE:
case NETDEV_GOING_DOWN:
case NETDEV_UNREGISTER:
case NETDEV_UNREGISTER_FINAL:
case NETDEV_RELEASE:
case NETDEV_JOIN:
break;
default:
rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
break;
}
return NOTIFY_DONE;
}
static struct notifier_block rtnetlink_dev_notifier = {
.notifier_call = rtnetlink_event,
};
static int __net_init rtnetlink_net_init(struct net *net)
{
struct sock *sk;
struct netlink_kernel_cfg cfg = {
.groups = RTNLGRP_MAX,
.input = rtnetlink_rcv,
.cb_mutex = &rtnl_mutex,
.flags = NL_CFG_F_NONROOT_RECV,
};
sk = netlink_kernel_create(net, NETLINK_ROUTE, &cfg);
if (!sk)
return -ENOMEM;
net->rtnl = sk;
return 0;
}
static void __net_exit rtnetlink_net_exit(struct net *net)
{
netlink_kernel_release(net->rtnl);
net->rtnl = NULL;
}
static struct pernet_operations rtnetlink_net_ops = {
.init = rtnetlink_net_init,
.exit = rtnetlink_net_exit,
};
void __init rtnetlink_init(void)
{
if (register_pernet_subsys(&rtnetlink_net_ops))
panic("rtnetlink_init: cannot initialize rtnetlink\n");
register_netdevice_notifier(&rtnetlink_dev_notifier);
rtnl_register(PF_UNSPEC, RTM_GETLINK, rtnl_getlink,
rtnl_dump_ifinfo, rtnl_calcit);
rtnl_register(PF_UNSPEC, RTM_SETLINK, rtnl_setlink, NULL, NULL);
rtnl_register(PF_UNSPEC, RTM_NEWLINK, rtnl_newlink, NULL, NULL);
rtnl_register(PF_UNSPEC, RTM_DELLINK, rtnl_dellink, NULL, NULL);
rtnl_register(PF_UNSPEC, RTM_GETADDR, NULL, rtnl_dump_all, NULL);
rtnl_register(PF_UNSPEC, RTM_GETROUTE, NULL, rtnl_dump_all, NULL);
rtnl_register(PF_BRIDGE, RTM_NEWNEIGH, rtnl_fdb_add, NULL, NULL);
rtnl_register(PF_BRIDGE, RTM_DELNEIGH, rtnl_fdb_del, NULL, NULL);
rtnl_register(PF_BRIDGE, RTM_GETNEIGH, NULL, rtnl_fdb_dump, NULL);
rtnl_register(PF_BRIDGE, RTM_GETLINK, NULL, rtnl_bridge_getlink, NULL);
rtnl_register(PF_BRIDGE, RTM_DELLINK, rtnl_bridge_dellink, NULL, NULL);
rtnl_register(PF_BRIDGE, RTM_SETLINK, rtnl_bridge_setlink, NULL, NULL);
}