forked from Minki/linux
bc990f5cb4
The locking in xfs_iget_cache_hit currently has numerous problems: - we clear the reclaim tag without i_flags_lock which protects modifications to it - we call inode_init_always which can sleep with pag_ici_lock held (this is oss.sgi.com BZ #819) - we acquire and drop i_flags_lock a lot and thus provide no consistency between the various flags we set/clear under it This patch fixes all that with a major revamp of the locking in the function. The new version acquires i_flags_lock early and only drops it once we need to call into inode_init_always or before calling xfs_ilock. This patch fixes a bug seen in the wild where we race modifying the reclaim tag. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Felix Blyakher <felixb@sgi.com> Reviewed-by: Eric Sandeen <sandeen@sandeen.net> Signed-off-by: Felix Blyakher <felixb@sgi.com>
871 lines
23 KiB
C
871 lines
23 KiB
C
/*
|
|
* Copyright (c) 2000-2005 Silicon Graphics, Inc.
|
|
* All Rights Reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it would be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
#include "xfs.h"
|
|
#include "xfs_fs.h"
|
|
#include "xfs_types.h"
|
|
#include "xfs_acl.h"
|
|
#include "xfs_bit.h"
|
|
#include "xfs_log.h"
|
|
#include "xfs_inum.h"
|
|
#include "xfs_trans.h"
|
|
#include "xfs_sb.h"
|
|
#include "xfs_ag.h"
|
|
#include "xfs_dir2.h"
|
|
#include "xfs_dmapi.h"
|
|
#include "xfs_mount.h"
|
|
#include "xfs_bmap_btree.h"
|
|
#include "xfs_alloc_btree.h"
|
|
#include "xfs_ialloc_btree.h"
|
|
#include "xfs_dir2_sf.h"
|
|
#include "xfs_attr_sf.h"
|
|
#include "xfs_dinode.h"
|
|
#include "xfs_inode.h"
|
|
#include "xfs_btree.h"
|
|
#include "xfs_ialloc.h"
|
|
#include "xfs_quota.h"
|
|
#include "xfs_utils.h"
|
|
#include "xfs_trans_priv.h"
|
|
#include "xfs_inode_item.h"
|
|
#include "xfs_bmap.h"
|
|
#include "xfs_btree_trace.h"
|
|
#include "xfs_dir2_trace.h"
|
|
|
|
|
|
/*
|
|
* Allocate and initialise an xfs_inode.
|
|
*/
|
|
STATIC struct xfs_inode *
|
|
xfs_inode_alloc(
|
|
struct xfs_mount *mp,
|
|
xfs_ino_t ino)
|
|
{
|
|
struct xfs_inode *ip;
|
|
|
|
/*
|
|
* if this didn't occur in transactions, we could use
|
|
* KM_MAYFAIL and return NULL here on ENOMEM. Set the
|
|
* code up to do this anyway.
|
|
*/
|
|
ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP);
|
|
if (!ip)
|
|
return NULL;
|
|
if (inode_init_always(mp->m_super, VFS_I(ip))) {
|
|
kmem_zone_free(xfs_inode_zone, ip);
|
|
return NULL;
|
|
}
|
|
|
|
ASSERT(atomic_read(&ip->i_iocount) == 0);
|
|
ASSERT(atomic_read(&ip->i_pincount) == 0);
|
|
ASSERT(!spin_is_locked(&ip->i_flags_lock));
|
|
ASSERT(completion_done(&ip->i_flush));
|
|
|
|
/* initialise the xfs inode */
|
|
ip->i_ino = ino;
|
|
ip->i_mount = mp;
|
|
memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
|
|
ip->i_afp = NULL;
|
|
memset(&ip->i_df, 0, sizeof(xfs_ifork_t));
|
|
ip->i_flags = 0;
|
|
ip->i_update_core = 0;
|
|
ip->i_update_size = 0;
|
|
ip->i_delayed_blks = 0;
|
|
memset(&ip->i_d, 0, sizeof(xfs_icdinode_t));
|
|
ip->i_size = 0;
|
|
ip->i_new_size = 0;
|
|
|
|
/*
|
|
* Initialize inode's trace buffers.
|
|
*/
|
|
#ifdef XFS_INODE_TRACE
|
|
ip->i_trace = ktrace_alloc(INODE_TRACE_SIZE, KM_NOFS);
|
|
#endif
|
|
#ifdef XFS_BMAP_TRACE
|
|
ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_NOFS);
|
|
#endif
|
|
#ifdef XFS_BTREE_TRACE
|
|
ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_NOFS);
|
|
#endif
|
|
#ifdef XFS_RW_TRACE
|
|
ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_NOFS);
|
|
#endif
|
|
#ifdef XFS_ILOCK_TRACE
|
|
ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_NOFS);
|
|
#endif
|
|
#ifdef XFS_DIR2_TRACE
|
|
ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_NOFS);
|
|
#endif
|
|
|
|
/* prevent anyone from using this yet */
|
|
VFS_I(ip)->i_state = I_NEW|I_LOCK;
|
|
|
|
return ip;
|
|
}
|
|
|
|
STATIC void
|
|
xfs_inode_free(
|
|
struct xfs_inode *ip)
|
|
{
|
|
switch (ip->i_d.di_mode & S_IFMT) {
|
|
case S_IFREG:
|
|
case S_IFDIR:
|
|
case S_IFLNK:
|
|
xfs_idestroy_fork(ip, XFS_DATA_FORK);
|
|
break;
|
|
}
|
|
|
|
if (ip->i_afp)
|
|
xfs_idestroy_fork(ip, XFS_ATTR_FORK);
|
|
|
|
#ifdef XFS_INODE_TRACE
|
|
ktrace_free(ip->i_trace);
|
|
#endif
|
|
#ifdef XFS_BMAP_TRACE
|
|
ktrace_free(ip->i_xtrace);
|
|
#endif
|
|
#ifdef XFS_BTREE_TRACE
|
|
ktrace_free(ip->i_btrace);
|
|
#endif
|
|
#ifdef XFS_RW_TRACE
|
|
ktrace_free(ip->i_rwtrace);
|
|
#endif
|
|
#ifdef XFS_ILOCK_TRACE
|
|
ktrace_free(ip->i_lock_trace);
|
|
#endif
|
|
#ifdef XFS_DIR2_TRACE
|
|
ktrace_free(ip->i_dir_trace);
|
|
#endif
|
|
|
|
if (ip->i_itemp) {
|
|
/*
|
|
* Only if we are shutting down the fs will we see an
|
|
* inode still in the AIL. If it is there, we should remove
|
|
* it to prevent a use-after-free from occurring.
|
|
*/
|
|
xfs_log_item_t *lip = &ip->i_itemp->ili_item;
|
|
struct xfs_ail *ailp = lip->li_ailp;
|
|
|
|
ASSERT(((lip->li_flags & XFS_LI_IN_AIL) == 0) ||
|
|
XFS_FORCED_SHUTDOWN(ip->i_mount));
|
|
if (lip->li_flags & XFS_LI_IN_AIL) {
|
|
spin_lock(&ailp->xa_lock);
|
|
if (lip->li_flags & XFS_LI_IN_AIL)
|
|
xfs_trans_ail_delete(ailp, lip);
|
|
else
|
|
spin_unlock(&ailp->xa_lock);
|
|
}
|
|
xfs_inode_item_destroy(ip);
|
|
ip->i_itemp = NULL;
|
|
}
|
|
|
|
/* asserts to verify all state is correct here */
|
|
ASSERT(atomic_read(&ip->i_iocount) == 0);
|
|
ASSERT(atomic_read(&ip->i_pincount) == 0);
|
|
ASSERT(!spin_is_locked(&ip->i_flags_lock));
|
|
ASSERT(completion_done(&ip->i_flush));
|
|
|
|
kmem_zone_free(xfs_inode_zone, ip);
|
|
}
|
|
|
|
/*
|
|
* Check the validity of the inode we just found it the cache
|
|
*/
|
|
static int
|
|
xfs_iget_cache_hit(
|
|
struct xfs_perag *pag,
|
|
struct xfs_inode *ip,
|
|
int flags,
|
|
int lock_flags) __releases(pag->pag_ici_lock)
|
|
{
|
|
struct inode *inode = VFS_I(ip);
|
|
struct xfs_mount *mp = ip->i_mount;
|
|
int error;
|
|
|
|
spin_lock(&ip->i_flags_lock);
|
|
|
|
/*
|
|
* If we are racing with another cache hit that is currently
|
|
* instantiating this inode or currently recycling it out of
|
|
* reclaimabe state, wait for the initialisation to complete
|
|
* before continuing.
|
|
*
|
|
* XXX(hch): eventually we should do something equivalent to
|
|
* wait_on_inode to wait for these flags to be cleared
|
|
* instead of polling for it.
|
|
*/
|
|
if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) {
|
|
XFS_STATS_INC(xs_ig_frecycle);
|
|
error = EAGAIN;
|
|
goto out_error;
|
|
}
|
|
|
|
/*
|
|
* If lookup is racing with unlink return an error immediately.
|
|
*/
|
|
if (ip->i_d.di_mode == 0 && !(flags & XFS_IGET_CREATE)) {
|
|
error = ENOENT;
|
|
goto out_error;
|
|
}
|
|
|
|
/*
|
|
* If IRECLAIMABLE is set, we've torn down the VFS inode already.
|
|
* Need to carefully get it back into useable state.
|
|
*/
|
|
if (ip->i_flags & XFS_IRECLAIMABLE) {
|
|
xfs_itrace_exit_tag(ip, "xfs_iget.alloc");
|
|
|
|
/*
|
|
* We need to set XFS_INEW atomically with clearing the
|
|
* reclaimable tag so that we do have an indicator of the
|
|
* inode still being initialized.
|
|
*/
|
|
ip->i_flags |= XFS_INEW;
|
|
ip->i_flags &= ~XFS_IRECLAIMABLE;
|
|
__xfs_inode_clear_reclaim_tag(mp, pag, ip);
|
|
|
|
spin_unlock(&ip->i_flags_lock);
|
|
read_unlock(&pag->pag_ici_lock);
|
|
|
|
error = -inode_init_always(mp->m_super, inode);
|
|
if (error) {
|
|
/*
|
|
* Re-initializing the inode failed, and we are in deep
|
|
* trouble. Try to re-add it to the reclaim list.
|
|
*/
|
|
read_lock(&pag->pag_ici_lock);
|
|
spin_lock(&ip->i_flags_lock);
|
|
|
|
ip->i_flags &= ~XFS_INEW;
|
|
ip->i_flags |= XFS_IRECLAIMABLE;
|
|
__xfs_inode_set_reclaim_tag(pag, ip);
|
|
goto out_error;
|
|
}
|
|
inode->i_state = I_LOCK|I_NEW;
|
|
} else {
|
|
/* If the VFS inode is being torn down, pause and try again. */
|
|
if (!igrab(inode)) {
|
|
error = EAGAIN;
|
|
goto out_error;
|
|
}
|
|
|
|
/* We've got a live one. */
|
|
spin_unlock(&ip->i_flags_lock);
|
|
read_unlock(&pag->pag_ici_lock);
|
|
}
|
|
|
|
if (lock_flags != 0)
|
|
xfs_ilock(ip, lock_flags);
|
|
|
|
xfs_iflags_clear(ip, XFS_ISTALE);
|
|
xfs_itrace_exit_tag(ip, "xfs_iget.found");
|
|
XFS_STATS_INC(xs_ig_found);
|
|
return 0;
|
|
|
|
out_error:
|
|
spin_unlock(&ip->i_flags_lock);
|
|
read_unlock(&pag->pag_ici_lock);
|
|
return error;
|
|
}
|
|
|
|
|
|
static int
|
|
xfs_iget_cache_miss(
|
|
struct xfs_mount *mp,
|
|
struct xfs_perag *pag,
|
|
xfs_trans_t *tp,
|
|
xfs_ino_t ino,
|
|
struct xfs_inode **ipp,
|
|
xfs_daddr_t bno,
|
|
int flags,
|
|
int lock_flags) __releases(pag->pag_ici_lock)
|
|
{
|
|
struct xfs_inode *ip;
|
|
int error;
|
|
unsigned long first_index, mask;
|
|
xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino);
|
|
|
|
ip = xfs_inode_alloc(mp, ino);
|
|
if (!ip)
|
|
return ENOMEM;
|
|
|
|
error = xfs_iread(mp, tp, ip, bno, flags);
|
|
if (error)
|
|
goto out_destroy;
|
|
|
|
xfs_itrace_exit_tag(ip, "xfs_iget.alloc");
|
|
|
|
if ((ip->i_d.di_mode == 0) && !(flags & XFS_IGET_CREATE)) {
|
|
error = ENOENT;
|
|
goto out_destroy;
|
|
}
|
|
|
|
/*
|
|
* Preload the radix tree so we can insert safely under the
|
|
* write spinlock. Note that we cannot sleep inside the preload
|
|
* region.
|
|
*/
|
|
if (radix_tree_preload(GFP_KERNEL)) {
|
|
error = EAGAIN;
|
|
goto out_destroy;
|
|
}
|
|
|
|
/*
|
|
* Because the inode hasn't been added to the radix-tree yet it can't
|
|
* be found by another thread, so we can do the non-sleeping lock here.
|
|
*/
|
|
if (lock_flags) {
|
|
if (!xfs_ilock_nowait(ip, lock_flags))
|
|
BUG();
|
|
}
|
|
|
|
mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
|
|
first_index = agino & mask;
|
|
write_lock(&pag->pag_ici_lock);
|
|
|
|
/* insert the new inode */
|
|
error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
|
|
if (unlikely(error)) {
|
|
WARN_ON(error != -EEXIST);
|
|
XFS_STATS_INC(xs_ig_dup);
|
|
error = EAGAIN;
|
|
goto out_preload_end;
|
|
}
|
|
|
|
/* These values _must_ be set before releasing the radix tree lock! */
|
|
ip->i_udquot = ip->i_gdquot = NULL;
|
|
xfs_iflags_set(ip, XFS_INEW);
|
|
|
|
write_unlock(&pag->pag_ici_lock);
|
|
radix_tree_preload_end();
|
|
*ipp = ip;
|
|
return 0;
|
|
|
|
out_preload_end:
|
|
write_unlock(&pag->pag_ici_lock);
|
|
radix_tree_preload_end();
|
|
if (lock_flags)
|
|
xfs_iunlock(ip, lock_flags);
|
|
out_destroy:
|
|
__destroy_inode(VFS_I(ip));
|
|
xfs_inode_free(ip);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Look up an inode by number in the given file system.
|
|
* The inode is looked up in the cache held in each AG.
|
|
* If the inode is found in the cache, initialise the vfs inode
|
|
* if necessary.
|
|
*
|
|
* If it is not in core, read it in from the file system's device,
|
|
* add it to the cache and initialise the vfs inode.
|
|
*
|
|
* The inode is locked according to the value of the lock_flags parameter.
|
|
* This flag parameter indicates how and if the inode's IO lock and inode lock
|
|
* should be taken.
|
|
*
|
|
* mp -- the mount point structure for the current file system. It points
|
|
* to the inode hash table.
|
|
* tp -- a pointer to the current transaction if there is one. This is
|
|
* simply passed through to the xfs_iread() call.
|
|
* ino -- the number of the inode desired. This is the unique identifier
|
|
* within the file system for the inode being requested.
|
|
* lock_flags -- flags indicating how to lock the inode. See the comment
|
|
* for xfs_ilock() for a list of valid values.
|
|
* bno -- the block number starting the buffer containing the inode,
|
|
* if known (as by bulkstat), else 0.
|
|
*/
|
|
int
|
|
xfs_iget(
|
|
xfs_mount_t *mp,
|
|
xfs_trans_t *tp,
|
|
xfs_ino_t ino,
|
|
uint flags,
|
|
uint lock_flags,
|
|
xfs_inode_t **ipp,
|
|
xfs_daddr_t bno)
|
|
{
|
|
xfs_inode_t *ip;
|
|
int error;
|
|
xfs_perag_t *pag;
|
|
xfs_agino_t agino;
|
|
|
|
/* the radix tree exists only in inode capable AGs */
|
|
if (XFS_INO_TO_AGNO(mp, ino) >= mp->m_maxagi)
|
|
return EINVAL;
|
|
|
|
/* get the perag structure and ensure that it's inode capable */
|
|
pag = xfs_get_perag(mp, ino);
|
|
if (!pag->pagi_inodeok)
|
|
return EINVAL;
|
|
ASSERT(pag->pag_ici_init);
|
|
agino = XFS_INO_TO_AGINO(mp, ino);
|
|
|
|
again:
|
|
error = 0;
|
|
read_lock(&pag->pag_ici_lock);
|
|
ip = radix_tree_lookup(&pag->pag_ici_root, agino);
|
|
|
|
if (ip) {
|
|
error = xfs_iget_cache_hit(pag, ip, flags, lock_flags);
|
|
if (error)
|
|
goto out_error_or_again;
|
|
} else {
|
|
read_unlock(&pag->pag_ici_lock);
|
|
XFS_STATS_INC(xs_ig_missed);
|
|
|
|
error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip, bno,
|
|
flags, lock_flags);
|
|
if (error)
|
|
goto out_error_or_again;
|
|
}
|
|
xfs_put_perag(mp, pag);
|
|
|
|
*ipp = ip;
|
|
|
|
ASSERT(ip->i_df.if_ext_max ==
|
|
XFS_IFORK_DSIZE(ip) / sizeof(xfs_bmbt_rec_t));
|
|
/*
|
|
* If we have a real type for an on-disk inode, we can set ops(&unlock)
|
|
* now. If it's a new inode being created, xfs_ialloc will handle it.
|
|
*/
|
|
if (xfs_iflags_test(ip, XFS_INEW) && ip->i_d.di_mode != 0)
|
|
xfs_setup_inode(ip);
|
|
return 0;
|
|
|
|
out_error_or_again:
|
|
if (error == EAGAIN) {
|
|
delay(1);
|
|
goto again;
|
|
}
|
|
xfs_put_perag(mp, pag);
|
|
return error;
|
|
}
|
|
|
|
|
|
/*
|
|
* Look for the inode corresponding to the given ino in the hash table.
|
|
* If it is there and its i_transp pointer matches tp, return it.
|
|
* Otherwise, return NULL.
|
|
*/
|
|
xfs_inode_t *
|
|
xfs_inode_incore(xfs_mount_t *mp,
|
|
xfs_ino_t ino,
|
|
xfs_trans_t *tp)
|
|
{
|
|
xfs_inode_t *ip;
|
|
xfs_perag_t *pag;
|
|
|
|
pag = xfs_get_perag(mp, ino);
|
|
read_lock(&pag->pag_ici_lock);
|
|
ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ino));
|
|
read_unlock(&pag->pag_ici_lock);
|
|
xfs_put_perag(mp, pag);
|
|
|
|
/* the returned inode must match the transaction */
|
|
if (ip && (ip->i_transp != tp))
|
|
return NULL;
|
|
return ip;
|
|
}
|
|
|
|
/*
|
|
* Decrement reference count of an inode structure and unlock it.
|
|
*
|
|
* ip -- the inode being released
|
|
* lock_flags -- this parameter indicates the inode's locks to be
|
|
* to be released. See the comment on xfs_iunlock() for a list
|
|
* of valid values.
|
|
*/
|
|
void
|
|
xfs_iput(xfs_inode_t *ip,
|
|
uint lock_flags)
|
|
{
|
|
xfs_itrace_entry(ip);
|
|
xfs_iunlock(ip, lock_flags);
|
|
IRELE(ip);
|
|
}
|
|
|
|
/*
|
|
* Special iput for brand-new inodes that are still locked
|
|
*/
|
|
void
|
|
xfs_iput_new(
|
|
xfs_inode_t *ip,
|
|
uint lock_flags)
|
|
{
|
|
struct inode *inode = VFS_I(ip);
|
|
|
|
xfs_itrace_entry(ip);
|
|
|
|
if ((ip->i_d.di_mode == 0)) {
|
|
ASSERT(!xfs_iflags_test(ip, XFS_IRECLAIMABLE));
|
|
make_bad_inode(inode);
|
|
}
|
|
if (inode->i_state & I_NEW)
|
|
unlock_new_inode(inode);
|
|
if (lock_flags)
|
|
xfs_iunlock(ip, lock_flags);
|
|
IRELE(ip);
|
|
}
|
|
|
|
/*
|
|
* This is called free all the memory associated with an inode.
|
|
* It must free the inode itself and any buffers allocated for
|
|
* if_extents/if_data and if_broot. It must also free the lock
|
|
* associated with the inode.
|
|
*
|
|
* Note: because we don't initialise everything on reallocation out
|
|
* of the zone, we must ensure we nullify everything correctly before
|
|
* freeing the structure.
|
|
*/
|
|
void
|
|
xfs_ireclaim(
|
|
struct xfs_inode *ip)
|
|
{
|
|
struct xfs_mount *mp = ip->i_mount;
|
|
struct xfs_perag *pag;
|
|
|
|
XFS_STATS_INC(xs_ig_reclaims);
|
|
|
|
/*
|
|
* Remove the inode from the per-AG radix tree. It doesn't matter
|
|
* if it was never added to it because radix_tree_delete can deal
|
|
* with that case just fine.
|
|
*/
|
|
pag = xfs_get_perag(mp, ip->i_ino);
|
|
write_lock(&pag->pag_ici_lock);
|
|
radix_tree_delete(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ip->i_ino));
|
|
write_unlock(&pag->pag_ici_lock);
|
|
xfs_put_perag(mp, pag);
|
|
|
|
/*
|
|
* Here we do an (almost) spurious inode lock in order to coordinate
|
|
* with inode cache radix tree lookups. This is because the lookup
|
|
* can reference the inodes in the cache without taking references.
|
|
*
|
|
* We make that OK here by ensuring that we wait until the inode is
|
|
* unlocked after the lookup before we go ahead and free it. We get
|
|
* both the ilock and the iolock because the code may need to drop the
|
|
* ilock one but will still hold the iolock.
|
|
*/
|
|
xfs_ilock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
|
|
xfs_qm_dqdetach(ip);
|
|
xfs_iunlock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
|
|
|
|
xfs_inode_free(ip);
|
|
}
|
|
|
|
/*
|
|
* This is a wrapper routine around the xfs_ilock() routine
|
|
* used to centralize some grungy code. It is used in places
|
|
* that wish to lock the inode solely for reading the extents.
|
|
* The reason these places can't just call xfs_ilock(SHARED)
|
|
* is that the inode lock also guards to bringing in of the
|
|
* extents from disk for a file in b-tree format. If the inode
|
|
* is in b-tree format, then we need to lock the inode exclusively
|
|
* until the extents are read in. Locking it exclusively all
|
|
* the time would limit our parallelism unnecessarily, though.
|
|
* What we do instead is check to see if the extents have been
|
|
* read in yet, and only lock the inode exclusively if they
|
|
* have not.
|
|
*
|
|
* The function returns a value which should be given to the
|
|
* corresponding xfs_iunlock_map_shared(). This value is
|
|
* the mode in which the lock was actually taken.
|
|
*/
|
|
uint
|
|
xfs_ilock_map_shared(
|
|
xfs_inode_t *ip)
|
|
{
|
|
uint lock_mode;
|
|
|
|
if ((ip->i_d.di_format == XFS_DINODE_FMT_BTREE) &&
|
|
((ip->i_df.if_flags & XFS_IFEXTENTS) == 0)) {
|
|
lock_mode = XFS_ILOCK_EXCL;
|
|
} else {
|
|
lock_mode = XFS_ILOCK_SHARED;
|
|
}
|
|
|
|
xfs_ilock(ip, lock_mode);
|
|
|
|
return lock_mode;
|
|
}
|
|
|
|
/*
|
|
* This is simply the unlock routine to go with xfs_ilock_map_shared().
|
|
* All it does is call xfs_iunlock() with the given lock_mode.
|
|
*/
|
|
void
|
|
xfs_iunlock_map_shared(
|
|
xfs_inode_t *ip,
|
|
unsigned int lock_mode)
|
|
{
|
|
xfs_iunlock(ip, lock_mode);
|
|
}
|
|
|
|
/*
|
|
* The xfs inode contains 2 locks: a multi-reader lock called the
|
|
* i_iolock and a multi-reader lock called the i_lock. This routine
|
|
* allows either or both of the locks to be obtained.
|
|
*
|
|
* The 2 locks should always be ordered so that the IO lock is
|
|
* obtained first in order to prevent deadlock.
|
|
*
|
|
* ip -- the inode being locked
|
|
* lock_flags -- this parameter indicates the inode's locks
|
|
* to be locked. It can be:
|
|
* XFS_IOLOCK_SHARED,
|
|
* XFS_IOLOCK_EXCL,
|
|
* XFS_ILOCK_SHARED,
|
|
* XFS_ILOCK_EXCL,
|
|
* XFS_IOLOCK_SHARED | XFS_ILOCK_SHARED,
|
|
* XFS_IOLOCK_SHARED | XFS_ILOCK_EXCL,
|
|
* XFS_IOLOCK_EXCL | XFS_ILOCK_SHARED,
|
|
* XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL
|
|
*/
|
|
void
|
|
xfs_ilock(
|
|
xfs_inode_t *ip,
|
|
uint lock_flags)
|
|
{
|
|
/*
|
|
* You can't set both SHARED and EXCL for the same lock,
|
|
* and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
|
|
* and XFS_ILOCK_EXCL are valid values to set in lock_flags.
|
|
*/
|
|
ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
|
|
(XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
|
|
ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
|
|
(XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
|
|
ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
|
|
|
|
if (lock_flags & XFS_IOLOCK_EXCL)
|
|
mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
|
|
else if (lock_flags & XFS_IOLOCK_SHARED)
|
|
mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
|
|
|
|
if (lock_flags & XFS_ILOCK_EXCL)
|
|
mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
|
|
else if (lock_flags & XFS_ILOCK_SHARED)
|
|
mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
|
|
|
|
xfs_ilock_trace(ip, 1, lock_flags, (inst_t *)__return_address);
|
|
}
|
|
|
|
/*
|
|
* This is just like xfs_ilock(), except that the caller
|
|
* is guaranteed not to sleep. It returns 1 if it gets
|
|
* the requested locks and 0 otherwise. If the IO lock is
|
|
* obtained but the inode lock cannot be, then the IO lock
|
|
* is dropped before returning.
|
|
*
|
|
* ip -- the inode being locked
|
|
* lock_flags -- this parameter indicates the inode's locks to be
|
|
* to be locked. See the comment for xfs_ilock() for a list
|
|
* of valid values.
|
|
*/
|
|
int
|
|
xfs_ilock_nowait(
|
|
xfs_inode_t *ip,
|
|
uint lock_flags)
|
|
{
|
|
/*
|
|
* You can't set both SHARED and EXCL for the same lock,
|
|
* and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
|
|
* and XFS_ILOCK_EXCL are valid values to set in lock_flags.
|
|
*/
|
|
ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
|
|
(XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
|
|
ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
|
|
(XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
|
|
ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
|
|
|
|
if (lock_flags & XFS_IOLOCK_EXCL) {
|
|
if (!mrtryupdate(&ip->i_iolock))
|
|
goto out;
|
|
} else if (lock_flags & XFS_IOLOCK_SHARED) {
|
|
if (!mrtryaccess(&ip->i_iolock))
|
|
goto out;
|
|
}
|
|
if (lock_flags & XFS_ILOCK_EXCL) {
|
|
if (!mrtryupdate(&ip->i_lock))
|
|
goto out_undo_iolock;
|
|
} else if (lock_flags & XFS_ILOCK_SHARED) {
|
|
if (!mrtryaccess(&ip->i_lock))
|
|
goto out_undo_iolock;
|
|
}
|
|
xfs_ilock_trace(ip, 2, lock_flags, (inst_t *)__return_address);
|
|
return 1;
|
|
|
|
out_undo_iolock:
|
|
if (lock_flags & XFS_IOLOCK_EXCL)
|
|
mrunlock_excl(&ip->i_iolock);
|
|
else if (lock_flags & XFS_IOLOCK_SHARED)
|
|
mrunlock_shared(&ip->i_iolock);
|
|
out:
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* xfs_iunlock() is used to drop the inode locks acquired with
|
|
* xfs_ilock() and xfs_ilock_nowait(). The caller must pass
|
|
* in the flags given to xfs_ilock() or xfs_ilock_nowait() so
|
|
* that we know which locks to drop.
|
|
*
|
|
* ip -- the inode being unlocked
|
|
* lock_flags -- this parameter indicates the inode's locks to be
|
|
* to be unlocked. See the comment for xfs_ilock() for a list
|
|
* of valid values for this parameter.
|
|
*
|
|
*/
|
|
void
|
|
xfs_iunlock(
|
|
xfs_inode_t *ip,
|
|
uint lock_flags)
|
|
{
|
|
/*
|
|
* You can't set both SHARED and EXCL for the same lock,
|
|
* and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
|
|
* and XFS_ILOCK_EXCL are valid values to set in lock_flags.
|
|
*/
|
|
ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
|
|
(XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
|
|
ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
|
|
(XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
|
|
ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_IUNLOCK_NONOTIFY |
|
|
XFS_LOCK_DEP_MASK)) == 0);
|
|
ASSERT(lock_flags != 0);
|
|
|
|
if (lock_flags & XFS_IOLOCK_EXCL)
|
|
mrunlock_excl(&ip->i_iolock);
|
|
else if (lock_flags & XFS_IOLOCK_SHARED)
|
|
mrunlock_shared(&ip->i_iolock);
|
|
|
|
if (lock_flags & XFS_ILOCK_EXCL)
|
|
mrunlock_excl(&ip->i_lock);
|
|
else if (lock_flags & XFS_ILOCK_SHARED)
|
|
mrunlock_shared(&ip->i_lock);
|
|
|
|
if ((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) &&
|
|
!(lock_flags & XFS_IUNLOCK_NONOTIFY) && ip->i_itemp) {
|
|
/*
|
|
* Let the AIL know that this item has been unlocked in case
|
|
* it is in the AIL and anyone is waiting on it. Don't do
|
|
* this if the caller has asked us not to.
|
|
*/
|
|
xfs_trans_unlocked_item(ip->i_itemp->ili_item.li_ailp,
|
|
(xfs_log_item_t*)(ip->i_itemp));
|
|
}
|
|
xfs_ilock_trace(ip, 3, lock_flags, (inst_t *)__return_address);
|
|
}
|
|
|
|
/*
|
|
* give up write locks. the i/o lock cannot be held nested
|
|
* if it is being demoted.
|
|
*/
|
|
void
|
|
xfs_ilock_demote(
|
|
xfs_inode_t *ip,
|
|
uint lock_flags)
|
|
{
|
|
ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL));
|
|
ASSERT((lock_flags & ~(XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
|
|
|
|
if (lock_flags & XFS_ILOCK_EXCL)
|
|
mrdemote(&ip->i_lock);
|
|
if (lock_flags & XFS_IOLOCK_EXCL)
|
|
mrdemote(&ip->i_iolock);
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
/*
|
|
* Debug-only routine, without additional rw_semaphore APIs, we can
|
|
* now only answer requests regarding whether we hold the lock for write
|
|
* (reader state is outside our visibility, we only track writer state).
|
|
*
|
|
* Note: this means !xfs_isilocked would give false positives, so don't do that.
|
|
*/
|
|
int
|
|
xfs_isilocked(
|
|
xfs_inode_t *ip,
|
|
uint lock_flags)
|
|
{
|
|
if ((lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) ==
|
|
XFS_ILOCK_EXCL) {
|
|
if (!ip->i_lock.mr_writer)
|
|
return 0;
|
|
}
|
|
|
|
if ((lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) ==
|
|
XFS_IOLOCK_EXCL) {
|
|
if (!ip->i_iolock.mr_writer)
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
#ifdef XFS_INODE_TRACE
|
|
|
|
#define KTRACE_ENTER(ip, vk, s, line, ra) \
|
|
ktrace_enter((ip)->i_trace, \
|
|
/* 0 */ (void *)(__psint_t)(vk), \
|
|
/* 1 */ (void *)(s), \
|
|
/* 2 */ (void *)(__psint_t) line, \
|
|
/* 3 */ (void *)(__psint_t)atomic_read(&VFS_I(ip)->i_count), \
|
|
/* 4 */ (void *)(ra), \
|
|
/* 5 */ NULL, \
|
|
/* 6 */ (void *)(__psint_t)current_cpu(), \
|
|
/* 7 */ (void *)(__psint_t)current_pid(), \
|
|
/* 8 */ (void *)__return_address, \
|
|
/* 9 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL)
|
|
|
|
/*
|
|
* Vnode tracing code.
|
|
*/
|
|
void
|
|
_xfs_itrace_entry(xfs_inode_t *ip, const char *func, inst_t *ra)
|
|
{
|
|
KTRACE_ENTER(ip, INODE_KTRACE_ENTRY, func, 0, ra);
|
|
}
|
|
|
|
void
|
|
_xfs_itrace_exit(xfs_inode_t *ip, const char *func, inst_t *ra)
|
|
{
|
|
KTRACE_ENTER(ip, INODE_KTRACE_EXIT, func, 0, ra);
|
|
}
|
|
|
|
void
|
|
xfs_itrace_hold(xfs_inode_t *ip, char *file, int line, inst_t *ra)
|
|
{
|
|
KTRACE_ENTER(ip, INODE_KTRACE_HOLD, file, line, ra);
|
|
}
|
|
|
|
void
|
|
_xfs_itrace_ref(xfs_inode_t *ip, char *file, int line, inst_t *ra)
|
|
{
|
|
KTRACE_ENTER(ip, INODE_KTRACE_REF, file, line, ra);
|
|
}
|
|
|
|
void
|
|
xfs_itrace_rele(xfs_inode_t *ip, char *file, int line, inst_t *ra)
|
|
{
|
|
KTRACE_ENTER(ip, INODE_KTRACE_RELE, file, line, ra);
|
|
}
|
|
#endif /* XFS_INODE_TRACE */
|