Now that we do not call kernel_thread(CLONE_VFORK) from the worker thread we can not deadlock if do_execve() in turn triggers another call_usermodehelper(), we can remove the kmod_thread_locker code. Note: we should probably kill khelper_wq and simply use one of the global workqueues, say, system_unbound_wq, this special wq for umh buys nothing nowadays. Signed-off-by: Oleg Nesterov <oleg@redhat.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			695 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			695 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
| 	kmod, the new module loader (replaces kerneld)
 | |
| 	Kirk Petersen
 | |
| 
 | |
| 	Reorganized not to be a daemon by Adam Richter, with guidance
 | |
| 	from Greg Zornetzer.
 | |
| 
 | |
| 	Modified to avoid chroot and file sharing problems.
 | |
| 	Mikael Pettersson
 | |
| 
 | |
| 	Limit the concurrent number of kmod modprobes to catch loops from
 | |
| 	"modprobe needs a service that is in a module".
 | |
| 	Keith Owens <kaos@ocs.com.au> December 1999
 | |
| 
 | |
| 	Unblock all signals when we exec a usermode process.
 | |
| 	Shuu Yamaguchi <shuu@wondernetworkresources.com> December 2000
 | |
| 
 | |
| 	call_usermodehelper wait flag, and remove exec_usermodehelper.
 | |
| 	Rusty Russell <rusty@rustcorp.com.au>  Jan 2003
 | |
| */
 | |
| #include <linux/module.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/syscalls.h>
 | |
| #include <linux/unistd.h>
 | |
| #include <linux/kmod.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/completion.h>
 | |
| #include <linux/cred.h>
 | |
| #include <linux/file.h>
 | |
| #include <linux/fdtable.h>
 | |
| #include <linux/workqueue.h>
 | |
| #include <linux/security.h>
 | |
| #include <linux/mount.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/resource.h>
 | |
| #include <linux/notifier.h>
 | |
| #include <linux/suspend.h>
 | |
| #include <linux/rwsem.h>
 | |
| #include <linux/ptrace.h>
 | |
| #include <linux/async.h>
 | |
| #include <asm/uaccess.h>
 | |
| 
 | |
| #include <trace/events/module.h>
 | |
| 
 | |
| extern int max_threads;
 | |
| 
 | |
| static struct workqueue_struct *khelper_wq;
 | |
| 
 | |
| #define CAP_BSET	(void *)1
 | |
| #define CAP_PI		(void *)2
 | |
| 
 | |
| static kernel_cap_t usermodehelper_bset = CAP_FULL_SET;
 | |
| static kernel_cap_t usermodehelper_inheritable = CAP_FULL_SET;
 | |
| static DEFINE_SPINLOCK(umh_sysctl_lock);
 | |
| static DECLARE_RWSEM(umhelper_sem);
 | |
| 
 | |
| #ifdef CONFIG_MODULES
 | |
| 
 | |
| /*
 | |
| 	modprobe_path is set via /proc/sys.
 | |
| */
 | |
| char modprobe_path[KMOD_PATH_LEN] = "/sbin/modprobe";
 | |
| 
 | |
| static void free_modprobe_argv(struct subprocess_info *info)
 | |
| {
 | |
| 	kfree(info->argv[3]); /* check call_modprobe() */
 | |
| 	kfree(info->argv);
 | |
| }
 | |
| 
 | |
| static int call_modprobe(char *module_name, int wait)
 | |
| {
 | |
| 	struct subprocess_info *info;
 | |
| 	static char *envp[] = {
 | |
| 		"HOME=/",
 | |
| 		"TERM=linux",
 | |
| 		"PATH=/sbin:/usr/sbin:/bin:/usr/bin",
 | |
| 		NULL
 | |
| 	};
 | |
| 
 | |
| 	char **argv = kmalloc(sizeof(char *[5]), GFP_KERNEL);
 | |
| 	if (!argv)
 | |
| 		goto out;
 | |
| 
 | |
| 	module_name = kstrdup(module_name, GFP_KERNEL);
 | |
| 	if (!module_name)
 | |
| 		goto free_argv;
 | |
| 
 | |
| 	argv[0] = modprobe_path;
 | |
| 	argv[1] = "-q";
 | |
| 	argv[2] = "--";
 | |
| 	argv[3] = module_name;	/* check free_modprobe_argv() */
 | |
| 	argv[4] = NULL;
 | |
| 
 | |
| 	info = call_usermodehelper_setup(modprobe_path, argv, envp, GFP_KERNEL,
 | |
| 					 NULL, free_modprobe_argv, NULL);
 | |
| 	if (!info)
 | |
| 		goto free_module_name;
 | |
| 
 | |
| 	return call_usermodehelper_exec(info, wait | UMH_KILLABLE);
 | |
| 
 | |
| free_module_name:
 | |
| 	kfree(module_name);
 | |
| free_argv:
 | |
| 	kfree(argv);
 | |
| out:
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * __request_module - try to load a kernel module
 | |
|  * @wait: wait (or not) for the operation to complete
 | |
|  * @fmt: printf style format string for the name of the module
 | |
|  * @...: arguments as specified in the format string
 | |
|  *
 | |
|  * Load a module using the user mode module loader. The function returns
 | |
|  * zero on success or a negative errno code on failure. Note that a
 | |
|  * successful module load does not mean the module did not then unload
 | |
|  * and exit on an error of its own. Callers must check that the service
 | |
|  * they requested is now available not blindly invoke it.
 | |
|  *
 | |
|  * If module auto-loading support is disabled then this function
 | |
|  * becomes a no-operation.
 | |
|  */
 | |
| int __request_module(bool wait, const char *fmt, ...)
 | |
| {
 | |
| 	va_list args;
 | |
| 	char module_name[MODULE_NAME_LEN];
 | |
| 	unsigned int max_modprobes;
 | |
| 	int ret;
 | |
| 	static atomic_t kmod_concurrent = ATOMIC_INIT(0);
 | |
| #define MAX_KMOD_CONCURRENT 50	/* Completely arbitrary value - KAO */
 | |
| 	static int kmod_loop_msg;
 | |
| 
 | |
| 	/*
 | |
| 	 * We don't allow synchronous module loading from async.  Module
 | |
| 	 * init may invoke async_synchronize_full() which will end up
 | |
| 	 * waiting for this task which already is waiting for the module
 | |
| 	 * loading to complete, leading to a deadlock.
 | |
| 	 */
 | |
| 	WARN_ON_ONCE(wait && current_is_async());
 | |
| 
 | |
| 	if (!modprobe_path[0])
 | |
| 		return 0;
 | |
| 
 | |
| 	va_start(args, fmt);
 | |
| 	ret = vsnprintf(module_name, MODULE_NAME_LEN, fmt, args);
 | |
| 	va_end(args);
 | |
| 	if (ret >= MODULE_NAME_LEN)
 | |
| 		return -ENAMETOOLONG;
 | |
| 
 | |
| 	ret = security_kernel_module_request(module_name);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/* If modprobe needs a service that is in a module, we get a recursive
 | |
| 	 * loop.  Limit the number of running kmod threads to max_threads/2 or
 | |
| 	 * MAX_KMOD_CONCURRENT, whichever is the smaller.  A cleaner method
 | |
| 	 * would be to run the parents of this process, counting how many times
 | |
| 	 * kmod was invoked.  That would mean accessing the internals of the
 | |
| 	 * process tables to get the command line, proc_pid_cmdline is static
 | |
| 	 * and it is not worth changing the proc code just to handle this case. 
 | |
| 	 * KAO.
 | |
| 	 *
 | |
| 	 * "trace the ppid" is simple, but will fail if someone's
 | |
| 	 * parent exits.  I think this is as good as it gets. --RR
 | |
| 	 */
 | |
| 	max_modprobes = min(max_threads/2, MAX_KMOD_CONCURRENT);
 | |
| 	atomic_inc(&kmod_concurrent);
 | |
| 	if (atomic_read(&kmod_concurrent) > max_modprobes) {
 | |
| 		/* We may be blaming an innocent here, but unlikely */
 | |
| 		if (kmod_loop_msg < 5) {
 | |
| 			printk(KERN_ERR
 | |
| 			       "request_module: runaway loop modprobe %s\n",
 | |
| 			       module_name);
 | |
| 			kmod_loop_msg++;
 | |
| 		}
 | |
| 		atomic_dec(&kmod_concurrent);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	trace_module_request(module_name, wait, _RET_IP_);
 | |
| 
 | |
| 	ret = call_modprobe(module_name, wait ? UMH_WAIT_PROC : UMH_WAIT_EXEC);
 | |
| 
 | |
| 	atomic_dec(&kmod_concurrent);
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(__request_module);
 | |
| #endif /* CONFIG_MODULES */
 | |
| 
 | |
| static void call_usermodehelper_freeinfo(struct subprocess_info *info)
 | |
| {
 | |
| 	if (info->cleanup)
 | |
| 		(*info->cleanup)(info);
 | |
| 	kfree(info);
 | |
| }
 | |
| 
 | |
| static void umh_complete(struct subprocess_info *sub_info)
 | |
| {
 | |
| 	struct completion *comp = xchg(&sub_info->complete, NULL);
 | |
| 	/*
 | |
| 	 * See call_usermodehelper_exec(). If xchg() returns NULL
 | |
| 	 * we own sub_info, the UMH_KILLABLE caller has gone away
 | |
| 	 * or the caller used UMH_NO_WAIT.
 | |
| 	 */
 | |
| 	if (comp)
 | |
| 		complete(comp);
 | |
| 	else
 | |
| 		call_usermodehelper_freeinfo(sub_info);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is the task which runs the usermode application
 | |
|  */
 | |
| static int ____call_usermodehelper(void *data)
 | |
| {
 | |
| 	struct subprocess_info *sub_info = data;
 | |
| 	struct cred *new;
 | |
| 	int retval;
 | |
| 
 | |
| 	spin_lock_irq(¤t->sighand->siglock);
 | |
| 	flush_signal_handlers(current, 1);
 | |
| 	spin_unlock_irq(¤t->sighand->siglock);
 | |
| 
 | |
| 	/* We can run anywhere, unlike our parent keventd(). */
 | |
| 	set_cpus_allowed_ptr(current, cpu_all_mask);
 | |
| 
 | |
| 	/*
 | |
| 	 * Our parent is keventd, which runs with elevated scheduling priority.
 | |
| 	 * Avoid propagating that into the userspace child.
 | |
| 	 */
 | |
| 	set_user_nice(current, 0);
 | |
| 
 | |
| 	retval = -ENOMEM;
 | |
| 	new = prepare_kernel_cred(current);
 | |
| 	if (!new)
 | |
| 		goto out;
 | |
| 
 | |
| 	spin_lock(&umh_sysctl_lock);
 | |
| 	new->cap_bset = cap_intersect(usermodehelper_bset, new->cap_bset);
 | |
| 	new->cap_inheritable = cap_intersect(usermodehelper_inheritable,
 | |
| 					     new->cap_inheritable);
 | |
| 	spin_unlock(&umh_sysctl_lock);
 | |
| 
 | |
| 	if (sub_info->init) {
 | |
| 		retval = sub_info->init(sub_info, new);
 | |
| 		if (retval) {
 | |
| 			abort_creds(new);
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	commit_creds(new);
 | |
| 
 | |
| 	retval = do_execve(getname_kernel(sub_info->path),
 | |
| 			   (const char __user *const __user *)sub_info->argv,
 | |
| 			   (const char __user *const __user *)sub_info->envp);
 | |
| out:
 | |
| 	sub_info->retval = retval;
 | |
| 	/* wait_for_helper() will call umh_complete if UHM_WAIT_PROC. */
 | |
| 	if (!(sub_info->wait & UMH_WAIT_PROC))
 | |
| 		umh_complete(sub_info);
 | |
| 	if (!retval)
 | |
| 		return 0;
 | |
| 	do_exit(0);
 | |
| }
 | |
| 
 | |
| /* Keventd can't block, but this (a child) can. */
 | |
| static int wait_for_helper(void *data)
 | |
| {
 | |
| 	struct subprocess_info *sub_info = data;
 | |
| 	pid_t pid;
 | |
| 
 | |
| 	/* If SIGCLD is ignored sys_wait4 won't populate the status. */
 | |
| 	kernel_sigaction(SIGCHLD, SIG_DFL);
 | |
| 	pid = kernel_thread(____call_usermodehelper, sub_info, SIGCHLD);
 | |
| 	if (pid < 0) {
 | |
| 		sub_info->retval = pid;
 | |
| 	} else {
 | |
| 		int ret = -ECHILD;
 | |
| 		/*
 | |
| 		 * Normally it is bogus to call wait4() from in-kernel because
 | |
| 		 * wait4() wants to write the exit code to a userspace address.
 | |
| 		 * But wait_for_helper() always runs as keventd, and put_user()
 | |
| 		 * to a kernel address works OK for kernel threads, due to their
 | |
| 		 * having an mm_segment_t which spans the entire address space.
 | |
| 		 *
 | |
| 		 * Thus the __user pointer cast is valid here.
 | |
| 		 */
 | |
| 		sys_wait4(pid, (int __user *)&ret, 0, NULL);
 | |
| 
 | |
| 		/*
 | |
| 		 * If ret is 0, either ____call_usermodehelper failed and the
 | |
| 		 * real error code is already in sub_info->retval or
 | |
| 		 * sub_info->retval is 0 anyway, so don't mess with it then.
 | |
| 		 */
 | |
| 		if (ret)
 | |
| 			sub_info->retval = ret;
 | |
| 	}
 | |
| 
 | |
| 	umh_complete(sub_info);
 | |
| 	do_exit(0);
 | |
| }
 | |
| 
 | |
| /* This is run by khelper thread  */
 | |
| static void __call_usermodehelper(struct work_struct *work)
 | |
| {
 | |
| 	struct subprocess_info *sub_info =
 | |
| 		container_of(work, struct subprocess_info, work);
 | |
| 	pid_t pid;
 | |
| 
 | |
| 	if (sub_info->wait & UMH_WAIT_PROC)
 | |
| 		pid = kernel_thread(wait_for_helper, sub_info,
 | |
| 				    CLONE_FS | CLONE_FILES | SIGCHLD);
 | |
| 	else
 | |
| 		pid = kernel_thread(____call_usermodehelper, sub_info,
 | |
| 				    SIGCHLD);
 | |
| 
 | |
| 	if (pid < 0) {
 | |
| 		sub_info->retval = pid;
 | |
| 		umh_complete(sub_info);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If set, call_usermodehelper_exec() will exit immediately returning -EBUSY
 | |
|  * (used for preventing user land processes from being created after the user
 | |
|  * land has been frozen during a system-wide hibernation or suspend operation).
 | |
|  * Should always be manipulated under umhelper_sem acquired for write.
 | |
|  */
 | |
| static enum umh_disable_depth usermodehelper_disabled = UMH_DISABLED;
 | |
| 
 | |
| /* Number of helpers running */
 | |
| static atomic_t running_helpers = ATOMIC_INIT(0);
 | |
| 
 | |
| /*
 | |
|  * Wait queue head used by usermodehelper_disable() to wait for all running
 | |
|  * helpers to finish.
 | |
|  */
 | |
| static DECLARE_WAIT_QUEUE_HEAD(running_helpers_waitq);
 | |
| 
 | |
| /*
 | |
|  * Used by usermodehelper_read_lock_wait() to wait for usermodehelper_disabled
 | |
|  * to become 'false'.
 | |
|  */
 | |
| static DECLARE_WAIT_QUEUE_HEAD(usermodehelper_disabled_waitq);
 | |
| 
 | |
| /*
 | |
|  * Time to wait for running_helpers to become zero before the setting of
 | |
|  * usermodehelper_disabled in usermodehelper_disable() fails
 | |
|  */
 | |
| #define RUNNING_HELPERS_TIMEOUT	(5 * HZ)
 | |
| 
 | |
| int usermodehelper_read_trylock(void)
 | |
| {
 | |
| 	DEFINE_WAIT(wait);
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	down_read(&umhelper_sem);
 | |
| 	for (;;) {
 | |
| 		prepare_to_wait(&usermodehelper_disabled_waitq, &wait,
 | |
| 				TASK_INTERRUPTIBLE);
 | |
| 		if (!usermodehelper_disabled)
 | |
| 			break;
 | |
| 
 | |
| 		if (usermodehelper_disabled == UMH_DISABLED)
 | |
| 			ret = -EAGAIN;
 | |
| 
 | |
| 		up_read(&umhelper_sem);
 | |
| 
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 
 | |
| 		schedule();
 | |
| 		try_to_freeze();
 | |
| 
 | |
| 		down_read(&umhelper_sem);
 | |
| 	}
 | |
| 	finish_wait(&usermodehelper_disabled_waitq, &wait);
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(usermodehelper_read_trylock);
 | |
| 
 | |
| long usermodehelper_read_lock_wait(long timeout)
 | |
| {
 | |
| 	DEFINE_WAIT(wait);
 | |
| 
 | |
| 	if (timeout < 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	down_read(&umhelper_sem);
 | |
| 	for (;;) {
 | |
| 		prepare_to_wait(&usermodehelper_disabled_waitq, &wait,
 | |
| 				TASK_UNINTERRUPTIBLE);
 | |
| 		if (!usermodehelper_disabled)
 | |
| 			break;
 | |
| 
 | |
| 		up_read(&umhelper_sem);
 | |
| 
 | |
| 		timeout = schedule_timeout(timeout);
 | |
| 		if (!timeout)
 | |
| 			break;
 | |
| 
 | |
| 		down_read(&umhelper_sem);
 | |
| 	}
 | |
| 	finish_wait(&usermodehelper_disabled_waitq, &wait);
 | |
| 	return timeout;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(usermodehelper_read_lock_wait);
 | |
| 
 | |
| void usermodehelper_read_unlock(void)
 | |
| {
 | |
| 	up_read(&umhelper_sem);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(usermodehelper_read_unlock);
 | |
| 
 | |
| /**
 | |
|  * __usermodehelper_set_disable_depth - Modify usermodehelper_disabled.
 | |
|  * @depth: New value to assign to usermodehelper_disabled.
 | |
|  *
 | |
|  * Change the value of usermodehelper_disabled (under umhelper_sem locked for
 | |
|  * writing) and wakeup tasks waiting for it to change.
 | |
|  */
 | |
| void __usermodehelper_set_disable_depth(enum umh_disable_depth depth)
 | |
| {
 | |
| 	down_write(&umhelper_sem);
 | |
| 	usermodehelper_disabled = depth;
 | |
| 	wake_up(&usermodehelper_disabled_waitq);
 | |
| 	up_write(&umhelper_sem);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * __usermodehelper_disable - Prevent new helpers from being started.
 | |
|  * @depth: New value to assign to usermodehelper_disabled.
 | |
|  *
 | |
|  * Set usermodehelper_disabled to @depth and wait for running helpers to exit.
 | |
|  */
 | |
| int __usermodehelper_disable(enum umh_disable_depth depth)
 | |
| {
 | |
| 	long retval;
 | |
| 
 | |
| 	if (!depth)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	down_write(&umhelper_sem);
 | |
| 	usermodehelper_disabled = depth;
 | |
| 	up_write(&umhelper_sem);
 | |
| 
 | |
| 	/*
 | |
| 	 * From now on call_usermodehelper_exec() won't start any new
 | |
| 	 * helpers, so it is sufficient if running_helpers turns out to
 | |
| 	 * be zero at one point (it may be increased later, but that
 | |
| 	 * doesn't matter).
 | |
| 	 */
 | |
| 	retval = wait_event_timeout(running_helpers_waitq,
 | |
| 					atomic_read(&running_helpers) == 0,
 | |
| 					RUNNING_HELPERS_TIMEOUT);
 | |
| 	if (retval)
 | |
| 		return 0;
 | |
| 
 | |
| 	__usermodehelper_set_disable_depth(UMH_ENABLED);
 | |
| 	return -EAGAIN;
 | |
| }
 | |
| 
 | |
| static void helper_lock(void)
 | |
| {
 | |
| 	atomic_inc(&running_helpers);
 | |
| 	smp_mb__after_atomic();
 | |
| }
 | |
| 
 | |
| static void helper_unlock(void)
 | |
| {
 | |
| 	if (atomic_dec_and_test(&running_helpers))
 | |
| 		wake_up(&running_helpers_waitq);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * call_usermodehelper_setup - prepare to call a usermode helper
 | |
|  * @path: path to usermode executable
 | |
|  * @argv: arg vector for process
 | |
|  * @envp: environment for process
 | |
|  * @gfp_mask: gfp mask for memory allocation
 | |
|  * @cleanup: a cleanup function
 | |
|  * @init: an init function
 | |
|  * @data: arbitrary context sensitive data
 | |
|  *
 | |
|  * Returns either %NULL on allocation failure, or a subprocess_info
 | |
|  * structure.  This should be passed to call_usermodehelper_exec to
 | |
|  * exec the process and free the structure.
 | |
|  *
 | |
|  * The init function is used to customize the helper process prior to
 | |
|  * exec.  A non-zero return code causes the process to error out, exit,
 | |
|  * and return the failure to the calling process
 | |
|  *
 | |
|  * The cleanup function is just before ethe subprocess_info is about to
 | |
|  * be freed.  This can be used for freeing the argv and envp.  The
 | |
|  * Function must be runnable in either a process context or the
 | |
|  * context in which call_usermodehelper_exec is called.
 | |
|  */
 | |
| struct subprocess_info *call_usermodehelper_setup(char *path, char **argv,
 | |
| 		char **envp, gfp_t gfp_mask,
 | |
| 		int (*init)(struct subprocess_info *info, struct cred *new),
 | |
| 		void (*cleanup)(struct subprocess_info *info),
 | |
| 		void *data)
 | |
| {
 | |
| 	struct subprocess_info *sub_info;
 | |
| 	sub_info = kzalloc(sizeof(struct subprocess_info), gfp_mask);
 | |
| 	if (!sub_info)
 | |
| 		goto out;
 | |
| 
 | |
| 	INIT_WORK(&sub_info->work, __call_usermodehelper);
 | |
| 	sub_info->path = path;
 | |
| 	sub_info->argv = argv;
 | |
| 	sub_info->envp = envp;
 | |
| 
 | |
| 	sub_info->cleanup = cleanup;
 | |
| 	sub_info->init = init;
 | |
| 	sub_info->data = data;
 | |
|   out:
 | |
| 	return sub_info;
 | |
| }
 | |
| EXPORT_SYMBOL(call_usermodehelper_setup);
 | |
| 
 | |
| /**
 | |
|  * call_usermodehelper_exec - start a usermode application
 | |
|  * @sub_info: information about the subprocessa
 | |
|  * @wait: wait for the application to finish and return status.
 | |
|  *        when UMH_NO_WAIT don't wait at all, but you get no useful error back
 | |
|  *        when the program couldn't be exec'ed. This makes it safe to call
 | |
|  *        from interrupt context.
 | |
|  *
 | |
|  * Runs a user-space application.  The application is started
 | |
|  * asynchronously if wait is not set, and runs as a child of keventd.
 | |
|  * (ie. it runs with full root capabilities).
 | |
|  */
 | |
| int call_usermodehelper_exec(struct subprocess_info *sub_info, int wait)
 | |
| {
 | |
| 	DECLARE_COMPLETION_ONSTACK(done);
 | |
| 	int retval = 0;
 | |
| 
 | |
| 	if (!sub_info->path) {
 | |
| 		call_usermodehelper_freeinfo(sub_info);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	helper_lock();
 | |
| 	if (!khelper_wq || usermodehelper_disabled) {
 | |
| 		retval = -EBUSY;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Set the completion pointer only if there is a waiter.
 | |
| 	 * This makes it possible to use umh_complete to free
 | |
| 	 * the data structure in case of UMH_NO_WAIT.
 | |
| 	 */
 | |
| 	sub_info->complete = (wait == UMH_NO_WAIT) ? NULL : &done;
 | |
| 	sub_info->wait = wait;
 | |
| 
 | |
| 	queue_work(khelper_wq, &sub_info->work);
 | |
| 	if (wait == UMH_NO_WAIT)	/* task has freed sub_info */
 | |
| 		goto unlock;
 | |
| 
 | |
| 	if (wait & UMH_KILLABLE) {
 | |
| 		retval = wait_for_completion_killable(&done);
 | |
| 		if (!retval)
 | |
| 			goto wait_done;
 | |
| 
 | |
| 		/* umh_complete() will see NULL and free sub_info */
 | |
| 		if (xchg(&sub_info->complete, NULL))
 | |
| 			goto unlock;
 | |
| 		/* fallthrough, umh_complete() was already called */
 | |
| 	}
 | |
| 
 | |
| 	wait_for_completion(&done);
 | |
| wait_done:
 | |
| 	retval = sub_info->retval;
 | |
| out:
 | |
| 	call_usermodehelper_freeinfo(sub_info);
 | |
| unlock:
 | |
| 	helper_unlock();
 | |
| 	return retval;
 | |
| }
 | |
| EXPORT_SYMBOL(call_usermodehelper_exec);
 | |
| 
 | |
| /**
 | |
|  * call_usermodehelper() - prepare and start a usermode application
 | |
|  * @path: path to usermode executable
 | |
|  * @argv: arg vector for process
 | |
|  * @envp: environment for process
 | |
|  * @wait: wait for the application to finish and return status.
 | |
|  *        when UMH_NO_WAIT don't wait at all, but you get no useful error back
 | |
|  *        when the program couldn't be exec'ed. This makes it safe to call
 | |
|  *        from interrupt context.
 | |
|  *
 | |
|  * This function is the equivalent to use call_usermodehelper_setup() and
 | |
|  * call_usermodehelper_exec().
 | |
|  */
 | |
| int call_usermodehelper(char *path, char **argv, char **envp, int wait)
 | |
| {
 | |
| 	struct subprocess_info *info;
 | |
| 	gfp_t gfp_mask = (wait == UMH_NO_WAIT) ? GFP_ATOMIC : GFP_KERNEL;
 | |
| 
 | |
| 	info = call_usermodehelper_setup(path, argv, envp, gfp_mask,
 | |
| 					 NULL, NULL, NULL);
 | |
| 	if (info == NULL)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	return call_usermodehelper_exec(info, wait);
 | |
| }
 | |
| EXPORT_SYMBOL(call_usermodehelper);
 | |
| 
 | |
| static int proc_cap_handler(struct ctl_table *table, int write,
 | |
| 			 void __user *buffer, size_t *lenp, loff_t *ppos)
 | |
| {
 | |
| 	struct ctl_table t;
 | |
| 	unsigned long cap_array[_KERNEL_CAPABILITY_U32S];
 | |
| 	kernel_cap_t new_cap;
 | |
| 	int err, i;
 | |
| 
 | |
| 	if (write && (!capable(CAP_SETPCAP) ||
 | |
| 		      !capable(CAP_SYS_MODULE)))
 | |
| 		return -EPERM;
 | |
| 
 | |
| 	/*
 | |
| 	 * convert from the global kernel_cap_t to the ulong array to print to
 | |
| 	 * userspace if this is a read.
 | |
| 	 */
 | |
| 	spin_lock(&umh_sysctl_lock);
 | |
| 	for (i = 0; i < _KERNEL_CAPABILITY_U32S; i++)  {
 | |
| 		if (table->data == CAP_BSET)
 | |
| 			cap_array[i] = usermodehelper_bset.cap[i];
 | |
| 		else if (table->data == CAP_PI)
 | |
| 			cap_array[i] = usermodehelper_inheritable.cap[i];
 | |
| 		else
 | |
| 			BUG();
 | |
| 	}
 | |
| 	spin_unlock(&umh_sysctl_lock);
 | |
| 
 | |
| 	t = *table;
 | |
| 	t.data = &cap_array;
 | |
| 
 | |
| 	/*
 | |
| 	 * actually read or write and array of ulongs from userspace.  Remember
 | |
| 	 * these are least significant 32 bits first
 | |
| 	 */
 | |
| 	err = proc_doulongvec_minmax(&t, write, buffer, lenp, ppos);
 | |
| 	if (err < 0)
 | |
| 		return err;
 | |
| 
 | |
| 	/*
 | |
| 	 * convert from the sysctl array of ulongs to the kernel_cap_t
 | |
| 	 * internal representation
 | |
| 	 */
 | |
| 	for (i = 0; i < _KERNEL_CAPABILITY_U32S; i++)
 | |
| 		new_cap.cap[i] = cap_array[i];
 | |
| 
 | |
| 	/*
 | |
| 	 * Drop everything not in the new_cap (but don't add things)
 | |
| 	 */
 | |
| 	spin_lock(&umh_sysctl_lock);
 | |
| 	if (write) {
 | |
| 		if (table->data == CAP_BSET)
 | |
| 			usermodehelper_bset = cap_intersect(usermodehelper_bset, new_cap);
 | |
| 		if (table->data == CAP_PI)
 | |
| 			usermodehelper_inheritable = cap_intersect(usermodehelper_inheritable, new_cap);
 | |
| 	}
 | |
| 	spin_unlock(&umh_sysctl_lock);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| struct ctl_table usermodehelper_table[] = {
 | |
| 	{
 | |
| 		.procname	= "bset",
 | |
| 		.data		= CAP_BSET,
 | |
| 		.maxlen		= _KERNEL_CAPABILITY_U32S * sizeof(unsigned long),
 | |
| 		.mode		= 0600,
 | |
| 		.proc_handler	= proc_cap_handler,
 | |
| 	},
 | |
| 	{
 | |
| 		.procname	= "inheritable",
 | |
| 		.data		= CAP_PI,
 | |
| 		.maxlen		= _KERNEL_CAPABILITY_U32S * sizeof(unsigned long),
 | |
| 		.mode		= 0600,
 | |
| 		.proc_handler	= proc_cap_handler,
 | |
| 	},
 | |
| 	{ }
 | |
| };
 | |
| 
 | |
| void __init usermodehelper_init(void)
 | |
| {
 | |
| 	khelper_wq = create_singlethread_workqueue("khelper");
 | |
| 	BUG_ON(!khelper_wq);
 | |
| }
 |