forked from Minki/linux
6532e9cb33
The PCIE capability offset is saved during PCI bus walking. It will remove an unnecessary search in the PCI configuration space if this value is referenced instead of reacquiring it. Signed-off-by: Jon Mason <jdmason@kudzu.us> Signed-off-by: David S. Miller <davem@davemloft.net>
3786 lines
114 KiB
C
3786 lines
114 KiB
C
/*
|
|
* Copyright (c) 2003-2008 Chelsio, Inc. All rights reserved.
|
|
*
|
|
* This software is available to you under a choice of one of two
|
|
* licenses. You may choose to be licensed under the terms of the GNU
|
|
* General Public License (GPL) Version 2, available from the file
|
|
* COPYING in the main directory of this source tree, or the
|
|
* OpenIB.org BSD license below:
|
|
*
|
|
* Redistribution and use in source and binary forms, with or
|
|
* without modification, are permitted provided that the following
|
|
* conditions are met:
|
|
*
|
|
* - Redistributions of source code must retain the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer.
|
|
*
|
|
* - Redistributions in binary form must reproduce the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer in the documentation and/or other materials
|
|
* provided with the distribution.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
|
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
|
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
#include "common.h"
|
|
#include "regs.h"
|
|
#include "sge_defs.h"
|
|
#include "firmware_exports.h"
|
|
|
|
static void t3_port_intr_clear(struct adapter *adapter, int idx);
|
|
|
|
/**
|
|
* t3_wait_op_done_val - wait until an operation is completed
|
|
* @adapter: the adapter performing the operation
|
|
* @reg: the register to check for completion
|
|
* @mask: a single-bit field within @reg that indicates completion
|
|
* @polarity: the value of the field when the operation is completed
|
|
* @attempts: number of check iterations
|
|
* @delay: delay in usecs between iterations
|
|
* @valp: where to store the value of the register at completion time
|
|
*
|
|
* Wait until an operation is completed by checking a bit in a register
|
|
* up to @attempts times. If @valp is not NULL the value of the register
|
|
* at the time it indicated completion is stored there. Returns 0 if the
|
|
* operation completes and -EAGAIN otherwise.
|
|
*/
|
|
|
|
int t3_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
|
|
int polarity, int attempts, int delay, u32 *valp)
|
|
{
|
|
while (1) {
|
|
u32 val = t3_read_reg(adapter, reg);
|
|
|
|
if (!!(val & mask) == polarity) {
|
|
if (valp)
|
|
*valp = val;
|
|
return 0;
|
|
}
|
|
if (--attempts == 0)
|
|
return -EAGAIN;
|
|
if (delay)
|
|
udelay(delay);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* t3_write_regs - write a bunch of registers
|
|
* @adapter: the adapter to program
|
|
* @p: an array of register address/register value pairs
|
|
* @n: the number of address/value pairs
|
|
* @offset: register address offset
|
|
*
|
|
* Takes an array of register address/register value pairs and writes each
|
|
* value to the corresponding register. Register addresses are adjusted
|
|
* by the supplied offset.
|
|
*/
|
|
void t3_write_regs(struct adapter *adapter, const struct addr_val_pair *p,
|
|
int n, unsigned int offset)
|
|
{
|
|
while (n--) {
|
|
t3_write_reg(adapter, p->reg_addr + offset, p->val);
|
|
p++;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* t3_set_reg_field - set a register field to a value
|
|
* @adapter: the adapter to program
|
|
* @addr: the register address
|
|
* @mask: specifies the portion of the register to modify
|
|
* @val: the new value for the register field
|
|
*
|
|
* Sets a register field specified by the supplied mask to the
|
|
* given value.
|
|
*/
|
|
void t3_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
|
|
u32 val)
|
|
{
|
|
u32 v = t3_read_reg(adapter, addr) & ~mask;
|
|
|
|
t3_write_reg(adapter, addr, v | val);
|
|
t3_read_reg(adapter, addr); /* flush */
|
|
}
|
|
|
|
/**
|
|
* t3_read_indirect - read indirectly addressed registers
|
|
* @adap: the adapter
|
|
* @addr_reg: register holding the indirect address
|
|
* @data_reg: register holding the value of the indirect register
|
|
* @vals: where the read register values are stored
|
|
* @start_idx: index of first indirect register to read
|
|
* @nregs: how many indirect registers to read
|
|
*
|
|
* Reads registers that are accessed indirectly through an address/data
|
|
* register pair.
|
|
*/
|
|
static void t3_read_indirect(struct adapter *adap, unsigned int addr_reg,
|
|
unsigned int data_reg, u32 *vals,
|
|
unsigned int nregs, unsigned int start_idx)
|
|
{
|
|
while (nregs--) {
|
|
t3_write_reg(adap, addr_reg, start_idx);
|
|
*vals++ = t3_read_reg(adap, data_reg);
|
|
start_idx++;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* t3_mc7_bd_read - read from MC7 through backdoor accesses
|
|
* @mc7: identifies MC7 to read from
|
|
* @start: index of first 64-bit word to read
|
|
* @n: number of 64-bit words to read
|
|
* @buf: where to store the read result
|
|
*
|
|
* Read n 64-bit words from MC7 starting at word start, using backdoor
|
|
* accesses.
|
|
*/
|
|
int t3_mc7_bd_read(struct mc7 *mc7, unsigned int start, unsigned int n,
|
|
u64 *buf)
|
|
{
|
|
static const int shift[] = { 0, 0, 16, 24 };
|
|
static const int step[] = { 0, 32, 16, 8 };
|
|
|
|
unsigned int size64 = mc7->size / 8; /* # of 64-bit words */
|
|
struct adapter *adap = mc7->adapter;
|
|
|
|
if (start >= size64 || start + n > size64)
|
|
return -EINVAL;
|
|
|
|
start *= (8 << mc7->width);
|
|
while (n--) {
|
|
int i;
|
|
u64 val64 = 0;
|
|
|
|
for (i = (1 << mc7->width) - 1; i >= 0; --i) {
|
|
int attempts = 10;
|
|
u32 val;
|
|
|
|
t3_write_reg(adap, mc7->offset + A_MC7_BD_ADDR, start);
|
|
t3_write_reg(adap, mc7->offset + A_MC7_BD_OP, 0);
|
|
val = t3_read_reg(adap, mc7->offset + A_MC7_BD_OP);
|
|
while ((val & F_BUSY) && attempts--)
|
|
val = t3_read_reg(adap,
|
|
mc7->offset + A_MC7_BD_OP);
|
|
if (val & F_BUSY)
|
|
return -EIO;
|
|
|
|
val = t3_read_reg(adap, mc7->offset + A_MC7_BD_DATA1);
|
|
if (mc7->width == 0) {
|
|
val64 = t3_read_reg(adap,
|
|
mc7->offset +
|
|
A_MC7_BD_DATA0);
|
|
val64 |= (u64) val << 32;
|
|
} else {
|
|
if (mc7->width > 1)
|
|
val >>= shift[mc7->width];
|
|
val64 |= (u64) val << (step[mc7->width] * i);
|
|
}
|
|
start += 8;
|
|
}
|
|
*buf++ = val64;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Initialize MI1.
|
|
*/
|
|
static void mi1_init(struct adapter *adap, const struct adapter_info *ai)
|
|
{
|
|
u32 clkdiv = adap->params.vpd.cclk / (2 * adap->params.vpd.mdc) - 1;
|
|
u32 val = F_PREEN | V_CLKDIV(clkdiv);
|
|
|
|
t3_write_reg(adap, A_MI1_CFG, val);
|
|
}
|
|
|
|
#define MDIO_ATTEMPTS 20
|
|
|
|
/*
|
|
* MI1 read/write operations for clause 22 PHYs.
|
|
*/
|
|
static int t3_mi1_read(struct net_device *dev, int phy_addr, int mmd_addr,
|
|
u16 reg_addr)
|
|
{
|
|
struct port_info *pi = netdev_priv(dev);
|
|
struct adapter *adapter = pi->adapter;
|
|
int ret;
|
|
u32 addr = V_REGADDR(reg_addr) | V_PHYADDR(phy_addr);
|
|
|
|
mutex_lock(&adapter->mdio_lock);
|
|
t3_set_reg_field(adapter, A_MI1_CFG, V_ST(M_ST), V_ST(1));
|
|
t3_write_reg(adapter, A_MI1_ADDR, addr);
|
|
t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(2));
|
|
ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 10);
|
|
if (!ret)
|
|
ret = t3_read_reg(adapter, A_MI1_DATA);
|
|
mutex_unlock(&adapter->mdio_lock);
|
|
return ret;
|
|
}
|
|
|
|
static int t3_mi1_write(struct net_device *dev, int phy_addr, int mmd_addr,
|
|
u16 reg_addr, u16 val)
|
|
{
|
|
struct port_info *pi = netdev_priv(dev);
|
|
struct adapter *adapter = pi->adapter;
|
|
int ret;
|
|
u32 addr = V_REGADDR(reg_addr) | V_PHYADDR(phy_addr);
|
|
|
|
mutex_lock(&adapter->mdio_lock);
|
|
t3_set_reg_field(adapter, A_MI1_CFG, V_ST(M_ST), V_ST(1));
|
|
t3_write_reg(adapter, A_MI1_ADDR, addr);
|
|
t3_write_reg(adapter, A_MI1_DATA, val);
|
|
t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(1));
|
|
ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 10);
|
|
mutex_unlock(&adapter->mdio_lock);
|
|
return ret;
|
|
}
|
|
|
|
static const struct mdio_ops mi1_mdio_ops = {
|
|
.read = t3_mi1_read,
|
|
.write = t3_mi1_write,
|
|
.mode_support = MDIO_SUPPORTS_C22
|
|
};
|
|
|
|
/*
|
|
* Performs the address cycle for clause 45 PHYs.
|
|
* Must be called with the MDIO_LOCK held.
|
|
*/
|
|
static int mi1_wr_addr(struct adapter *adapter, int phy_addr, int mmd_addr,
|
|
int reg_addr)
|
|
{
|
|
u32 addr = V_REGADDR(mmd_addr) | V_PHYADDR(phy_addr);
|
|
|
|
t3_set_reg_field(adapter, A_MI1_CFG, V_ST(M_ST), 0);
|
|
t3_write_reg(adapter, A_MI1_ADDR, addr);
|
|
t3_write_reg(adapter, A_MI1_DATA, reg_addr);
|
|
t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(0));
|
|
return t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0,
|
|
MDIO_ATTEMPTS, 10);
|
|
}
|
|
|
|
/*
|
|
* MI1 read/write operations for indirect-addressed PHYs.
|
|
*/
|
|
static int mi1_ext_read(struct net_device *dev, int phy_addr, int mmd_addr,
|
|
u16 reg_addr)
|
|
{
|
|
struct port_info *pi = netdev_priv(dev);
|
|
struct adapter *adapter = pi->adapter;
|
|
int ret;
|
|
|
|
mutex_lock(&adapter->mdio_lock);
|
|
ret = mi1_wr_addr(adapter, phy_addr, mmd_addr, reg_addr);
|
|
if (!ret) {
|
|
t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(3));
|
|
ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0,
|
|
MDIO_ATTEMPTS, 10);
|
|
if (!ret)
|
|
ret = t3_read_reg(adapter, A_MI1_DATA);
|
|
}
|
|
mutex_unlock(&adapter->mdio_lock);
|
|
return ret;
|
|
}
|
|
|
|
static int mi1_ext_write(struct net_device *dev, int phy_addr, int mmd_addr,
|
|
u16 reg_addr, u16 val)
|
|
{
|
|
struct port_info *pi = netdev_priv(dev);
|
|
struct adapter *adapter = pi->adapter;
|
|
int ret;
|
|
|
|
mutex_lock(&adapter->mdio_lock);
|
|
ret = mi1_wr_addr(adapter, phy_addr, mmd_addr, reg_addr);
|
|
if (!ret) {
|
|
t3_write_reg(adapter, A_MI1_DATA, val);
|
|
t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(1));
|
|
ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0,
|
|
MDIO_ATTEMPTS, 10);
|
|
}
|
|
mutex_unlock(&adapter->mdio_lock);
|
|
return ret;
|
|
}
|
|
|
|
static const struct mdio_ops mi1_mdio_ext_ops = {
|
|
.read = mi1_ext_read,
|
|
.write = mi1_ext_write,
|
|
.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22
|
|
};
|
|
|
|
/**
|
|
* t3_mdio_change_bits - modify the value of a PHY register
|
|
* @phy: the PHY to operate on
|
|
* @mmd: the device address
|
|
* @reg: the register address
|
|
* @clear: what part of the register value to mask off
|
|
* @set: what part of the register value to set
|
|
*
|
|
* Changes the value of a PHY register by applying a mask to its current
|
|
* value and ORing the result with a new value.
|
|
*/
|
|
int t3_mdio_change_bits(struct cphy *phy, int mmd, int reg, unsigned int clear,
|
|
unsigned int set)
|
|
{
|
|
int ret;
|
|
unsigned int val;
|
|
|
|
ret = t3_mdio_read(phy, mmd, reg, &val);
|
|
if (!ret) {
|
|
val &= ~clear;
|
|
ret = t3_mdio_write(phy, mmd, reg, val | set);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* t3_phy_reset - reset a PHY block
|
|
* @phy: the PHY to operate on
|
|
* @mmd: the device address of the PHY block to reset
|
|
* @wait: how long to wait for the reset to complete in 1ms increments
|
|
*
|
|
* Resets a PHY block and optionally waits for the reset to complete.
|
|
* @mmd should be 0 for 10/100/1000 PHYs and the device address to reset
|
|
* for 10G PHYs.
|
|
*/
|
|
int t3_phy_reset(struct cphy *phy, int mmd, int wait)
|
|
{
|
|
int err;
|
|
unsigned int ctl;
|
|
|
|
err = t3_mdio_change_bits(phy, mmd, MDIO_CTRL1, MDIO_CTRL1_LPOWER,
|
|
MDIO_CTRL1_RESET);
|
|
if (err || !wait)
|
|
return err;
|
|
|
|
do {
|
|
err = t3_mdio_read(phy, mmd, MDIO_CTRL1, &ctl);
|
|
if (err)
|
|
return err;
|
|
ctl &= MDIO_CTRL1_RESET;
|
|
if (ctl)
|
|
msleep(1);
|
|
} while (ctl && --wait);
|
|
|
|
return ctl ? -1 : 0;
|
|
}
|
|
|
|
/**
|
|
* t3_phy_advertise - set the PHY advertisement registers for autoneg
|
|
* @phy: the PHY to operate on
|
|
* @advert: bitmap of capabilities the PHY should advertise
|
|
*
|
|
* Sets a 10/100/1000 PHY's advertisement registers to advertise the
|
|
* requested capabilities.
|
|
*/
|
|
int t3_phy_advertise(struct cphy *phy, unsigned int advert)
|
|
{
|
|
int err;
|
|
unsigned int val = 0;
|
|
|
|
err = t3_mdio_read(phy, MDIO_DEVAD_NONE, MII_CTRL1000, &val);
|
|
if (err)
|
|
return err;
|
|
|
|
val &= ~(ADVERTISE_1000HALF | ADVERTISE_1000FULL);
|
|
if (advert & ADVERTISED_1000baseT_Half)
|
|
val |= ADVERTISE_1000HALF;
|
|
if (advert & ADVERTISED_1000baseT_Full)
|
|
val |= ADVERTISE_1000FULL;
|
|
|
|
err = t3_mdio_write(phy, MDIO_DEVAD_NONE, MII_CTRL1000, val);
|
|
if (err)
|
|
return err;
|
|
|
|
val = 1;
|
|
if (advert & ADVERTISED_10baseT_Half)
|
|
val |= ADVERTISE_10HALF;
|
|
if (advert & ADVERTISED_10baseT_Full)
|
|
val |= ADVERTISE_10FULL;
|
|
if (advert & ADVERTISED_100baseT_Half)
|
|
val |= ADVERTISE_100HALF;
|
|
if (advert & ADVERTISED_100baseT_Full)
|
|
val |= ADVERTISE_100FULL;
|
|
if (advert & ADVERTISED_Pause)
|
|
val |= ADVERTISE_PAUSE_CAP;
|
|
if (advert & ADVERTISED_Asym_Pause)
|
|
val |= ADVERTISE_PAUSE_ASYM;
|
|
return t3_mdio_write(phy, MDIO_DEVAD_NONE, MII_ADVERTISE, val);
|
|
}
|
|
|
|
/**
|
|
* t3_phy_advertise_fiber - set fiber PHY advertisement register
|
|
* @phy: the PHY to operate on
|
|
* @advert: bitmap of capabilities the PHY should advertise
|
|
*
|
|
* Sets a fiber PHY's advertisement register to advertise the
|
|
* requested capabilities.
|
|
*/
|
|
int t3_phy_advertise_fiber(struct cphy *phy, unsigned int advert)
|
|
{
|
|
unsigned int val = 0;
|
|
|
|
if (advert & ADVERTISED_1000baseT_Half)
|
|
val |= ADVERTISE_1000XHALF;
|
|
if (advert & ADVERTISED_1000baseT_Full)
|
|
val |= ADVERTISE_1000XFULL;
|
|
if (advert & ADVERTISED_Pause)
|
|
val |= ADVERTISE_1000XPAUSE;
|
|
if (advert & ADVERTISED_Asym_Pause)
|
|
val |= ADVERTISE_1000XPSE_ASYM;
|
|
return t3_mdio_write(phy, MDIO_DEVAD_NONE, MII_ADVERTISE, val);
|
|
}
|
|
|
|
/**
|
|
* t3_set_phy_speed_duplex - force PHY speed and duplex
|
|
* @phy: the PHY to operate on
|
|
* @speed: requested PHY speed
|
|
* @duplex: requested PHY duplex
|
|
*
|
|
* Force a 10/100/1000 PHY's speed and duplex. This also disables
|
|
* auto-negotiation except for GigE, where auto-negotiation is mandatory.
|
|
*/
|
|
int t3_set_phy_speed_duplex(struct cphy *phy, int speed, int duplex)
|
|
{
|
|
int err;
|
|
unsigned int ctl;
|
|
|
|
err = t3_mdio_read(phy, MDIO_DEVAD_NONE, MII_BMCR, &ctl);
|
|
if (err)
|
|
return err;
|
|
|
|
if (speed >= 0) {
|
|
ctl &= ~(BMCR_SPEED100 | BMCR_SPEED1000 | BMCR_ANENABLE);
|
|
if (speed == SPEED_100)
|
|
ctl |= BMCR_SPEED100;
|
|
else if (speed == SPEED_1000)
|
|
ctl |= BMCR_SPEED1000;
|
|
}
|
|
if (duplex >= 0) {
|
|
ctl &= ~(BMCR_FULLDPLX | BMCR_ANENABLE);
|
|
if (duplex == DUPLEX_FULL)
|
|
ctl |= BMCR_FULLDPLX;
|
|
}
|
|
if (ctl & BMCR_SPEED1000) /* auto-negotiation required for GigE */
|
|
ctl |= BMCR_ANENABLE;
|
|
return t3_mdio_write(phy, MDIO_DEVAD_NONE, MII_BMCR, ctl);
|
|
}
|
|
|
|
int t3_phy_lasi_intr_enable(struct cphy *phy)
|
|
{
|
|
return t3_mdio_write(phy, MDIO_MMD_PMAPMD, MDIO_PMA_LASI_CTRL,
|
|
MDIO_PMA_LASI_LSALARM);
|
|
}
|
|
|
|
int t3_phy_lasi_intr_disable(struct cphy *phy)
|
|
{
|
|
return t3_mdio_write(phy, MDIO_MMD_PMAPMD, MDIO_PMA_LASI_CTRL, 0);
|
|
}
|
|
|
|
int t3_phy_lasi_intr_clear(struct cphy *phy)
|
|
{
|
|
u32 val;
|
|
|
|
return t3_mdio_read(phy, MDIO_MMD_PMAPMD, MDIO_PMA_LASI_STAT, &val);
|
|
}
|
|
|
|
int t3_phy_lasi_intr_handler(struct cphy *phy)
|
|
{
|
|
unsigned int status;
|
|
int err = t3_mdio_read(phy, MDIO_MMD_PMAPMD, MDIO_PMA_LASI_STAT,
|
|
&status);
|
|
|
|
if (err)
|
|
return err;
|
|
return (status & MDIO_PMA_LASI_LSALARM) ? cphy_cause_link_change : 0;
|
|
}
|
|
|
|
static const struct adapter_info t3_adap_info[] = {
|
|
{1, 1, 0,
|
|
F_GPIO2_OEN | F_GPIO4_OEN |
|
|
F_GPIO2_OUT_VAL | F_GPIO4_OUT_VAL, { S_GPIO3, S_GPIO5 }, 0,
|
|
&mi1_mdio_ops, "Chelsio PE9000"},
|
|
{1, 1, 0,
|
|
F_GPIO2_OEN | F_GPIO4_OEN |
|
|
F_GPIO2_OUT_VAL | F_GPIO4_OUT_VAL, { S_GPIO3, S_GPIO5 }, 0,
|
|
&mi1_mdio_ops, "Chelsio T302"},
|
|
{1, 0, 0,
|
|
F_GPIO1_OEN | F_GPIO6_OEN | F_GPIO7_OEN | F_GPIO10_OEN |
|
|
F_GPIO11_OEN | F_GPIO1_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL,
|
|
{ 0 }, SUPPORTED_10000baseT_Full | SUPPORTED_AUI,
|
|
&mi1_mdio_ext_ops, "Chelsio T310"},
|
|
{1, 1, 0,
|
|
F_GPIO1_OEN | F_GPIO2_OEN | F_GPIO4_OEN | F_GPIO5_OEN | F_GPIO6_OEN |
|
|
F_GPIO7_OEN | F_GPIO10_OEN | F_GPIO11_OEN | F_GPIO1_OUT_VAL |
|
|
F_GPIO5_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL,
|
|
{ S_GPIO9, S_GPIO3 }, SUPPORTED_10000baseT_Full | SUPPORTED_AUI,
|
|
&mi1_mdio_ext_ops, "Chelsio T320"},
|
|
{},
|
|
{},
|
|
{1, 0, 0,
|
|
F_GPIO1_OEN | F_GPIO2_OEN | F_GPIO4_OEN | F_GPIO6_OEN | F_GPIO7_OEN |
|
|
F_GPIO10_OEN | F_GPIO1_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL,
|
|
{ S_GPIO9 }, SUPPORTED_10000baseT_Full | SUPPORTED_AUI,
|
|
&mi1_mdio_ext_ops, "Chelsio T310" },
|
|
{1, 0, 0,
|
|
F_GPIO1_OEN | F_GPIO6_OEN | F_GPIO7_OEN |
|
|
F_GPIO1_OUT_VAL | F_GPIO6_OUT_VAL,
|
|
{ S_GPIO9 }, SUPPORTED_10000baseT_Full | SUPPORTED_AUI,
|
|
&mi1_mdio_ext_ops, "Chelsio N320E-G2" },
|
|
};
|
|
|
|
/*
|
|
* Return the adapter_info structure with a given index. Out-of-range indices
|
|
* return NULL.
|
|
*/
|
|
const struct adapter_info *t3_get_adapter_info(unsigned int id)
|
|
{
|
|
return id < ARRAY_SIZE(t3_adap_info) ? &t3_adap_info[id] : NULL;
|
|
}
|
|
|
|
struct port_type_info {
|
|
int (*phy_prep)(struct cphy *phy, struct adapter *adapter,
|
|
int phy_addr, const struct mdio_ops *ops);
|
|
};
|
|
|
|
static const struct port_type_info port_types[] = {
|
|
{ NULL },
|
|
{ t3_ael1002_phy_prep },
|
|
{ t3_vsc8211_phy_prep },
|
|
{ NULL},
|
|
{ t3_xaui_direct_phy_prep },
|
|
{ t3_ael2005_phy_prep },
|
|
{ t3_qt2045_phy_prep },
|
|
{ t3_ael1006_phy_prep },
|
|
{ NULL },
|
|
{ t3_aq100x_phy_prep },
|
|
{ t3_ael2020_phy_prep },
|
|
};
|
|
|
|
#define VPD_ENTRY(name, len) \
|
|
u8 name##_kword[2]; u8 name##_len; u8 name##_data[len]
|
|
|
|
/*
|
|
* Partial EEPROM Vital Product Data structure. Includes only the ID and
|
|
* VPD-R sections.
|
|
*/
|
|
struct t3_vpd {
|
|
u8 id_tag;
|
|
u8 id_len[2];
|
|
u8 id_data[16];
|
|
u8 vpdr_tag;
|
|
u8 vpdr_len[2];
|
|
VPD_ENTRY(pn, 16); /* part number */
|
|
VPD_ENTRY(ec, 16); /* EC level */
|
|
VPD_ENTRY(sn, SERNUM_LEN); /* serial number */
|
|
VPD_ENTRY(na, 12); /* MAC address base */
|
|
VPD_ENTRY(cclk, 6); /* core clock */
|
|
VPD_ENTRY(mclk, 6); /* mem clock */
|
|
VPD_ENTRY(uclk, 6); /* uP clk */
|
|
VPD_ENTRY(mdc, 6); /* MDIO clk */
|
|
VPD_ENTRY(mt, 2); /* mem timing */
|
|
VPD_ENTRY(xaui0cfg, 6); /* XAUI0 config */
|
|
VPD_ENTRY(xaui1cfg, 6); /* XAUI1 config */
|
|
VPD_ENTRY(port0, 2); /* PHY0 complex */
|
|
VPD_ENTRY(port1, 2); /* PHY1 complex */
|
|
VPD_ENTRY(port2, 2); /* PHY2 complex */
|
|
VPD_ENTRY(port3, 2); /* PHY3 complex */
|
|
VPD_ENTRY(rv, 1); /* csum */
|
|
u32 pad; /* for multiple-of-4 sizing and alignment */
|
|
};
|
|
|
|
#define EEPROM_MAX_POLL 40
|
|
#define EEPROM_STAT_ADDR 0x4000
|
|
#define VPD_BASE 0xc00
|
|
|
|
/**
|
|
* t3_seeprom_read - read a VPD EEPROM location
|
|
* @adapter: adapter to read
|
|
* @addr: EEPROM address
|
|
* @data: where to store the read data
|
|
*
|
|
* Read a 32-bit word from a location in VPD EEPROM using the card's PCI
|
|
* VPD ROM capability. A zero is written to the flag bit when the
|
|
* address is written to the control register. The hardware device will
|
|
* set the flag to 1 when 4 bytes have been read into the data register.
|
|
*/
|
|
int t3_seeprom_read(struct adapter *adapter, u32 addr, __le32 *data)
|
|
{
|
|
u16 val;
|
|
int attempts = EEPROM_MAX_POLL;
|
|
u32 v;
|
|
unsigned int base = adapter->params.pci.vpd_cap_addr;
|
|
|
|
if ((addr >= EEPROMSIZE && addr != EEPROM_STAT_ADDR) || (addr & 3))
|
|
return -EINVAL;
|
|
|
|
pci_write_config_word(adapter->pdev, base + PCI_VPD_ADDR, addr);
|
|
do {
|
|
udelay(10);
|
|
pci_read_config_word(adapter->pdev, base + PCI_VPD_ADDR, &val);
|
|
} while (!(val & PCI_VPD_ADDR_F) && --attempts);
|
|
|
|
if (!(val & PCI_VPD_ADDR_F)) {
|
|
CH_ERR(adapter, "reading EEPROM address 0x%x failed\n", addr);
|
|
return -EIO;
|
|
}
|
|
pci_read_config_dword(adapter->pdev, base + PCI_VPD_DATA, &v);
|
|
*data = cpu_to_le32(v);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* t3_seeprom_write - write a VPD EEPROM location
|
|
* @adapter: adapter to write
|
|
* @addr: EEPROM address
|
|
* @data: value to write
|
|
*
|
|
* Write a 32-bit word to a location in VPD EEPROM using the card's PCI
|
|
* VPD ROM capability.
|
|
*/
|
|
int t3_seeprom_write(struct adapter *adapter, u32 addr, __le32 data)
|
|
{
|
|
u16 val;
|
|
int attempts = EEPROM_MAX_POLL;
|
|
unsigned int base = adapter->params.pci.vpd_cap_addr;
|
|
|
|
if ((addr >= EEPROMSIZE && addr != EEPROM_STAT_ADDR) || (addr & 3))
|
|
return -EINVAL;
|
|
|
|
pci_write_config_dword(adapter->pdev, base + PCI_VPD_DATA,
|
|
le32_to_cpu(data));
|
|
pci_write_config_word(adapter->pdev,base + PCI_VPD_ADDR,
|
|
addr | PCI_VPD_ADDR_F);
|
|
do {
|
|
msleep(1);
|
|
pci_read_config_word(adapter->pdev, base + PCI_VPD_ADDR, &val);
|
|
} while ((val & PCI_VPD_ADDR_F) && --attempts);
|
|
|
|
if (val & PCI_VPD_ADDR_F) {
|
|
CH_ERR(adapter, "write to EEPROM address 0x%x failed\n", addr);
|
|
return -EIO;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* t3_seeprom_wp - enable/disable EEPROM write protection
|
|
* @adapter: the adapter
|
|
* @enable: 1 to enable write protection, 0 to disable it
|
|
*
|
|
* Enables or disables write protection on the serial EEPROM.
|
|
*/
|
|
int t3_seeprom_wp(struct adapter *adapter, int enable)
|
|
{
|
|
return t3_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
|
|
}
|
|
|
|
/**
|
|
* get_vpd_params - read VPD parameters from VPD EEPROM
|
|
* @adapter: adapter to read
|
|
* @p: where to store the parameters
|
|
*
|
|
* Reads card parameters stored in VPD EEPROM.
|
|
*/
|
|
static int get_vpd_params(struct adapter *adapter, struct vpd_params *p)
|
|
{
|
|
int i, addr, ret;
|
|
struct t3_vpd vpd;
|
|
|
|
/*
|
|
* Card information is normally at VPD_BASE but some early cards had
|
|
* it at 0.
|
|
*/
|
|
ret = t3_seeprom_read(adapter, VPD_BASE, (__le32 *)&vpd);
|
|
if (ret)
|
|
return ret;
|
|
addr = vpd.id_tag == 0x82 ? VPD_BASE : 0;
|
|
|
|
for (i = 0; i < sizeof(vpd); i += 4) {
|
|
ret = t3_seeprom_read(adapter, addr + i,
|
|
(__le32 *)((u8 *)&vpd + i));
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
p->cclk = simple_strtoul(vpd.cclk_data, NULL, 10);
|
|
p->mclk = simple_strtoul(vpd.mclk_data, NULL, 10);
|
|
p->uclk = simple_strtoul(vpd.uclk_data, NULL, 10);
|
|
p->mdc = simple_strtoul(vpd.mdc_data, NULL, 10);
|
|
p->mem_timing = simple_strtoul(vpd.mt_data, NULL, 10);
|
|
memcpy(p->sn, vpd.sn_data, SERNUM_LEN);
|
|
|
|
/* Old eeproms didn't have port information */
|
|
if (adapter->params.rev == 0 && !vpd.port0_data[0]) {
|
|
p->port_type[0] = uses_xaui(adapter) ? 1 : 2;
|
|
p->port_type[1] = uses_xaui(adapter) ? 6 : 2;
|
|
} else {
|
|
p->port_type[0] = hex_to_bin(vpd.port0_data[0]);
|
|
p->port_type[1] = hex_to_bin(vpd.port1_data[0]);
|
|
p->xauicfg[0] = simple_strtoul(vpd.xaui0cfg_data, NULL, 16);
|
|
p->xauicfg[1] = simple_strtoul(vpd.xaui1cfg_data, NULL, 16);
|
|
}
|
|
|
|
for (i = 0; i < 6; i++)
|
|
p->eth_base[i] = hex_to_bin(vpd.na_data[2 * i]) * 16 +
|
|
hex_to_bin(vpd.na_data[2 * i + 1]);
|
|
return 0;
|
|
}
|
|
|
|
/* serial flash and firmware constants */
|
|
enum {
|
|
SF_ATTEMPTS = 5, /* max retries for SF1 operations */
|
|
SF_SEC_SIZE = 64 * 1024, /* serial flash sector size */
|
|
SF_SIZE = SF_SEC_SIZE * 8, /* serial flash size */
|
|
|
|
/* flash command opcodes */
|
|
SF_PROG_PAGE = 2, /* program page */
|
|
SF_WR_DISABLE = 4, /* disable writes */
|
|
SF_RD_STATUS = 5, /* read status register */
|
|
SF_WR_ENABLE = 6, /* enable writes */
|
|
SF_RD_DATA_FAST = 0xb, /* read flash */
|
|
SF_ERASE_SECTOR = 0xd8, /* erase sector */
|
|
|
|
FW_FLASH_BOOT_ADDR = 0x70000, /* start address of FW in flash */
|
|
FW_VERS_ADDR = 0x7fffc, /* flash address holding FW version */
|
|
FW_MIN_SIZE = 8 /* at least version and csum */
|
|
};
|
|
|
|
/**
|
|
* sf1_read - read data from the serial flash
|
|
* @adapter: the adapter
|
|
* @byte_cnt: number of bytes to read
|
|
* @cont: whether another operation will be chained
|
|
* @valp: where to store the read data
|
|
*
|
|
* Reads up to 4 bytes of data from the serial flash. The location of
|
|
* the read needs to be specified prior to calling this by issuing the
|
|
* appropriate commands to the serial flash.
|
|
*/
|
|
static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
|
|
u32 *valp)
|
|
{
|
|
int ret;
|
|
|
|
if (!byte_cnt || byte_cnt > 4)
|
|
return -EINVAL;
|
|
if (t3_read_reg(adapter, A_SF_OP) & F_BUSY)
|
|
return -EBUSY;
|
|
t3_write_reg(adapter, A_SF_OP, V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
|
|
ret = t3_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 10);
|
|
if (!ret)
|
|
*valp = t3_read_reg(adapter, A_SF_DATA);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* sf1_write - write data to the serial flash
|
|
* @adapter: the adapter
|
|
* @byte_cnt: number of bytes to write
|
|
* @cont: whether another operation will be chained
|
|
* @val: value to write
|
|
*
|
|
* Writes up to 4 bytes of data to the serial flash. The location of
|
|
* the write needs to be specified prior to calling this by issuing the
|
|
* appropriate commands to the serial flash.
|
|
*/
|
|
static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
|
|
u32 val)
|
|
{
|
|
if (!byte_cnt || byte_cnt > 4)
|
|
return -EINVAL;
|
|
if (t3_read_reg(adapter, A_SF_OP) & F_BUSY)
|
|
return -EBUSY;
|
|
t3_write_reg(adapter, A_SF_DATA, val);
|
|
t3_write_reg(adapter, A_SF_OP,
|
|
V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
|
|
return t3_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 10);
|
|
}
|
|
|
|
/**
|
|
* flash_wait_op - wait for a flash operation to complete
|
|
* @adapter: the adapter
|
|
* @attempts: max number of polls of the status register
|
|
* @delay: delay between polls in ms
|
|
*
|
|
* Wait for a flash operation to complete by polling the status register.
|
|
*/
|
|
static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
|
|
{
|
|
int ret;
|
|
u32 status;
|
|
|
|
while (1) {
|
|
if ((ret = sf1_write(adapter, 1, 1, SF_RD_STATUS)) != 0 ||
|
|
(ret = sf1_read(adapter, 1, 0, &status)) != 0)
|
|
return ret;
|
|
if (!(status & 1))
|
|
return 0;
|
|
if (--attempts == 0)
|
|
return -EAGAIN;
|
|
if (delay)
|
|
msleep(delay);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* t3_read_flash - read words from serial flash
|
|
* @adapter: the adapter
|
|
* @addr: the start address for the read
|
|
* @nwords: how many 32-bit words to read
|
|
* @data: where to store the read data
|
|
* @byte_oriented: whether to store data as bytes or as words
|
|
*
|
|
* Read the specified number of 32-bit words from the serial flash.
|
|
* If @byte_oriented is set the read data is stored as a byte array
|
|
* (i.e., big-endian), otherwise as 32-bit words in the platform's
|
|
* natural endianess.
|
|
*/
|
|
static int t3_read_flash(struct adapter *adapter, unsigned int addr,
|
|
unsigned int nwords, u32 *data, int byte_oriented)
|
|
{
|
|
int ret;
|
|
|
|
if (addr + nwords * sizeof(u32) > SF_SIZE || (addr & 3))
|
|
return -EINVAL;
|
|
|
|
addr = swab32(addr) | SF_RD_DATA_FAST;
|
|
|
|
if ((ret = sf1_write(adapter, 4, 1, addr)) != 0 ||
|
|
(ret = sf1_read(adapter, 1, 1, data)) != 0)
|
|
return ret;
|
|
|
|
for (; nwords; nwords--, data++) {
|
|
ret = sf1_read(adapter, 4, nwords > 1, data);
|
|
if (ret)
|
|
return ret;
|
|
if (byte_oriented)
|
|
*data = htonl(*data);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* t3_write_flash - write up to a page of data to the serial flash
|
|
* @adapter: the adapter
|
|
* @addr: the start address to write
|
|
* @n: length of data to write
|
|
* @data: the data to write
|
|
*
|
|
* Writes up to a page of data (256 bytes) to the serial flash starting
|
|
* at the given address.
|
|
*/
|
|
static int t3_write_flash(struct adapter *adapter, unsigned int addr,
|
|
unsigned int n, const u8 *data)
|
|
{
|
|
int ret;
|
|
u32 buf[64];
|
|
unsigned int i, c, left, val, offset = addr & 0xff;
|
|
|
|
if (addr + n > SF_SIZE || offset + n > 256)
|
|
return -EINVAL;
|
|
|
|
val = swab32(addr) | SF_PROG_PAGE;
|
|
|
|
if ((ret = sf1_write(adapter, 1, 0, SF_WR_ENABLE)) != 0 ||
|
|
(ret = sf1_write(adapter, 4, 1, val)) != 0)
|
|
return ret;
|
|
|
|
for (left = n; left; left -= c) {
|
|
c = min(left, 4U);
|
|
for (val = 0, i = 0; i < c; ++i)
|
|
val = (val << 8) + *data++;
|
|
|
|
ret = sf1_write(adapter, c, c != left, val);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
if ((ret = flash_wait_op(adapter, 5, 1)) != 0)
|
|
return ret;
|
|
|
|
/* Read the page to verify the write succeeded */
|
|
ret = t3_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (memcmp(data - n, (u8 *) buf + offset, n))
|
|
return -EIO;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* t3_get_tp_version - read the tp sram version
|
|
* @adapter: the adapter
|
|
* @vers: where to place the version
|
|
*
|
|
* Reads the protocol sram version from sram.
|
|
*/
|
|
int t3_get_tp_version(struct adapter *adapter, u32 *vers)
|
|
{
|
|
int ret;
|
|
|
|
/* Get version loaded in SRAM */
|
|
t3_write_reg(adapter, A_TP_EMBED_OP_FIELD0, 0);
|
|
ret = t3_wait_op_done(adapter, A_TP_EMBED_OP_FIELD0,
|
|
1, 1, 5, 1);
|
|
if (ret)
|
|
return ret;
|
|
|
|
*vers = t3_read_reg(adapter, A_TP_EMBED_OP_FIELD1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* t3_check_tpsram_version - read the tp sram version
|
|
* @adapter: the adapter
|
|
*
|
|
* Reads the protocol sram version from flash.
|
|
*/
|
|
int t3_check_tpsram_version(struct adapter *adapter)
|
|
{
|
|
int ret;
|
|
u32 vers;
|
|
unsigned int major, minor;
|
|
|
|
if (adapter->params.rev == T3_REV_A)
|
|
return 0;
|
|
|
|
|
|
ret = t3_get_tp_version(adapter, &vers);
|
|
if (ret)
|
|
return ret;
|
|
|
|
major = G_TP_VERSION_MAJOR(vers);
|
|
minor = G_TP_VERSION_MINOR(vers);
|
|
|
|
if (major == TP_VERSION_MAJOR && minor == TP_VERSION_MINOR)
|
|
return 0;
|
|
else {
|
|
CH_ERR(adapter, "found wrong TP version (%u.%u), "
|
|
"driver compiled for version %d.%d\n", major, minor,
|
|
TP_VERSION_MAJOR, TP_VERSION_MINOR);
|
|
}
|
|
return -EINVAL;
|
|
}
|
|
|
|
/**
|
|
* t3_check_tpsram - check if provided protocol SRAM
|
|
* is compatible with this driver
|
|
* @adapter: the adapter
|
|
* @tp_sram: the firmware image to write
|
|
* @size: image size
|
|
*
|
|
* Checks if an adapter's tp sram is compatible with the driver.
|
|
* Returns 0 if the versions are compatible, a negative error otherwise.
|
|
*/
|
|
int t3_check_tpsram(struct adapter *adapter, const u8 *tp_sram,
|
|
unsigned int size)
|
|
{
|
|
u32 csum;
|
|
unsigned int i;
|
|
const __be32 *p = (const __be32 *)tp_sram;
|
|
|
|
/* Verify checksum */
|
|
for (csum = 0, i = 0; i < size / sizeof(csum); i++)
|
|
csum += ntohl(p[i]);
|
|
if (csum != 0xffffffff) {
|
|
CH_ERR(adapter, "corrupted protocol SRAM image, checksum %u\n",
|
|
csum);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
enum fw_version_type {
|
|
FW_VERSION_N3,
|
|
FW_VERSION_T3
|
|
};
|
|
|
|
/**
|
|
* t3_get_fw_version - read the firmware version
|
|
* @adapter: the adapter
|
|
* @vers: where to place the version
|
|
*
|
|
* Reads the FW version from flash.
|
|
*/
|
|
int t3_get_fw_version(struct adapter *adapter, u32 *vers)
|
|
{
|
|
return t3_read_flash(adapter, FW_VERS_ADDR, 1, vers, 0);
|
|
}
|
|
|
|
/**
|
|
* t3_check_fw_version - check if the FW is compatible with this driver
|
|
* @adapter: the adapter
|
|
*
|
|
* Checks if an adapter's FW is compatible with the driver. Returns 0
|
|
* if the versions are compatible, a negative error otherwise.
|
|
*/
|
|
int t3_check_fw_version(struct adapter *adapter)
|
|
{
|
|
int ret;
|
|
u32 vers;
|
|
unsigned int type, major, minor;
|
|
|
|
ret = t3_get_fw_version(adapter, &vers);
|
|
if (ret)
|
|
return ret;
|
|
|
|
type = G_FW_VERSION_TYPE(vers);
|
|
major = G_FW_VERSION_MAJOR(vers);
|
|
minor = G_FW_VERSION_MINOR(vers);
|
|
|
|
if (type == FW_VERSION_T3 && major == FW_VERSION_MAJOR &&
|
|
minor == FW_VERSION_MINOR)
|
|
return 0;
|
|
else if (major != FW_VERSION_MAJOR || minor < FW_VERSION_MINOR)
|
|
CH_WARN(adapter, "found old FW minor version(%u.%u), "
|
|
"driver compiled for version %u.%u\n", major, minor,
|
|
FW_VERSION_MAJOR, FW_VERSION_MINOR);
|
|
else {
|
|
CH_WARN(adapter, "found newer FW version(%u.%u), "
|
|
"driver compiled for version %u.%u\n", major, minor,
|
|
FW_VERSION_MAJOR, FW_VERSION_MINOR);
|
|
return 0;
|
|
}
|
|
return -EINVAL;
|
|
}
|
|
|
|
/**
|
|
* t3_flash_erase_sectors - erase a range of flash sectors
|
|
* @adapter: the adapter
|
|
* @start: the first sector to erase
|
|
* @end: the last sector to erase
|
|
*
|
|
* Erases the sectors in the given range.
|
|
*/
|
|
static int t3_flash_erase_sectors(struct adapter *adapter, int start, int end)
|
|
{
|
|
while (start <= end) {
|
|
int ret;
|
|
|
|
if ((ret = sf1_write(adapter, 1, 0, SF_WR_ENABLE)) != 0 ||
|
|
(ret = sf1_write(adapter, 4, 0,
|
|
SF_ERASE_SECTOR | (start << 8))) != 0 ||
|
|
(ret = flash_wait_op(adapter, 5, 500)) != 0)
|
|
return ret;
|
|
start++;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* t3_load_fw - download firmware
|
|
* @adapter: the adapter
|
|
* @fw_data: the firmware image to write
|
|
* @size: image size
|
|
*
|
|
* Write the supplied firmware image to the card's serial flash.
|
|
* The FW image has the following sections: @size - 8 bytes of code and
|
|
* data, followed by 4 bytes of FW version, followed by the 32-bit
|
|
* 1's complement checksum of the whole image.
|
|
*/
|
|
int t3_load_fw(struct adapter *adapter, const u8 *fw_data, unsigned int size)
|
|
{
|
|
u32 csum;
|
|
unsigned int i;
|
|
const __be32 *p = (const __be32 *)fw_data;
|
|
int ret, addr, fw_sector = FW_FLASH_BOOT_ADDR >> 16;
|
|
|
|
if ((size & 3) || size < FW_MIN_SIZE)
|
|
return -EINVAL;
|
|
if (size > FW_VERS_ADDR + 8 - FW_FLASH_BOOT_ADDR)
|
|
return -EFBIG;
|
|
|
|
for (csum = 0, i = 0; i < size / sizeof(csum); i++)
|
|
csum += ntohl(p[i]);
|
|
if (csum != 0xffffffff) {
|
|
CH_ERR(adapter, "corrupted firmware image, checksum %u\n",
|
|
csum);
|
|
return -EINVAL;
|
|
}
|
|
|
|
ret = t3_flash_erase_sectors(adapter, fw_sector, fw_sector);
|
|
if (ret)
|
|
goto out;
|
|
|
|
size -= 8; /* trim off version and checksum */
|
|
for (addr = FW_FLASH_BOOT_ADDR; size;) {
|
|
unsigned int chunk_size = min(size, 256U);
|
|
|
|
ret = t3_write_flash(adapter, addr, chunk_size, fw_data);
|
|
if (ret)
|
|
goto out;
|
|
|
|
addr += chunk_size;
|
|
fw_data += chunk_size;
|
|
size -= chunk_size;
|
|
}
|
|
|
|
ret = t3_write_flash(adapter, FW_VERS_ADDR, 4, fw_data);
|
|
out:
|
|
if (ret)
|
|
CH_ERR(adapter, "firmware download failed, error %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
#define CIM_CTL_BASE 0x2000
|
|
|
|
/**
|
|
* t3_cim_ctl_blk_read - read a block from CIM control region
|
|
*
|
|
* @adap: the adapter
|
|
* @addr: the start address within the CIM control region
|
|
* @n: number of words to read
|
|
* @valp: where to store the result
|
|
*
|
|
* Reads a block of 4-byte words from the CIM control region.
|
|
*/
|
|
int t3_cim_ctl_blk_read(struct adapter *adap, unsigned int addr,
|
|
unsigned int n, unsigned int *valp)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (t3_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
|
|
return -EBUSY;
|
|
|
|
for ( ; !ret && n--; addr += 4) {
|
|
t3_write_reg(adap, A_CIM_HOST_ACC_CTRL, CIM_CTL_BASE + addr);
|
|
ret = t3_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
|
|
0, 5, 2);
|
|
if (!ret)
|
|
*valp++ = t3_read_reg(adap, A_CIM_HOST_ACC_DATA);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static void t3_gate_rx_traffic(struct cmac *mac, u32 *rx_cfg,
|
|
u32 *rx_hash_high, u32 *rx_hash_low)
|
|
{
|
|
/* stop Rx unicast traffic */
|
|
t3_mac_disable_exact_filters(mac);
|
|
|
|
/* stop broadcast, multicast, promiscuous mode traffic */
|
|
*rx_cfg = t3_read_reg(mac->adapter, A_XGM_RX_CFG);
|
|
t3_set_reg_field(mac->adapter, A_XGM_RX_CFG,
|
|
F_ENHASHMCAST | F_DISBCAST | F_COPYALLFRAMES,
|
|
F_DISBCAST);
|
|
|
|
*rx_hash_high = t3_read_reg(mac->adapter, A_XGM_RX_HASH_HIGH);
|
|
t3_write_reg(mac->adapter, A_XGM_RX_HASH_HIGH, 0);
|
|
|
|
*rx_hash_low = t3_read_reg(mac->adapter, A_XGM_RX_HASH_LOW);
|
|
t3_write_reg(mac->adapter, A_XGM_RX_HASH_LOW, 0);
|
|
|
|
/* Leave time to drain max RX fifo */
|
|
msleep(1);
|
|
}
|
|
|
|
static void t3_open_rx_traffic(struct cmac *mac, u32 rx_cfg,
|
|
u32 rx_hash_high, u32 rx_hash_low)
|
|
{
|
|
t3_mac_enable_exact_filters(mac);
|
|
t3_set_reg_field(mac->adapter, A_XGM_RX_CFG,
|
|
F_ENHASHMCAST | F_DISBCAST | F_COPYALLFRAMES,
|
|
rx_cfg);
|
|
t3_write_reg(mac->adapter, A_XGM_RX_HASH_HIGH, rx_hash_high);
|
|
t3_write_reg(mac->adapter, A_XGM_RX_HASH_LOW, rx_hash_low);
|
|
}
|
|
|
|
/**
|
|
* t3_link_changed - handle interface link changes
|
|
* @adapter: the adapter
|
|
* @port_id: the port index that changed link state
|
|
*
|
|
* Called when a port's link settings change to propagate the new values
|
|
* to the associated PHY and MAC. After performing the common tasks it
|
|
* invokes an OS-specific handler.
|
|
*/
|
|
void t3_link_changed(struct adapter *adapter, int port_id)
|
|
{
|
|
int link_ok, speed, duplex, fc;
|
|
struct port_info *pi = adap2pinfo(adapter, port_id);
|
|
struct cphy *phy = &pi->phy;
|
|
struct cmac *mac = &pi->mac;
|
|
struct link_config *lc = &pi->link_config;
|
|
|
|
phy->ops->get_link_status(phy, &link_ok, &speed, &duplex, &fc);
|
|
|
|
if (!lc->link_ok && link_ok) {
|
|
u32 rx_cfg, rx_hash_high, rx_hash_low;
|
|
u32 status;
|
|
|
|
t3_xgm_intr_enable(adapter, port_id);
|
|
t3_gate_rx_traffic(mac, &rx_cfg, &rx_hash_high, &rx_hash_low);
|
|
t3_write_reg(adapter, A_XGM_RX_CTRL + mac->offset, 0);
|
|
t3_mac_enable(mac, MAC_DIRECTION_RX);
|
|
|
|
status = t3_read_reg(adapter, A_XGM_INT_STATUS + mac->offset);
|
|
if (status & F_LINKFAULTCHANGE) {
|
|
mac->stats.link_faults++;
|
|
pi->link_fault = 1;
|
|
}
|
|
t3_open_rx_traffic(mac, rx_cfg, rx_hash_high, rx_hash_low);
|
|
}
|
|
|
|
if (lc->requested_fc & PAUSE_AUTONEG)
|
|
fc &= lc->requested_fc;
|
|
else
|
|
fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
|
|
|
|
if (link_ok == lc->link_ok && speed == lc->speed &&
|
|
duplex == lc->duplex && fc == lc->fc)
|
|
return; /* nothing changed */
|
|
|
|
if (link_ok != lc->link_ok && adapter->params.rev > 0 &&
|
|
uses_xaui(adapter)) {
|
|
if (link_ok)
|
|
t3b_pcs_reset(mac);
|
|
t3_write_reg(adapter, A_XGM_XAUI_ACT_CTRL + mac->offset,
|
|
link_ok ? F_TXACTENABLE | F_RXEN : 0);
|
|
}
|
|
lc->link_ok = link_ok;
|
|
lc->speed = speed < 0 ? SPEED_INVALID : speed;
|
|
lc->duplex = duplex < 0 ? DUPLEX_INVALID : duplex;
|
|
|
|
if (link_ok && speed >= 0 && lc->autoneg == AUTONEG_ENABLE) {
|
|
/* Set MAC speed, duplex, and flow control to match PHY. */
|
|
t3_mac_set_speed_duplex_fc(mac, speed, duplex, fc);
|
|
lc->fc = fc;
|
|
}
|
|
|
|
t3_os_link_changed(adapter, port_id, link_ok && !pi->link_fault,
|
|
speed, duplex, fc);
|
|
}
|
|
|
|
void t3_link_fault(struct adapter *adapter, int port_id)
|
|
{
|
|
struct port_info *pi = adap2pinfo(adapter, port_id);
|
|
struct cmac *mac = &pi->mac;
|
|
struct cphy *phy = &pi->phy;
|
|
struct link_config *lc = &pi->link_config;
|
|
int link_ok, speed, duplex, fc, link_fault;
|
|
u32 rx_cfg, rx_hash_high, rx_hash_low;
|
|
|
|
t3_gate_rx_traffic(mac, &rx_cfg, &rx_hash_high, &rx_hash_low);
|
|
|
|
if (adapter->params.rev > 0 && uses_xaui(adapter))
|
|
t3_write_reg(adapter, A_XGM_XAUI_ACT_CTRL + mac->offset, 0);
|
|
|
|
t3_write_reg(adapter, A_XGM_RX_CTRL + mac->offset, 0);
|
|
t3_mac_enable(mac, MAC_DIRECTION_RX);
|
|
|
|
t3_open_rx_traffic(mac, rx_cfg, rx_hash_high, rx_hash_low);
|
|
|
|
link_fault = t3_read_reg(adapter,
|
|
A_XGM_INT_STATUS + mac->offset);
|
|
link_fault &= F_LINKFAULTCHANGE;
|
|
|
|
link_ok = lc->link_ok;
|
|
speed = lc->speed;
|
|
duplex = lc->duplex;
|
|
fc = lc->fc;
|
|
|
|
phy->ops->get_link_status(phy, &link_ok, &speed, &duplex, &fc);
|
|
|
|
if (link_fault) {
|
|
lc->link_ok = 0;
|
|
lc->speed = SPEED_INVALID;
|
|
lc->duplex = DUPLEX_INVALID;
|
|
|
|
t3_os_link_fault(adapter, port_id, 0);
|
|
|
|
/* Account link faults only when the phy reports a link up */
|
|
if (link_ok)
|
|
mac->stats.link_faults++;
|
|
} else {
|
|
if (link_ok)
|
|
t3_write_reg(adapter, A_XGM_XAUI_ACT_CTRL + mac->offset,
|
|
F_TXACTENABLE | F_RXEN);
|
|
|
|
pi->link_fault = 0;
|
|
lc->link_ok = (unsigned char)link_ok;
|
|
lc->speed = speed < 0 ? SPEED_INVALID : speed;
|
|
lc->duplex = duplex < 0 ? DUPLEX_INVALID : duplex;
|
|
t3_os_link_fault(adapter, port_id, link_ok);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* t3_link_start - apply link configuration to MAC/PHY
|
|
* @phy: the PHY to setup
|
|
* @mac: the MAC to setup
|
|
* @lc: the requested link configuration
|
|
*
|
|
* Set up a port's MAC and PHY according to a desired link configuration.
|
|
* - If the PHY can auto-negotiate first decide what to advertise, then
|
|
* enable/disable auto-negotiation as desired, and reset.
|
|
* - If the PHY does not auto-negotiate just reset it.
|
|
* - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
|
|
* otherwise do it later based on the outcome of auto-negotiation.
|
|
*/
|
|
int t3_link_start(struct cphy *phy, struct cmac *mac, struct link_config *lc)
|
|
{
|
|
unsigned int fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
|
|
|
|
lc->link_ok = 0;
|
|
if (lc->supported & SUPPORTED_Autoneg) {
|
|
lc->advertising &= ~(ADVERTISED_Asym_Pause | ADVERTISED_Pause);
|
|
if (fc) {
|
|
lc->advertising |= ADVERTISED_Asym_Pause;
|
|
if (fc & PAUSE_RX)
|
|
lc->advertising |= ADVERTISED_Pause;
|
|
}
|
|
phy->ops->advertise(phy, lc->advertising);
|
|
|
|
if (lc->autoneg == AUTONEG_DISABLE) {
|
|
lc->speed = lc->requested_speed;
|
|
lc->duplex = lc->requested_duplex;
|
|
lc->fc = (unsigned char)fc;
|
|
t3_mac_set_speed_duplex_fc(mac, lc->speed, lc->duplex,
|
|
fc);
|
|
/* Also disables autoneg */
|
|
phy->ops->set_speed_duplex(phy, lc->speed, lc->duplex);
|
|
} else
|
|
phy->ops->autoneg_enable(phy);
|
|
} else {
|
|
t3_mac_set_speed_duplex_fc(mac, -1, -1, fc);
|
|
lc->fc = (unsigned char)fc;
|
|
phy->ops->reset(phy, 0);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* t3_set_vlan_accel - control HW VLAN extraction
|
|
* @adapter: the adapter
|
|
* @ports: bitmap of adapter ports to operate on
|
|
* @on: enable (1) or disable (0) HW VLAN extraction
|
|
*
|
|
* Enables or disables HW extraction of VLAN tags for the given port.
|
|
*/
|
|
void t3_set_vlan_accel(struct adapter *adapter, unsigned int ports, int on)
|
|
{
|
|
t3_set_reg_field(adapter, A_TP_OUT_CONFIG,
|
|
ports << S_VLANEXTRACTIONENABLE,
|
|
on ? (ports << S_VLANEXTRACTIONENABLE) : 0);
|
|
}
|
|
|
|
struct intr_info {
|
|
unsigned int mask; /* bits to check in interrupt status */
|
|
const char *msg; /* message to print or NULL */
|
|
short stat_idx; /* stat counter to increment or -1 */
|
|
unsigned short fatal; /* whether the condition reported is fatal */
|
|
};
|
|
|
|
/**
|
|
* t3_handle_intr_status - table driven interrupt handler
|
|
* @adapter: the adapter that generated the interrupt
|
|
* @reg: the interrupt status register to process
|
|
* @mask: a mask to apply to the interrupt status
|
|
* @acts: table of interrupt actions
|
|
* @stats: statistics counters tracking interrupt occurrences
|
|
*
|
|
* A table driven interrupt handler that applies a set of masks to an
|
|
* interrupt status word and performs the corresponding actions if the
|
|
* interrupts described by the mask have occurred. The actions include
|
|
* optionally printing a warning or alert message, and optionally
|
|
* incrementing a stat counter. The table is terminated by an entry
|
|
* specifying mask 0. Returns the number of fatal interrupt conditions.
|
|
*/
|
|
static int t3_handle_intr_status(struct adapter *adapter, unsigned int reg,
|
|
unsigned int mask,
|
|
const struct intr_info *acts,
|
|
unsigned long *stats)
|
|
{
|
|
int fatal = 0;
|
|
unsigned int status = t3_read_reg(adapter, reg) & mask;
|
|
|
|
for (; acts->mask; ++acts) {
|
|
if (!(status & acts->mask))
|
|
continue;
|
|
if (acts->fatal) {
|
|
fatal++;
|
|
CH_ALERT(adapter, "%s (0x%x)\n",
|
|
acts->msg, status & acts->mask);
|
|
status &= ~acts->mask;
|
|
} else if (acts->msg)
|
|
CH_WARN(adapter, "%s (0x%x)\n",
|
|
acts->msg, status & acts->mask);
|
|
if (acts->stat_idx >= 0)
|
|
stats[acts->stat_idx]++;
|
|
}
|
|
if (status) /* clear processed interrupts */
|
|
t3_write_reg(adapter, reg, status);
|
|
return fatal;
|
|
}
|
|
|
|
#define SGE_INTR_MASK (F_RSPQDISABLED | \
|
|
F_UC_REQ_FRAMINGERROR | F_R_REQ_FRAMINGERROR | \
|
|
F_CPPARITYERROR | F_OCPARITYERROR | F_RCPARITYERROR | \
|
|
F_IRPARITYERROR | V_ITPARITYERROR(M_ITPARITYERROR) | \
|
|
V_FLPARITYERROR(M_FLPARITYERROR) | F_LODRBPARITYERROR | \
|
|
F_HIDRBPARITYERROR | F_LORCQPARITYERROR | \
|
|
F_HIRCQPARITYERROR | F_LOPRIORITYDBFULL | \
|
|
F_HIPRIORITYDBFULL | F_LOPRIORITYDBEMPTY | \
|
|
F_HIPRIORITYDBEMPTY | F_HIPIODRBDROPERR | \
|
|
F_LOPIODRBDROPERR)
|
|
#define MC5_INTR_MASK (F_PARITYERR | F_ACTRGNFULL | F_UNKNOWNCMD | \
|
|
F_REQQPARERR | F_DISPQPARERR | F_DELACTEMPTY | \
|
|
F_NFASRCHFAIL)
|
|
#define MC7_INTR_MASK (F_AE | F_UE | F_CE | V_PE(M_PE))
|
|
#define XGM_INTR_MASK (V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR) | \
|
|
V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR) | \
|
|
F_TXFIFO_UNDERRUN)
|
|
#define PCIX_INTR_MASK (F_MSTDETPARERR | F_SIGTARABT | F_RCVTARABT | \
|
|
F_RCVMSTABT | F_SIGSYSERR | F_DETPARERR | \
|
|
F_SPLCMPDIS | F_UNXSPLCMP | F_RCVSPLCMPERR | \
|
|
F_DETCORECCERR | F_DETUNCECCERR | F_PIOPARERR | \
|
|
V_WFPARERR(M_WFPARERR) | V_RFPARERR(M_RFPARERR) | \
|
|
V_CFPARERR(M_CFPARERR) /* | V_MSIXPARERR(M_MSIXPARERR) */)
|
|
#define PCIE_INTR_MASK (F_UNXSPLCPLERRR | F_UNXSPLCPLERRC | F_PCIE_PIOPARERR |\
|
|
F_PCIE_WFPARERR | F_PCIE_RFPARERR | F_PCIE_CFPARERR | \
|
|
/* V_PCIE_MSIXPARERR(M_PCIE_MSIXPARERR) | */ \
|
|
F_RETRYBUFPARERR | F_RETRYLUTPARERR | F_RXPARERR | \
|
|
F_TXPARERR | V_BISTERR(M_BISTERR))
|
|
#define ULPRX_INTR_MASK (F_PARERRDATA | F_PARERRPCMD | F_ARBPF1PERR | \
|
|
F_ARBPF0PERR | F_ARBFPERR | F_PCMDMUXPERR | \
|
|
F_DATASELFRAMEERR1 | F_DATASELFRAMEERR0)
|
|
#define ULPTX_INTR_MASK 0xfc
|
|
#define CPLSW_INTR_MASK (F_CIM_OP_MAP_PERR | F_TP_FRAMING_ERROR | \
|
|
F_SGE_FRAMING_ERROR | F_CIM_FRAMING_ERROR | \
|
|
F_ZERO_SWITCH_ERROR)
|
|
#define CIM_INTR_MASK (F_BLKWRPLINT | F_BLKRDPLINT | F_BLKWRCTLINT | \
|
|
F_BLKRDCTLINT | F_BLKWRFLASHINT | F_BLKRDFLASHINT | \
|
|
F_SGLWRFLASHINT | F_WRBLKFLASHINT | F_BLKWRBOOTINT | \
|
|
F_FLASHRANGEINT | F_SDRAMRANGEINT | F_RSVDSPACEINT | \
|
|
F_DRAMPARERR | F_ICACHEPARERR | F_DCACHEPARERR | \
|
|
F_OBQSGEPARERR | F_OBQULPHIPARERR | F_OBQULPLOPARERR | \
|
|
F_IBQSGELOPARERR | F_IBQSGEHIPARERR | F_IBQULPPARERR | \
|
|
F_IBQTPPARERR | F_ITAGPARERR | F_DTAGPARERR)
|
|
#define PMTX_INTR_MASK (F_ZERO_C_CMD_ERROR | ICSPI_FRM_ERR | OESPI_FRM_ERR | \
|
|
V_ICSPI_PAR_ERROR(M_ICSPI_PAR_ERROR) | \
|
|
V_OESPI_PAR_ERROR(M_OESPI_PAR_ERROR))
|
|
#define PMRX_INTR_MASK (F_ZERO_E_CMD_ERROR | IESPI_FRM_ERR | OCSPI_FRM_ERR | \
|
|
V_IESPI_PAR_ERROR(M_IESPI_PAR_ERROR) | \
|
|
V_OCSPI_PAR_ERROR(M_OCSPI_PAR_ERROR))
|
|
#define MPS_INTR_MASK (V_TX0TPPARERRENB(M_TX0TPPARERRENB) | \
|
|
V_TX1TPPARERRENB(M_TX1TPPARERRENB) | \
|
|
V_RXTPPARERRENB(M_RXTPPARERRENB) | \
|
|
V_MCAPARERRENB(M_MCAPARERRENB))
|
|
#define XGM_EXTRA_INTR_MASK (F_LINKFAULTCHANGE)
|
|
#define PL_INTR_MASK (F_T3DBG | F_XGMAC0_0 | F_XGMAC0_1 | F_MC5A | F_PM1_TX | \
|
|
F_PM1_RX | F_ULP2_TX | F_ULP2_RX | F_TP1 | F_CIM | \
|
|
F_MC7_CM | F_MC7_PMTX | F_MC7_PMRX | F_SGE3 | F_PCIM0 | \
|
|
F_MPS0 | F_CPL_SWITCH)
|
|
/*
|
|
* Interrupt handler for the PCIX1 module.
|
|
*/
|
|
static void pci_intr_handler(struct adapter *adapter)
|
|
{
|
|
static const struct intr_info pcix1_intr_info[] = {
|
|
{F_MSTDETPARERR, "PCI master detected parity error", -1, 1},
|
|
{F_SIGTARABT, "PCI signaled target abort", -1, 1},
|
|
{F_RCVTARABT, "PCI received target abort", -1, 1},
|
|
{F_RCVMSTABT, "PCI received master abort", -1, 1},
|
|
{F_SIGSYSERR, "PCI signaled system error", -1, 1},
|
|
{F_DETPARERR, "PCI detected parity error", -1, 1},
|
|
{F_SPLCMPDIS, "PCI split completion discarded", -1, 1},
|
|
{F_UNXSPLCMP, "PCI unexpected split completion error", -1, 1},
|
|
{F_RCVSPLCMPERR, "PCI received split completion error", -1,
|
|
1},
|
|
{F_DETCORECCERR, "PCI correctable ECC error",
|
|
STAT_PCI_CORR_ECC, 0},
|
|
{F_DETUNCECCERR, "PCI uncorrectable ECC error", -1, 1},
|
|
{F_PIOPARERR, "PCI PIO FIFO parity error", -1, 1},
|
|
{V_WFPARERR(M_WFPARERR), "PCI write FIFO parity error", -1,
|
|
1},
|
|
{V_RFPARERR(M_RFPARERR), "PCI read FIFO parity error", -1,
|
|
1},
|
|
{V_CFPARERR(M_CFPARERR), "PCI command FIFO parity error", -1,
|
|
1},
|
|
{V_MSIXPARERR(M_MSIXPARERR), "PCI MSI-X table/PBA parity "
|
|
"error", -1, 1},
|
|
{0}
|
|
};
|
|
|
|
if (t3_handle_intr_status(adapter, A_PCIX_INT_CAUSE, PCIX_INTR_MASK,
|
|
pcix1_intr_info, adapter->irq_stats))
|
|
t3_fatal_err(adapter);
|
|
}
|
|
|
|
/*
|
|
* Interrupt handler for the PCIE module.
|
|
*/
|
|
static void pcie_intr_handler(struct adapter *adapter)
|
|
{
|
|
static const struct intr_info pcie_intr_info[] = {
|
|
{F_PEXERR, "PCI PEX error", -1, 1},
|
|
{F_UNXSPLCPLERRR,
|
|
"PCI unexpected split completion DMA read error", -1, 1},
|
|
{F_UNXSPLCPLERRC,
|
|
"PCI unexpected split completion DMA command error", -1, 1},
|
|
{F_PCIE_PIOPARERR, "PCI PIO FIFO parity error", -1, 1},
|
|
{F_PCIE_WFPARERR, "PCI write FIFO parity error", -1, 1},
|
|
{F_PCIE_RFPARERR, "PCI read FIFO parity error", -1, 1},
|
|
{F_PCIE_CFPARERR, "PCI command FIFO parity error", -1, 1},
|
|
{V_PCIE_MSIXPARERR(M_PCIE_MSIXPARERR),
|
|
"PCI MSI-X table/PBA parity error", -1, 1},
|
|
{F_RETRYBUFPARERR, "PCI retry buffer parity error", -1, 1},
|
|
{F_RETRYLUTPARERR, "PCI retry LUT parity error", -1, 1},
|
|
{F_RXPARERR, "PCI Rx parity error", -1, 1},
|
|
{F_TXPARERR, "PCI Tx parity error", -1, 1},
|
|
{V_BISTERR(M_BISTERR), "PCI BIST error", -1, 1},
|
|
{0}
|
|
};
|
|
|
|
if (t3_read_reg(adapter, A_PCIE_INT_CAUSE) & F_PEXERR)
|
|
CH_ALERT(adapter, "PEX error code 0x%x\n",
|
|
t3_read_reg(adapter, A_PCIE_PEX_ERR));
|
|
|
|
if (t3_handle_intr_status(adapter, A_PCIE_INT_CAUSE, PCIE_INTR_MASK,
|
|
pcie_intr_info, adapter->irq_stats))
|
|
t3_fatal_err(adapter);
|
|
}
|
|
|
|
/*
|
|
* TP interrupt handler.
|
|
*/
|
|
static void tp_intr_handler(struct adapter *adapter)
|
|
{
|
|
static const struct intr_info tp_intr_info[] = {
|
|
{0xffffff, "TP parity error", -1, 1},
|
|
{0x1000000, "TP out of Rx pages", -1, 1},
|
|
{0x2000000, "TP out of Tx pages", -1, 1},
|
|
{0}
|
|
};
|
|
|
|
static const struct intr_info tp_intr_info_t3c[] = {
|
|
{0x1fffffff, "TP parity error", -1, 1},
|
|
{F_FLMRXFLSTEMPTY, "TP out of Rx pages", -1, 1},
|
|
{F_FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1},
|
|
{0}
|
|
};
|
|
|
|
if (t3_handle_intr_status(adapter, A_TP_INT_CAUSE, 0xffffffff,
|
|
adapter->params.rev < T3_REV_C ?
|
|
tp_intr_info : tp_intr_info_t3c, NULL))
|
|
t3_fatal_err(adapter);
|
|
}
|
|
|
|
/*
|
|
* CIM interrupt handler.
|
|
*/
|
|
static void cim_intr_handler(struct adapter *adapter)
|
|
{
|
|
static const struct intr_info cim_intr_info[] = {
|
|
{F_RSVDSPACEINT, "CIM reserved space write", -1, 1},
|
|
{F_SDRAMRANGEINT, "CIM SDRAM address out of range", -1, 1},
|
|
{F_FLASHRANGEINT, "CIM flash address out of range", -1, 1},
|
|
{F_BLKWRBOOTINT, "CIM block write to boot space", -1, 1},
|
|
{F_WRBLKFLASHINT, "CIM write to cached flash space", -1, 1},
|
|
{F_SGLWRFLASHINT, "CIM single write to flash space", -1, 1},
|
|
{F_BLKRDFLASHINT, "CIM block read from flash space", -1, 1},
|
|
{F_BLKWRFLASHINT, "CIM block write to flash space", -1, 1},
|
|
{F_BLKRDCTLINT, "CIM block read from CTL space", -1, 1},
|
|
{F_BLKWRCTLINT, "CIM block write to CTL space", -1, 1},
|
|
{F_BLKRDPLINT, "CIM block read from PL space", -1, 1},
|
|
{F_BLKWRPLINT, "CIM block write to PL space", -1, 1},
|
|
{F_DRAMPARERR, "CIM DRAM parity error", -1, 1},
|
|
{F_ICACHEPARERR, "CIM icache parity error", -1, 1},
|
|
{F_DCACHEPARERR, "CIM dcache parity error", -1, 1},
|
|
{F_OBQSGEPARERR, "CIM OBQ SGE parity error", -1, 1},
|
|
{F_OBQULPHIPARERR, "CIM OBQ ULPHI parity error", -1, 1},
|
|
{F_OBQULPLOPARERR, "CIM OBQ ULPLO parity error", -1, 1},
|
|
{F_IBQSGELOPARERR, "CIM IBQ SGELO parity error", -1, 1},
|
|
{F_IBQSGEHIPARERR, "CIM IBQ SGEHI parity error", -1, 1},
|
|
{F_IBQULPPARERR, "CIM IBQ ULP parity error", -1, 1},
|
|
{F_IBQTPPARERR, "CIM IBQ TP parity error", -1, 1},
|
|
{F_ITAGPARERR, "CIM itag parity error", -1, 1},
|
|
{F_DTAGPARERR, "CIM dtag parity error", -1, 1},
|
|
{0}
|
|
};
|
|
|
|
if (t3_handle_intr_status(adapter, A_CIM_HOST_INT_CAUSE, 0xffffffff,
|
|
cim_intr_info, NULL))
|
|
t3_fatal_err(adapter);
|
|
}
|
|
|
|
/*
|
|
* ULP RX interrupt handler.
|
|
*/
|
|
static void ulprx_intr_handler(struct adapter *adapter)
|
|
{
|
|
static const struct intr_info ulprx_intr_info[] = {
|
|
{F_PARERRDATA, "ULP RX data parity error", -1, 1},
|
|
{F_PARERRPCMD, "ULP RX command parity error", -1, 1},
|
|
{F_ARBPF1PERR, "ULP RX ArbPF1 parity error", -1, 1},
|
|
{F_ARBPF0PERR, "ULP RX ArbPF0 parity error", -1, 1},
|
|
{F_ARBFPERR, "ULP RX ArbF parity error", -1, 1},
|
|
{F_PCMDMUXPERR, "ULP RX PCMDMUX parity error", -1, 1},
|
|
{F_DATASELFRAMEERR1, "ULP RX frame error", -1, 1},
|
|
{F_DATASELFRAMEERR0, "ULP RX frame error", -1, 1},
|
|
{0}
|
|
};
|
|
|
|
if (t3_handle_intr_status(adapter, A_ULPRX_INT_CAUSE, 0xffffffff,
|
|
ulprx_intr_info, NULL))
|
|
t3_fatal_err(adapter);
|
|
}
|
|
|
|
/*
|
|
* ULP TX interrupt handler.
|
|
*/
|
|
static void ulptx_intr_handler(struct adapter *adapter)
|
|
{
|
|
static const struct intr_info ulptx_intr_info[] = {
|
|
{F_PBL_BOUND_ERR_CH0, "ULP TX channel 0 PBL out of bounds",
|
|
STAT_ULP_CH0_PBL_OOB, 0},
|
|
{F_PBL_BOUND_ERR_CH1, "ULP TX channel 1 PBL out of bounds",
|
|
STAT_ULP_CH1_PBL_OOB, 0},
|
|
{0xfc, "ULP TX parity error", -1, 1},
|
|
{0}
|
|
};
|
|
|
|
if (t3_handle_intr_status(adapter, A_ULPTX_INT_CAUSE, 0xffffffff,
|
|
ulptx_intr_info, adapter->irq_stats))
|
|
t3_fatal_err(adapter);
|
|
}
|
|
|
|
#define ICSPI_FRM_ERR (F_ICSPI0_FIFO2X_RX_FRAMING_ERROR | \
|
|
F_ICSPI1_FIFO2X_RX_FRAMING_ERROR | F_ICSPI0_RX_FRAMING_ERROR | \
|
|
F_ICSPI1_RX_FRAMING_ERROR | F_ICSPI0_TX_FRAMING_ERROR | \
|
|
F_ICSPI1_TX_FRAMING_ERROR)
|
|
#define OESPI_FRM_ERR (F_OESPI0_RX_FRAMING_ERROR | \
|
|
F_OESPI1_RX_FRAMING_ERROR | F_OESPI0_TX_FRAMING_ERROR | \
|
|
F_OESPI1_TX_FRAMING_ERROR | F_OESPI0_OFIFO2X_TX_FRAMING_ERROR | \
|
|
F_OESPI1_OFIFO2X_TX_FRAMING_ERROR)
|
|
|
|
/*
|
|
* PM TX interrupt handler.
|
|
*/
|
|
static void pmtx_intr_handler(struct adapter *adapter)
|
|
{
|
|
static const struct intr_info pmtx_intr_info[] = {
|
|
{F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1},
|
|
{ICSPI_FRM_ERR, "PMTX ispi framing error", -1, 1},
|
|
{OESPI_FRM_ERR, "PMTX ospi framing error", -1, 1},
|
|
{V_ICSPI_PAR_ERROR(M_ICSPI_PAR_ERROR),
|
|
"PMTX ispi parity error", -1, 1},
|
|
{V_OESPI_PAR_ERROR(M_OESPI_PAR_ERROR),
|
|
"PMTX ospi parity error", -1, 1},
|
|
{0}
|
|
};
|
|
|
|
if (t3_handle_intr_status(adapter, A_PM1_TX_INT_CAUSE, 0xffffffff,
|
|
pmtx_intr_info, NULL))
|
|
t3_fatal_err(adapter);
|
|
}
|
|
|
|
#define IESPI_FRM_ERR (F_IESPI0_FIFO2X_RX_FRAMING_ERROR | \
|
|
F_IESPI1_FIFO2X_RX_FRAMING_ERROR | F_IESPI0_RX_FRAMING_ERROR | \
|
|
F_IESPI1_RX_FRAMING_ERROR | F_IESPI0_TX_FRAMING_ERROR | \
|
|
F_IESPI1_TX_FRAMING_ERROR)
|
|
#define OCSPI_FRM_ERR (F_OCSPI0_RX_FRAMING_ERROR | \
|
|
F_OCSPI1_RX_FRAMING_ERROR | F_OCSPI0_TX_FRAMING_ERROR | \
|
|
F_OCSPI1_TX_FRAMING_ERROR | F_OCSPI0_OFIFO2X_TX_FRAMING_ERROR | \
|
|
F_OCSPI1_OFIFO2X_TX_FRAMING_ERROR)
|
|
|
|
/*
|
|
* PM RX interrupt handler.
|
|
*/
|
|
static void pmrx_intr_handler(struct adapter *adapter)
|
|
{
|
|
static const struct intr_info pmrx_intr_info[] = {
|
|
{F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1},
|
|
{IESPI_FRM_ERR, "PMRX ispi framing error", -1, 1},
|
|
{OCSPI_FRM_ERR, "PMRX ospi framing error", -1, 1},
|
|
{V_IESPI_PAR_ERROR(M_IESPI_PAR_ERROR),
|
|
"PMRX ispi parity error", -1, 1},
|
|
{V_OCSPI_PAR_ERROR(M_OCSPI_PAR_ERROR),
|
|
"PMRX ospi parity error", -1, 1},
|
|
{0}
|
|
};
|
|
|
|
if (t3_handle_intr_status(adapter, A_PM1_RX_INT_CAUSE, 0xffffffff,
|
|
pmrx_intr_info, NULL))
|
|
t3_fatal_err(adapter);
|
|
}
|
|
|
|
/*
|
|
* CPL switch interrupt handler.
|
|
*/
|
|
static void cplsw_intr_handler(struct adapter *adapter)
|
|
{
|
|
static const struct intr_info cplsw_intr_info[] = {
|
|
{F_CIM_OP_MAP_PERR, "CPL switch CIM parity error", -1, 1},
|
|
{F_CIM_OVFL_ERROR, "CPL switch CIM overflow", -1, 1},
|
|
{F_TP_FRAMING_ERROR, "CPL switch TP framing error", -1, 1},
|
|
{F_SGE_FRAMING_ERROR, "CPL switch SGE framing error", -1, 1},
|
|
{F_CIM_FRAMING_ERROR, "CPL switch CIM framing error", -1, 1},
|
|
{F_ZERO_SWITCH_ERROR, "CPL switch no-switch error", -1, 1},
|
|
{0}
|
|
};
|
|
|
|
if (t3_handle_intr_status(adapter, A_CPL_INTR_CAUSE, 0xffffffff,
|
|
cplsw_intr_info, NULL))
|
|
t3_fatal_err(adapter);
|
|
}
|
|
|
|
/*
|
|
* MPS interrupt handler.
|
|
*/
|
|
static void mps_intr_handler(struct adapter *adapter)
|
|
{
|
|
static const struct intr_info mps_intr_info[] = {
|
|
{0x1ff, "MPS parity error", -1, 1},
|
|
{0}
|
|
};
|
|
|
|
if (t3_handle_intr_status(adapter, A_MPS_INT_CAUSE, 0xffffffff,
|
|
mps_intr_info, NULL))
|
|
t3_fatal_err(adapter);
|
|
}
|
|
|
|
#define MC7_INTR_FATAL (F_UE | V_PE(M_PE) | F_AE)
|
|
|
|
/*
|
|
* MC7 interrupt handler.
|
|
*/
|
|
static void mc7_intr_handler(struct mc7 *mc7)
|
|
{
|
|
struct adapter *adapter = mc7->adapter;
|
|
u32 cause = t3_read_reg(adapter, mc7->offset + A_MC7_INT_CAUSE);
|
|
|
|
if (cause & F_CE) {
|
|
mc7->stats.corr_err++;
|
|
CH_WARN(adapter, "%s MC7 correctable error at addr 0x%x, "
|
|
"data 0x%x 0x%x 0x%x\n", mc7->name,
|
|
t3_read_reg(adapter, mc7->offset + A_MC7_CE_ADDR),
|
|
t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA0),
|
|
t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA1),
|
|
t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA2));
|
|
}
|
|
|
|
if (cause & F_UE) {
|
|
mc7->stats.uncorr_err++;
|
|
CH_ALERT(adapter, "%s MC7 uncorrectable error at addr 0x%x, "
|
|
"data 0x%x 0x%x 0x%x\n", mc7->name,
|
|
t3_read_reg(adapter, mc7->offset + A_MC7_UE_ADDR),
|
|
t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA0),
|
|
t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA1),
|
|
t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA2));
|
|
}
|
|
|
|
if (G_PE(cause)) {
|
|
mc7->stats.parity_err++;
|
|
CH_ALERT(adapter, "%s MC7 parity error 0x%x\n",
|
|
mc7->name, G_PE(cause));
|
|
}
|
|
|
|
if (cause & F_AE) {
|
|
u32 addr = 0;
|
|
|
|
if (adapter->params.rev > 0)
|
|
addr = t3_read_reg(adapter,
|
|
mc7->offset + A_MC7_ERR_ADDR);
|
|
mc7->stats.addr_err++;
|
|
CH_ALERT(adapter, "%s MC7 address error: 0x%x\n",
|
|
mc7->name, addr);
|
|
}
|
|
|
|
if (cause & MC7_INTR_FATAL)
|
|
t3_fatal_err(adapter);
|
|
|
|
t3_write_reg(adapter, mc7->offset + A_MC7_INT_CAUSE, cause);
|
|
}
|
|
|
|
#define XGM_INTR_FATAL (V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR) | \
|
|
V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR))
|
|
/*
|
|
* XGMAC interrupt handler.
|
|
*/
|
|
static int mac_intr_handler(struct adapter *adap, unsigned int idx)
|
|
{
|
|
struct cmac *mac = &adap2pinfo(adap, idx)->mac;
|
|
/*
|
|
* We mask out interrupt causes for which we're not taking interrupts.
|
|
* This allows us to use polling logic to monitor some of the other
|
|
* conditions when taking interrupts would impose too much load on the
|
|
* system.
|
|
*/
|
|
u32 cause = t3_read_reg(adap, A_XGM_INT_CAUSE + mac->offset) &
|
|
~F_RXFIFO_OVERFLOW;
|
|
|
|
if (cause & V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR)) {
|
|
mac->stats.tx_fifo_parity_err++;
|
|
CH_ALERT(adap, "port%d: MAC TX FIFO parity error\n", idx);
|
|
}
|
|
if (cause & V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR)) {
|
|
mac->stats.rx_fifo_parity_err++;
|
|
CH_ALERT(adap, "port%d: MAC RX FIFO parity error\n", idx);
|
|
}
|
|
if (cause & F_TXFIFO_UNDERRUN)
|
|
mac->stats.tx_fifo_urun++;
|
|
if (cause & F_RXFIFO_OVERFLOW)
|
|
mac->stats.rx_fifo_ovfl++;
|
|
if (cause & V_SERDES_LOS(M_SERDES_LOS))
|
|
mac->stats.serdes_signal_loss++;
|
|
if (cause & F_XAUIPCSCTCERR)
|
|
mac->stats.xaui_pcs_ctc_err++;
|
|
if (cause & F_XAUIPCSALIGNCHANGE)
|
|
mac->stats.xaui_pcs_align_change++;
|
|
if (cause & F_XGM_INT) {
|
|
t3_set_reg_field(adap,
|
|
A_XGM_INT_ENABLE + mac->offset,
|
|
F_XGM_INT, 0);
|
|
mac->stats.link_faults++;
|
|
|
|
t3_os_link_fault_handler(adap, idx);
|
|
}
|
|
|
|
if (cause & XGM_INTR_FATAL)
|
|
t3_fatal_err(adap);
|
|
|
|
t3_write_reg(adap, A_XGM_INT_CAUSE + mac->offset, cause);
|
|
return cause != 0;
|
|
}
|
|
|
|
/*
|
|
* Interrupt handler for PHY events.
|
|
*/
|
|
int t3_phy_intr_handler(struct adapter *adapter)
|
|
{
|
|
u32 i, cause = t3_read_reg(adapter, A_T3DBG_INT_CAUSE);
|
|
|
|
for_each_port(adapter, i) {
|
|
struct port_info *p = adap2pinfo(adapter, i);
|
|
|
|
if (!(p->phy.caps & SUPPORTED_IRQ))
|
|
continue;
|
|
|
|
if (cause & (1 << adapter_info(adapter)->gpio_intr[i])) {
|
|
int phy_cause = p->phy.ops->intr_handler(&p->phy);
|
|
|
|
if (phy_cause & cphy_cause_link_change)
|
|
t3_link_changed(adapter, i);
|
|
if (phy_cause & cphy_cause_fifo_error)
|
|
p->phy.fifo_errors++;
|
|
if (phy_cause & cphy_cause_module_change)
|
|
t3_os_phymod_changed(adapter, i);
|
|
}
|
|
}
|
|
|
|
t3_write_reg(adapter, A_T3DBG_INT_CAUSE, cause);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* T3 slow path (non-data) interrupt handler.
|
|
*/
|
|
int t3_slow_intr_handler(struct adapter *adapter)
|
|
{
|
|
u32 cause = t3_read_reg(adapter, A_PL_INT_CAUSE0);
|
|
|
|
cause &= adapter->slow_intr_mask;
|
|
if (!cause)
|
|
return 0;
|
|
if (cause & F_PCIM0) {
|
|
if (is_pcie(adapter))
|
|
pcie_intr_handler(adapter);
|
|
else
|
|
pci_intr_handler(adapter);
|
|
}
|
|
if (cause & F_SGE3)
|
|
t3_sge_err_intr_handler(adapter);
|
|
if (cause & F_MC7_PMRX)
|
|
mc7_intr_handler(&adapter->pmrx);
|
|
if (cause & F_MC7_PMTX)
|
|
mc7_intr_handler(&adapter->pmtx);
|
|
if (cause & F_MC7_CM)
|
|
mc7_intr_handler(&adapter->cm);
|
|
if (cause & F_CIM)
|
|
cim_intr_handler(adapter);
|
|
if (cause & F_TP1)
|
|
tp_intr_handler(adapter);
|
|
if (cause & F_ULP2_RX)
|
|
ulprx_intr_handler(adapter);
|
|
if (cause & F_ULP2_TX)
|
|
ulptx_intr_handler(adapter);
|
|
if (cause & F_PM1_RX)
|
|
pmrx_intr_handler(adapter);
|
|
if (cause & F_PM1_TX)
|
|
pmtx_intr_handler(adapter);
|
|
if (cause & F_CPL_SWITCH)
|
|
cplsw_intr_handler(adapter);
|
|
if (cause & F_MPS0)
|
|
mps_intr_handler(adapter);
|
|
if (cause & F_MC5A)
|
|
t3_mc5_intr_handler(&adapter->mc5);
|
|
if (cause & F_XGMAC0_0)
|
|
mac_intr_handler(adapter, 0);
|
|
if (cause & F_XGMAC0_1)
|
|
mac_intr_handler(adapter, 1);
|
|
if (cause & F_T3DBG)
|
|
t3_os_ext_intr_handler(adapter);
|
|
|
|
/* Clear the interrupts just processed. */
|
|
t3_write_reg(adapter, A_PL_INT_CAUSE0, cause);
|
|
t3_read_reg(adapter, A_PL_INT_CAUSE0); /* flush */
|
|
return 1;
|
|
}
|
|
|
|
static unsigned int calc_gpio_intr(struct adapter *adap)
|
|
{
|
|
unsigned int i, gpi_intr = 0;
|
|
|
|
for_each_port(adap, i)
|
|
if ((adap2pinfo(adap, i)->phy.caps & SUPPORTED_IRQ) &&
|
|
adapter_info(adap)->gpio_intr[i])
|
|
gpi_intr |= 1 << adapter_info(adap)->gpio_intr[i];
|
|
return gpi_intr;
|
|
}
|
|
|
|
/**
|
|
* t3_intr_enable - enable interrupts
|
|
* @adapter: the adapter whose interrupts should be enabled
|
|
*
|
|
* Enable interrupts by setting the interrupt enable registers of the
|
|
* various HW modules and then enabling the top-level interrupt
|
|
* concentrator.
|
|
*/
|
|
void t3_intr_enable(struct adapter *adapter)
|
|
{
|
|
static const struct addr_val_pair intr_en_avp[] = {
|
|
{A_SG_INT_ENABLE, SGE_INTR_MASK},
|
|
{A_MC7_INT_ENABLE, MC7_INTR_MASK},
|
|
{A_MC7_INT_ENABLE - MC7_PMRX_BASE_ADDR + MC7_PMTX_BASE_ADDR,
|
|
MC7_INTR_MASK},
|
|
{A_MC7_INT_ENABLE - MC7_PMRX_BASE_ADDR + MC7_CM_BASE_ADDR,
|
|
MC7_INTR_MASK},
|
|
{A_MC5_DB_INT_ENABLE, MC5_INTR_MASK},
|
|
{A_ULPRX_INT_ENABLE, ULPRX_INTR_MASK},
|
|
{A_PM1_TX_INT_ENABLE, PMTX_INTR_MASK},
|
|
{A_PM1_RX_INT_ENABLE, PMRX_INTR_MASK},
|
|
{A_CIM_HOST_INT_ENABLE, CIM_INTR_MASK},
|
|
{A_MPS_INT_ENABLE, MPS_INTR_MASK},
|
|
};
|
|
|
|
adapter->slow_intr_mask = PL_INTR_MASK;
|
|
|
|
t3_write_regs(adapter, intr_en_avp, ARRAY_SIZE(intr_en_avp), 0);
|
|
t3_write_reg(adapter, A_TP_INT_ENABLE,
|
|
adapter->params.rev >= T3_REV_C ? 0x2bfffff : 0x3bfffff);
|
|
|
|
if (adapter->params.rev > 0) {
|
|
t3_write_reg(adapter, A_CPL_INTR_ENABLE,
|
|
CPLSW_INTR_MASK | F_CIM_OVFL_ERROR);
|
|
t3_write_reg(adapter, A_ULPTX_INT_ENABLE,
|
|
ULPTX_INTR_MASK | F_PBL_BOUND_ERR_CH0 |
|
|
F_PBL_BOUND_ERR_CH1);
|
|
} else {
|
|
t3_write_reg(adapter, A_CPL_INTR_ENABLE, CPLSW_INTR_MASK);
|
|
t3_write_reg(adapter, A_ULPTX_INT_ENABLE, ULPTX_INTR_MASK);
|
|
}
|
|
|
|
t3_write_reg(adapter, A_T3DBG_INT_ENABLE, calc_gpio_intr(adapter));
|
|
|
|
if (is_pcie(adapter))
|
|
t3_write_reg(adapter, A_PCIE_INT_ENABLE, PCIE_INTR_MASK);
|
|
else
|
|
t3_write_reg(adapter, A_PCIX_INT_ENABLE, PCIX_INTR_MASK);
|
|
t3_write_reg(adapter, A_PL_INT_ENABLE0, adapter->slow_intr_mask);
|
|
t3_read_reg(adapter, A_PL_INT_ENABLE0); /* flush */
|
|
}
|
|
|
|
/**
|
|
* t3_intr_disable - disable a card's interrupts
|
|
* @adapter: the adapter whose interrupts should be disabled
|
|
*
|
|
* Disable interrupts. We only disable the top-level interrupt
|
|
* concentrator and the SGE data interrupts.
|
|
*/
|
|
void t3_intr_disable(struct adapter *adapter)
|
|
{
|
|
t3_write_reg(adapter, A_PL_INT_ENABLE0, 0);
|
|
t3_read_reg(adapter, A_PL_INT_ENABLE0); /* flush */
|
|
adapter->slow_intr_mask = 0;
|
|
}
|
|
|
|
/**
|
|
* t3_intr_clear - clear all interrupts
|
|
* @adapter: the adapter whose interrupts should be cleared
|
|
*
|
|
* Clears all interrupts.
|
|
*/
|
|
void t3_intr_clear(struct adapter *adapter)
|
|
{
|
|
static const unsigned int cause_reg_addr[] = {
|
|
A_SG_INT_CAUSE,
|
|
A_SG_RSPQ_FL_STATUS,
|
|
A_PCIX_INT_CAUSE,
|
|
A_MC7_INT_CAUSE,
|
|
A_MC7_INT_CAUSE - MC7_PMRX_BASE_ADDR + MC7_PMTX_BASE_ADDR,
|
|
A_MC7_INT_CAUSE - MC7_PMRX_BASE_ADDR + MC7_CM_BASE_ADDR,
|
|
A_CIM_HOST_INT_CAUSE,
|
|
A_TP_INT_CAUSE,
|
|
A_MC5_DB_INT_CAUSE,
|
|
A_ULPRX_INT_CAUSE,
|
|
A_ULPTX_INT_CAUSE,
|
|
A_CPL_INTR_CAUSE,
|
|
A_PM1_TX_INT_CAUSE,
|
|
A_PM1_RX_INT_CAUSE,
|
|
A_MPS_INT_CAUSE,
|
|
A_T3DBG_INT_CAUSE,
|
|
};
|
|
unsigned int i;
|
|
|
|
/* Clear PHY and MAC interrupts for each port. */
|
|
for_each_port(adapter, i)
|
|
t3_port_intr_clear(adapter, i);
|
|
|
|
for (i = 0; i < ARRAY_SIZE(cause_reg_addr); ++i)
|
|
t3_write_reg(adapter, cause_reg_addr[i], 0xffffffff);
|
|
|
|
if (is_pcie(adapter))
|
|
t3_write_reg(adapter, A_PCIE_PEX_ERR, 0xffffffff);
|
|
t3_write_reg(adapter, A_PL_INT_CAUSE0, 0xffffffff);
|
|
t3_read_reg(adapter, A_PL_INT_CAUSE0); /* flush */
|
|
}
|
|
|
|
void t3_xgm_intr_enable(struct adapter *adapter, int idx)
|
|
{
|
|
struct port_info *pi = adap2pinfo(adapter, idx);
|
|
|
|
t3_write_reg(adapter, A_XGM_XGM_INT_ENABLE + pi->mac.offset,
|
|
XGM_EXTRA_INTR_MASK);
|
|
}
|
|
|
|
void t3_xgm_intr_disable(struct adapter *adapter, int idx)
|
|
{
|
|
struct port_info *pi = adap2pinfo(adapter, idx);
|
|
|
|
t3_write_reg(adapter, A_XGM_XGM_INT_DISABLE + pi->mac.offset,
|
|
0x7ff);
|
|
}
|
|
|
|
/**
|
|
* t3_port_intr_enable - enable port-specific interrupts
|
|
* @adapter: associated adapter
|
|
* @idx: index of port whose interrupts should be enabled
|
|
*
|
|
* Enable port-specific (i.e., MAC and PHY) interrupts for the given
|
|
* adapter port.
|
|
*/
|
|
void t3_port_intr_enable(struct adapter *adapter, int idx)
|
|
{
|
|
struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
|
|
|
|
t3_write_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx), XGM_INTR_MASK);
|
|
t3_read_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx)); /* flush */
|
|
phy->ops->intr_enable(phy);
|
|
}
|
|
|
|
/**
|
|
* t3_port_intr_disable - disable port-specific interrupts
|
|
* @adapter: associated adapter
|
|
* @idx: index of port whose interrupts should be disabled
|
|
*
|
|
* Disable port-specific (i.e., MAC and PHY) interrupts for the given
|
|
* adapter port.
|
|
*/
|
|
void t3_port_intr_disable(struct adapter *adapter, int idx)
|
|
{
|
|
struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
|
|
|
|
t3_write_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx), 0);
|
|
t3_read_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx)); /* flush */
|
|
phy->ops->intr_disable(phy);
|
|
}
|
|
|
|
/**
|
|
* t3_port_intr_clear - clear port-specific interrupts
|
|
* @adapter: associated adapter
|
|
* @idx: index of port whose interrupts to clear
|
|
*
|
|
* Clear port-specific (i.e., MAC and PHY) interrupts for the given
|
|
* adapter port.
|
|
*/
|
|
static void t3_port_intr_clear(struct adapter *adapter, int idx)
|
|
{
|
|
struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
|
|
|
|
t3_write_reg(adapter, XGM_REG(A_XGM_INT_CAUSE, idx), 0xffffffff);
|
|
t3_read_reg(adapter, XGM_REG(A_XGM_INT_CAUSE, idx)); /* flush */
|
|
phy->ops->intr_clear(phy);
|
|
}
|
|
|
|
#define SG_CONTEXT_CMD_ATTEMPTS 100
|
|
|
|
/**
|
|
* t3_sge_write_context - write an SGE context
|
|
* @adapter: the adapter
|
|
* @id: the context id
|
|
* @type: the context type
|
|
*
|
|
* Program an SGE context with the values already loaded in the
|
|
* CONTEXT_DATA? registers.
|
|
*/
|
|
static int t3_sge_write_context(struct adapter *adapter, unsigned int id,
|
|
unsigned int type)
|
|
{
|
|
if (type == F_RESPONSEQ) {
|
|
/*
|
|
* Can't write the Response Queue Context bits for
|
|
* Interrupt Armed or the Reserve bits after the chip
|
|
* has been initialized out of reset. Writing to these
|
|
* bits can confuse the hardware.
|
|
*/
|
|
t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0xffffffff);
|
|
t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0xffffffff);
|
|
t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0x17ffffff);
|
|
t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0xffffffff);
|
|
} else {
|
|
t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0xffffffff);
|
|
t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0xffffffff);
|
|
t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0xffffffff);
|
|
t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0xffffffff);
|
|
}
|
|
t3_write_reg(adapter, A_SG_CONTEXT_CMD,
|
|
V_CONTEXT_CMD_OPCODE(1) | type | V_CONTEXT(id));
|
|
return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
|
|
0, SG_CONTEXT_CMD_ATTEMPTS, 1);
|
|
}
|
|
|
|
/**
|
|
* clear_sge_ctxt - completely clear an SGE context
|
|
* @adapter: the adapter
|
|
* @id: the context id
|
|
* @type: the context type
|
|
*
|
|
* Completely clear an SGE context. Used predominantly at post-reset
|
|
* initialization. Note in particular that we don't skip writing to any
|
|
* "sensitive bits" in the contexts the way that t3_sge_write_context()
|
|
* does ...
|
|
*/
|
|
static int clear_sge_ctxt(struct adapter *adap, unsigned int id,
|
|
unsigned int type)
|
|
{
|
|
t3_write_reg(adap, A_SG_CONTEXT_DATA0, 0);
|
|
t3_write_reg(adap, A_SG_CONTEXT_DATA1, 0);
|
|
t3_write_reg(adap, A_SG_CONTEXT_DATA2, 0);
|
|
t3_write_reg(adap, A_SG_CONTEXT_DATA3, 0);
|
|
t3_write_reg(adap, A_SG_CONTEXT_MASK0, 0xffffffff);
|
|
t3_write_reg(adap, A_SG_CONTEXT_MASK1, 0xffffffff);
|
|
t3_write_reg(adap, A_SG_CONTEXT_MASK2, 0xffffffff);
|
|
t3_write_reg(adap, A_SG_CONTEXT_MASK3, 0xffffffff);
|
|
t3_write_reg(adap, A_SG_CONTEXT_CMD,
|
|
V_CONTEXT_CMD_OPCODE(1) | type | V_CONTEXT(id));
|
|
return t3_wait_op_done(adap, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
|
|
0, SG_CONTEXT_CMD_ATTEMPTS, 1);
|
|
}
|
|
|
|
/**
|
|
* t3_sge_init_ecntxt - initialize an SGE egress context
|
|
* @adapter: the adapter to configure
|
|
* @id: the context id
|
|
* @gts_enable: whether to enable GTS for the context
|
|
* @type: the egress context type
|
|
* @respq: associated response queue
|
|
* @base_addr: base address of queue
|
|
* @size: number of queue entries
|
|
* @token: uP token
|
|
* @gen: initial generation value for the context
|
|
* @cidx: consumer pointer
|
|
*
|
|
* Initialize an SGE egress context and make it ready for use. If the
|
|
* platform allows concurrent context operations, the caller is
|
|
* responsible for appropriate locking.
|
|
*/
|
|
int t3_sge_init_ecntxt(struct adapter *adapter, unsigned int id, int gts_enable,
|
|
enum sge_context_type type, int respq, u64 base_addr,
|
|
unsigned int size, unsigned int token, int gen,
|
|
unsigned int cidx)
|
|
{
|
|
unsigned int credits = type == SGE_CNTXT_OFLD ? 0 : FW_WR_NUM;
|
|
|
|
if (base_addr & 0xfff) /* must be 4K aligned */
|
|
return -EINVAL;
|
|
if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
|
|
return -EBUSY;
|
|
|
|
base_addr >>= 12;
|
|
t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_EC_INDEX(cidx) |
|
|
V_EC_CREDITS(credits) | V_EC_GTS(gts_enable));
|
|
t3_write_reg(adapter, A_SG_CONTEXT_DATA1, V_EC_SIZE(size) |
|
|
V_EC_BASE_LO(base_addr & 0xffff));
|
|
base_addr >>= 16;
|
|
t3_write_reg(adapter, A_SG_CONTEXT_DATA2, base_addr);
|
|
base_addr >>= 32;
|
|
t3_write_reg(adapter, A_SG_CONTEXT_DATA3,
|
|
V_EC_BASE_HI(base_addr & 0xf) | V_EC_RESPQ(respq) |
|
|
V_EC_TYPE(type) | V_EC_GEN(gen) | V_EC_UP_TOKEN(token) |
|
|
F_EC_VALID);
|
|
return t3_sge_write_context(adapter, id, F_EGRESS);
|
|
}
|
|
|
|
/**
|
|
* t3_sge_init_flcntxt - initialize an SGE free-buffer list context
|
|
* @adapter: the adapter to configure
|
|
* @id: the context id
|
|
* @gts_enable: whether to enable GTS for the context
|
|
* @base_addr: base address of queue
|
|
* @size: number of queue entries
|
|
* @bsize: size of each buffer for this queue
|
|
* @cong_thres: threshold to signal congestion to upstream producers
|
|
* @gen: initial generation value for the context
|
|
* @cidx: consumer pointer
|
|
*
|
|
* Initialize an SGE free list context and make it ready for use. The
|
|
* caller is responsible for ensuring only one context operation occurs
|
|
* at a time.
|
|
*/
|
|
int t3_sge_init_flcntxt(struct adapter *adapter, unsigned int id,
|
|
int gts_enable, u64 base_addr, unsigned int size,
|
|
unsigned int bsize, unsigned int cong_thres, int gen,
|
|
unsigned int cidx)
|
|
{
|
|
if (base_addr & 0xfff) /* must be 4K aligned */
|
|
return -EINVAL;
|
|
if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
|
|
return -EBUSY;
|
|
|
|
base_addr >>= 12;
|
|
t3_write_reg(adapter, A_SG_CONTEXT_DATA0, base_addr);
|
|
base_addr >>= 32;
|
|
t3_write_reg(adapter, A_SG_CONTEXT_DATA1,
|
|
V_FL_BASE_HI((u32) base_addr) |
|
|
V_FL_INDEX_LO(cidx & M_FL_INDEX_LO));
|
|
t3_write_reg(adapter, A_SG_CONTEXT_DATA2, V_FL_SIZE(size) |
|
|
V_FL_GEN(gen) | V_FL_INDEX_HI(cidx >> 12) |
|
|
V_FL_ENTRY_SIZE_LO(bsize & M_FL_ENTRY_SIZE_LO));
|
|
t3_write_reg(adapter, A_SG_CONTEXT_DATA3,
|
|
V_FL_ENTRY_SIZE_HI(bsize >> (32 - S_FL_ENTRY_SIZE_LO)) |
|
|
V_FL_CONG_THRES(cong_thres) | V_FL_GTS(gts_enable));
|
|
return t3_sge_write_context(adapter, id, F_FREELIST);
|
|
}
|
|
|
|
/**
|
|
* t3_sge_init_rspcntxt - initialize an SGE response queue context
|
|
* @adapter: the adapter to configure
|
|
* @id: the context id
|
|
* @irq_vec_idx: MSI-X interrupt vector index, 0 if no MSI-X, -1 if no IRQ
|
|
* @base_addr: base address of queue
|
|
* @size: number of queue entries
|
|
* @fl_thres: threshold for selecting the normal or jumbo free list
|
|
* @gen: initial generation value for the context
|
|
* @cidx: consumer pointer
|
|
*
|
|
* Initialize an SGE response queue context and make it ready for use.
|
|
* The caller is responsible for ensuring only one context operation
|
|
* occurs at a time.
|
|
*/
|
|
int t3_sge_init_rspcntxt(struct adapter *adapter, unsigned int id,
|
|
int irq_vec_idx, u64 base_addr, unsigned int size,
|
|
unsigned int fl_thres, int gen, unsigned int cidx)
|
|
{
|
|
unsigned int intr = 0;
|
|
|
|
if (base_addr & 0xfff) /* must be 4K aligned */
|
|
return -EINVAL;
|
|
if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
|
|
return -EBUSY;
|
|
|
|
base_addr >>= 12;
|
|
t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_CQ_SIZE(size) |
|
|
V_CQ_INDEX(cidx));
|
|
t3_write_reg(adapter, A_SG_CONTEXT_DATA1, base_addr);
|
|
base_addr >>= 32;
|
|
if (irq_vec_idx >= 0)
|
|
intr = V_RQ_MSI_VEC(irq_vec_idx) | F_RQ_INTR_EN;
|
|
t3_write_reg(adapter, A_SG_CONTEXT_DATA2,
|
|
V_CQ_BASE_HI((u32) base_addr) | intr | V_RQ_GEN(gen));
|
|
t3_write_reg(adapter, A_SG_CONTEXT_DATA3, fl_thres);
|
|
return t3_sge_write_context(adapter, id, F_RESPONSEQ);
|
|
}
|
|
|
|
/**
|
|
* t3_sge_init_cqcntxt - initialize an SGE completion queue context
|
|
* @adapter: the adapter to configure
|
|
* @id: the context id
|
|
* @base_addr: base address of queue
|
|
* @size: number of queue entries
|
|
* @rspq: response queue for async notifications
|
|
* @ovfl_mode: CQ overflow mode
|
|
* @credits: completion queue credits
|
|
* @credit_thres: the credit threshold
|
|
*
|
|
* Initialize an SGE completion queue context and make it ready for use.
|
|
* The caller is responsible for ensuring only one context operation
|
|
* occurs at a time.
|
|
*/
|
|
int t3_sge_init_cqcntxt(struct adapter *adapter, unsigned int id, u64 base_addr,
|
|
unsigned int size, int rspq, int ovfl_mode,
|
|
unsigned int credits, unsigned int credit_thres)
|
|
{
|
|
if (base_addr & 0xfff) /* must be 4K aligned */
|
|
return -EINVAL;
|
|
if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
|
|
return -EBUSY;
|
|
|
|
base_addr >>= 12;
|
|
t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_CQ_SIZE(size));
|
|
t3_write_reg(adapter, A_SG_CONTEXT_DATA1, base_addr);
|
|
base_addr >>= 32;
|
|
t3_write_reg(adapter, A_SG_CONTEXT_DATA2,
|
|
V_CQ_BASE_HI((u32) base_addr) | V_CQ_RSPQ(rspq) |
|
|
V_CQ_GEN(1) | V_CQ_OVERFLOW_MODE(ovfl_mode) |
|
|
V_CQ_ERR(ovfl_mode));
|
|
t3_write_reg(adapter, A_SG_CONTEXT_DATA3, V_CQ_CREDITS(credits) |
|
|
V_CQ_CREDIT_THRES(credit_thres));
|
|
return t3_sge_write_context(adapter, id, F_CQ);
|
|
}
|
|
|
|
/**
|
|
* t3_sge_enable_ecntxt - enable/disable an SGE egress context
|
|
* @adapter: the adapter
|
|
* @id: the egress context id
|
|
* @enable: enable (1) or disable (0) the context
|
|
*
|
|
* Enable or disable an SGE egress context. The caller is responsible for
|
|
* ensuring only one context operation occurs at a time.
|
|
*/
|
|
int t3_sge_enable_ecntxt(struct adapter *adapter, unsigned int id, int enable)
|
|
{
|
|
if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
|
|
return -EBUSY;
|
|
|
|
t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0);
|
|
t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
|
|
t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
|
|
t3_write_reg(adapter, A_SG_CONTEXT_MASK3, F_EC_VALID);
|
|
t3_write_reg(adapter, A_SG_CONTEXT_DATA3, V_EC_VALID(enable));
|
|
t3_write_reg(adapter, A_SG_CONTEXT_CMD,
|
|
V_CONTEXT_CMD_OPCODE(1) | F_EGRESS | V_CONTEXT(id));
|
|
return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
|
|
0, SG_CONTEXT_CMD_ATTEMPTS, 1);
|
|
}
|
|
|
|
/**
|
|
* t3_sge_disable_fl - disable an SGE free-buffer list
|
|
* @adapter: the adapter
|
|
* @id: the free list context id
|
|
*
|
|
* Disable an SGE free-buffer list. The caller is responsible for
|
|
* ensuring only one context operation occurs at a time.
|
|
*/
|
|
int t3_sge_disable_fl(struct adapter *adapter, unsigned int id)
|
|
{
|
|
if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
|
|
return -EBUSY;
|
|
|
|
t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0);
|
|
t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
|
|
t3_write_reg(adapter, A_SG_CONTEXT_MASK2, V_FL_SIZE(M_FL_SIZE));
|
|
t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
|
|
t3_write_reg(adapter, A_SG_CONTEXT_DATA2, 0);
|
|
t3_write_reg(adapter, A_SG_CONTEXT_CMD,
|
|
V_CONTEXT_CMD_OPCODE(1) | F_FREELIST | V_CONTEXT(id));
|
|
return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
|
|
0, SG_CONTEXT_CMD_ATTEMPTS, 1);
|
|
}
|
|
|
|
/**
|
|
* t3_sge_disable_rspcntxt - disable an SGE response queue
|
|
* @adapter: the adapter
|
|
* @id: the response queue context id
|
|
*
|
|
* Disable an SGE response queue. The caller is responsible for
|
|
* ensuring only one context operation occurs at a time.
|
|
*/
|
|
int t3_sge_disable_rspcntxt(struct adapter *adapter, unsigned int id)
|
|
{
|
|
if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
|
|
return -EBUSY;
|
|
|
|
t3_write_reg(adapter, A_SG_CONTEXT_MASK0, V_CQ_SIZE(M_CQ_SIZE));
|
|
t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
|
|
t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
|
|
t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
|
|
t3_write_reg(adapter, A_SG_CONTEXT_DATA0, 0);
|
|
t3_write_reg(adapter, A_SG_CONTEXT_CMD,
|
|
V_CONTEXT_CMD_OPCODE(1) | F_RESPONSEQ | V_CONTEXT(id));
|
|
return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
|
|
0, SG_CONTEXT_CMD_ATTEMPTS, 1);
|
|
}
|
|
|
|
/**
|
|
* t3_sge_disable_cqcntxt - disable an SGE completion queue
|
|
* @adapter: the adapter
|
|
* @id: the completion queue context id
|
|
*
|
|
* Disable an SGE completion queue. The caller is responsible for
|
|
* ensuring only one context operation occurs at a time.
|
|
*/
|
|
int t3_sge_disable_cqcntxt(struct adapter *adapter, unsigned int id)
|
|
{
|
|
if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
|
|
return -EBUSY;
|
|
|
|
t3_write_reg(adapter, A_SG_CONTEXT_MASK0, V_CQ_SIZE(M_CQ_SIZE));
|
|
t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
|
|
t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
|
|
t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
|
|
t3_write_reg(adapter, A_SG_CONTEXT_DATA0, 0);
|
|
t3_write_reg(adapter, A_SG_CONTEXT_CMD,
|
|
V_CONTEXT_CMD_OPCODE(1) | F_CQ | V_CONTEXT(id));
|
|
return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
|
|
0, SG_CONTEXT_CMD_ATTEMPTS, 1);
|
|
}
|
|
|
|
/**
|
|
* t3_sge_cqcntxt_op - perform an operation on a completion queue context
|
|
* @adapter: the adapter
|
|
* @id: the context id
|
|
* @op: the operation to perform
|
|
*
|
|
* Perform the selected operation on an SGE completion queue context.
|
|
* The caller is responsible for ensuring only one context operation
|
|
* occurs at a time.
|
|
*/
|
|
int t3_sge_cqcntxt_op(struct adapter *adapter, unsigned int id, unsigned int op,
|
|
unsigned int credits)
|
|
{
|
|
u32 val;
|
|
|
|
if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
|
|
return -EBUSY;
|
|
|
|
t3_write_reg(adapter, A_SG_CONTEXT_DATA0, credits << 16);
|
|
t3_write_reg(adapter, A_SG_CONTEXT_CMD, V_CONTEXT_CMD_OPCODE(op) |
|
|
V_CONTEXT(id) | F_CQ);
|
|
if (t3_wait_op_done_val(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
|
|
0, SG_CONTEXT_CMD_ATTEMPTS, 1, &val))
|
|
return -EIO;
|
|
|
|
if (op >= 2 && op < 7) {
|
|
if (adapter->params.rev > 0)
|
|
return G_CQ_INDEX(val);
|
|
|
|
t3_write_reg(adapter, A_SG_CONTEXT_CMD,
|
|
V_CONTEXT_CMD_OPCODE(0) | F_CQ | V_CONTEXT(id));
|
|
if (t3_wait_op_done(adapter, A_SG_CONTEXT_CMD,
|
|
F_CONTEXT_CMD_BUSY, 0,
|
|
SG_CONTEXT_CMD_ATTEMPTS, 1))
|
|
return -EIO;
|
|
return G_CQ_INDEX(t3_read_reg(adapter, A_SG_CONTEXT_DATA0));
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* t3_config_rss - configure Rx packet steering
|
|
* @adapter: the adapter
|
|
* @rss_config: RSS settings (written to TP_RSS_CONFIG)
|
|
* @cpus: values for the CPU lookup table (0xff terminated)
|
|
* @rspq: values for the response queue lookup table (0xffff terminated)
|
|
*
|
|
* Programs the receive packet steering logic. @cpus and @rspq provide
|
|
* the values for the CPU and response queue lookup tables. If they
|
|
* provide fewer values than the size of the tables the supplied values
|
|
* are used repeatedly until the tables are fully populated.
|
|
*/
|
|
void t3_config_rss(struct adapter *adapter, unsigned int rss_config,
|
|
const u8 * cpus, const u16 *rspq)
|
|
{
|
|
int i, j, cpu_idx = 0, q_idx = 0;
|
|
|
|
if (cpus)
|
|
for (i = 0; i < RSS_TABLE_SIZE; ++i) {
|
|
u32 val = i << 16;
|
|
|
|
for (j = 0; j < 2; ++j) {
|
|
val |= (cpus[cpu_idx++] & 0x3f) << (8 * j);
|
|
if (cpus[cpu_idx] == 0xff)
|
|
cpu_idx = 0;
|
|
}
|
|
t3_write_reg(adapter, A_TP_RSS_LKP_TABLE, val);
|
|
}
|
|
|
|
if (rspq)
|
|
for (i = 0; i < RSS_TABLE_SIZE; ++i) {
|
|
t3_write_reg(adapter, A_TP_RSS_MAP_TABLE,
|
|
(i << 16) | rspq[q_idx++]);
|
|
if (rspq[q_idx] == 0xffff)
|
|
q_idx = 0;
|
|
}
|
|
|
|
t3_write_reg(adapter, A_TP_RSS_CONFIG, rss_config);
|
|
}
|
|
|
|
/**
|
|
* t3_tp_set_offload_mode - put TP in NIC/offload mode
|
|
* @adap: the adapter
|
|
* @enable: 1 to select offload mode, 0 for regular NIC
|
|
*
|
|
* Switches TP to NIC/offload mode.
|
|
*/
|
|
void t3_tp_set_offload_mode(struct adapter *adap, int enable)
|
|
{
|
|
if (is_offload(adap) || !enable)
|
|
t3_set_reg_field(adap, A_TP_IN_CONFIG, F_NICMODE,
|
|
V_NICMODE(!enable));
|
|
}
|
|
|
|
/**
|
|
* pm_num_pages - calculate the number of pages of the payload memory
|
|
* @mem_size: the size of the payload memory
|
|
* @pg_size: the size of each payload memory page
|
|
*
|
|
* Calculate the number of pages, each of the given size, that fit in a
|
|
* memory of the specified size, respecting the HW requirement that the
|
|
* number of pages must be a multiple of 24.
|
|
*/
|
|
static inline unsigned int pm_num_pages(unsigned int mem_size,
|
|
unsigned int pg_size)
|
|
{
|
|
unsigned int n = mem_size / pg_size;
|
|
|
|
return n - n % 24;
|
|
}
|
|
|
|
#define mem_region(adap, start, size, reg) \
|
|
t3_write_reg((adap), A_ ## reg, (start)); \
|
|
start += size
|
|
|
|
/**
|
|
* partition_mem - partition memory and configure TP memory settings
|
|
* @adap: the adapter
|
|
* @p: the TP parameters
|
|
*
|
|
* Partitions context and payload memory and configures TP's memory
|
|
* registers.
|
|
*/
|
|
static void partition_mem(struct adapter *adap, const struct tp_params *p)
|
|
{
|
|
unsigned int m, pstructs, tids = t3_mc5_size(&adap->mc5);
|
|
unsigned int timers = 0, timers_shift = 22;
|
|
|
|
if (adap->params.rev > 0) {
|
|
if (tids <= 16 * 1024) {
|
|
timers = 1;
|
|
timers_shift = 16;
|
|
} else if (tids <= 64 * 1024) {
|
|
timers = 2;
|
|
timers_shift = 18;
|
|
} else if (tids <= 256 * 1024) {
|
|
timers = 3;
|
|
timers_shift = 20;
|
|
}
|
|
}
|
|
|
|
t3_write_reg(adap, A_TP_PMM_SIZE,
|
|
p->chan_rx_size | (p->chan_tx_size >> 16));
|
|
|
|
t3_write_reg(adap, A_TP_PMM_TX_BASE, 0);
|
|
t3_write_reg(adap, A_TP_PMM_TX_PAGE_SIZE, p->tx_pg_size);
|
|
t3_write_reg(adap, A_TP_PMM_TX_MAX_PAGE, p->tx_num_pgs);
|
|
t3_set_reg_field(adap, A_TP_PARA_REG3, V_TXDATAACKIDX(M_TXDATAACKIDX),
|
|
V_TXDATAACKIDX(fls(p->tx_pg_size) - 12));
|
|
|
|
t3_write_reg(adap, A_TP_PMM_RX_BASE, 0);
|
|
t3_write_reg(adap, A_TP_PMM_RX_PAGE_SIZE, p->rx_pg_size);
|
|
t3_write_reg(adap, A_TP_PMM_RX_MAX_PAGE, p->rx_num_pgs);
|
|
|
|
pstructs = p->rx_num_pgs + p->tx_num_pgs;
|
|
/* Add a bit of headroom and make multiple of 24 */
|
|
pstructs += 48;
|
|
pstructs -= pstructs % 24;
|
|
t3_write_reg(adap, A_TP_CMM_MM_MAX_PSTRUCT, pstructs);
|
|
|
|
m = tids * TCB_SIZE;
|
|
mem_region(adap, m, (64 << 10) * 64, SG_EGR_CNTX_BADDR);
|
|
mem_region(adap, m, (64 << 10) * 64, SG_CQ_CONTEXT_BADDR);
|
|
t3_write_reg(adap, A_TP_CMM_TIMER_BASE, V_CMTIMERMAXNUM(timers) | m);
|
|
m += ((p->ntimer_qs - 1) << timers_shift) + (1 << 22);
|
|
mem_region(adap, m, pstructs * 64, TP_CMM_MM_BASE);
|
|
mem_region(adap, m, 64 * (pstructs / 24), TP_CMM_MM_PS_FLST_BASE);
|
|
mem_region(adap, m, 64 * (p->rx_num_pgs / 24), TP_CMM_MM_RX_FLST_BASE);
|
|
mem_region(adap, m, 64 * (p->tx_num_pgs / 24), TP_CMM_MM_TX_FLST_BASE);
|
|
|
|
m = (m + 4095) & ~0xfff;
|
|
t3_write_reg(adap, A_CIM_SDRAM_BASE_ADDR, m);
|
|
t3_write_reg(adap, A_CIM_SDRAM_ADDR_SIZE, p->cm_size - m);
|
|
|
|
tids = (p->cm_size - m - (3 << 20)) / 3072 - 32;
|
|
m = t3_mc5_size(&adap->mc5) - adap->params.mc5.nservers -
|
|
adap->params.mc5.nfilters - adap->params.mc5.nroutes;
|
|
if (tids < m)
|
|
adap->params.mc5.nservers += m - tids;
|
|
}
|
|
|
|
static inline void tp_wr_indirect(struct adapter *adap, unsigned int addr,
|
|
u32 val)
|
|
{
|
|
t3_write_reg(adap, A_TP_PIO_ADDR, addr);
|
|
t3_write_reg(adap, A_TP_PIO_DATA, val);
|
|
}
|
|
|
|
static void tp_config(struct adapter *adap, const struct tp_params *p)
|
|
{
|
|
t3_write_reg(adap, A_TP_GLOBAL_CONFIG, F_TXPACINGENABLE | F_PATHMTU |
|
|
F_IPCHECKSUMOFFLOAD | F_UDPCHECKSUMOFFLOAD |
|
|
F_TCPCHECKSUMOFFLOAD | V_IPTTL(64));
|
|
t3_write_reg(adap, A_TP_TCP_OPTIONS, V_MTUDEFAULT(576) |
|
|
F_MTUENABLE | V_WINDOWSCALEMODE(1) |
|
|
V_TIMESTAMPSMODE(1) | V_SACKMODE(1) | V_SACKRX(1));
|
|
t3_write_reg(adap, A_TP_DACK_CONFIG, V_AUTOSTATE3(1) |
|
|
V_AUTOSTATE2(1) | V_AUTOSTATE1(0) |
|
|
V_BYTETHRESHOLD(26880) | V_MSSTHRESHOLD(2) |
|
|
F_AUTOCAREFUL | F_AUTOENABLE | V_DACK_MODE(1));
|
|
t3_set_reg_field(adap, A_TP_IN_CONFIG, F_RXFBARBPRIO | F_TXFBARBPRIO,
|
|
F_IPV6ENABLE | F_NICMODE);
|
|
t3_write_reg(adap, A_TP_TX_RESOURCE_LIMIT, 0x18141814);
|
|
t3_write_reg(adap, A_TP_PARA_REG4, 0x5050105);
|
|
t3_set_reg_field(adap, A_TP_PARA_REG6, 0,
|
|
adap->params.rev > 0 ? F_ENABLEESND :
|
|
F_T3A_ENABLEESND);
|
|
|
|
t3_set_reg_field(adap, A_TP_PC_CONFIG,
|
|
F_ENABLEEPCMDAFULL,
|
|
F_ENABLEOCSPIFULL |F_TXDEFERENABLE | F_HEARBEATDACK |
|
|
F_TXCONGESTIONMODE | F_RXCONGESTIONMODE);
|
|
t3_set_reg_field(adap, A_TP_PC_CONFIG2, F_CHDRAFULL,
|
|
F_ENABLEIPV6RSS | F_ENABLENONOFDTNLSYN |
|
|
F_ENABLEARPMISS | F_DISBLEDAPARBIT0);
|
|
t3_write_reg(adap, A_TP_PROXY_FLOW_CNTL, 1080);
|
|
t3_write_reg(adap, A_TP_PROXY_FLOW_CNTL, 1000);
|
|
|
|
if (adap->params.rev > 0) {
|
|
tp_wr_indirect(adap, A_TP_EGRESS_CONFIG, F_REWRITEFORCETOSIZE);
|
|
t3_set_reg_field(adap, A_TP_PARA_REG3, F_TXPACEAUTO,
|
|
F_TXPACEAUTO);
|
|
t3_set_reg_field(adap, A_TP_PC_CONFIG, F_LOCKTID, F_LOCKTID);
|
|
t3_set_reg_field(adap, A_TP_PARA_REG3, 0, F_TXPACEAUTOSTRICT);
|
|
} else
|
|
t3_set_reg_field(adap, A_TP_PARA_REG3, 0, F_TXPACEFIXED);
|
|
|
|
if (adap->params.rev == T3_REV_C)
|
|
t3_set_reg_field(adap, A_TP_PC_CONFIG,
|
|
V_TABLELATENCYDELTA(M_TABLELATENCYDELTA),
|
|
V_TABLELATENCYDELTA(4));
|
|
|
|
t3_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT1, 0);
|
|
t3_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT0, 0);
|
|
t3_write_reg(adap, A_TP_MOD_CHANNEL_WEIGHT, 0);
|
|
t3_write_reg(adap, A_TP_MOD_RATE_LIMIT, 0xf2200000);
|
|
}
|
|
|
|
/* Desired TP timer resolution in usec */
|
|
#define TP_TMR_RES 50
|
|
|
|
/* TCP timer values in ms */
|
|
#define TP_DACK_TIMER 50
|
|
#define TP_RTO_MIN 250
|
|
|
|
/**
|
|
* tp_set_timers - set TP timing parameters
|
|
* @adap: the adapter to set
|
|
* @core_clk: the core clock frequency in Hz
|
|
*
|
|
* Set TP's timing parameters, such as the various timer resolutions and
|
|
* the TCP timer values.
|
|
*/
|
|
static void tp_set_timers(struct adapter *adap, unsigned int core_clk)
|
|
{
|
|
unsigned int tre = fls(core_clk / (1000000 / TP_TMR_RES)) - 1;
|
|
unsigned int dack_re = fls(core_clk / 5000) - 1; /* 200us */
|
|
unsigned int tstamp_re = fls(core_clk / 1000); /* 1ms, at least */
|
|
unsigned int tps = core_clk >> tre;
|
|
|
|
t3_write_reg(adap, A_TP_TIMER_RESOLUTION, V_TIMERRESOLUTION(tre) |
|
|
V_DELAYEDACKRESOLUTION(dack_re) |
|
|
V_TIMESTAMPRESOLUTION(tstamp_re));
|
|
t3_write_reg(adap, A_TP_DACK_TIMER,
|
|
(core_clk >> dack_re) / (1000 / TP_DACK_TIMER));
|
|
t3_write_reg(adap, A_TP_TCP_BACKOFF_REG0, 0x3020100);
|
|
t3_write_reg(adap, A_TP_TCP_BACKOFF_REG1, 0x7060504);
|
|
t3_write_reg(adap, A_TP_TCP_BACKOFF_REG2, 0xb0a0908);
|
|
t3_write_reg(adap, A_TP_TCP_BACKOFF_REG3, 0xf0e0d0c);
|
|
t3_write_reg(adap, A_TP_SHIFT_CNT, V_SYNSHIFTMAX(6) |
|
|
V_RXTSHIFTMAXR1(4) | V_RXTSHIFTMAXR2(15) |
|
|
V_PERSHIFTBACKOFFMAX(8) | V_PERSHIFTMAX(8) |
|
|
V_KEEPALIVEMAX(9));
|
|
|
|
#define SECONDS * tps
|
|
|
|
t3_write_reg(adap, A_TP_MSL, adap->params.rev > 0 ? 0 : 2 SECONDS);
|
|
t3_write_reg(adap, A_TP_RXT_MIN, tps / (1000 / TP_RTO_MIN));
|
|
t3_write_reg(adap, A_TP_RXT_MAX, 64 SECONDS);
|
|
t3_write_reg(adap, A_TP_PERS_MIN, 5 SECONDS);
|
|
t3_write_reg(adap, A_TP_PERS_MAX, 64 SECONDS);
|
|
t3_write_reg(adap, A_TP_KEEP_IDLE, 7200 SECONDS);
|
|
t3_write_reg(adap, A_TP_KEEP_INTVL, 75 SECONDS);
|
|
t3_write_reg(adap, A_TP_INIT_SRTT, 3 SECONDS);
|
|
t3_write_reg(adap, A_TP_FINWAIT2_TIMER, 600 SECONDS);
|
|
|
|
#undef SECONDS
|
|
}
|
|
|
|
/**
|
|
* t3_tp_set_coalescing_size - set receive coalescing size
|
|
* @adap: the adapter
|
|
* @size: the receive coalescing size
|
|
* @psh: whether a set PSH bit should deliver coalesced data
|
|
*
|
|
* Set the receive coalescing size and PSH bit handling.
|
|
*/
|
|
static int t3_tp_set_coalescing_size(struct adapter *adap,
|
|
unsigned int size, int psh)
|
|
{
|
|
u32 val;
|
|
|
|
if (size > MAX_RX_COALESCING_LEN)
|
|
return -EINVAL;
|
|
|
|
val = t3_read_reg(adap, A_TP_PARA_REG3);
|
|
val &= ~(F_RXCOALESCEENABLE | F_RXCOALESCEPSHEN);
|
|
|
|
if (size) {
|
|
val |= F_RXCOALESCEENABLE;
|
|
if (psh)
|
|
val |= F_RXCOALESCEPSHEN;
|
|
size = min(MAX_RX_COALESCING_LEN, size);
|
|
t3_write_reg(adap, A_TP_PARA_REG2, V_RXCOALESCESIZE(size) |
|
|
V_MAXRXDATA(MAX_RX_COALESCING_LEN));
|
|
}
|
|
t3_write_reg(adap, A_TP_PARA_REG3, val);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* t3_tp_set_max_rxsize - set the max receive size
|
|
* @adap: the adapter
|
|
* @size: the max receive size
|
|
*
|
|
* Set TP's max receive size. This is the limit that applies when
|
|
* receive coalescing is disabled.
|
|
*/
|
|
static void t3_tp_set_max_rxsize(struct adapter *adap, unsigned int size)
|
|
{
|
|
t3_write_reg(adap, A_TP_PARA_REG7,
|
|
V_PMMAXXFERLEN0(size) | V_PMMAXXFERLEN1(size));
|
|
}
|
|
|
|
static void init_mtus(unsigned short mtus[])
|
|
{
|
|
/*
|
|
* See draft-mathis-plpmtud-00.txt for the values. The min is 88 so
|
|
* it can accommodate max size TCP/IP headers when SACK and timestamps
|
|
* are enabled and still have at least 8 bytes of payload.
|
|
*/
|
|
mtus[0] = 88;
|
|
mtus[1] = 88;
|
|
mtus[2] = 256;
|
|
mtus[3] = 512;
|
|
mtus[4] = 576;
|
|
mtus[5] = 1024;
|
|
mtus[6] = 1280;
|
|
mtus[7] = 1492;
|
|
mtus[8] = 1500;
|
|
mtus[9] = 2002;
|
|
mtus[10] = 2048;
|
|
mtus[11] = 4096;
|
|
mtus[12] = 4352;
|
|
mtus[13] = 8192;
|
|
mtus[14] = 9000;
|
|
mtus[15] = 9600;
|
|
}
|
|
|
|
/*
|
|
* Initial congestion control parameters.
|
|
*/
|
|
static void init_cong_ctrl(unsigned short *a, unsigned short *b)
|
|
{
|
|
a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
|
|
a[9] = 2;
|
|
a[10] = 3;
|
|
a[11] = 4;
|
|
a[12] = 5;
|
|
a[13] = 6;
|
|
a[14] = 7;
|
|
a[15] = 8;
|
|
a[16] = 9;
|
|
a[17] = 10;
|
|
a[18] = 14;
|
|
a[19] = 17;
|
|
a[20] = 21;
|
|
a[21] = 25;
|
|
a[22] = 30;
|
|
a[23] = 35;
|
|
a[24] = 45;
|
|
a[25] = 60;
|
|
a[26] = 80;
|
|
a[27] = 100;
|
|
a[28] = 200;
|
|
a[29] = 300;
|
|
a[30] = 400;
|
|
a[31] = 500;
|
|
|
|
b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
|
|
b[9] = b[10] = 1;
|
|
b[11] = b[12] = 2;
|
|
b[13] = b[14] = b[15] = b[16] = 3;
|
|
b[17] = b[18] = b[19] = b[20] = b[21] = 4;
|
|
b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
|
|
b[28] = b[29] = 6;
|
|
b[30] = b[31] = 7;
|
|
}
|
|
|
|
/* The minimum additive increment value for the congestion control table */
|
|
#define CC_MIN_INCR 2U
|
|
|
|
/**
|
|
* t3_load_mtus - write the MTU and congestion control HW tables
|
|
* @adap: the adapter
|
|
* @mtus: the unrestricted values for the MTU table
|
|
* @alphs: the values for the congestion control alpha parameter
|
|
* @beta: the values for the congestion control beta parameter
|
|
* @mtu_cap: the maximum permitted effective MTU
|
|
*
|
|
* Write the MTU table with the supplied MTUs capping each at &mtu_cap.
|
|
* Update the high-speed congestion control table with the supplied alpha,
|
|
* beta, and MTUs.
|
|
*/
|
|
void t3_load_mtus(struct adapter *adap, unsigned short mtus[NMTUS],
|
|
unsigned short alpha[NCCTRL_WIN],
|
|
unsigned short beta[NCCTRL_WIN], unsigned short mtu_cap)
|
|
{
|
|
static const unsigned int avg_pkts[NCCTRL_WIN] = {
|
|
2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
|
|
896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
|
|
28672, 40960, 57344, 81920, 114688, 163840, 229376
|
|
};
|
|
|
|
unsigned int i, w;
|
|
|
|
for (i = 0; i < NMTUS; ++i) {
|
|
unsigned int mtu = min(mtus[i], mtu_cap);
|
|
unsigned int log2 = fls(mtu);
|
|
|
|
if (!(mtu & ((1 << log2) >> 2))) /* round */
|
|
log2--;
|
|
t3_write_reg(adap, A_TP_MTU_TABLE,
|
|
(i << 24) | (log2 << 16) | mtu);
|
|
|
|
for (w = 0; w < NCCTRL_WIN; ++w) {
|
|
unsigned int inc;
|
|
|
|
inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
|
|
CC_MIN_INCR);
|
|
|
|
t3_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
|
|
(w << 16) | (beta[w] << 13) | inc);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* t3_tp_get_mib_stats - read TP's MIB counters
|
|
* @adap: the adapter
|
|
* @tps: holds the returned counter values
|
|
*
|
|
* Returns the values of TP's MIB counters.
|
|
*/
|
|
void t3_tp_get_mib_stats(struct adapter *adap, struct tp_mib_stats *tps)
|
|
{
|
|
t3_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_RDATA, (u32 *) tps,
|
|
sizeof(*tps) / sizeof(u32), 0);
|
|
}
|
|
|
|
#define ulp_region(adap, name, start, len) \
|
|
t3_write_reg((adap), A_ULPRX_ ## name ## _LLIMIT, (start)); \
|
|
t3_write_reg((adap), A_ULPRX_ ## name ## _ULIMIT, \
|
|
(start) + (len) - 1); \
|
|
start += len
|
|
|
|
#define ulptx_region(adap, name, start, len) \
|
|
t3_write_reg((adap), A_ULPTX_ ## name ## _LLIMIT, (start)); \
|
|
t3_write_reg((adap), A_ULPTX_ ## name ## _ULIMIT, \
|
|
(start) + (len) - 1)
|
|
|
|
static void ulp_config(struct adapter *adap, const struct tp_params *p)
|
|
{
|
|
unsigned int m = p->chan_rx_size;
|
|
|
|
ulp_region(adap, ISCSI, m, p->chan_rx_size / 8);
|
|
ulp_region(adap, TDDP, m, p->chan_rx_size / 8);
|
|
ulptx_region(adap, TPT, m, p->chan_rx_size / 4);
|
|
ulp_region(adap, STAG, m, p->chan_rx_size / 4);
|
|
ulp_region(adap, RQ, m, p->chan_rx_size / 4);
|
|
ulptx_region(adap, PBL, m, p->chan_rx_size / 4);
|
|
ulp_region(adap, PBL, m, p->chan_rx_size / 4);
|
|
t3_write_reg(adap, A_ULPRX_TDDP_TAGMASK, 0xffffffff);
|
|
}
|
|
|
|
/**
|
|
* t3_set_proto_sram - set the contents of the protocol sram
|
|
* @adapter: the adapter
|
|
* @data: the protocol image
|
|
*
|
|
* Write the contents of the protocol SRAM.
|
|
*/
|
|
int t3_set_proto_sram(struct adapter *adap, const u8 *data)
|
|
{
|
|
int i;
|
|
const __be32 *buf = (const __be32 *)data;
|
|
|
|
for (i = 0; i < PROTO_SRAM_LINES; i++) {
|
|
t3_write_reg(adap, A_TP_EMBED_OP_FIELD5, be32_to_cpu(*buf++));
|
|
t3_write_reg(adap, A_TP_EMBED_OP_FIELD4, be32_to_cpu(*buf++));
|
|
t3_write_reg(adap, A_TP_EMBED_OP_FIELD3, be32_to_cpu(*buf++));
|
|
t3_write_reg(adap, A_TP_EMBED_OP_FIELD2, be32_to_cpu(*buf++));
|
|
t3_write_reg(adap, A_TP_EMBED_OP_FIELD1, be32_to_cpu(*buf++));
|
|
|
|
t3_write_reg(adap, A_TP_EMBED_OP_FIELD0, i << 1 | 1 << 31);
|
|
if (t3_wait_op_done(adap, A_TP_EMBED_OP_FIELD0, 1, 1, 5, 1))
|
|
return -EIO;
|
|
}
|
|
t3_write_reg(adap, A_TP_EMBED_OP_FIELD0, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void t3_config_trace_filter(struct adapter *adapter,
|
|
const struct trace_params *tp, int filter_index,
|
|
int invert, int enable)
|
|
{
|
|
u32 addr, key[4], mask[4];
|
|
|
|
key[0] = tp->sport | (tp->sip << 16);
|
|
key[1] = (tp->sip >> 16) | (tp->dport << 16);
|
|
key[2] = tp->dip;
|
|
key[3] = tp->proto | (tp->vlan << 8) | (tp->intf << 20);
|
|
|
|
mask[0] = tp->sport_mask | (tp->sip_mask << 16);
|
|
mask[1] = (tp->sip_mask >> 16) | (tp->dport_mask << 16);
|
|
mask[2] = tp->dip_mask;
|
|
mask[3] = tp->proto_mask | (tp->vlan_mask << 8) | (tp->intf_mask << 20);
|
|
|
|
if (invert)
|
|
key[3] |= (1 << 29);
|
|
if (enable)
|
|
key[3] |= (1 << 28);
|
|
|
|
addr = filter_index ? A_TP_RX_TRC_KEY0 : A_TP_TX_TRC_KEY0;
|
|
tp_wr_indirect(adapter, addr++, key[0]);
|
|
tp_wr_indirect(adapter, addr++, mask[0]);
|
|
tp_wr_indirect(adapter, addr++, key[1]);
|
|
tp_wr_indirect(adapter, addr++, mask[1]);
|
|
tp_wr_indirect(adapter, addr++, key[2]);
|
|
tp_wr_indirect(adapter, addr++, mask[2]);
|
|
tp_wr_indirect(adapter, addr++, key[3]);
|
|
tp_wr_indirect(adapter, addr, mask[3]);
|
|
t3_read_reg(adapter, A_TP_PIO_DATA);
|
|
}
|
|
|
|
/**
|
|
* t3_config_sched - configure a HW traffic scheduler
|
|
* @adap: the adapter
|
|
* @kbps: target rate in Kbps
|
|
* @sched: the scheduler index
|
|
*
|
|
* Configure a HW scheduler for the target rate
|
|
*/
|
|
int t3_config_sched(struct adapter *adap, unsigned int kbps, int sched)
|
|
{
|
|
unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
|
|
unsigned int clk = adap->params.vpd.cclk * 1000;
|
|
unsigned int selected_cpt = 0, selected_bpt = 0;
|
|
|
|
if (kbps > 0) {
|
|
kbps *= 125; /* -> bytes */
|
|
for (cpt = 1; cpt <= 255; cpt++) {
|
|
tps = clk / cpt;
|
|
bpt = (kbps + tps / 2) / tps;
|
|
if (bpt > 0 && bpt <= 255) {
|
|
v = bpt * tps;
|
|
delta = v >= kbps ? v - kbps : kbps - v;
|
|
if (delta <= mindelta) {
|
|
mindelta = delta;
|
|
selected_cpt = cpt;
|
|
selected_bpt = bpt;
|
|
}
|
|
} else if (selected_cpt)
|
|
break;
|
|
}
|
|
if (!selected_cpt)
|
|
return -EINVAL;
|
|
}
|
|
t3_write_reg(adap, A_TP_TM_PIO_ADDR,
|
|
A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
|
|
v = t3_read_reg(adap, A_TP_TM_PIO_DATA);
|
|
if (sched & 1)
|
|
v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
|
|
else
|
|
v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
|
|
t3_write_reg(adap, A_TP_TM_PIO_DATA, v);
|
|
return 0;
|
|
}
|
|
|
|
static int tp_init(struct adapter *adap, const struct tp_params *p)
|
|
{
|
|
int busy = 0;
|
|
|
|
tp_config(adap, p);
|
|
t3_set_vlan_accel(adap, 3, 0);
|
|
|
|
if (is_offload(adap)) {
|
|
tp_set_timers(adap, adap->params.vpd.cclk * 1000);
|
|
t3_write_reg(adap, A_TP_RESET, F_FLSTINITENABLE);
|
|
busy = t3_wait_op_done(adap, A_TP_RESET, F_FLSTINITENABLE,
|
|
0, 1000, 5);
|
|
if (busy)
|
|
CH_ERR(adap, "TP initialization timed out\n");
|
|
}
|
|
|
|
if (!busy)
|
|
t3_write_reg(adap, A_TP_RESET, F_TPRESET);
|
|
return busy;
|
|
}
|
|
|
|
/*
|
|
* Perform the bits of HW initialization that are dependent on the Tx
|
|
* channels being used.
|
|
*/
|
|
static void chan_init_hw(struct adapter *adap, unsigned int chan_map)
|
|
{
|
|
int i;
|
|
|
|
if (chan_map != 3) { /* one channel */
|
|
t3_set_reg_field(adap, A_ULPRX_CTL, F_ROUND_ROBIN, 0);
|
|
t3_set_reg_field(adap, A_ULPTX_CONFIG, F_CFG_RR_ARB, 0);
|
|
t3_write_reg(adap, A_MPS_CFG, F_TPRXPORTEN | F_ENFORCEPKT |
|
|
(chan_map == 1 ? F_TPTXPORT0EN | F_PORT0ACTIVE :
|
|
F_TPTXPORT1EN | F_PORT1ACTIVE));
|
|
t3_write_reg(adap, A_PM1_TX_CFG,
|
|
chan_map == 1 ? 0xffffffff : 0);
|
|
} else { /* two channels */
|
|
t3_set_reg_field(adap, A_ULPRX_CTL, 0, F_ROUND_ROBIN);
|
|
t3_set_reg_field(adap, A_ULPTX_CONFIG, 0, F_CFG_RR_ARB);
|
|
t3_write_reg(adap, A_ULPTX_DMA_WEIGHT,
|
|
V_D1_WEIGHT(16) | V_D0_WEIGHT(16));
|
|
t3_write_reg(adap, A_MPS_CFG, F_TPTXPORT0EN | F_TPTXPORT1EN |
|
|
F_TPRXPORTEN | F_PORT0ACTIVE | F_PORT1ACTIVE |
|
|
F_ENFORCEPKT);
|
|
t3_write_reg(adap, A_PM1_TX_CFG, 0x80008000);
|
|
t3_set_reg_field(adap, A_TP_PC_CONFIG, 0, F_TXTOSQUEUEMAPMODE);
|
|
t3_write_reg(adap, A_TP_TX_MOD_QUEUE_REQ_MAP,
|
|
V_TX_MOD_QUEUE_REQ_MAP(0xaa));
|
|
for (i = 0; i < 16; i++)
|
|
t3_write_reg(adap, A_TP_TX_MOD_QUE_TABLE,
|
|
(i << 16) | 0x1010);
|
|
}
|
|
}
|
|
|
|
static int calibrate_xgm(struct adapter *adapter)
|
|
{
|
|
if (uses_xaui(adapter)) {
|
|
unsigned int v, i;
|
|
|
|
for (i = 0; i < 5; ++i) {
|
|
t3_write_reg(adapter, A_XGM_XAUI_IMP, 0);
|
|
t3_read_reg(adapter, A_XGM_XAUI_IMP);
|
|
msleep(1);
|
|
v = t3_read_reg(adapter, A_XGM_XAUI_IMP);
|
|
if (!(v & (F_XGM_CALFAULT | F_CALBUSY))) {
|
|
t3_write_reg(adapter, A_XGM_XAUI_IMP,
|
|
V_XAUIIMP(G_CALIMP(v) >> 2));
|
|
return 0;
|
|
}
|
|
}
|
|
CH_ERR(adapter, "MAC calibration failed\n");
|
|
return -1;
|
|
} else {
|
|
t3_write_reg(adapter, A_XGM_RGMII_IMP,
|
|
V_RGMIIIMPPD(2) | V_RGMIIIMPPU(3));
|
|
t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_XGM_IMPSETUPDATE,
|
|
F_XGM_IMPSETUPDATE);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void calibrate_xgm_t3b(struct adapter *adapter)
|
|
{
|
|
if (!uses_xaui(adapter)) {
|
|
t3_write_reg(adapter, A_XGM_RGMII_IMP, F_CALRESET |
|
|
F_CALUPDATE | V_RGMIIIMPPD(2) | V_RGMIIIMPPU(3));
|
|
t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_CALRESET, 0);
|
|
t3_set_reg_field(adapter, A_XGM_RGMII_IMP, 0,
|
|
F_XGM_IMPSETUPDATE);
|
|
t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_XGM_IMPSETUPDATE,
|
|
0);
|
|
t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_CALUPDATE, 0);
|
|
t3_set_reg_field(adapter, A_XGM_RGMII_IMP, 0, F_CALUPDATE);
|
|
}
|
|
}
|
|
|
|
struct mc7_timing_params {
|
|
unsigned char ActToPreDly;
|
|
unsigned char ActToRdWrDly;
|
|
unsigned char PreCyc;
|
|
unsigned char RefCyc[5];
|
|
unsigned char BkCyc;
|
|
unsigned char WrToRdDly;
|
|
unsigned char RdToWrDly;
|
|
};
|
|
|
|
/*
|
|
* Write a value to a register and check that the write completed. These
|
|
* writes normally complete in a cycle or two, so one read should suffice.
|
|
* The very first read exists to flush the posted write to the device.
|
|
*/
|
|
static int wrreg_wait(struct adapter *adapter, unsigned int addr, u32 val)
|
|
{
|
|
t3_write_reg(adapter, addr, val);
|
|
t3_read_reg(adapter, addr); /* flush */
|
|
if (!(t3_read_reg(adapter, addr) & F_BUSY))
|
|
return 0;
|
|
CH_ERR(adapter, "write to MC7 register 0x%x timed out\n", addr);
|
|
return -EIO;
|
|
}
|
|
|
|
static int mc7_init(struct mc7 *mc7, unsigned int mc7_clock, int mem_type)
|
|
{
|
|
static const unsigned int mc7_mode[] = {
|
|
0x632, 0x642, 0x652, 0x432, 0x442
|
|
};
|
|
static const struct mc7_timing_params mc7_timings[] = {
|
|
{12, 3, 4, {20, 28, 34, 52, 0}, 15, 6, 4},
|
|
{12, 4, 5, {20, 28, 34, 52, 0}, 16, 7, 4},
|
|
{12, 5, 6, {20, 28, 34, 52, 0}, 17, 8, 4},
|
|
{9, 3, 4, {15, 21, 26, 39, 0}, 12, 6, 4},
|
|
{9, 4, 5, {15, 21, 26, 39, 0}, 13, 7, 4}
|
|
};
|
|
|
|
u32 val;
|
|
unsigned int width, density, slow, attempts;
|
|
struct adapter *adapter = mc7->adapter;
|
|
const struct mc7_timing_params *p = &mc7_timings[mem_type];
|
|
|
|
if (!mc7->size)
|
|
return 0;
|
|
|
|
val = t3_read_reg(adapter, mc7->offset + A_MC7_CFG);
|
|
slow = val & F_SLOW;
|
|
width = G_WIDTH(val);
|
|
density = G_DEN(val);
|
|
|
|
t3_write_reg(adapter, mc7->offset + A_MC7_CFG, val | F_IFEN);
|
|
val = t3_read_reg(adapter, mc7->offset + A_MC7_CFG); /* flush */
|
|
msleep(1);
|
|
|
|
if (!slow) {
|
|
t3_write_reg(adapter, mc7->offset + A_MC7_CAL, F_SGL_CAL_EN);
|
|
t3_read_reg(adapter, mc7->offset + A_MC7_CAL);
|
|
msleep(1);
|
|
if (t3_read_reg(adapter, mc7->offset + A_MC7_CAL) &
|
|
(F_BUSY | F_SGL_CAL_EN | F_CAL_FAULT)) {
|
|
CH_ERR(adapter, "%s MC7 calibration timed out\n",
|
|
mc7->name);
|
|
goto out_fail;
|
|
}
|
|
}
|
|
|
|
t3_write_reg(adapter, mc7->offset + A_MC7_PARM,
|
|
V_ACTTOPREDLY(p->ActToPreDly) |
|
|
V_ACTTORDWRDLY(p->ActToRdWrDly) | V_PRECYC(p->PreCyc) |
|
|
V_REFCYC(p->RefCyc[density]) | V_BKCYC(p->BkCyc) |
|
|
V_WRTORDDLY(p->WrToRdDly) | V_RDTOWRDLY(p->RdToWrDly));
|
|
|
|
t3_write_reg(adapter, mc7->offset + A_MC7_CFG,
|
|
val | F_CLKEN | F_TERM150);
|
|
t3_read_reg(adapter, mc7->offset + A_MC7_CFG); /* flush */
|
|
|
|
if (!slow)
|
|
t3_set_reg_field(adapter, mc7->offset + A_MC7_DLL, F_DLLENB,
|
|
F_DLLENB);
|
|
udelay(1);
|
|
|
|
val = slow ? 3 : 6;
|
|
if (wrreg_wait(adapter, mc7->offset + A_MC7_PRE, 0) ||
|
|
wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE2, 0) ||
|
|
wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE3, 0) ||
|
|
wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val))
|
|
goto out_fail;
|
|
|
|
if (!slow) {
|
|
t3_write_reg(adapter, mc7->offset + A_MC7_MODE, 0x100);
|
|
t3_set_reg_field(adapter, mc7->offset + A_MC7_DLL, F_DLLRST, 0);
|
|
udelay(5);
|
|
}
|
|
|
|
if (wrreg_wait(adapter, mc7->offset + A_MC7_PRE, 0) ||
|
|
wrreg_wait(adapter, mc7->offset + A_MC7_REF, 0) ||
|
|
wrreg_wait(adapter, mc7->offset + A_MC7_REF, 0) ||
|
|
wrreg_wait(adapter, mc7->offset + A_MC7_MODE,
|
|
mc7_mode[mem_type]) ||
|
|
wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val | 0x380) ||
|
|
wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val))
|
|
goto out_fail;
|
|
|
|
/* clock value is in KHz */
|
|
mc7_clock = mc7_clock * 7812 + mc7_clock / 2; /* ns */
|
|
mc7_clock /= 1000000; /* KHz->MHz, ns->us */
|
|
|
|
t3_write_reg(adapter, mc7->offset + A_MC7_REF,
|
|
F_PERREFEN | V_PREREFDIV(mc7_clock));
|
|
t3_read_reg(adapter, mc7->offset + A_MC7_REF); /* flush */
|
|
|
|
t3_write_reg(adapter, mc7->offset + A_MC7_ECC, F_ECCGENEN | F_ECCCHKEN);
|
|
t3_write_reg(adapter, mc7->offset + A_MC7_BIST_DATA, 0);
|
|
t3_write_reg(adapter, mc7->offset + A_MC7_BIST_ADDR_BEG, 0);
|
|
t3_write_reg(adapter, mc7->offset + A_MC7_BIST_ADDR_END,
|
|
(mc7->size << width) - 1);
|
|
t3_write_reg(adapter, mc7->offset + A_MC7_BIST_OP, V_OP(1));
|
|
t3_read_reg(adapter, mc7->offset + A_MC7_BIST_OP); /* flush */
|
|
|
|
attempts = 50;
|
|
do {
|
|
msleep(250);
|
|
val = t3_read_reg(adapter, mc7->offset + A_MC7_BIST_OP);
|
|
} while ((val & F_BUSY) && --attempts);
|
|
if (val & F_BUSY) {
|
|
CH_ERR(adapter, "%s MC7 BIST timed out\n", mc7->name);
|
|
goto out_fail;
|
|
}
|
|
|
|
/* Enable normal memory accesses. */
|
|
t3_set_reg_field(adapter, mc7->offset + A_MC7_CFG, 0, F_RDY);
|
|
return 0;
|
|
|
|
out_fail:
|
|
return -1;
|
|
}
|
|
|
|
static void config_pcie(struct adapter *adap)
|
|
{
|
|
static const u16 ack_lat[4][6] = {
|
|
{237, 416, 559, 1071, 2095, 4143},
|
|
{128, 217, 289, 545, 1057, 2081},
|
|
{73, 118, 154, 282, 538, 1050},
|
|
{67, 107, 86, 150, 278, 534}
|
|
};
|
|
static const u16 rpl_tmr[4][6] = {
|
|
{711, 1248, 1677, 3213, 6285, 12429},
|
|
{384, 651, 867, 1635, 3171, 6243},
|
|
{219, 354, 462, 846, 1614, 3150},
|
|
{201, 321, 258, 450, 834, 1602}
|
|
};
|
|
|
|
u16 val, devid;
|
|
unsigned int log2_width, pldsize;
|
|
unsigned int fst_trn_rx, fst_trn_tx, acklat, rpllmt;
|
|
|
|
pci_read_config_word(adap->pdev,
|
|
adap->pdev->pcie_cap + PCI_EXP_DEVCTL,
|
|
&val);
|
|
pldsize = (val & PCI_EXP_DEVCTL_PAYLOAD) >> 5;
|
|
|
|
pci_read_config_word(adap->pdev, 0x2, &devid);
|
|
if (devid == 0x37) {
|
|
pci_write_config_word(adap->pdev,
|
|
adap->pdev->pcie_cap + PCI_EXP_DEVCTL,
|
|
val & ~PCI_EXP_DEVCTL_READRQ &
|
|
~PCI_EXP_DEVCTL_PAYLOAD);
|
|
pldsize = 0;
|
|
}
|
|
|
|
pci_read_config_word(adap->pdev, adap->pdev->pcie_cap + PCI_EXP_LNKCTL,
|
|
&val);
|
|
|
|
fst_trn_tx = G_NUMFSTTRNSEQ(t3_read_reg(adap, A_PCIE_PEX_CTRL0));
|
|
fst_trn_rx = adap->params.rev == 0 ? fst_trn_tx :
|
|
G_NUMFSTTRNSEQRX(t3_read_reg(adap, A_PCIE_MODE));
|
|
log2_width = fls(adap->params.pci.width) - 1;
|
|
acklat = ack_lat[log2_width][pldsize];
|
|
if (val & 1) /* check LOsEnable */
|
|
acklat += fst_trn_tx * 4;
|
|
rpllmt = rpl_tmr[log2_width][pldsize] + fst_trn_rx * 4;
|
|
|
|
if (adap->params.rev == 0)
|
|
t3_set_reg_field(adap, A_PCIE_PEX_CTRL1,
|
|
V_T3A_ACKLAT(M_T3A_ACKLAT),
|
|
V_T3A_ACKLAT(acklat));
|
|
else
|
|
t3_set_reg_field(adap, A_PCIE_PEX_CTRL1, V_ACKLAT(M_ACKLAT),
|
|
V_ACKLAT(acklat));
|
|
|
|
t3_set_reg_field(adap, A_PCIE_PEX_CTRL0, V_REPLAYLMT(M_REPLAYLMT),
|
|
V_REPLAYLMT(rpllmt));
|
|
|
|
t3_write_reg(adap, A_PCIE_PEX_ERR, 0xffffffff);
|
|
t3_set_reg_field(adap, A_PCIE_CFG, 0,
|
|
F_ENABLELINKDWNDRST | F_ENABLELINKDOWNRST |
|
|
F_PCIE_DMASTOPEN | F_PCIE_CLIDECEN);
|
|
}
|
|
|
|
/*
|
|
* Initialize and configure T3 HW modules. This performs the
|
|
* initialization steps that need to be done once after a card is reset.
|
|
* MAC and PHY initialization is handled separarely whenever a port is enabled.
|
|
*
|
|
* fw_params are passed to FW and their value is platform dependent. Only the
|
|
* top 8 bits are available for use, the rest must be 0.
|
|
*/
|
|
int t3_init_hw(struct adapter *adapter, u32 fw_params)
|
|
{
|
|
int err = -EIO, attempts, i;
|
|
const struct vpd_params *vpd = &adapter->params.vpd;
|
|
|
|
if (adapter->params.rev > 0)
|
|
calibrate_xgm_t3b(adapter);
|
|
else if (calibrate_xgm(adapter))
|
|
goto out_err;
|
|
|
|
if (vpd->mclk) {
|
|
partition_mem(adapter, &adapter->params.tp);
|
|
|
|
if (mc7_init(&adapter->pmrx, vpd->mclk, vpd->mem_timing) ||
|
|
mc7_init(&adapter->pmtx, vpd->mclk, vpd->mem_timing) ||
|
|
mc7_init(&adapter->cm, vpd->mclk, vpd->mem_timing) ||
|
|
t3_mc5_init(&adapter->mc5, adapter->params.mc5.nservers,
|
|
adapter->params.mc5.nfilters,
|
|
adapter->params.mc5.nroutes))
|
|
goto out_err;
|
|
|
|
for (i = 0; i < 32; i++)
|
|
if (clear_sge_ctxt(adapter, i, F_CQ))
|
|
goto out_err;
|
|
}
|
|
|
|
if (tp_init(adapter, &adapter->params.tp))
|
|
goto out_err;
|
|
|
|
t3_tp_set_coalescing_size(adapter,
|
|
min(adapter->params.sge.max_pkt_size,
|
|
MAX_RX_COALESCING_LEN), 1);
|
|
t3_tp_set_max_rxsize(adapter,
|
|
min(adapter->params.sge.max_pkt_size, 16384U));
|
|
ulp_config(adapter, &adapter->params.tp);
|
|
|
|
if (is_pcie(adapter))
|
|
config_pcie(adapter);
|
|
else
|
|
t3_set_reg_field(adapter, A_PCIX_CFG, 0,
|
|
F_DMASTOPEN | F_CLIDECEN);
|
|
|
|
if (adapter->params.rev == T3_REV_C)
|
|
t3_set_reg_field(adapter, A_ULPTX_CONFIG, 0,
|
|
F_CFG_CQE_SOP_MASK);
|
|
|
|
t3_write_reg(adapter, A_PM1_RX_CFG, 0xffffffff);
|
|
t3_write_reg(adapter, A_PM1_RX_MODE, 0);
|
|
t3_write_reg(adapter, A_PM1_TX_MODE, 0);
|
|
chan_init_hw(adapter, adapter->params.chan_map);
|
|
t3_sge_init(adapter, &adapter->params.sge);
|
|
t3_set_reg_field(adapter, A_PL_RST, 0, F_FATALPERREN);
|
|
|
|
t3_write_reg(adapter, A_T3DBG_GPIO_ACT_LOW, calc_gpio_intr(adapter));
|
|
|
|
t3_write_reg(adapter, A_CIM_HOST_ACC_DATA, vpd->uclk | fw_params);
|
|
t3_write_reg(adapter, A_CIM_BOOT_CFG,
|
|
V_BOOTADDR(FW_FLASH_BOOT_ADDR >> 2));
|
|
t3_read_reg(adapter, A_CIM_BOOT_CFG); /* flush */
|
|
|
|
attempts = 100;
|
|
do { /* wait for uP to initialize */
|
|
msleep(20);
|
|
} while (t3_read_reg(adapter, A_CIM_HOST_ACC_DATA) && --attempts);
|
|
if (!attempts) {
|
|
CH_ERR(adapter, "uP initialization timed out\n");
|
|
goto out_err;
|
|
}
|
|
|
|
err = 0;
|
|
out_err:
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* get_pci_mode - determine a card's PCI mode
|
|
* @adapter: the adapter
|
|
* @p: where to store the PCI settings
|
|
*
|
|
* Determines a card's PCI mode and associated parameters, such as speed
|
|
* and width.
|
|
*/
|
|
static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
|
|
{
|
|
static unsigned short speed_map[] = { 33, 66, 100, 133 };
|
|
u32 pci_mode, pcie_cap;
|
|
|
|
pcie_cap = pci_pcie_cap(adapter->pdev);
|
|
if (pcie_cap) {
|
|
u16 val;
|
|
|
|
p->variant = PCI_VARIANT_PCIE;
|
|
pci_read_config_word(adapter->pdev, pcie_cap + PCI_EXP_LNKSTA,
|
|
&val);
|
|
p->width = (val >> 4) & 0x3f;
|
|
return;
|
|
}
|
|
|
|
pci_mode = t3_read_reg(adapter, A_PCIX_MODE);
|
|
p->speed = speed_map[G_PCLKRANGE(pci_mode)];
|
|
p->width = (pci_mode & F_64BIT) ? 64 : 32;
|
|
pci_mode = G_PCIXINITPAT(pci_mode);
|
|
if (pci_mode == 0)
|
|
p->variant = PCI_VARIANT_PCI;
|
|
else if (pci_mode < 4)
|
|
p->variant = PCI_VARIANT_PCIX_MODE1_PARITY;
|
|
else if (pci_mode < 8)
|
|
p->variant = PCI_VARIANT_PCIX_MODE1_ECC;
|
|
else
|
|
p->variant = PCI_VARIANT_PCIX_266_MODE2;
|
|
}
|
|
|
|
/**
|
|
* init_link_config - initialize a link's SW state
|
|
* @lc: structure holding the link state
|
|
* @ai: information about the current card
|
|
*
|
|
* Initializes the SW state maintained for each link, including the link's
|
|
* capabilities and default speed/duplex/flow-control/autonegotiation
|
|
* settings.
|
|
*/
|
|
static void init_link_config(struct link_config *lc, unsigned int caps)
|
|
{
|
|
lc->supported = caps;
|
|
lc->requested_speed = lc->speed = SPEED_INVALID;
|
|
lc->requested_duplex = lc->duplex = DUPLEX_INVALID;
|
|
lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
|
|
if (lc->supported & SUPPORTED_Autoneg) {
|
|
lc->advertising = lc->supported;
|
|
lc->autoneg = AUTONEG_ENABLE;
|
|
lc->requested_fc |= PAUSE_AUTONEG;
|
|
} else {
|
|
lc->advertising = 0;
|
|
lc->autoneg = AUTONEG_DISABLE;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* mc7_calc_size - calculate MC7 memory size
|
|
* @cfg: the MC7 configuration
|
|
*
|
|
* Calculates the size of an MC7 memory in bytes from the value of its
|
|
* configuration register.
|
|
*/
|
|
static unsigned int mc7_calc_size(u32 cfg)
|
|
{
|
|
unsigned int width = G_WIDTH(cfg);
|
|
unsigned int banks = !!(cfg & F_BKS) + 1;
|
|
unsigned int org = !!(cfg & F_ORG) + 1;
|
|
unsigned int density = G_DEN(cfg);
|
|
unsigned int MBs = ((256 << density) * banks) / (org << width);
|
|
|
|
return MBs << 20;
|
|
}
|
|
|
|
static void mc7_prep(struct adapter *adapter, struct mc7 *mc7,
|
|
unsigned int base_addr, const char *name)
|
|
{
|
|
u32 cfg;
|
|
|
|
mc7->adapter = adapter;
|
|
mc7->name = name;
|
|
mc7->offset = base_addr - MC7_PMRX_BASE_ADDR;
|
|
cfg = t3_read_reg(adapter, mc7->offset + A_MC7_CFG);
|
|
mc7->size = G_DEN(cfg) == M_DEN ? 0 : mc7_calc_size(cfg);
|
|
mc7->width = G_WIDTH(cfg);
|
|
}
|
|
|
|
static void mac_prep(struct cmac *mac, struct adapter *adapter, int index)
|
|
{
|
|
u16 devid;
|
|
|
|
mac->adapter = adapter;
|
|
pci_read_config_word(adapter->pdev, 0x2, &devid);
|
|
|
|
if (devid == 0x37 && !adapter->params.vpd.xauicfg[1])
|
|
index = 0;
|
|
mac->offset = (XGMAC0_1_BASE_ADDR - XGMAC0_0_BASE_ADDR) * index;
|
|
mac->nucast = 1;
|
|
|
|
if (adapter->params.rev == 0 && uses_xaui(adapter)) {
|
|
t3_write_reg(adapter, A_XGM_SERDES_CTRL + mac->offset,
|
|
is_10G(adapter) ? 0x2901c04 : 0x2301c04);
|
|
t3_set_reg_field(adapter, A_XGM_PORT_CFG + mac->offset,
|
|
F_ENRGMII, 0);
|
|
}
|
|
}
|
|
|
|
static void early_hw_init(struct adapter *adapter,
|
|
const struct adapter_info *ai)
|
|
{
|
|
u32 val = V_PORTSPEED(is_10G(adapter) ? 3 : 2);
|
|
|
|
mi1_init(adapter, ai);
|
|
t3_write_reg(adapter, A_I2C_CFG, /* set for 80KHz */
|
|
V_I2C_CLKDIV(adapter->params.vpd.cclk / 80 - 1));
|
|
t3_write_reg(adapter, A_T3DBG_GPIO_EN,
|
|
ai->gpio_out | F_GPIO0_OEN | F_GPIO0_OUT_VAL);
|
|
t3_write_reg(adapter, A_MC5_DB_SERVER_INDEX, 0);
|
|
t3_write_reg(adapter, A_SG_OCO_BASE, V_BASE1(0xfff));
|
|
|
|
if (adapter->params.rev == 0 || !uses_xaui(adapter))
|
|
val |= F_ENRGMII;
|
|
|
|
/* Enable MAC clocks so we can access the registers */
|
|
t3_write_reg(adapter, A_XGM_PORT_CFG, val);
|
|
t3_read_reg(adapter, A_XGM_PORT_CFG);
|
|
|
|
val |= F_CLKDIVRESET_;
|
|
t3_write_reg(adapter, A_XGM_PORT_CFG, val);
|
|
t3_read_reg(adapter, A_XGM_PORT_CFG);
|
|
t3_write_reg(adapter, XGM_REG(A_XGM_PORT_CFG, 1), val);
|
|
t3_read_reg(adapter, A_XGM_PORT_CFG);
|
|
}
|
|
|
|
/*
|
|
* Reset the adapter.
|
|
* Older PCIe cards lose their config space during reset, PCI-X
|
|
* ones don't.
|
|
*/
|
|
int t3_reset_adapter(struct adapter *adapter)
|
|
{
|
|
int i, save_and_restore_pcie =
|
|
adapter->params.rev < T3_REV_B2 && is_pcie(adapter);
|
|
uint16_t devid = 0;
|
|
|
|
if (save_and_restore_pcie)
|
|
pci_save_state(adapter->pdev);
|
|
t3_write_reg(adapter, A_PL_RST, F_CRSTWRM | F_CRSTWRMMODE);
|
|
|
|
/*
|
|
* Delay. Give Some time to device to reset fully.
|
|
* XXX The delay time should be modified.
|
|
*/
|
|
for (i = 0; i < 10; i++) {
|
|
msleep(50);
|
|
pci_read_config_word(adapter->pdev, 0x00, &devid);
|
|
if (devid == 0x1425)
|
|
break;
|
|
}
|
|
|
|
if (devid != 0x1425)
|
|
return -1;
|
|
|
|
if (save_and_restore_pcie)
|
|
pci_restore_state(adapter->pdev);
|
|
return 0;
|
|
}
|
|
|
|
static int init_parity(struct adapter *adap)
|
|
{
|
|
int i, err, addr;
|
|
|
|
if (t3_read_reg(adap, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
|
|
return -EBUSY;
|
|
|
|
for (err = i = 0; !err && i < 16; i++)
|
|
err = clear_sge_ctxt(adap, i, F_EGRESS);
|
|
for (i = 0xfff0; !err && i <= 0xffff; i++)
|
|
err = clear_sge_ctxt(adap, i, F_EGRESS);
|
|
for (i = 0; !err && i < SGE_QSETS; i++)
|
|
err = clear_sge_ctxt(adap, i, F_RESPONSEQ);
|
|
if (err)
|
|
return err;
|
|
|
|
t3_write_reg(adap, A_CIM_IBQ_DBG_DATA, 0);
|
|
for (i = 0; i < 4; i++)
|
|
for (addr = 0; addr <= M_IBQDBGADDR; addr++) {
|
|
t3_write_reg(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGEN |
|
|
F_IBQDBGWR | V_IBQDBGQID(i) |
|
|
V_IBQDBGADDR(addr));
|
|
err = t3_wait_op_done(adap, A_CIM_IBQ_DBG_CFG,
|
|
F_IBQDBGBUSY, 0, 2, 1);
|
|
if (err)
|
|
return err;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Initialize adapter SW state for the various HW modules, set initial values
|
|
* for some adapter tunables, take PHYs out of reset, and initialize the MDIO
|
|
* interface.
|
|
*/
|
|
int t3_prep_adapter(struct adapter *adapter, const struct adapter_info *ai,
|
|
int reset)
|
|
{
|
|
int ret;
|
|
unsigned int i, j = -1;
|
|
|
|
get_pci_mode(adapter, &adapter->params.pci);
|
|
|
|
adapter->params.info = ai;
|
|
adapter->params.nports = ai->nports0 + ai->nports1;
|
|
adapter->params.chan_map = (!!ai->nports0) | (!!ai->nports1 << 1);
|
|
adapter->params.rev = t3_read_reg(adapter, A_PL_REV);
|
|
/*
|
|
* We used to only run the "adapter check task" once a second if
|
|
* we had PHYs which didn't support interrupts (we would check
|
|
* their link status once a second). Now we check other conditions
|
|
* in that routine which could potentially impose a very high
|
|
* interrupt load on the system. As such, we now always scan the
|
|
* adapter state once a second ...
|
|
*/
|
|
adapter->params.linkpoll_period = 10;
|
|
adapter->params.stats_update_period = is_10G(adapter) ?
|
|
MAC_STATS_ACCUM_SECS : (MAC_STATS_ACCUM_SECS * 10);
|
|
adapter->params.pci.vpd_cap_addr =
|
|
pci_find_capability(adapter->pdev, PCI_CAP_ID_VPD);
|
|
ret = get_vpd_params(adapter, &adapter->params.vpd);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (reset && t3_reset_adapter(adapter))
|
|
return -1;
|
|
|
|
t3_sge_prep(adapter, &adapter->params.sge);
|
|
|
|
if (adapter->params.vpd.mclk) {
|
|
struct tp_params *p = &adapter->params.tp;
|
|
|
|
mc7_prep(adapter, &adapter->pmrx, MC7_PMRX_BASE_ADDR, "PMRX");
|
|
mc7_prep(adapter, &adapter->pmtx, MC7_PMTX_BASE_ADDR, "PMTX");
|
|
mc7_prep(adapter, &adapter->cm, MC7_CM_BASE_ADDR, "CM");
|
|
|
|
p->nchan = adapter->params.chan_map == 3 ? 2 : 1;
|
|
p->pmrx_size = t3_mc7_size(&adapter->pmrx);
|
|
p->pmtx_size = t3_mc7_size(&adapter->pmtx);
|
|
p->cm_size = t3_mc7_size(&adapter->cm);
|
|
p->chan_rx_size = p->pmrx_size / 2; /* only 1 Rx channel */
|
|
p->chan_tx_size = p->pmtx_size / p->nchan;
|
|
p->rx_pg_size = 64 * 1024;
|
|
p->tx_pg_size = is_10G(adapter) ? 64 * 1024 : 16 * 1024;
|
|
p->rx_num_pgs = pm_num_pages(p->chan_rx_size, p->rx_pg_size);
|
|
p->tx_num_pgs = pm_num_pages(p->chan_tx_size, p->tx_pg_size);
|
|
p->ntimer_qs = p->cm_size >= (128 << 20) ||
|
|
adapter->params.rev > 0 ? 12 : 6;
|
|
}
|
|
|
|
adapter->params.offload = t3_mc7_size(&adapter->pmrx) &&
|
|
t3_mc7_size(&adapter->pmtx) &&
|
|
t3_mc7_size(&adapter->cm);
|
|
|
|
if (is_offload(adapter)) {
|
|
adapter->params.mc5.nservers = DEFAULT_NSERVERS;
|
|
adapter->params.mc5.nfilters = adapter->params.rev > 0 ?
|
|
DEFAULT_NFILTERS : 0;
|
|
adapter->params.mc5.nroutes = 0;
|
|
t3_mc5_prep(adapter, &adapter->mc5, MC5_MODE_144_BIT);
|
|
|
|
init_mtus(adapter->params.mtus);
|
|
init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
|
|
}
|
|
|
|
early_hw_init(adapter, ai);
|
|
ret = init_parity(adapter);
|
|
if (ret)
|
|
return ret;
|
|
|
|
for_each_port(adapter, i) {
|
|
u8 hw_addr[6];
|
|
const struct port_type_info *pti;
|
|
struct port_info *p = adap2pinfo(adapter, i);
|
|
|
|
while (!adapter->params.vpd.port_type[++j])
|
|
;
|
|
|
|
pti = &port_types[adapter->params.vpd.port_type[j]];
|
|
if (!pti->phy_prep) {
|
|
CH_ALERT(adapter, "Invalid port type index %d\n",
|
|
adapter->params.vpd.port_type[j]);
|
|
return -EINVAL;
|
|
}
|
|
|
|
p->phy.mdio.dev = adapter->port[i];
|
|
ret = pti->phy_prep(&p->phy, adapter, ai->phy_base_addr + j,
|
|
ai->mdio_ops);
|
|
if (ret)
|
|
return ret;
|
|
mac_prep(&p->mac, adapter, j);
|
|
|
|
/*
|
|
* The VPD EEPROM stores the base Ethernet address for the
|
|
* card. A port's address is derived from the base by adding
|
|
* the port's index to the base's low octet.
|
|
*/
|
|
memcpy(hw_addr, adapter->params.vpd.eth_base, 5);
|
|
hw_addr[5] = adapter->params.vpd.eth_base[5] + i;
|
|
|
|
memcpy(adapter->port[i]->dev_addr, hw_addr,
|
|
ETH_ALEN);
|
|
memcpy(adapter->port[i]->perm_addr, hw_addr,
|
|
ETH_ALEN);
|
|
init_link_config(&p->link_config, p->phy.caps);
|
|
p->phy.ops->power_down(&p->phy, 1);
|
|
|
|
/*
|
|
* If the PHY doesn't support interrupts for link status
|
|
* changes, schedule a scan of the adapter links at least
|
|
* once a second.
|
|
*/
|
|
if (!(p->phy.caps & SUPPORTED_IRQ) &&
|
|
adapter->params.linkpoll_period > 10)
|
|
adapter->params.linkpoll_period = 10;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void t3_led_ready(struct adapter *adapter)
|
|
{
|
|
t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL,
|
|
F_GPIO0_OUT_VAL);
|
|
}
|
|
|
|
int t3_replay_prep_adapter(struct adapter *adapter)
|
|
{
|
|
const struct adapter_info *ai = adapter->params.info;
|
|
unsigned int i, j = -1;
|
|
int ret;
|
|
|
|
early_hw_init(adapter, ai);
|
|
ret = init_parity(adapter);
|
|
if (ret)
|
|
return ret;
|
|
|
|
for_each_port(adapter, i) {
|
|
const struct port_type_info *pti;
|
|
struct port_info *p = adap2pinfo(adapter, i);
|
|
|
|
while (!adapter->params.vpd.port_type[++j])
|
|
;
|
|
|
|
pti = &port_types[adapter->params.vpd.port_type[j]];
|
|
ret = pti->phy_prep(&p->phy, adapter, p->phy.mdio.prtad, NULL);
|
|
if (ret)
|
|
return ret;
|
|
p->phy.ops->power_down(&p->phy, 1);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|