linux/arch/s390/kernel/kprobes.c
Martin Schwidefsky adb4583981 [S390] kprobes: disable interrupts throughout
Execute the kprobe exception and fault handler with interrupts disabled.
To disable the interrupts only while a single step is in progress is not
good enough, a kprobe from interrupt context while another kprobe is
handled can confuse the internal house keeping.

Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2010-11-10 10:05:54 +01:00

663 lines
18 KiB
C

/*
* Kernel Probes (KProbes)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* Copyright (C) IBM Corporation, 2002, 2006
*
* s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
*/
#include <linux/kprobes.h>
#include <linux/ptrace.h>
#include <linux/preempt.h>
#include <linux/stop_machine.h>
#include <linux/kdebug.h>
#include <linux/uaccess.h>
#include <asm/cacheflush.h>
#include <asm/sections.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/hardirq.h>
DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
int __kprobes arch_prepare_kprobe(struct kprobe *p)
{
/* Make sure the probe isn't going on a difficult instruction */
if (is_prohibited_opcode((kprobe_opcode_t *) p->addr))
return -EINVAL;
if ((unsigned long)p->addr & 0x01)
return -EINVAL;
/* Use the get_insn_slot() facility for correctness */
if (!(p->ainsn.insn = get_insn_slot()))
return -ENOMEM;
memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
get_instruction_type(&p->ainsn);
p->opcode = *p->addr;
return 0;
}
int __kprobes is_prohibited_opcode(kprobe_opcode_t *instruction)
{
switch (*(__u8 *) instruction) {
case 0x0c: /* bassm */
case 0x0b: /* bsm */
case 0x83: /* diag */
case 0x44: /* ex */
case 0xac: /* stnsm */
case 0xad: /* stosm */
return -EINVAL;
}
switch (*(__u16 *) instruction) {
case 0x0101: /* pr */
case 0xb25a: /* bsa */
case 0xb240: /* bakr */
case 0xb258: /* bsg */
case 0xb218: /* pc */
case 0xb228: /* pt */
case 0xb98d: /* epsw */
return -EINVAL;
}
return 0;
}
void __kprobes get_instruction_type(struct arch_specific_insn *ainsn)
{
/* default fixup method */
ainsn->fixup = FIXUP_PSW_NORMAL;
/* save r1 operand */
ainsn->reg = (*ainsn->insn & 0xf0) >> 4;
/* save the instruction length (pop 5-5) in bytes */
switch (*(__u8 *) (ainsn->insn) >> 6) {
case 0:
ainsn->ilen = 2;
break;
case 1:
case 2:
ainsn->ilen = 4;
break;
case 3:
ainsn->ilen = 6;
break;
}
switch (*(__u8 *) ainsn->insn) {
case 0x05: /* balr */
case 0x0d: /* basr */
ainsn->fixup = FIXUP_RETURN_REGISTER;
/* if r2 = 0, no branch will be taken */
if ((*ainsn->insn & 0x0f) == 0)
ainsn->fixup |= FIXUP_BRANCH_NOT_TAKEN;
break;
case 0x06: /* bctr */
case 0x07: /* bcr */
ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
break;
case 0x45: /* bal */
case 0x4d: /* bas */
ainsn->fixup = FIXUP_RETURN_REGISTER;
break;
case 0x47: /* bc */
case 0x46: /* bct */
case 0x86: /* bxh */
case 0x87: /* bxle */
ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
break;
case 0x82: /* lpsw */
ainsn->fixup = FIXUP_NOT_REQUIRED;
break;
case 0xb2: /* lpswe */
if (*(((__u8 *) ainsn->insn) + 1) == 0xb2) {
ainsn->fixup = FIXUP_NOT_REQUIRED;
}
break;
case 0xa7: /* bras */
if ((*ainsn->insn & 0x0f) == 0x05) {
ainsn->fixup |= FIXUP_RETURN_REGISTER;
}
break;
case 0xc0:
if ((*ainsn->insn & 0x0f) == 0x00 /* larl */
|| (*ainsn->insn & 0x0f) == 0x05) /* brasl */
ainsn->fixup |= FIXUP_RETURN_REGISTER;
break;
case 0xeb:
if (*(((__u8 *) ainsn->insn) + 5 ) == 0x44 || /* bxhg */
*(((__u8 *) ainsn->insn) + 5) == 0x45) {/* bxleg */
ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
}
break;
case 0xe3: /* bctg */
if (*(((__u8 *) ainsn->insn) + 5) == 0x46) {
ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
}
break;
}
}
static int __kprobes swap_instruction(void *aref)
{
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
unsigned long status = kcb->kprobe_status;
struct ins_replace_args *args = aref;
int rc;
kcb->kprobe_status = KPROBE_SWAP_INST;
rc = probe_kernel_write(args->ptr, &args->new, sizeof(args->new));
kcb->kprobe_status = status;
return rc;
}
void __kprobes arch_arm_kprobe(struct kprobe *p)
{
struct ins_replace_args args;
args.ptr = p->addr;
args.old = p->opcode;
args.new = BREAKPOINT_INSTRUCTION;
stop_machine(swap_instruction, &args, NULL);
}
void __kprobes arch_disarm_kprobe(struct kprobe *p)
{
struct ins_replace_args args;
args.ptr = p->addr;
args.old = BREAKPOINT_INSTRUCTION;
args.new = p->opcode;
stop_machine(swap_instruction, &args, NULL);
}
void __kprobes arch_remove_kprobe(struct kprobe *p)
{
if (p->ainsn.insn) {
free_insn_slot(p->ainsn.insn, 0);
p->ainsn.insn = NULL;
}
}
static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
{
per_cr_bits kprobe_per_regs[1];
memset(kprobe_per_regs, 0, sizeof(per_cr_bits));
regs->psw.addr = (unsigned long)p->ainsn.insn | PSW_ADDR_AMODE;
/* Set up the per control reg info, will pass to lctl */
kprobe_per_regs[0].em_instruction_fetch = 1;
kprobe_per_regs[0].starting_addr = (unsigned long)p->ainsn.insn;
kprobe_per_regs[0].ending_addr = (unsigned long)p->ainsn.insn + 1;
/* Set the PER control regs, turns on single step for this address */
__ctl_load(kprobe_per_regs, 9, 11);
regs->psw.mask |= PSW_MASK_PER;
regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
}
static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
{
kcb->prev_kprobe.kp = kprobe_running();
kcb->prev_kprobe.status = kcb->kprobe_status;
kcb->prev_kprobe.kprobe_saved_imask = kcb->kprobe_saved_imask;
memcpy(kcb->prev_kprobe.kprobe_saved_ctl, kcb->kprobe_saved_ctl,
sizeof(kcb->kprobe_saved_ctl));
}
static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
{
__get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
kcb->kprobe_status = kcb->prev_kprobe.status;
kcb->kprobe_saved_imask = kcb->prev_kprobe.kprobe_saved_imask;
memcpy(kcb->kprobe_saved_ctl, kcb->prev_kprobe.kprobe_saved_ctl,
sizeof(kcb->kprobe_saved_ctl));
}
static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
struct kprobe_ctlblk *kcb)
{
__get_cpu_var(current_kprobe) = p;
/* Save the interrupt and per flags */
kcb->kprobe_saved_imask = regs->psw.mask &
(PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT);
/* Save the control regs that govern PER */
__ctl_store(kcb->kprobe_saved_ctl, 9, 11);
}
void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
struct pt_regs *regs)
{
ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
/* Replace the return addr with trampoline addr */
regs->gprs[14] = (unsigned long)&kretprobe_trampoline;
}
static int __kprobes kprobe_handler(struct pt_regs *regs)
{
struct kprobe *p;
int ret = 0;
unsigned long *addr = (unsigned long *)
((regs->psw.addr & PSW_ADDR_INSN) - 2);
struct kprobe_ctlblk *kcb;
/*
* We don't want to be preempted for the entire
* duration of kprobe processing
*/
preempt_disable();
kcb = get_kprobe_ctlblk();
/* Check we're not actually recursing */
if (kprobe_running()) {
p = get_kprobe(addr);
if (p) {
if (kcb->kprobe_status == KPROBE_HIT_SS &&
*p->ainsn.insn == BREAKPOINT_INSTRUCTION) {
regs->psw.mask &= ~PSW_MASK_PER;
regs->psw.mask |= kcb->kprobe_saved_imask;
goto no_kprobe;
}
/* We have reentered the kprobe_handler(), since
* another probe was hit while within the handler.
* We here save the original kprobes variables and
* just single step on the instruction of the new probe
* without calling any user handlers.
*/
save_previous_kprobe(kcb);
set_current_kprobe(p, regs, kcb);
kprobes_inc_nmissed_count(p);
prepare_singlestep(p, regs);
kcb->kprobe_status = KPROBE_REENTER;
return 1;
} else {
p = __get_cpu_var(current_kprobe);
if (p->break_handler && p->break_handler(p, regs)) {
goto ss_probe;
}
}
goto no_kprobe;
}
p = get_kprobe(addr);
if (!p)
/*
* No kprobe at this address. The fault has not been
* caused by a kprobe breakpoint. The race of breakpoint
* vs. kprobe remove does not exist because on s390 we
* use stop_machine to arm/disarm the breakpoints.
*/
goto no_kprobe;
kcb->kprobe_status = KPROBE_HIT_ACTIVE;
set_current_kprobe(p, regs, kcb);
if (p->pre_handler && p->pre_handler(p, regs))
/* handler has already set things up, so skip ss setup */
return 1;
ss_probe:
prepare_singlestep(p, regs);
kcb->kprobe_status = KPROBE_HIT_SS;
return 1;
no_kprobe:
preempt_enable_no_resched();
return ret;
}
/*
* Function return probe trampoline:
* - init_kprobes() establishes a probepoint here
* - When the probed function returns, this probe
* causes the handlers to fire
*/
static void __used kretprobe_trampoline_holder(void)
{
asm volatile(".global kretprobe_trampoline\n"
"kretprobe_trampoline: bcr 0,0\n");
}
/*
* Called when the probe at kretprobe trampoline is hit
*/
static int __kprobes trampoline_probe_handler(struct kprobe *p,
struct pt_regs *regs)
{
struct kretprobe_instance *ri = NULL;
struct hlist_head *head, empty_rp;
struct hlist_node *node, *tmp;
unsigned long flags, orig_ret_address = 0;
unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
INIT_HLIST_HEAD(&empty_rp);
kretprobe_hash_lock(current, &head, &flags);
/*
* It is possible to have multiple instances associated with a given
* task either because an multiple functions in the call path
* have a return probe installed on them, and/or more than one return
* return probe was registered for a target function.
*
* We can handle this because:
* - instances are always inserted at the head of the list
* - when multiple return probes are registered for the same
* function, the first instance's ret_addr will point to the
* real return address, and all the rest will point to
* kretprobe_trampoline
*/
hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
if (ri->task != current)
/* another task is sharing our hash bucket */
continue;
if (ri->rp && ri->rp->handler)
ri->rp->handler(ri, regs);
orig_ret_address = (unsigned long)ri->ret_addr;
recycle_rp_inst(ri, &empty_rp);
if (orig_ret_address != trampoline_address) {
/*
* This is the real return address. Any other
* instances associated with this task are for
* other calls deeper on the call stack
*/
break;
}
}
kretprobe_assert(ri, orig_ret_address, trampoline_address);
regs->psw.addr = orig_ret_address | PSW_ADDR_AMODE;
reset_current_kprobe();
kretprobe_hash_unlock(current, &flags);
preempt_enable_no_resched();
hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
hlist_del(&ri->hlist);
kfree(ri);
}
/*
* By returning a non-zero value, we are telling
* kprobe_handler() that we don't want the post_handler
* to run (and have re-enabled preemption)
*/
return 1;
}
/*
* Called after single-stepping. p->addr is the address of the
* instruction whose first byte has been replaced by the "breakpoint"
* instruction. To avoid the SMP problems that can occur when we
* temporarily put back the original opcode to single-step, we
* single-stepped a copy of the instruction. The address of this
* copy is p->ainsn.insn.
*/
static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
{
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
regs->psw.addr &= PSW_ADDR_INSN;
if (p->ainsn.fixup & FIXUP_PSW_NORMAL)
regs->psw.addr = (unsigned long)p->addr +
((unsigned long)regs->psw.addr -
(unsigned long)p->ainsn.insn);
if (p->ainsn.fixup & FIXUP_BRANCH_NOT_TAKEN)
if ((unsigned long)regs->psw.addr -
(unsigned long)p->ainsn.insn == p->ainsn.ilen)
regs->psw.addr = (unsigned long)p->addr + p->ainsn.ilen;
if (p->ainsn.fixup & FIXUP_RETURN_REGISTER)
regs->gprs[p->ainsn.reg] = ((unsigned long)p->addr +
(regs->gprs[p->ainsn.reg] -
(unsigned long)p->ainsn.insn))
| PSW_ADDR_AMODE;
regs->psw.addr |= PSW_ADDR_AMODE;
/* turn off PER mode */
regs->psw.mask &= ~PSW_MASK_PER;
/* Restore the original per control regs */
__ctl_load(kcb->kprobe_saved_ctl, 9, 11);
regs->psw.mask |= kcb->kprobe_saved_imask;
}
static int __kprobes post_kprobe_handler(struct pt_regs *regs)
{
struct kprobe *cur = kprobe_running();
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
if (!cur)
return 0;
if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
kcb->kprobe_status = KPROBE_HIT_SSDONE;
cur->post_handler(cur, regs, 0);
}
resume_execution(cur, regs);
/*Restore back the original saved kprobes variables and continue. */
if (kcb->kprobe_status == KPROBE_REENTER) {
restore_previous_kprobe(kcb);
goto out;
}
reset_current_kprobe();
out:
preempt_enable_no_resched();
/*
* if somebody else is singlestepping across a probe point, psw mask
* will have PER set, in which case, continue the remaining processing
* of do_single_step, as if this is not a probe hit.
*/
if (regs->psw.mask & PSW_MASK_PER) {
return 0;
}
return 1;
}
static int __kprobes kprobe_trap_handler(struct pt_regs *regs, int trapnr)
{
struct kprobe *cur = kprobe_running();
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
const struct exception_table_entry *entry;
switch(kcb->kprobe_status) {
case KPROBE_SWAP_INST:
/* We are here because the instruction replacement failed */
return 0;
case KPROBE_HIT_SS:
case KPROBE_REENTER:
/*
* We are here because the instruction being single
* stepped caused a page fault. We reset the current
* kprobe and the nip points back to the probe address
* and allow the page fault handler to continue as a
* normal page fault.
*/
regs->psw.addr = (unsigned long)cur->addr | PSW_ADDR_AMODE;
regs->psw.mask &= ~PSW_MASK_PER;
regs->psw.mask |= kcb->kprobe_saved_imask;
if (kcb->kprobe_status == KPROBE_REENTER)
restore_previous_kprobe(kcb);
else {
reset_current_kprobe();
}
preempt_enable_no_resched();
break;
case KPROBE_HIT_ACTIVE:
case KPROBE_HIT_SSDONE:
/*
* We increment the nmissed count for accounting,
* we can also use npre/npostfault count for accouting
* these specific fault cases.
*/
kprobes_inc_nmissed_count(cur);
/*
* We come here because instructions in the pre/post
* handler caused the page_fault, this could happen
* if handler tries to access user space by
* copy_from_user(), get_user() etc. Let the
* user-specified handler try to fix it first.
*/
if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
return 1;
/*
* In case the user-specified fault handler returned
* zero, try to fix up.
*/
entry = search_exception_tables(regs->psw.addr & PSW_ADDR_INSN);
if (entry) {
regs->psw.addr = entry->fixup | PSW_ADDR_AMODE;
return 1;
}
/*
* fixup_exception() could not handle it,
* Let do_page_fault() fix it.
*/
break;
default:
break;
}
return 0;
}
int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
{
int ret;
if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
local_irq_disable();
ret = kprobe_trap_handler(regs, trapnr);
if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
return ret;
}
/*
* Wrapper routine to for handling exceptions.
*/
int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
unsigned long val, void *data)
{
struct die_args *args = (struct die_args *)data;
struct pt_regs *regs = args->regs;
int ret = NOTIFY_DONE;
if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
local_irq_disable();
switch (val) {
case DIE_BPT:
if (kprobe_handler(args->regs))
ret = NOTIFY_STOP;
break;
case DIE_SSTEP:
if (post_kprobe_handler(args->regs))
ret = NOTIFY_STOP;
break;
case DIE_TRAP:
if (!preemptible() && kprobe_running() &&
kprobe_trap_handler(args->regs, args->trapnr))
ret = NOTIFY_STOP;
break;
default:
break;
}
if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
return ret;
}
int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
{
struct jprobe *jp = container_of(p, struct jprobe, kp);
unsigned long addr;
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
/* setup return addr to the jprobe handler routine */
regs->psw.addr = (unsigned long)(jp->entry) | PSW_ADDR_AMODE;
regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
/* r14 is the function return address */
kcb->jprobe_saved_r14 = (unsigned long)regs->gprs[14];
/* r15 is the stack pointer */
kcb->jprobe_saved_r15 = (unsigned long)regs->gprs[15];
addr = (unsigned long)kcb->jprobe_saved_r15;
memcpy(kcb->jprobes_stack, (kprobe_opcode_t *) addr,
MIN_STACK_SIZE(addr));
return 1;
}
void __kprobes jprobe_return(void)
{
asm volatile(".word 0x0002");
}
void __kprobes jprobe_return_end(void)
{
asm volatile("bcr 0,0");
}
int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
{
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
unsigned long stack_addr = (unsigned long)(kcb->jprobe_saved_r15);
/* Put the regs back */
memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
/* put the stack back */
memcpy((kprobe_opcode_t *) stack_addr, kcb->jprobes_stack,
MIN_STACK_SIZE(stack_addr));
preempt_enable_no_resched();
return 1;
}
static struct kprobe trampoline_p = {
.addr = (kprobe_opcode_t *) & kretprobe_trampoline,
.pre_handler = trampoline_probe_handler
};
int __init arch_init_kprobes(void)
{
return register_kprobe(&trampoline_p);
}
int __kprobes arch_trampoline_kprobe(struct kprobe *p)
{
if (p->addr == (kprobe_opcode_t *) & kretprobe_trampoline)
return 1;
return 0;
}