forked from Minki/linux
f089dcc742
There are no architectures that use include/asm-generic/5level-fixup.h therefore it can be removed along with __ARCH_HAS_5LEVEL_HACK define and the code it surrounds Signed-off-by: Mike Rapoport <rppt@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Brian Cain <bcain@codeaurora.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christophe Leroy <christophe.leroy@c-s.fr> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Geert Uytterhoeven <geert+renesas@glider.be> Cc: Guan Xuetao <gxt@pku.edu.cn> Cc: James Morse <james.morse@arm.com> Cc: Jonas Bonn <jonas@southpole.se> Cc: Julien Thierry <julien.thierry.kdev@gmail.com> Cc: Ley Foon Tan <ley.foon.tan@intel.com> Cc: Marc Zyngier <maz@kernel.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Paul Mackerras <paulus@samba.org> Cc: Rich Felker <dalias@libc.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Stafford Horne <shorne@gmail.com> Cc: Stefan Kristiansson <stefan.kristiansson@saunalahti.fi> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Will Deacon <will@kernel.org> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Link: http://lkml.kernel.org/r/20200414153455.21744-15-rppt@kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
495 lines
11 KiB
C
495 lines
11 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* This file contains some kasan initialization code.
|
|
*
|
|
* Copyright (c) 2015 Samsung Electronics Co., Ltd.
|
|
* Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
*/
|
|
|
|
#include <linux/memblock.h>
|
|
#include <linux/init.h>
|
|
#include <linux/kasan.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/pfn.h>
|
|
#include <linux/slab.h>
|
|
|
|
#include <asm/page.h>
|
|
#include <asm/pgalloc.h>
|
|
|
|
#include "kasan.h"
|
|
|
|
/*
|
|
* This page serves two purposes:
|
|
* - It used as early shadow memory. The entire shadow region populated
|
|
* with this page, before we will be able to setup normal shadow memory.
|
|
* - Latter it reused it as zero shadow to cover large ranges of memory
|
|
* that allowed to access, but not handled by kasan (vmalloc/vmemmap ...).
|
|
*/
|
|
unsigned char kasan_early_shadow_page[PAGE_SIZE] __page_aligned_bss;
|
|
|
|
#if CONFIG_PGTABLE_LEVELS > 4
|
|
p4d_t kasan_early_shadow_p4d[MAX_PTRS_PER_P4D] __page_aligned_bss;
|
|
static inline bool kasan_p4d_table(pgd_t pgd)
|
|
{
|
|
return pgd_page(pgd) == virt_to_page(lm_alias(kasan_early_shadow_p4d));
|
|
}
|
|
#else
|
|
static inline bool kasan_p4d_table(pgd_t pgd)
|
|
{
|
|
return false;
|
|
}
|
|
#endif
|
|
#if CONFIG_PGTABLE_LEVELS > 3
|
|
pud_t kasan_early_shadow_pud[PTRS_PER_PUD] __page_aligned_bss;
|
|
static inline bool kasan_pud_table(p4d_t p4d)
|
|
{
|
|
return p4d_page(p4d) == virt_to_page(lm_alias(kasan_early_shadow_pud));
|
|
}
|
|
#else
|
|
static inline bool kasan_pud_table(p4d_t p4d)
|
|
{
|
|
return false;
|
|
}
|
|
#endif
|
|
#if CONFIG_PGTABLE_LEVELS > 2
|
|
pmd_t kasan_early_shadow_pmd[PTRS_PER_PMD] __page_aligned_bss;
|
|
static inline bool kasan_pmd_table(pud_t pud)
|
|
{
|
|
return pud_page(pud) == virt_to_page(lm_alias(kasan_early_shadow_pmd));
|
|
}
|
|
#else
|
|
static inline bool kasan_pmd_table(pud_t pud)
|
|
{
|
|
return false;
|
|
}
|
|
#endif
|
|
pte_t kasan_early_shadow_pte[PTRS_PER_PTE] __page_aligned_bss;
|
|
|
|
static inline bool kasan_pte_table(pmd_t pmd)
|
|
{
|
|
return pmd_page(pmd) == virt_to_page(lm_alias(kasan_early_shadow_pte));
|
|
}
|
|
|
|
static inline bool kasan_early_shadow_page_entry(pte_t pte)
|
|
{
|
|
return pte_page(pte) == virt_to_page(lm_alias(kasan_early_shadow_page));
|
|
}
|
|
|
|
static __init void *early_alloc(size_t size, int node)
|
|
{
|
|
void *ptr = memblock_alloc_try_nid(size, size, __pa(MAX_DMA_ADDRESS),
|
|
MEMBLOCK_ALLOC_ACCESSIBLE, node);
|
|
|
|
if (!ptr)
|
|
panic("%s: Failed to allocate %zu bytes align=%zx nid=%d from=%llx\n",
|
|
__func__, size, size, node, (u64)__pa(MAX_DMA_ADDRESS));
|
|
|
|
return ptr;
|
|
}
|
|
|
|
static void __ref zero_pte_populate(pmd_t *pmd, unsigned long addr,
|
|
unsigned long end)
|
|
{
|
|
pte_t *pte = pte_offset_kernel(pmd, addr);
|
|
pte_t zero_pte;
|
|
|
|
zero_pte = pfn_pte(PFN_DOWN(__pa_symbol(kasan_early_shadow_page)),
|
|
PAGE_KERNEL);
|
|
zero_pte = pte_wrprotect(zero_pte);
|
|
|
|
while (addr + PAGE_SIZE <= end) {
|
|
set_pte_at(&init_mm, addr, pte, zero_pte);
|
|
addr += PAGE_SIZE;
|
|
pte = pte_offset_kernel(pmd, addr);
|
|
}
|
|
}
|
|
|
|
static int __ref zero_pmd_populate(pud_t *pud, unsigned long addr,
|
|
unsigned long end)
|
|
{
|
|
pmd_t *pmd = pmd_offset(pud, addr);
|
|
unsigned long next;
|
|
|
|
do {
|
|
next = pmd_addr_end(addr, end);
|
|
|
|
if (IS_ALIGNED(addr, PMD_SIZE) && end - addr >= PMD_SIZE) {
|
|
pmd_populate_kernel(&init_mm, pmd,
|
|
lm_alias(kasan_early_shadow_pte));
|
|
continue;
|
|
}
|
|
|
|
if (pmd_none(*pmd)) {
|
|
pte_t *p;
|
|
|
|
if (slab_is_available())
|
|
p = pte_alloc_one_kernel(&init_mm);
|
|
else
|
|
p = early_alloc(PAGE_SIZE, NUMA_NO_NODE);
|
|
if (!p)
|
|
return -ENOMEM;
|
|
|
|
pmd_populate_kernel(&init_mm, pmd, p);
|
|
}
|
|
zero_pte_populate(pmd, addr, next);
|
|
} while (pmd++, addr = next, addr != end);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __ref zero_pud_populate(p4d_t *p4d, unsigned long addr,
|
|
unsigned long end)
|
|
{
|
|
pud_t *pud = pud_offset(p4d, addr);
|
|
unsigned long next;
|
|
|
|
do {
|
|
next = pud_addr_end(addr, end);
|
|
if (IS_ALIGNED(addr, PUD_SIZE) && end - addr >= PUD_SIZE) {
|
|
pmd_t *pmd;
|
|
|
|
pud_populate(&init_mm, pud,
|
|
lm_alias(kasan_early_shadow_pmd));
|
|
pmd = pmd_offset(pud, addr);
|
|
pmd_populate_kernel(&init_mm, pmd,
|
|
lm_alias(kasan_early_shadow_pte));
|
|
continue;
|
|
}
|
|
|
|
if (pud_none(*pud)) {
|
|
pmd_t *p;
|
|
|
|
if (slab_is_available()) {
|
|
p = pmd_alloc(&init_mm, pud, addr);
|
|
if (!p)
|
|
return -ENOMEM;
|
|
} else {
|
|
pud_populate(&init_mm, pud,
|
|
early_alloc(PAGE_SIZE, NUMA_NO_NODE));
|
|
}
|
|
}
|
|
zero_pmd_populate(pud, addr, next);
|
|
} while (pud++, addr = next, addr != end);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __ref zero_p4d_populate(pgd_t *pgd, unsigned long addr,
|
|
unsigned long end)
|
|
{
|
|
p4d_t *p4d = p4d_offset(pgd, addr);
|
|
unsigned long next;
|
|
|
|
do {
|
|
next = p4d_addr_end(addr, end);
|
|
if (IS_ALIGNED(addr, P4D_SIZE) && end - addr >= P4D_SIZE) {
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
|
|
p4d_populate(&init_mm, p4d,
|
|
lm_alias(kasan_early_shadow_pud));
|
|
pud = pud_offset(p4d, addr);
|
|
pud_populate(&init_mm, pud,
|
|
lm_alias(kasan_early_shadow_pmd));
|
|
pmd = pmd_offset(pud, addr);
|
|
pmd_populate_kernel(&init_mm, pmd,
|
|
lm_alias(kasan_early_shadow_pte));
|
|
continue;
|
|
}
|
|
|
|
if (p4d_none(*p4d)) {
|
|
pud_t *p;
|
|
|
|
if (slab_is_available()) {
|
|
p = pud_alloc(&init_mm, p4d, addr);
|
|
if (!p)
|
|
return -ENOMEM;
|
|
} else {
|
|
p4d_populate(&init_mm, p4d,
|
|
early_alloc(PAGE_SIZE, NUMA_NO_NODE));
|
|
}
|
|
}
|
|
zero_pud_populate(p4d, addr, next);
|
|
} while (p4d++, addr = next, addr != end);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* kasan_populate_early_shadow - populate shadow memory region with
|
|
* kasan_early_shadow_page
|
|
* @shadow_start - start of the memory range to populate
|
|
* @shadow_end - end of the memory range to populate
|
|
*/
|
|
int __ref kasan_populate_early_shadow(const void *shadow_start,
|
|
const void *shadow_end)
|
|
{
|
|
unsigned long addr = (unsigned long)shadow_start;
|
|
unsigned long end = (unsigned long)shadow_end;
|
|
pgd_t *pgd = pgd_offset_k(addr);
|
|
unsigned long next;
|
|
|
|
do {
|
|
next = pgd_addr_end(addr, end);
|
|
|
|
if (IS_ALIGNED(addr, PGDIR_SIZE) && end - addr >= PGDIR_SIZE) {
|
|
p4d_t *p4d;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
|
|
/*
|
|
* kasan_early_shadow_pud should be populated with pmds
|
|
* at this moment.
|
|
* [pud,pmd]_populate*() below needed only for
|
|
* 3,2 - level page tables where we don't have
|
|
* puds,pmds, so pgd_populate(), pud_populate()
|
|
* is noops.
|
|
*/
|
|
pgd_populate(&init_mm, pgd,
|
|
lm_alias(kasan_early_shadow_p4d));
|
|
p4d = p4d_offset(pgd, addr);
|
|
p4d_populate(&init_mm, p4d,
|
|
lm_alias(kasan_early_shadow_pud));
|
|
pud = pud_offset(p4d, addr);
|
|
pud_populate(&init_mm, pud,
|
|
lm_alias(kasan_early_shadow_pmd));
|
|
pmd = pmd_offset(pud, addr);
|
|
pmd_populate_kernel(&init_mm, pmd,
|
|
lm_alias(kasan_early_shadow_pte));
|
|
continue;
|
|
}
|
|
|
|
if (pgd_none(*pgd)) {
|
|
p4d_t *p;
|
|
|
|
if (slab_is_available()) {
|
|
p = p4d_alloc(&init_mm, pgd, addr);
|
|
if (!p)
|
|
return -ENOMEM;
|
|
} else {
|
|
pgd_populate(&init_mm, pgd,
|
|
early_alloc(PAGE_SIZE, NUMA_NO_NODE));
|
|
}
|
|
}
|
|
zero_p4d_populate(pgd, addr, next);
|
|
} while (pgd++, addr = next, addr != end);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void kasan_free_pte(pte_t *pte_start, pmd_t *pmd)
|
|
{
|
|
pte_t *pte;
|
|
int i;
|
|
|
|
for (i = 0; i < PTRS_PER_PTE; i++) {
|
|
pte = pte_start + i;
|
|
if (!pte_none(*pte))
|
|
return;
|
|
}
|
|
|
|
pte_free_kernel(&init_mm, (pte_t *)page_to_virt(pmd_page(*pmd)));
|
|
pmd_clear(pmd);
|
|
}
|
|
|
|
static void kasan_free_pmd(pmd_t *pmd_start, pud_t *pud)
|
|
{
|
|
pmd_t *pmd;
|
|
int i;
|
|
|
|
for (i = 0; i < PTRS_PER_PMD; i++) {
|
|
pmd = pmd_start + i;
|
|
if (!pmd_none(*pmd))
|
|
return;
|
|
}
|
|
|
|
pmd_free(&init_mm, (pmd_t *)page_to_virt(pud_page(*pud)));
|
|
pud_clear(pud);
|
|
}
|
|
|
|
static void kasan_free_pud(pud_t *pud_start, p4d_t *p4d)
|
|
{
|
|
pud_t *pud;
|
|
int i;
|
|
|
|
for (i = 0; i < PTRS_PER_PUD; i++) {
|
|
pud = pud_start + i;
|
|
if (!pud_none(*pud))
|
|
return;
|
|
}
|
|
|
|
pud_free(&init_mm, (pud_t *)page_to_virt(p4d_page(*p4d)));
|
|
p4d_clear(p4d);
|
|
}
|
|
|
|
static void kasan_free_p4d(p4d_t *p4d_start, pgd_t *pgd)
|
|
{
|
|
p4d_t *p4d;
|
|
int i;
|
|
|
|
for (i = 0; i < PTRS_PER_P4D; i++) {
|
|
p4d = p4d_start + i;
|
|
if (!p4d_none(*p4d))
|
|
return;
|
|
}
|
|
|
|
p4d_free(&init_mm, (p4d_t *)page_to_virt(pgd_page(*pgd)));
|
|
pgd_clear(pgd);
|
|
}
|
|
|
|
static void kasan_remove_pte_table(pte_t *pte, unsigned long addr,
|
|
unsigned long end)
|
|
{
|
|
unsigned long next;
|
|
|
|
for (; addr < end; addr = next, pte++) {
|
|
next = (addr + PAGE_SIZE) & PAGE_MASK;
|
|
if (next > end)
|
|
next = end;
|
|
|
|
if (!pte_present(*pte))
|
|
continue;
|
|
|
|
if (WARN_ON(!kasan_early_shadow_page_entry(*pte)))
|
|
continue;
|
|
pte_clear(&init_mm, addr, pte);
|
|
}
|
|
}
|
|
|
|
static void kasan_remove_pmd_table(pmd_t *pmd, unsigned long addr,
|
|
unsigned long end)
|
|
{
|
|
unsigned long next;
|
|
|
|
for (; addr < end; addr = next, pmd++) {
|
|
pte_t *pte;
|
|
|
|
next = pmd_addr_end(addr, end);
|
|
|
|
if (!pmd_present(*pmd))
|
|
continue;
|
|
|
|
if (kasan_pte_table(*pmd)) {
|
|
if (IS_ALIGNED(addr, PMD_SIZE) &&
|
|
IS_ALIGNED(next, PMD_SIZE))
|
|
pmd_clear(pmd);
|
|
continue;
|
|
}
|
|
pte = pte_offset_kernel(pmd, addr);
|
|
kasan_remove_pte_table(pte, addr, next);
|
|
kasan_free_pte(pte_offset_kernel(pmd, 0), pmd);
|
|
}
|
|
}
|
|
|
|
static void kasan_remove_pud_table(pud_t *pud, unsigned long addr,
|
|
unsigned long end)
|
|
{
|
|
unsigned long next;
|
|
|
|
for (; addr < end; addr = next, pud++) {
|
|
pmd_t *pmd, *pmd_base;
|
|
|
|
next = pud_addr_end(addr, end);
|
|
|
|
if (!pud_present(*pud))
|
|
continue;
|
|
|
|
if (kasan_pmd_table(*pud)) {
|
|
if (IS_ALIGNED(addr, PUD_SIZE) &&
|
|
IS_ALIGNED(next, PUD_SIZE))
|
|
pud_clear(pud);
|
|
continue;
|
|
}
|
|
pmd = pmd_offset(pud, addr);
|
|
pmd_base = pmd_offset(pud, 0);
|
|
kasan_remove_pmd_table(pmd, addr, next);
|
|
kasan_free_pmd(pmd_base, pud);
|
|
}
|
|
}
|
|
|
|
static void kasan_remove_p4d_table(p4d_t *p4d, unsigned long addr,
|
|
unsigned long end)
|
|
{
|
|
unsigned long next;
|
|
|
|
for (; addr < end; addr = next, p4d++) {
|
|
pud_t *pud;
|
|
|
|
next = p4d_addr_end(addr, end);
|
|
|
|
if (!p4d_present(*p4d))
|
|
continue;
|
|
|
|
if (kasan_pud_table(*p4d)) {
|
|
if (IS_ALIGNED(addr, P4D_SIZE) &&
|
|
IS_ALIGNED(next, P4D_SIZE))
|
|
p4d_clear(p4d);
|
|
continue;
|
|
}
|
|
pud = pud_offset(p4d, addr);
|
|
kasan_remove_pud_table(pud, addr, next);
|
|
kasan_free_pud(pud_offset(p4d, 0), p4d);
|
|
}
|
|
}
|
|
|
|
void kasan_remove_zero_shadow(void *start, unsigned long size)
|
|
{
|
|
unsigned long addr, end, next;
|
|
pgd_t *pgd;
|
|
|
|
addr = (unsigned long)kasan_mem_to_shadow(start);
|
|
end = addr + (size >> KASAN_SHADOW_SCALE_SHIFT);
|
|
|
|
if (WARN_ON((unsigned long)start %
|
|
(KASAN_SHADOW_SCALE_SIZE * PAGE_SIZE)) ||
|
|
WARN_ON(size % (KASAN_SHADOW_SCALE_SIZE * PAGE_SIZE)))
|
|
return;
|
|
|
|
for (; addr < end; addr = next) {
|
|
p4d_t *p4d;
|
|
|
|
next = pgd_addr_end(addr, end);
|
|
|
|
pgd = pgd_offset_k(addr);
|
|
if (!pgd_present(*pgd))
|
|
continue;
|
|
|
|
if (kasan_p4d_table(*pgd)) {
|
|
if (IS_ALIGNED(addr, PGDIR_SIZE) &&
|
|
IS_ALIGNED(next, PGDIR_SIZE))
|
|
pgd_clear(pgd);
|
|
continue;
|
|
}
|
|
|
|
p4d = p4d_offset(pgd, addr);
|
|
kasan_remove_p4d_table(p4d, addr, next);
|
|
kasan_free_p4d(p4d_offset(pgd, 0), pgd);
|
|
}
|
|
}
|
|
|
|
int kasan_add_zero_shadow(void *start, unsigned long size)
|
|
{
|
|
int ret;
|
|
void *shadow_start, *shadow_end;
|
|
|
|
shadow_start = kasan_mem_to_shadow(start);
|
|
shadow_end = shadow_start + (size >> KASAN_SHADOW_SCALE_SHIFT);
|
|
|
|
if (WARN_ON((unsigned long)start %
|
|
(KASAN_SHADOW_SCALE_SIZE * PAGE_SIZE)) ||
|
|
WARN_ON(size % (KASAN_SHADOW_SCALE_SIZE * PAGE_SIZE)))
|
|
return -EINVAL;
|
|
|
|
ret = kasan_populate_early_shadow(shadow_start, shadow_end);
|
|
if (ret)
|
|
kasan_remove_zero_shadow(shadow_start,
|
|
size >> KASAN_SHADOW_SCALE_SHIFT);
|
|
return ret;
|
|
}
|