linux/fs/btrfs/transaction.c
Josef Bacik ba2c4d4e3b btrfs: introduce delayed_refs_rsv
Traditionally we've had voodoo in btrfs to account for the space that
delayed refs may take up by having a global_block_rsv.  This works most
of the time, except when it doesn't.  We've had issues reported and seen
in production where sometimes the global reserve is exhausted during
transaction commit before we can run all of our delayed refs, resulting
in an aborted transaction.  Because of this voodoo we have equally
dubious flushing semantics around throttling delayed refs which we often
get wrong.

So instead give them their own block_rsv.  This way we can always know
exactly how much outstanding space we need for delayed refs.  This
allows us to make sure we are constantly filling that reservation up
with space, and allows us to put more precise pressure on the enospc
system.  Instead of doing math to see if its a good time to throttle,
the normal enospc code will be invoked if we have a lot of delayed refs
pending, and they will be run via the normal flushing mechanism.

For now the delayed_refs_rsv will hold the reservations for the delayed
refs, the block group updates, and deleting csums.  We could have a
separate rsv for the block group updates, but the csum deletion stuff is
still handled via the delayed_refs so that will stay there.

Historical background:

The global reserve has grown to cover everything we don't reserve space
explicitly for, and we've grown a lot of weird ad-hoc heuristics to know
if we're running short on space and when it's time to force a commit.  A
failure rate of 20-40 file systems when we run hundreds of thousands of
them isn't super high, but cleaning up this code will make things less
ugly and more predictible.

Thus the delayed refs rsv.  We always know how many delayed refs we have
outstanding, and although running them generates more we can use the
global reserve for that spill over, which fits better into it's desired
use than a full blown reservation.  This first approach is to simply
take how many times we're reserving space for and multiply that by 2 in
order to save enough space for the delayed refs that could be generated.
This is a niave approach and will probably evolve, but for now it works.

Signed-off-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com> # high-level review
[ added background notes from the cover letter ]
Signed-off-by: David Sterba <dsterba@suse.com>
2018-12-17 14:51:46 +01:00

2387 lines
66 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2007 Oracle. All rights reserved.
*/
#include <linux/fs.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/writeback.h>
#include <linux/pagemap.h>
#include <linux/blkdev.h>
#include <linux/uuid.h>
#include "ctree.h"
#include "disk-io.h"
#include "transaction.h"
#include "locking.h"
#include "tree-log.h"
#include "inode-map.h"
#include "volumes.h"
#include "dev-replace.h"
#include "qgroup.h"
#define BTRFS_ROOT_TRANS_TAG 0
static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
[TRANS_STATE_RUNNING] = 0U,
[TRANS_STATE_BLOCKED] = __TRANS_START,
[TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH),
[TRANS_STATE_COMMIT_DOING] = (__TRANS_START |
__TRANS_ATTACH |
__TRANS_JOIN),
[TRANS_STATE_UNBLOCKED] = (__TRANS_START |
__TRANS_ATTACH |
__TRANS_JOIN |
__TRANS_JOIN_NOLOCK),
[TRANS_STATE_COMPLETED] = (__TRANS_START |
__TRANS_ATTACH |
__TRANS_JOIN |
__TRANS_JOIN_NOLOCK),
};
void btrfs_put_transaction(struct btrfs_transaction *transaction)
{
WARN_ON(refcount_read(&transaction->use_count) == 0);
if (refcount_dec_and_test(&transaction->use_count)) {
BUG_ON(!list_empty(&transaction->list));
WARN_ON(!RB_EMPTY_ROOT(
&transaction->delayed_refs.href_root.rb_root));
if (transaction->delayed_refs.pending_csums)
btrfs_err(transaction->fs_info,
"pending csums is %llu",
transaction->delayed_refs.pending_csums);
while (!list_empty(&transaction->pending_chunks)) {
struct extent_map *em;
em = list_first_entry(&transaction->pending_chunks,
struct extent_map, list);
list_del_init(&em->list);
free_extent_map(em);
}
/*
* If any block groups are found in ->deleted_bgs then it's
* because the transaction was aborted and a commit did not
* happen (things failed before writing the new superblock
* and calling btrfs_finish_extent_commit()), so we can not
* discard the physical locations of the block groups.
*/
while (!list_empty(&transaction->deleted_bgs)) {
struct btrfs_block_group_cache *cache;
cache = list_first_entry(&transaction->deleted_bgs,
struct btrfs_block_group_cache,
bg_list);
list_del_init(&cache->bg_list);
btrfs_put_block_group_trimming(cache);
btrfs_put_block_group(cache);
}
kfree(transaction);
}
}
static void clear_btree_io_tree(struct extent_io_tree *tree)
{
spin_lock(&tree->lock);
/*
* Do a single barrier for the waitqueue_active check here, the state
* of the waitqueue should not change once clear_btree_io_tree is
* called.
*/
smp_mb();
while (!RB_EMPTY_ROOT(&tree->state)) {
struct rb_node *node;
struct extent_state *state;
node = rb_first(&tree->state);
state = rb_entry(node, struct extent_state, rb_node);
rb_erase(&state->rb_node, &tree->state);
RB_CLEAR_NODE(&state->rb_node);
/*
* btree io trees aren't supposed to have tasks waiting for
* changes in the flags of extent states ever.
*/
ASSERT(!waitqueue_active(&state->wq));
free_extent_state(state);
cond_resched_lock(&tree->lock);
}
spin_unlock(&tree->lock);
}
static noinline void switch_commit_roots(struct btrfs_transaction *trans)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
struct btrfs_root *root, *tmp;
down_write(&fs_info->commit_root_sem);
list_for_each_entry_safe(root, tmp, &trans->switch_commits,
dirty_list) {
list_del_init(&root->dirty_list);
free_extent_buffer(root->commit_root);
root->commit_root = btrfs_root_node(root);
if (is_fstree(root->root_key.objectid))
btrfs_unpin_free_ino(root);
clear_btree_io_tree(&root->dirty_log_pages);
}
/* We can free old roots now. */
spin_lock(&trans->dropped_roots_lock);
while (!list_empty(&trans->dropped_roots)) {
root = list_first_entry(&trans->dropped_roots,
struct btrfs_root, root_list);
list_del_init(&root->root_list);
spin_unlock(&trans->dropped_roots_lock);
btrfs_drop_and_free_fs_root(fs_info, root);
spin_lock(&trans->dropped_roots_lock);
}
spin_unlock(&trans->dropped_roots_lock);
up_write(&fs_info->commit_root_sem);
}
static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
unsigned int type)
{
if (type & TRANS_EXTWRITERS)
atomic_inc(&trans->num_extwriters);
}
static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
unsigned int type)
{
if (type & TRANS_EXTWRITERS)
atomic_dec(&trans->num_extwriters);
}
static inline void extwriter_counter_init(struct btrfs_transaction *trans,
unsigned int type)
{
atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
}
static inline int extwriter_counter_read(struct btrfs_transaction *trans)
{
return atomic_read(&trans->num_extwriters);
}
/*
* either allocate a new transaction or hop into the existing one
*/
static noinline int join_transaction(struct btrfs_fs_info *fs_info,
unsigned int type)
{
struct btrfs_transaction *cur_trans;
spin_lock(&fs_info->trans_lock);
loop:
/* The file system has been taken offline. No new transactions. */
if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
spin_unlock(&fs_info->trans_lock);
return -EROFS;
}
cur_trans = fs_info->running_transaction;
if (cur_trans) {
if (cur_trans->aborted) {
spin_unlock(&fs_info->trans_lock);
return cur_trans->aborted;
}
if (btrfs_blocked_trans_types[cur_trans->state] & type) {
spin_unlock(&fs_info->trans_lock);
return -EBUSY;
}
refcount_inc(&cur_trans->use_count);
atomic_inc(&cur_trans->num_writers);
extwriter_counter_inc(cur_trans, type);
spin_unlock(&fs_info->trans_lock);
return 0;
}
spin_unlock(&fs_info->trans_lock);
/*
* If we are ATTACH, we just want to catch the current transaction,
* and commit it. If there is no transaction, just return ENOENT.
*/
if (type == TRANS_ATTACH)
return -ENOENT;
/*
* JOIN_NOLOCK only happens during the transaction commit, so
* it is impossible that ->running_transaction is NULL
*/
BUG_ON(type == TRANS_JOIN_NOLOCK);
cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
if (!cur_trans)
return -ENOMEM;
spin_lock(&fs_info->trans_lock);
if (fs_info->running_transaction) {
/*
* someone started a transaction after we unlocked. Make sure
* to redo the checks above
*/
kfree(cur_trans);
goto loop;
} else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
spin_unlock(&fs_info->trans_lock);
kfree(cur_trans);
return -EROFS;
}
cur_trans->fs_info = fs_info;
atomic_set(&cur_trans->num_writers, 1);
extwriter_counter_init(cur_trans, type);
init_waitqueue_head(&cur_trans->writer_wait);
init_waitqueue_head(&cur_trans->commit_wait);
cur_trans->state = TRANS_STATE_RUNNING;
/*
* One for this trans handle, one so it will live on until we
* commit the transaction.
*/
refcount_set(&cur_trans->use_count, 2);
cur_trans->flags = 0;
cur_trans->start_time = ktime_get_seconds();
memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
atomic_set(&cur_trans->delayed_refs.num_entries, 0);
/*
* although the tree mod log is per file system and not per transaction,
* the log must never go across transaction boundaries.
*/
smp_mb();
if (!list_empty(&fs_info->tree_mod_seq_list))
WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
atomic64_set(&fs_info->tree_mod_seq, 0);
spin_lock_init(&cur_trans->delayed_refs.lock);
INIT_LIST_HEAD(&cur_trans->pending_snapshots);
INIT_LIST_HEAD(&cur_trans->pending_chunks);
INIT_LIST_HEAD(&cur_trans->switch_commits);
INIT_LIST_HEAD(&cur_trans->dirty_bgs);
INIT_LIST_HEAD(&cur_trans->io_bgs);
INIT_LIST_HEAD(&cur_trans->dropped_roots);
mutex_init(&cur_trans->cache_write_mutex);
cur_trans->num_dirty_bgs = 0;
spin_lock_init(&cur_trans->dirty_bgs_lock);
INIT_LIST_HEAD(&cur_trans->deleted_bgs);
spin_lock_init(&cur_trans->dropped_roots_lock);
list_add_tail(&cur_trans->list, &fs_info->trans_list);
extent_io_tree_init(&cur_trans->dirty_pages,
fs_info->btree_inode);
fs_info->generation++;
cur_trans->transid = fs_info->generation;
fs_info->running_transaction = cur_trans;
cur_trans->aborted = 0;
spin_unlock(&fs_info->trans_lock);
return 0;
}
/*
* this does all the record keeping required to make sure that a reference
* counted root is properly recorded in a given transaction. This is required
* to make sure the old root from before we joined the transaction is deleted
* when the transaction commits
*/
static int record_root_in_trans(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
int force)
{
struct btrfs_fs_info *fs_info = root->fs_info;
if ((test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
root->last_trans < trans->transid) || force) {
WARN_ON(root == fs_info->extent_root);
WARN_ON(!force && root->commit_root != root->node);
/*
* see below for IN_TRANS_SETUP usage rules
* we have the reloc mutex held now, so there
* is only one writer in this function
*/
set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
/* make sure readers find IN_TRANS_SETUP before
* they find our root->last_trans update
*/
smp_wmb();
spin_lock(&fs_info->fs_roots_radix_lock);
if (root->last_trans == trans->transid && !force) {
spin_unlock(&fs_info->fs_roots_radix_lock);
return 0;
}
radix_tree_tag_set(&fs_info->fs_roots_radix,
(unsigned long)root->root_key.objectid,
BTRFS_ROOT_TRANS_TAG);
spin_unlock(&fs_info->fs_roots_radix_lock);
root->last_trans = trans->transid;
/* this is pretty tricky. We don't want to
* take the relocation lock in btrfs_record_root_in_trans
* unless we're really doing the first setup for this root in
* this transaction.
*
* Normally we'd use root->last_trans as a flag to decide
* if we want to take the expensive mutex.
*
* But, we have to set root->last_trans before we
* init the relocation root, otherwise, we trip over warnings
* in ctree.c. The solution used here is to flag ourselves
* with root IN_TRANS_SETUP. When this is 1, we're still
* fixing up the reloc trees and everyone must wait.
*
* When this is zero, they can trust root->last_trans and fly
* through btrfs_record_root_in_trans without having to take the
* lock. smp_wmb() makes sure that all the writes above are
* done before we pop in the zero below
*/
btrfs_init_reloc_root(trans, root);
smp_mb__before_atomic();
clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
}
return 0;
}
void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
struct btrfs_root *root)
{
struct btrfs_fs_info *fs_info = root->fs_info;
struct btrfs_transaction *cur_trans = trans->transaction;
/* Add ourselves to the transaction dropped list */
spin_lock(&cur_trans->dropped_roots_lock);
list_add_tail(&root->root_list, &cur_trans->dropped_roots);
spin_unlock(&cur_trans->dropped_roots_lock);
/* Make sure we don't try to update the root at commit time */
spin_lock(&fs_info->fs_roots_radix_lock);
radix_tree_tag_clear(&fs_info->fs_roots_radix,
(unsigned long)root->root_key.objectid,
BTRFS_ROOT_TRANS_TAG);
spin_unlock(&fs_info->fs_roots_radix_lock);
}
int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
struct btrfs_root *root)
{
struct btrfs_fs_info *fs_info = root->fs_info;
if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
return 0;
/*
* see record_root_in_trans for comments about IN_TRANS_SETUP usage
* and barriers
*/
smp_rmb();
if (root->last_trans == trans->transid &&
!test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
return 0;
mutex_lock(&fs_info->reloc_mutex);
record_root_in_trans(trans, root, 0);
mutex_unlock(&fs_info->reloc_mutex);
return 0;
}
static inline int is_transaction_blocked(struct btrfs_transaction *trans)
{
return (trans->state >= TRANS_STATE_BLOCKED &&
trans->state < TRANS_STATE_UNBLOCKED &&
!trans->aborted);
}
/* wait for commit against the current transaction to become unblocked
* when this is done, it is safe to start a new transaction, but the current
* transaction might not be fully on disk.
*/
static void wait_current_trans(struct btrfs_fs_info *fs_info)
{
struct btrfs_transaction *cur_trans;
spin_lock(&fs_info->trans_lock);
cur_trans = fs_info->running_transaction;
if (cur_trans && is_transaction_blocked(cur_trans)) {
refcount_inc(&cur_trans->use_count);
spin_unlock(&fs_info->trans_lock);
wait_event(fs_info->transaction_wait,
cur_trans->state >= TRANS_STATE_UNBLOCKED ||
cur_trans->aborted);
btrfs_put_transaction(cur_trans);
} else {
spin_unlock(&fs_info->trans_lock);
}
}
static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
{
if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
return 0;
if (type == TRANS_START)
return 1;
return 0;
}
static inline bool need_reserve_reloc_root(struct btrfs_root *root)
{
struct btrfs_fs_info *fs_info = root->fs_info;
if (!fs_info->reloc_ctl ||
!test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
root->reloc_root)
return false;
return true;
}
static struct btrfs_trans_handle *
start_transaction(struct btrfs_root *root, unsigned int num_items,
unsigned int type, enum btrfs_reserve_flush_enum flush,
bool enforce_qgroups)
{
struct btrfs_fs_info *fs_info = root->fs_info;
struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
struct btrfs_trans_handle *h;
struct btrfs_transaction *cur_trans;
u64 num_bytes = 0;
u64 qgroup_reserved = 0;
bool reloc_reserved = false;
int ret;
/* Send isn't supposed to start transactions. */
ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
return ERR_PTR(-EROFS);
if (current->journal_info) {
WARN_ON(type & TRANS_EXTWRITERS);
h = current->journal_info;
refcount_inc(&h->use_count);
WARN_ON(refcount_read(&h->use_count) > 2);
h->orig_rsv = h->block_rsv;
h->block_rsv = NULL;
goto got_it;
}
/*
* Do the reservation before we join the transaction so we can do all
* the appropriate flushing if need be.
*/
if (num_items && root != fs_info->chunk_root) {
struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
u64 delayed_refs_bytes = 0;
qgroup_reserved = num_items * fs_info->nodesize;
ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
enforce_qgroups);
if (ret)
return ERR_PTR(ret);
/*
* We want to reserve all the bytes we may need all at once, so
* we only do 1 enospc flushing cycle per transaction start. We
* accomplish this by simply assuming we'll do 2 x num_items
* worth of delayed refs updates in this trans handle, and
* refill that amount for whatever is missing in the reserve.
*/
num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items);
if (delayed_refs_rsv->full == 0) {
delayed_refs_bytes = num_bytes;
num_bytes <<= 1;
}
/*
* Do the reservation for the relocation root creation
*/
if (need_reserve_reloc_root(root)) {
num_bytes += fs_info->nodesize;
reloc_reserved = true;
}
ret = btrfs_block_rsv_add(root, rsv, num_bytes, flush);
if (ret)
goto reserve_fail;
if (delayed_refs_bytes) {
btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
delayed_refs_bytes);
num_bytes -= delayed_refs_bytes;
}
} else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
!delayed_refs_rsv->full) {
/*
* Some people call with btrfs_start_transaction(root, 0)
* because they can be throttled, but have some other mechanism
* for reserving space. We still want these guys to refill the
* delayed block_rsv so just add 1 items worth of reservation
* here.
*/
ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
if (ret)
goto reserve_fail;
}
again:
h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
if (!h) {
ret = -ENOMEM;
goto alloc_fail;
}
/*
* If we are JOIN_NOLOCK we're already committing a transaction and
* waiting on this guy, so we don't need to do the sb_start_intwrite
* because we're already holding a ref. We need this because we could
* have raced in and did an fsync() on a file which can kick a commit
* and then we deadlock with somebody doing a freeze.
*
* If we are ATTACH, it means we just want to catch the current
* transaction and commit it, so we needn't do sb_start_intwrite().
*/
if (type & __TRANS_FREEZABLE)
sb_start_intwrite(fs_info->sb);
if (may_wait_transaction(fs_info, type))
wait_current_trans(fs_info);
do {
ret = join_transaction(fs_info, type);
if (ret == -EBUSY) {
wait_current_trans(fs_info);
if (unlikely(type == TRANS_ATTACH))
ret = -ENOENT;
}
} while (ret == -EBUSY);
if (ret < 0)
goto join_fail;
cur_trans = fs_info->running_transaction;
h->transid = cur_trans->transid;
h->transaction = cur_trans;
h->root = root;
refcount_set(&h->use_count, 1);
h->fs_info = root->fs_info;
h->type = type;
h->can_flush_pending_bgs = true;
INIT_LIST_HEAD(&h->new_bgs);
smp_mb();
if (cur_trans->state >= TRANS_STATE_BLOCKED &&
may_wait_transaction(fs_info, type)) {
current->journal_info = h;
btrfs_commit_transaction(h);
goto again;
}
if (num_bytes) {
trace_btrfs_space_reservation(fs_info, "transaction",
h->transid, num_bytes, 1);
h->block_rsv = &fs_info->trans_block_rsv;
h->bytes_reserved = num_bytes;
h->reloc_reserved = reloc_reserved;
}
got_it:
btrfs_record_root_in_trans(h, root);
if (!current->journal_info)
current->journal_info = h;
return h;
join_fail:
if (type & __TRANS_FREEZABLE)
sb_end_intwrite(fs_info->sb);
kmem_cache_free(btrfs_trans_handle_cachep, h);
alloc_fail:
if (num_bytes)
btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
num_bytes);
reserve_fail:
btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
return ERR_PTR(ret);
}
struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
unsigned int num_items)
{
return start_transaction(root, num_items, TRANS_START,
BTRFS_RESERVE_FLUSH_ALL, true);
}
struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
struct btrfs_root *root,
unsigned int num_items,
int min_factor)
{
struct btrfs_fs_info *fs_info = root->fs_info;
struct btrfs_trans_handle *trans;
u64 num_bytes;
int ret;
/*
* We have two callers: unlink and block group removal. The
* former should succeed even if we will temporarily exceed
* quota and the latter operates on the extent root so
* qgroup enforcement is ignored anyway.
*/
trans = start_transaction(root, num_items, TRANS_START,
BTRFS_RESERVE_FLUSH_ALL, false);
if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
return trans;
trans = btrfs_start_transaction(root, 0);
if (IS_ERR(trans))
return trans;
num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items);
ret = btrfs_cond_migrate_bytes(fs_info, &fs_info->trans_block_rsv,
num_bytes, min_factor);
if (ret) {
btrfs_end_transaction(trans);
return ERR_PTR(ret);
}
trans->block_rsv = &fs_info->trans_block_rsv;
trans->bytes_reserved = num_bytes;
trace_btrfs_space_reservation(fs_info, "transaction",
trans->transid, num_bytes, 1);
return trans;
}
struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
{
return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
true);
}
struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
{
return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
BTRFS_RESERVE_NO_FLUSH, true);
}
/*
* btrfs_attach_transaction() - catch the running transaction
*
* It is used when we want to commit the current the transaction, but
* don't want to start a new one.
*
* Note: If this function return -ENOENT, it just means there is no
* running transaction. But it is possible that the inactive transaction
* is still in the memory, not fully on disk. If you hope there is no
* inactive transaction in the fs when -ENOENT is returned, you should
* invoke
* btrfs_attach_transaction_barrier()
*/
struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
{
return start_transaction(root, 0, TRANS_ATTACH,
BTRFS_RESERVE_NO_FLUSH, true);
}
/*
* btrfs_attach_transaction_barrier() - catch the running transaction
*
* It is similar to the above function, the differentia is this one
* will wait for all the inactive transactions until they fully
* complete.
*/
struct btrfs_trans_handle *
btrfs_attach_transaction_barrier(struct btrfs_root *root)
{
struct btrfs_trans_handle *trans;
trans = start_transaction(root, 0, TRANS_ATTACH,
BTRFS_RESERVE_NO_FLUSH, true);
if (trans == ERR_PTR(-ENOENT))
btrfs_wait_for_commit(root->fs_info, 0);
return trans;
}
/* wait for a transaction commit to be fully complete */
static noinline void wait_for_commit(struct btrfs_transaction *commit)
{
wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
}
int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
{
struct btrfs_transaction *cur_trans = NULL, *t;
int ret = 0;
if (transid) {
if (transid <= fs_info->last_trans_committed)
goto out;
/* find specified transaction */
spin_lock(&fs_info->trans_lock);
list_for_each_entry(t, &fs_info->trans_list, list) {
if (t->transid == transid) {
cur_trans = t;
refcount_inc(&cur_trans->use_count);
ret = 0;
break;
}
if (t->transid > transid) {
ret = 0;
break;
}
}
spin_unlock(&fs_info->trans_lock);
/*
* The specified transaction doesn't exist, or we
* raced with btrfs_commit_transaction
*/
if (!cur_trans) {
if (transid > fs_info->last_trans_committed)
ret = -EINVAL;
goto out;
}
} else {
/* find newest transaction that is committing | committed */
spin_lock(&fs_info->trans_lock);
list_for_each_entry_reverse(t, &fs_info->trans_list,
list) {
if (t->state >= TRANS_STATE_COMMIT_START) {
if (t->state == TRANS_STATE_COMPLETED)
break;
cur_trans = t;
refcount_inc(&cur_trans->use_count);
break;
}
}
spin_unlock(&fs_info->trans_lock);
if (!cur_trans)
goto out; /* nothing committing|committed */
}
wait_for_commit(cur_trans);
btrfs_put_transaction(cur_trans);
out:
return ret;
}
void btrfs_throttle(struct btrfs_fs_info *fs_info)
{
wait_current_trans(fs_info);
}
static int should_end_transaction(struct btrfs_trans_handle *trans)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
if (btrfs_check_space_for_delayed_refs(trans))
return 1;
return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
}
int btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
{
struct btrfs_transaction *cur_trans = trans->transaction;
int updates;
int err;
smp_mb();
if (cur_trans->state >= TRANS_STATE_BLOCKED ||
cur_trans->delayed_refs.flushing)
return 1;
updates = trans->delayed_ref_updates;
trans->delayed_ref_updates = 0;
if (updates) {
err = btrfs_run_delayed_refs(trans, updates * 2);
if (err) /* Error code will also eval true */
return err;
}
return should_end_transaction(trans);
}
static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
if (!trans->block_rsv) {
ASSERT(!trans->bytes_reserved);
return;
}
if (!trans->bytes_reserved)
return;
ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
trace_btrfs_space_reservation(fs_info, "transaction",
trans->transid, trans->bytes_reserved, 0);
btrfs_block_rsv_release(fs_info, trans->block_rsv,
trans->bytes_reserved);
trans->bytes_reserved = 0;
}
static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
int throttle)
{
struct btrfs_fs_info *info = trans->fs_info;
struct btrfs_transaction *cur_trans = trans->transaction;
u64 transid = trans->transid;
unsigned long cur = trans->delayed_ref_updates;
int lock = (trans->type != TRANS_JOIN_NOLOCK);
int err = 0;
int must_run_delayed_refs = 0;
if (refcount_read(&trans->use_count) > 1) {
refcount_dec(&trans->use_count);
trans->block_rsv = trans->orig_rsv;
return 0;
}
btrfs_trans_release_metadata(trans);
trans->block_rsv = NULL;
if (!list_empty(&trans->new_bgs))
btrfs_create_pending_block_groups(trans);
trans->delayed_ref_updates = 0;
if (!trans->sync) {
must_run_delayed_refs =
btrfs_should_throttle_delayed_refs(trans);
cur = max_t(unsigned long, cur, 32);
/*
* don't make the caller wait if they are from a NOLOCK
* or ATTACH transaction, it will deadlock with commit
*/
if (must_run_delayed_refs == 1 &&
(trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
must_run_delayed_refs = 2;
}
btrfs_trans_release_metadata(trans);
trans->block_rsv = NULL;
if (!list_empty(&trans->new_bgs))
btrfs_create_pending_block_groups(trans);
btrfs_trans_release_chunk_metadata(trans);
if (lock && should_end_transaction(trans) &&
READ_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
spin_lock(&info->trans_lock);
if (cur_trans->state == TRANS_STATE_RUNNING)
cur_trans->state = TRANS_STATE_BLOCKED;
spin_unlock(&info->trans_lock);
}
if (lock && READ_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
if (throttle)
return btrfs_commit_transaction(trans);
else
wake_up_process(info->transaction_kthread);
}
if (trans->type & __TRANS_FREEZABLE)
sb_end_intwrite(info->sb);
WARN_ON(cur_trans != info->running_transaction);
WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
atomic_dec(&cur_trans->num_writers);
extwriter_counter_dec(cur_trans, trans->type);
cond_wake_up(&cur_trans->writer_wait);
btrfs_put_transaction(cur_trans);
if (current->journal_info == trans)
current->journal_info = NULL;
if (throttle)
btrfs_run_delayed_iputs(info);
if (trans->aborted ||
test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
wake_up_process(info->transaction_kthread);
err = -EIO;
}
kmem_cache_free(btrfs_trans_handle_cachep, trans);
if (must_run_delayed_refs) {
btrfs_async_run_delayed_refs(info, cur, transid,
must_run_delayed_refs == 1);
}
return err;
}
int btrfs_end_transaction(struct btrfs_trans_handle *trans)
{
return __btrfs_end_transaction(trans, 0);
}
int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
{
return __btrfs_end_transaction(trans, 1);
}
/*
* when btree blocks are allocated, they have some corresponding bits set for
* them in one of two extent_io trees. This is used to make sure all of
* those extents are sent to disk but does not wait on them
*/
int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
struct extent_io_tree *dirty_pages, int mark)
{
int err = 0;
int werr = 0;
struct address_space *mapping = fs_info->btree_inode->i_mapping;
struct extent_state *cached_state = NULL;
u64 start = 0;
u64 end;
atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
while (!find_first_extent_bit(dirty_pages, start, &start, &end,
mark, &cached_state)) {
bool wait_writeback = false;
err = convert_extent_bit(dirty_pages, start, end,
EXTENT_NEED_WAIT,
mark, &cached_state);
/*
* convert_extent_bit can return -ENOMEM, which is most of the
* time a temporary error. So when it happens, ignore the error
* and wait for writeback of this range to finish - because we
* failed to set the bit EXTENT_NEED_WAIT for the range, a call
* to __btrfs_wait_marked_extents() would not know that
* writeback for this range started and therefore wouldn't
* wait for it to finish - we don't want to commit a
* superblock that points to btree nodes/leafs for which
* writeback hasn't finished yet (and without errors).
* We cleanup any entries left in the io tree when committing
* the transaction (through clear_btree_io_tree()).
*/
if (err == -ENOMEM) {
err = 0;
wait_writeback = true;
}
if (!err)
err = filemap_fdatawrite_range(mapping, start, end);
if (err)
werr = err;
else if (wait_writeback)
werr = filemap_fdatawait_range(mapping, start, end);
free_extent_state(cached_state);
cached_state = NULL;
cond_resched();
start = end + 1;
}
atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
return werr;
}
/*
* when btree blocks are allocated, they have some corresponding bits set for
* them in one of two extent_io trees. This is used to make sure all of
* those extents are on disk for transaction or log commit. We wait
* on all the pages and clear them from the dirty pages state tree
*/
static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
struct extent_io_tree *dirty_pages)
{
int err = 0;
int werr = 0;
struct address_space *mapping = fs_info->btree_inode->i_mapping;
struct extent_state *cached_state = NULL;
u64 start = 0;
u64 end;
while (!find_first_extent_bit(dirty_pages, start, &start, &end,
EXTENT_NEED_WAIT, &cached_state)) {
/*
* Ignore -ENOMEM errors returned by clear_extent_bit().
* When committing the transaction, we'll remove any entries
* left in the io tree. For a log commit, we don't remove them
* after committing the log because the tree can be accessed
* concurrently - we do it only at transaction commit time when
* it's safe to do it (through clear_btree_io_tree()).
*/
err = clear_extent_bit(dirty_pages, start, end,
EXTENT_NEED_WAIT, 0, 0, &cached_state);
if (err == -ENOMEM)
err = 0;
if (!err)
err = filemap_fdatawait_range(mapping, start, end);
if (err)
werr = err;
free_extent_state(cached_state);
cached_state = NULL;
cond_resched();
start = end + 1;
}
if (err)
werr = err;
return werr;
}
int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
struct extent_io_tree *dirty_pages)
{
bool errors = false;
int err;
err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
errors = true;
if (errors && !err)
err = -EIO;
return err;
}
int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
{
struct btrfs_fs_info *fs_info = log_root->fs_info;
struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
bool errors = false;
int err;
ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
if ((mark & EXTENT_DIRTY) &&
test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
errors = true;
if ((mark & EXTENT_NEW) &&
test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
errors = true;
if (errors && !err)
err = -EIO;
return err;
}
/*
* When btree blocks are allocated the corresponding extents are marked dirty.
* This function ensures such extents are persisted on disk for transaction or
* log commit.
*
* @trans: transaction whose dirty pages we'd like to write
*/
static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
{
int ret;
int ret2;
struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
struct btrfs_fs_info *fs_info = trans->fs_info;
struct blk_plug plug;
blk_start_plug(&plug);
ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
blk_finish_plug(&plug);
ret2 = btrfs_wait_extents(fs_info, dirty_pages);
clear_btree_io_tree(&trans->transaction->dirty_pages);
if (ret)
return ret;
else if (ret2)
return ret2;
else
return 0;
}
/*
* this is used to update the root pointer in the tree of tree roots.
*
* But, in the case of the extent allocation tree, updating the root
* pointer may allocate blocks which may change the root of the extent
* allocation tree.
*
* So, this loops and repeats and makes sure the cowonly root didn't
* change while the root pointer was being updated in the metadata.
*/
static int update_cowonly_root(struct btrfs_trans_handle *trans,
struct btrfs_root *root)
{
int ret;
u64 old_root_bytenr;
u64 old_root_used;
struct btrfs_fs_info *fs_info = root->fs_info;
struct btrfs_root *tree_root = fs_info->tree_root;
old_root_used = btrfs_root_used(&root->root_item);
while (1) {
old_root_bytenr = btrfs_root_bytenr(&root->root_item);
if (old_root_bytenr == root->node->start &&
old_root_used == btrfs_root_used(&root->root_item))
break;
btrfs_set_root_node(&root->root_item, root->node);
ret = btrfs_update_root(trans, tree_root,
&root->root_key,
&root->root_item);
if (ret)
return ret;
old_root_used = btrfs_root_used(&root->root_item);
}
return 0;
}
/*
* update all the cowonly tree roots on disk
*
* The error handling in this function may not be obvious. Any of the
* failures will cause the file system to go offline. We still need
* to clean up the delayed refs.
*/
static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
struct list_head *io_bgs = &trans->transaction->io_bgs;
struct list_head *next;
struct extent_buffer *eb;
int ret;
eb = btrfs_lock_root_node(fs_info->tree_root);
ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
0, &eb);
btrfs_tree_unlock(eb);
free_extent_buffer(eb);
if (ret)
return ret;
ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
if (ret)
return ret;
ret = btrfs_run_dev_stats(trans, fs_info);
if (ret)
return ret;
ret = btrfs_run_dev_replace(trans, fs_info);
if (ret)
return ret;
ret = btrfs_run_qgroups(trans);
if (ret)
return ret;
ret = btrfs_setup_space_cache(trans, fs_info);
if (ret)
return ret;
/* run_qgroups might have added some more refs */
ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
if (ret)
return ret;
again:
while (!list_empty(&fs_info->dirty_cowonly_roots)) {
struct btrfs_root *root;
next = fs_info->dirty_cowonly_roots.next;
list_del_init(next);
root = list_entry(next, struct btrfs_root, dirty_list);
clear_bit(BTRFS_ROOT_DIRTY, &root->state);
if (root != fs_info->extent_root)
list_add_tail(&root->dirty_list,
&trans->transaction->switch_commits);
ret = update_cowonly_root(trans, root);
if (ret)
return ret;
ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
if (ret)
return ret;
}
while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
ret = btrfs_write_dirty_block_groups(trans, fs_info);
if (ret)
return ret;
ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
if (ret)
return ret;
}
if (!list_empty(&fs_info->dirty_cowonly_roots))
goto again;
list_add_tail(&fs_info->extent_root->dirty_list,
&trans->transaction->switch_commits);
/* Update dev-replace pointer once everything is committed */
fs_info->dev_replace.committed_cursor_left =
fs_info->dev_replace.cursor_left_last_write_of_item;
return 0;
}
/*
* dead roots are old snapshots that need to be deleted. This allocates
* a dirty root struct and adds it into the list of dead roots that need to
* be deleted
*/
void btrfs_add_dead_root(struct btrfs_root *root)
{
struct btrfs_fs_info *fs_info = root->fs_info;
spin_lock(&fs_info->trans_lock);
if (list_empty(&root->root_list))
list_add_tail(&root->root_list, &fs_info->dead_roots);
spin_unlock(&fs_info->trans_lock);
}
/*
* update all the cowonly tree roots on disk
*/
static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
struct btrfs_root *gang[8];
int i;
int ret;
int err = 0;
spin_lock(&fs_info->fs_roots_radix_lock);
while (1) {
ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
(void **)gang, 0,
ARRAY_SIZE(gang),
BTRFS_ROOT_TRANS_TAG);
if (ret == 0)
break;
for (i = 0; i < ret; i++) {
struct btrfs_root *root = gang[i];
radix_tree_tag_clear(&fs_info->fs_roots_radix,
(unsigned long)root->root_key.objectid,
BTRFS_ROOT_TRANS_TAG);
spin_unlock(&fs_info->fs_roots_radix_lock);
btrfs_free_log(trans, root);
btrfs_update_reloc_root(trans, root);
btrfs_save_ino_cache(root, trans);
/* see comments in should_cow_block() */
clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
smp_mb__after_atomic();
if (root->commit_root != root->node) {
list_add_tail(&root->dirty_list,
&trans->transaction->switch_commits);
btrfs_set_root_node(&root->root_item,
root->node);
}
err = btrfs_update_root(trans, fs_info->tree_root,
&root->root_key,
&root->root_item);
spin_lock(&fs_info->fs_roots_radix_lock);
if (err)
break;
btrfs_qgroup_free_meta_all_pertrans(root);
}
}
spin_unlock(&fs_info->fs_roots_radix_lock);
return err;
}
/*
* defrag a given btree.
* Every leaf in the btree is read and defragged.
*/
int btrfs_defrag_root(struct btrfs_root *root)
{
struct btrfs_fs_info *info = root->fs_info;
struct btrfs_trans_handle *trans;
int ret;
if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
return 0;
while (1) {
trans = btrfs_start_transaction(root, 0);
if (IS_ERR(trans))
return PTR_ERR(trans);
ret = btrfs_defrag_leaves(trans, root);
btrfs_end_transaction(trans);
btrfs_btree_balance_dirty(info);
cond_resched();
if (btrfs_fs_closing(info) || ret != -EAGAIN)
break;
if (btrfs_defrag_cancelled(info)) {
btrfs_debug(info, "defrag_root cancelled");
ret = -EAGAIN;
break;
}
}
clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
return ret;
}
/*
* Do all special snapshot related qgroup dirty hack.
*
* Will do all needed qgroup inherit and dirty hack like switch commit
* roots inside one transaction and write all btree into disk, to make
* qgroup works.
*/
static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
struct btrfs_root *src,
struct btrfs_root *parent,
struct btrfs_qgroup_inherit *inherit,
u64 dst_objectid)
{
struct btrfs_fs_info *fs_info = src->fs_info;
int ret;
/*
* Save some performance in the case that qgroups are not
* enabled. If this check races with the ioctl, rescan will
* kick in anyway.
*/
if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
return 0;
/*
* Ensure dirty @src will be commited. Or, after comming
* commit_fs_roots() and switch_commit_roots(), any dirty but not
* recorded root will never be updated again, causing an outdated root
* item.
*/
record_root_in_trans(trans, src, 1);
/*
* We are going to commit transaction, see btrfs_commit_transaction()
* comment for reason locking tree_log_mutex
*/
mutex_lock(&fs_info->tree_log_mutex);
ret = commit_fs_roots(trans);
if (ret)
goto out;
ret = btrfs_qgroup_account_extents(trans);
if (ret < 0)
goto out;
/* Now qgroup are all updated, we can inherit it to new qgroups */
ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
inherit);
if (ret < 0)
goto out;
/*
* Now we do a simplified commit transaction, which will:
* 1) commit all subvolume and extent tree
* To ensure all subvolume and extent tree have a valid
* commit_root to accounting later insert_dir_item()
* 2) write all btree blocks onto disk
* This is to make sure later btree modification will be cowed
* Or commit_root can be populated and cause wrong qgroup numbers
* In this simplified commit, we don't really care about other trees
* like chunk and root tree, as they won't affect qgroup.
* And we don't write super to avoid half committed status.
*/
ret = commit_cowonly_roots(trans);
if (ret)
goto out;
switch_commit_roots(trans->transaction);
ret = btrfs_write_and_wait_transaction(trans);
if (ret)
btrfs_handle_fs_error(fs_info, ret,
"Error while writing out transaction for qgroup");
out:
mutex_unlock(&fs_info->tree_log_mutex);
/*
* Force parent root to be updated, as we recorded it before so its
* last_trans == cur_transid.
* Or it won't be committed again onto disk after later
* insert_dir_item()
*/
if (!ret)
record_root_in_trans(trans, parent, 1);
return ret;
}
/*
* new snapshots need to be created at a very specific time in the
* transaction commit. This does the actual creation.
*
* Note:
* If the error which may affect the commitment of the current transaction
* happens, we should return the error number. If the error which just affect
* the creation of the pending snapshots, just return 0.
*/
static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
struct btrfs_pending_snapshot *pending)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
struct btrfs_key key;
struct btrfs_root_item *new_root_item;
struct btrfs_root *tree_root = fs_info->tree_root;
struct btrfs_root *root = pending->root;
struct btrfs_root *parent_root;
struct btrfs_block_rsv *rsv;
struct inode *parent_inode;
struct btrfs_path *path;
struct btrfs_dir_item *dir_item;
struct dentry *dentry;
struct extent_buffer *tmp;
struct extent_buffer *old;
struct timespec64 cur_time;
int ret = 0;
u64 to_reserve = 0;
u64 index = 0;
u64 objectid;
u64 root_flags;
uuid_le new_uuid;
ASSERT(pending->path);
path = pending->path;
ASSERT(pending->root_item);
new_root_item = pending->root_item;
pending->error = btrfs_find_free_objectid(tree_root, &objectid);
if (pending->error)
goto no_free_objectid;
/*
* Make qgroup to skip current new snapshot's qgroupid, as it is
* accounted by later btrfs_qgroup_inherit().
*/
btrfs_set_skip_qgroup(trans, objectid);
btrfs_reloc_pre_snapshot(pending, &to_reserve);
if (to_reserve > 0) {
pending->error = btrfs_block_rsv_add(root,
&pending->block_rsv,
to_reserve,
BTRFS_RESERVE_NO_FLUSH);
if (pending->error)
goto clear_skip_qgroup;
}
key.objectid = objectid;
key.offset = (u64)-1;
key.type = BTRFS_ROOT_ITEM_KEY;
rsv = trans->block_rsv;
trans->block_rsv = &pending->block_rsv;
trans->bytes_reserved = trans->block_rsv->reserved;
trace_btrfs_space_reservation(fs_info, "transaction",
trans->transid,
trans->bytes_reserved, 1);
dentry = pending->dentry;
parent_inode = pending->dir;
parent_root = BTRFS_I(parent_inode)->root;
record_root_in_trans(trans, parent_root, 0);
cur_time = current_time(parent_inode);
/*
* insert the directory item
*/
ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
BUG_ON(ret); /* -ENOMEM */
/* check if there is a file/dir which has the same name. */
dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
btrfs_ino(BTRFS_I(parent_inode)),
dentry->d_name.name,
dentry->d_name.len, 0);
if (dir_item != NULL && !IS_ERR(dir_item)) {
pending->error = -EEXIST;
goto dir_item_existed;
} else if (IS_ERR(dir_item)) {
ret = PTR_ERR(dir_item);
btrfs_abort_transaction(trans, ret);
goto fail;
}
btrfs_release_path(path);
/*
* pull in the delayed directory update
* and the delayed inode item
* otherwise we corrupt the FS during
* snapshot
*/
ret = btrfs_run_delayed_items(trans);
if (ret) { /* Transaction aborted */
btrfs_abort_transaction(trans, ret);
goto fail;
}
record_root_in_trans(trans, root, 0);
btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
btrfs_check_and_init_root_item(new_root_item);
root_flags = btrfs_root_flags(new_root_item);
if (pending->readonly)
root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
else
root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
btrfs_set_root_flags(new_root_item, root_flags);
btrfs_set_root_generation_v2(new_root_item,
trans->transid);
uuid_le_gen(&new_uuid);
memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
memcpy(new_root_item->parent_uuid, root->root_item.uuid,
BTRFS_UUID_SIZE);
if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
memset(new_root_item->received_uuid, 0,
sizeof(new_root_item->received_uuid));
memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
btrfs_set_root_stransid(new_root_item, 0);
btrfs_set_root_rtransid(new_root_item, 0);
}
btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
btrfs_set_root_otransid(new_root_item, trans->transid);
old = btrfs_lock_root_node(root);
ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
if (ret) {
btrfs_tree_unlock(old);
free_extent_buffer(old);
btrfs_abort_transaction(trans, ret);
goto fail;
}
btrfs_set_lock_blocking(old);
ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
/* clean up in any case */
btrfs_tree_unlock(old);
free_extent_buffer(old);
if (ret) {
btrfs_abort_transaction(trans, ret);
goto fail;
}
/* see comments in should_cow_block() */
set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
smp_wmb();
btrfs_set_root_node(new_root_item, tmp);
/* record when the snapshot was created in key.offset */
key.offset = trans->transid;
ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
btrfs_tree_unlock(tmp);
free_extent_buffer(tmp);
if (ret) {
btrfs_abort_transaction(trans, ret);
goto fail;
}
/*
* insert root back/forward references
*/
ret = btrfs_add_root_ref(trans, objectid,
parent_root->root_key.objectid,
btrfs_ino(BTRFS_I(parent_inode)), index,
dentry->d_name.name, dentry->d_name.len);
if (ret) {
btrfs_abort_transaction(trans, ret);
goto fail;
}
key.offset = (u64)-1;
pending->snap = btrfs_read_fs_root_no_name(fs_info, &key);
if (IS_ERR(pending->snap)) {
ret = PTR_ERR(pending->snap);
btrfs_abort_transaction(trans, ret);
goto fail;
}
ret = btrfs_reloc_post_snapshot(trans, pending);
if (ret) {
btrfs_abort_transaction(trans, ret);
goto fail;
}
ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
if (ret) {
btrfs_abort_transaction(trans, ret);
goto fail;
}
/*
* Do special qgroup accounting for snapshot, as we do some qgroup
* snapshot hack to do fast snapshot.
* To co-operate with that hack, we do hack again.
* Or snapshot will be greatly slowed down by a subtree qgroup rescan
*/
ret = qgroup_account_snapshot(trans, root, parent_root,
pending->inherit, objectid);
if (ret < 0)
goto fail;
ret = btrfs_insert_dir_item(trans, dentry->d_name.name,
dentry->d_name.len, BTRFS_I(parent_inode),
&key, BTRFS_FT_DIR, index);
/* We have check then name at the beginning, so it is impossible. */
BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
if (ret) {
btrfs_abort_transaction(trans, ret);
goto fail;
}
btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
dentry->d_name.len * 2);
parent_inode->i_mtime = parent_inode->i_ctime =
current_time(parent_inode);
ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
if (ret) {
btrfs_abort_transaction(trans, ret);
goto fail;
}
ret = btrfs_uuid_tree_add(trans, new_uuid.b, BTRFS_UUID_KEY_SUBVOL,
objectid);
if (ret) {
btrfs_abort_transaction(trans, ret);
goto fail;
}
if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
BTRFS_UUID_KEY_RECEIVED_SUBVOL,
objectid);
if (ret && ret != -EEXIST) {
btrfs_abort_transaction(trans, ret);
goto fail;
}
}
ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
if (ret) {
btrfs_abort_transaction(trans, ret);
goto fail;
}
fail:
pending->error = ret;
dir_item_existed:
trans->block_rsv = rsv;
trans->bytes_reserved = 0;
clear_skip_qgroup:
btrfs_clear_skip_qgroup(trans);
no_free_objectid:
kfree(new_root_item);
pending->root_item = NULL;
btrfs_free_path(path);
pending->path = NULL;
return ret;
}
/*
* create all the snapshots we've scheduled for creation
*/
static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
{
struct btrfs_pending_snapshot *pending, *next;
struct list_head *head = &trans->transaction->pending_snapshots;
int ret = 0;
list_for_each_entry_safe(pending, next, head, list) {
list_del(&pending->list);
ret = create_pending_snapshot(trans, pending);
if (ret)
break;
}
return ret;
}
static void update_super_roots(struct btrfs_fs_info *fs_info)
{
struct btrfs_root_item *root_item;
struct btrfs_super_block *super;
super = fs_info->super_copy;
root_item = &fs_info->chunk_root->root_item;
super->chunk_root = root_item->bytenr;
super->chunk_root_generation = root_item->generation;
super->chunk_root_level = root_item->level;
root_item = &fs_info->tree_root->root_item;
super->root = root_item->bytenr;
super->generation = root_item->generation;
super->root_level = root_item->level;
if (btrfs_test_opt(fs_info, SPACE_CACHE))
super->cache_generation = root_item->generation;
if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
super->uuid_tree_generation = root_item->generation;
}
int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
{
struct btrfs_transaction *trans;
int ret = 0;
spin_lock(&info->trans_lock);
trans = info->running_transaction;
if (trans)
ret = (trans->state >= TRANS_STATE_COMMIT_START);
spin_unlock(&info->trans_lock);
return ret;
}
int btrfs_transaction_blocked(struct btrfs_fs_info *info)
{
struct btrfs_transaction *trans;
int ret = 0;
spin_lock(&info->trans_lock);
trans = info->running_transaction;
if (trans)
ret = is_transaction_blocked(trans);
spin_unlock(&info->trans_lock);
return ret;
}
/*
* wait for the current transaction commit to start and block subsequent
* transaction joins
*/
static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info,
struct btrfs_transaction *trans)
{
wait_event(fs_info->transaction_blocked_wait,
trans->state >= TRANS_STATE_COMMIT_START || trans->aborted);
}
/*
* wait for the current transaction to start and then become unblocked.
* caller holds ref.
*/
static void wait_current_trans_commit_start_and_unblock(
struct btrfs_fs_info *fs_info,
struct btrfs_transaction *trans)
{
wait_event(fs_info->transaction_wait,
trans->state >= TRANS_STATE_UNBLOCKED || trans->aborted);
}
/*
* commit transactions asynchronously. once btrfs_commit_transaction_async
* returns, any subsequent transaction will not be allowed to join.
*/
struct btrfs_async_commit {
struct btrfs_trans_handle *newtrans;
struct work_struct work;
};
static void do_async_commit(struct work_struct *work)
{
struct btrfs_async_commit *ac =
container_of(work, struct btrfs_async_commit, work);
/*
* We've got freeze protection passed with the transaction.
* Tell lockdep about it.
*/
if (ac->newtrans->type & __TRANS_FREEZABLE)
__sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
current->journal_info = ac->newtrans;
btrfs_commit_transaction(ac->newtrans);
kfree(ac);
}
int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
int wait_for_unblock)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
struct btrfs_async_commit *ac;
struct btrfs_transaction *cur_trans;
ac = kmalloc(sizeof(*ac), GFP_NOFS);
if (!ac)
return -ENOMEM;
INIT_WORK(&ac->work, do_async_commit);
ac->newtrans = btrfs_join_transaction(trans->root);
if (IS_ERR(ac->newtrans)) {
int err = PTR_ERR(ac->newtrans);
kfree(ac);
return err;
}
/* take transaction reference */
cur_trans = trans->transaction;
refcount_inc(&cur_trans->use_count);
btrfs_end_transaction(trans);
/*
* Tell lockdep we've released the freeze rwsem, since the
* async commit thread will be the one to unlock it.
*/
if (ac->newtrans->type & __TRANS_FREEZABLE)
__sb_writers_release(fs_info->sb, SB_FREEZE_FS);
schedule_work(&ac->work);
/* wait for transaction to start and unblock */
if (wait_for_unblock)
wait_current_trans_commit_start_and_unblock(fs_info, cur_trans);
else
wait_current_trans_commit_start(fs_info, cur_trans);
if (current->journal_info == trans)
current->journal_info = NULL;
btrfs_put_transaction(cur_trans);
return 0;
}
static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
struct btrfs_transaction *cur_trans = trans->transaction;
WARN_ON(refcount_read(&trans->use_count) > 1);
btrfs_abort_transaction(trans, err);
spin_lock(&fs_info->trans_lock);
/*
* If the transaction is removed from the list, it means this
* transaction has been committed successfully, so it is impossible
* to call the cleanup function.
*/
BUG_ON(list_empty(&cur_trans->list));
list_del_init(&cur_trans->list);
if (cur_trans == fs_info->running_transaction) {
cur_trans->state = TRANS_STATE_COMMIT_DOING;
spin_unlock(&fs_info->trans_lock);
wait_event(cur_trans->writer_wait,
atomic_read(&cur_trans->num_writers) == 1);
spin_lock(&fs_info->trans_lock);
}
spin_unlock(&fs_info->trans_lock);
btrfs_cleanup_one_transaction(trans->transaction, fs_info);
spin_lock(&fs_info->trans_lock);
if (cur_trans == fs_info->running_transaction)
fs_info->running_transaction = NULL;
spin_unlock(&fs_info->trans_lock);
if (trans->type & __TRANS_FREEZABLE)
sb_end_intwrite(fs_info->sb);
btrfs_put_transaction(cur_trans);
btrfs_put_transaction(cur_trans);
trace_btrfs_transaction_commit(trans->root);
if (current->journal_info == trans)
current->journal_info = NULL;
btrfs_scrub_cancel(fs_info);
kmem_cache_free(btrfs_trans_handle_cachep, trans);
}
static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
{
/*
* We use writeback_inodes_sb here because if we used
* btrfs_start_delalloc_roots we would deadlock with fs freeze.
* Currently are holding the fs freeze lock, if we do an async flush
* we'll do btrfs_join_transaction() and deadlock because we need to
* wait for the fs freeze lock. Using the direct flushing we benefit
* from already being in a transaction and our join_transaction doesn't
* have to re-take the fs freeze lock.
*/
if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
return 0;
}
static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
{
if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
}
int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
struct btrfs_transaction *cur_trans = trans->transaction;
struct btrfs_transaction *prev_trans = NULL;
int ret;
/* Stop the commit early if ->aborted is set */
if (unlikely(READ_ONCE(cur_trans->aborted))) {
ret = cur_trans->aborted;
btrfs_end_transaction(trans);
return ret;
}
btrfs_trans_release_metadata(trans);
trans->block_rsv = NULL;
/* make a pass through all the delayed refs we have so far
* any runnings procs may add more while we are here
*/
ret = btrfs_run_delayed_refs(trans, 0);
if (ret) {
btrfs_end_transaction(trans);
return ret;
}
cur_trans = trans->transaction;
/*
* set the flushing flag so procs in this transaction have to
* start sending their work down.
*/
cur_trans->delayed_refs.flushing = 1;
smp_wmb();
if (!list_empty(&trans->new_bgs))
btrfs_create_pending_block_groups(trans);
ret = btrfs_run_delayed_refs(trans, 0);
if (ret) {
btrfs_end_transaction(trans);
return ret;
}
if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
int run_it = 0;
/* this mutex is also taken before trying to set
* block groups readonly. We need to make sure
* that nobody has set a block group readonly
* after a extents from that block group have been
* allocated for cache files. btrfs_set_block_group_ro
* will wait for the transaction to commit if it
* finds BTRFS_TRANS_DIRTY_BG_RUN set.
*
* The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
* only one process starts all the block group IO. It wouldn't
* hurt to have more than one go through, but there's no
* real advantage to it either.
*/
mutex_lock(&fs_info->ro_block_group_mutex);
if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
&cur_trans->flags))
run_it = 1;
mutex_unlock(&fs_info->ro_block_group_mutex);
if (run_it) {
ret = btrfs_start_dirty_block_groups(trans);
if (ret) {
btrfs_end_transaction(trans);
return ret;
}
}
}
spin_lock(&fs_info->trans_lock);
if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
spin_unlock(&fs_info->trans_lock);
refcount_inc(&cur_trans->use_count);
ret = btrfs_end_transaction(trans);
wait_for_commit(cur_trans);
if (unlikely(cur_trans->aborted))
ret = cur_trans->aborted;
btrfs_put_transaction(cur_trans);
return ret;
}
cur_trans->state = TRANS_STATE_COMMIT_START;
wake_up(&fs_info->transaction_blocked_wait);
if (cur_trans->list.prev != &fs_info->trans_list) {
prev_trans = list_entry(cur_trans->list.prev,
struct btrfs_transaction, list);
if (prev_trans->state != TRANS_STATE_COMPLETED) {
refcount_inc(&prev_trans->use_count);
spin_unlock(&fs_info->trans_lock);
wait_for_commit(prev_trans);
ret = prev_trans->aborted;
btrfs_put_transaction(prev_trans);
if (ret)
goto cleanup_transaction;
} else {
spin_unlock(&fs_info->trans_lock);
}
} else {
spin_unlock(&fs_info->trans_lock);
}
extwriter_counter_dec(cur_trans, trans->type);
ret = btrfs_start_delalloc_flush(fs_info);
if (ret)
goto cleanup_transaction;
ret = btrfs_run_delayed_items(trans);
if (ret)
goto cleanup_transaction;
wait_event(cur_trans->writer_wait,
extwriter_counter_read(cur_trans) == 0);
/* some pending stuffs might be added after the previous flush. */
ret = btrfs_run_delayed_items(trans);
if (ret)
goto cleanup_transaction;
btrfs_wait_delalloc_flush(fs_info);
btrfs_scrub_pause(fs_info);
/*
* Ok now we need to make sure to block out any other joins while we
* commit the transaction. We could have started a join before setting
* COMMIT_DOING so make sure to wait for num_writers to == 1 again.
*/
spin_lock(&fs_info->trans_lock);
cur_trans->state = TRANS_STATE_COMMIT_DOING;
spin_unlock(&fs_info->trans_lock);
wait_event(cur_trans->writer_wait,
atomic_read(&cur_trans->num_writers) == 1);
/* ->aborted might be set after the previous check, so check it */
if (unlikely(READ_ONCE(cur_trans->aborted))) {
ret = cur_trans->aborted;
goto scrub_continue;
}
/*
* the reloc mutex makes sure that we stop
* the balancing code from coming in and moving
* extents around in the middle of the commit
*/
mutex_lock(&fs_info->reloc_mutex);
/*
* We needn't worry about the delayed items because we will
* deal with them in create_pending_snapshot(), which is the
* core function of the snapshot creation.
*/
ret = create_pending_snapshots(trans);
if (ret) {
mutex_unlock(&fs_info->reloc_mutex);
goto scrub_continue;
}
/*
* We insert the dir indexes of the snapshots and update the inode
* of the snapshots' parents after the snapshot creation, so there
* are some delayed items which are not dealt with. Now deal with
* them.
*
* We needn't worry that this operation will corrupt the snapshots,
* because all the tree which are snapshoted will be forced to COW
* the nodes and leaves.
*/
ret = btrfs_run_delayed_items(trans);
if (ret) {
mutex_unlock(&fs_info->reloc_mutex);
goto scrub_continue;
}
ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
if (ret) {
mutex_unlock(&fs_info->reloc_mutex);
goto scrub_continue;
}
/*
* make sure none of the code above managed to slip in a
* delayed item
*/
btrfs_assert_delayed_root_empty(fs_info);
WARN_ON(cur_trans != trans->transaction);
/* btrfs_commit_tree_roots is responsible for getting the
* various roots consistent with each other. Every pointer
* in the tree of tree roots has to point to the most up to date
* root for every subvolume and other tree. So, we have to keep
* the tree logging code from jumping in and changing any
* of the trees.
*
* At this point in the commit, there can't be any tree-log
* writers, but a little lower down we drop the trans mutex
* and let new people in. By holding the tree_log_mutex
* from now until after the super is written, we avoid races
* with the tree-log code.
*/
mutex_lock(&fs_info->tree_log_mutex);
ret = commit_fs_roots(trans);
if (ret) {
mutex_unlock(&fs_info->tree_log_mutex);
mutex_unlock(&fs_info->reloc_mutex);
goto scrub_continue;
}
/*
* Since the transaction is done, we can apply the pending changes
* before the next transaction.
*/
btrfs_apply_pending_changes(fs_info);
/* commit_fs_roots gets rid of all the tree log roots, it is now
* safe to free the root of tree log roots
*/
btrfs_free_log_root_tree(trans, fs_info);
/*
* commit_fs_roots() can call btrfs_save_ino_cache(), which generates
* new delayed refs. Must handle them or qgroup can be wrong.
*/
ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
if (ret) {
mutex_unlock(&fs_info->tree_log_mutex);
mutex_unlock(&fs_info->reloc_mutex);
goto scrub_continue;
}
/*
* Since fs roots are all committed, we can get a quite accurate
* new_roots. So let's do quota accounting.
*/
ret = btrfs_qgroup_account_extents(trans);
if (ret < 0) {
mutex_unlock(&fs_info->tree_log_mutex);
mutex_unlock(&fs_info->reloc_mutex);
goto scrub_continue;
}
ret = commit_cowonly_roots(trans);
if (ret) {
mutex_unlock(&fs_info->tree_log_mutex);
mutex_unlock(&fs_info->reloc_mutex);
goto scrub_continue;
}
/*
* The tasks which save the space cache and inode cache may also
* update ->aborted, check it.
*/
if (unlikely(READ_ONCE(cur_trans->aborted))) {
ret = cur_trans->aborted;
mutex_unlock(&fs_info->tree_log_mutex);
mutex_unlock(&fs_info->reloc_mutex);
goto scrub_continue;
}
btrfs_prepare_extent_commit(fs_info);
cur_trans = fs_info->running_transaction;
btrfs_set_root_node(&fs_info->tree_root->root_item,
fs_info->tree_root->node);
list_add_tail(&fs_info->tree_root->dirty_list,
&cur_trans->switch_commits);
btrfs_set_root_node(&fs_info->chunk_root->root_item,
fs_info->chunk_root->node);
list_add_tail(&fs_info->chunk_root->dirty_list,
&cur_trans->switch_commits);
switch_commit_roots(cur_trans);
ASSERT(list_empty(&cur_trans->dirty_bgs));
ASSERT(list_empty(&cur_trans->io_bgs));
update_super_roots(fs_info);
btrfs_set_super_log_root(fs_info->super_copy, 0);
btrfs_set_super_log_root_level(fs_info->super_copy, 0);
memcpy(fs_info->super_for_commit, fs_info->super_copy,
sizeof(*fs_info->super_copy));
btrfs_update_commit_device_size(fs_info);
btrfs_update_commit_device_bytes_used(cur_trans);
clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
btrfs_trans_release_chunk_metadata(trans);
spin_lock(&fs_info->trans_lock);
cur_trans->state = TRANS_STATE_UNBLOCKED;
fs_info->running_transaction = NULL;
spin_unlock(&fs_info->trans_lock);
mutex_unlock(&fs_info->reloc_mutex);
wake_up(&fs_info->transaction_wait);
ret = btrfs_write_and_wait_transaction(trans);
if (ret) {
btrfs_handle_fs_error(fs_info, ret,
"Error while writing out transaction");
mutex_unlock(&fs_info->tree_log_mutex);
goto scrub_continue;
}
ret = write_all_supers(fs_info, 0);
/*
* the super is written, we can safely allow the tree-loggers
* to go about their business
*/
mutex_unlock(&fs_info->tree_log_mutex);
if (ret)
goto scrub_continue;
btrfs_finish_extent_commit(trans);
if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
btrfs_clear_space_info_full(fs_info);
fs_info->last_trans_committed = cur_trans->transid;
/*
* We needn't acquire the lock here because there is no other task
* which can change it.
*/
cur_trans->state = TRANS_STATE_COMPLETED;
wake_up(&cur_trans->commit_wait);
clear_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags);
spin_lock(&fs_info->trans_lock);
list_del_init(&cur_trans->list);
spin_unlock(&fs_info->trans_lock);
btrfs_put_transaction(cur_trans);
btrfs_put_transaction(cur_trans);
if (trans->type & __TRANS_FREEZABLE)
sb_end_intwrite(fs_info->sb);
trace_btrfs_transaction_commit(trans->root);
btrfs_scrub_continue(fs_info);
if (current->journal_info == trans)
current->journal_info = NULL;
kmem_cache_free(btrfs_trans_handle_cachep, trans);
return ret;
scrub_continue:
btrfs_scrub_continue(fs_info);
cleanup_transaction:
btrfs_trans_release_metadata(trans);
btrfs_trans_release_chunk_metadata(trans);
trans->block_rsv = NULL;
btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
if (current->journal_info == trans)
current->journal_info = NULL;
cleanup_transaction(trans, ret);
return ret;
}
/*
* return < 0 if error
* 0 if there are no more dead_roots at the time of call
* 1 there are more to be processed, call me again
*
* The return value indicates there are certainly more snapshots to delete, but
* if there comes a new one during processing, it may return 0. We don't mind,
* because btrfs_commit_super will poke cleaner thread and it will process it a
* few seconds later.
*/
int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
{
int ret;
struct btrfs_fs_info *fs_info = root->fs_info;
spin_lock(&fs_info->trans_lock);
if (list_empty(&fs_info->dead_roots)) {
spin_unlock(&fs_info->trans_lock);
return 0;
}
root = list_first_entry(&fs_info->dead_roots,
struct btrfs_root, root_list);
list_del_init(&root->root_list);
spin_unlock(&fs_info->trans_lock);
btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
btrfs_kill_all_delayed_nodes(root);
if (btrfs_header_backref_rev(root->node) <
BTRFS_MIXED_BACKREF_REV)
ret = btrfs_drop_snapshot(root, NULL, 0, 0);
else
ret = btrfs_drop_snapshot(root, NULL, 1, 0);
return (ret < 0) ? 0 : 1;
}
void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
{
unsigned long prev;
unsigned long bit;
prev = xchg(&fs_info->pending_changes, 0);
if (!prev)
return;
bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
if (prev & bit)
btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
prev &= ~bit;
bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
if (prev & bit)
btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
prev &= ~bit;
bit = 1 << BTRFS_PENDING_COMMIT;
if (prev & bit)
btrfs_debug(fs_info, "pending commit done");
prev &= ~bit;
if (prev)
btrfs_warn(fs_info,
"unknown pending changes left 0x%lx, ignoring", prev);
}