a84d116916
Dealing with 'struct timeval' users in the y2038 series is a bit tricky: We have two definitions of timeval that are visible to user space, one comes from glibc (or some other C library), the other comes from linux/time.h. The kernel copy is what we want to be used for a number of structures defined by the kernel itself, e.g. elf_prstatus (used it core dumps), sysinfo and rusage (used in system calls). These generally tend to be used for passing time intervals rather than absolute (epoch-based) times, so they do not suffer from the y2038 overflow. Some of them could be changed to use 64-bit timestamps by creating new system calls, others like the core files cannot easily be changed. An application using these interfaces likely also uses gettimeofday() or other interfaces that use absolute times, and pass 'struct timeval' pointers directly into kernel interfaces, so glibc must redefine their timeval based on a 64-bit time_t when they introduce their y2038-safe interfaces. The only reasonable way forward I see is to remove the 'timeval' definion from the kernel's uapi headers, and change the interfaces that we do not want to (or cannot) duplicate for 64-bit times to use a new __kernel_old_timeval definition instead. This type should be avoided for all new interfaces (those can use 64-bit nanoseconds, or the 64-bit version of timespec instead), and should be used with great care when converting existing interfaces from timeval, to be sure they don't suffer from the y2038 overflow, and only with consensus for the particular user that using __kernel_old_timeval is better than moving to a 64-bit based interface. The structure name is intentionally chosen to not conflict with user space types, and to be ugly enough to discourage its use. Note that ioctl based interfaces that pass a bare 'timeval' pointer cannot change to '__kernel_old_timeval' because the user space source code refers to 'timeval' instead, and we don't want to modify the user space sources if possible. However, any application that relies on a structure to contain an embedded 'timeval' (e.g. by passing a pointer to the member into a function call that expects a timeval pointer) is broken when that structure gets converted to __kernel_old_timeval. I don't see any way around that, and we have to rely on the compiler to produce a warning or compile failure that will alert users when they recompile their sources against a new libc. Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Stephen Boyd <sboyd@kernel.org> Cc: John Stultz <john.stultz@linaro.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Link: https://lkml.kernel.org/r/20180315161739.576085-1-arnd@arndb.de
912 lines
22 KiB
C
912 lines
22 KiB
C
/*
|
|
* linux/kernel/time.c
|
|
*
|
|
* Copyright (C) 1991, 1992 Linus Torvalds
|
|
*
|
|
* This file contains the interface functions for the various
|
|
* time related system calls: time, stime, gettimeofday, settimeofday,
|
|
* adjtime
|
|
*/
|
|
/*
|
|
* Modification history kernel/time.c
|
|
*
|
|
* 1993-09-02 Philip Gladstone
|
|
* Created file with time related functions from sched/core.c and adjtimex()
|
|
* 1993-10-08 Torsten Duwe
|
|
* adjtime interface update and CMOS clock write code
|
|
* 1995-08-13 Torsten Duwe
|
|
* kernel PLL updated to 1994-12-13 specs (rfc-1589)
|
|
* 1999-01-16 Ulrich Windl
|
|
* Introduced error checking for many cases in adjtimex().
|
|
* Updated NTP code according to technical memorandum Jan '96
|
|
* "A Kernel Model for Precision Timekeeping" by Dave Mills
|
|
* Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
|
|
* (Even though the technical memorandum forbids it)
|
|
* 2004-07-14 Christoph Lameter
|
|
* Added getnstimeofday to allow the posix timer functions to return
|
|
* with nanosecond accuracy
|
|
*/
|
|
|
|
#include <linux/export.h>
|
|
#include <linux/timex.h>
|
|
#include <linux/capability.h>
|
|
#include <linux/timekeeper_internal.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/security.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/math64.h>
|
|
#include <linux/ptrace.h>
|
|
|
|
#include <linux/uaccess.h>
|
|
#include <linux/compat.h>
|
|
#include <asm/unistd.h>
|
|
|
|
#include <generated/timeconst.h>
|
|
#include "timekeeping.h"
|
|
|
|
/*
|
|
* The timezone where the local system is located. Used as a default by some
|
|
* programs who obtain this value by using gettimeofday.
|
|
*/
|
|
struct timezone sys_tz;
|
|
|
|
EXPORT_SYMBOL(sys_tz);
|
|
|
|
#ifdef __ARCH_WANT_SYS_TIME
|
|
|
|
/*
|
|
* sys_time() can be implemented in user-level using
|
|
* sys_gettimeofday(). Is this for backwards compatibility? If so,
|
|
* why not move it into the appropriate arch directory (for those
|
|
* architectures that need it).
|
|
*/
|
|
SYSCALL_DEFINE1(time, time_t __user *, tloc)
|
|
{
|
|
time_t i = get_seconds();
|
|
|
|
if (tloc) {
|
|
if (put_user(i,tloc))
|
|
return -EFAULT;
|
|
}
|
|
force_successful_syscall_return();
|
|
return i;
|
|
}
|
|
|
|
/*
|
|
* sys_stime() can be implemented in user-level using
|
|
* sys_settimeofday(). Is this for backwards compatibility? If so,
|
|
* why not move it into the appropriate arch directory (for those
|
|
* architectures that need it).
|
|
*/
|
|
|
|
SYSCALL_DEFINE1(stime, time_t __user *, tptr)
|
|
{
|
|
struct timespec64 tv;
|
|
int err;
|
|
|
|
if (get_user(tv.tv_sec, tptr))
|
|
return -EFAULT;
|
|
|
|
tv.tv_nsec = 0;
|
|
|
|
err = security_settime64(&tv, NULL);
|
|
if (err)
|
|
return err;
|
|
|
|
do_settimeofday64(&tv);
|
|
return 0;
|
|
}
|
|
|
|
#endif /* __ARCH_WANT_SYS_TIME */
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
#ifdef __ARCH_WANT_COMPAT_SYS_TIME
|
|
|
|
/* compat_time_t is a 32 bit "long" and needs to get converted. */
|
|
COMPAT_SYSCALL_DEFINE1(time, compat_time_t __user *, tloc)
|
|
{
|
|
struct timeval tv;
|
|
compat_time_t i;
|
|
|
|
do_gettimeofday(&tv);
|
|
i = tv.tv_sec;
|
|
|
|
if (tloc) {
|
|
if (put_user(i,tloc))
|
|
return -EFAULT;
|
|
}
|
|
force_successful_syscall_return();
|
|
return i;
|
|
}
|
|
|
|
COMPAT_SYSCALL_DEFINE1(stime, compat_time_t __user *, tptr)
|
|
{
|
|
struct timespec64 tv;
|
|
int err;
|
|
|
|
if (get_user(tv.tv_sec, tptr))
|
|
return -EFAULT;
|
|
|
|
tv.tv_nsec = 0;
|
|
|
|
err = security_settime64(&tv, NULL);
|
|
if (err)
|
|
return err;
|
|
|
|
do_settimeofday64(&tv);
|
|
return 0;
|
|
}
|
|
|
|
#endif /* __ARCH_WANT_COMPAT_SYS_TIME */
|
|
#endif
|
|
|
|
SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
|
|
struct timezone __user *, tz)
|
|
{
|
|
if (likely(tv != NULL)) {
|
|
struct timeval ktv;
|
|
do_gettimeofday(&ktv);
|
|
if (copy_to_user(tv, &ktv, sizeof(ktv)))
|
|
return -EFAULT;
|
|
}
|
|
if (unlikely(tz != NULL)) {
|
|
if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
|
|
return -EFAULT;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* In case for some reason the CMOS clock has not already been running
|
|
* in UTC, but in some local time: The first time we set the timezone,
|
|
* we will warp the clock so that it is ticking UTC time instead of
|
|
* local time. Presumably, if someone is setting the timezone then we
|
|
* are running in an environment where the programs understand about
|
|
* timezones. This should be done at boot time in the /etc/rc script,
|
|
* as soon as possible, so that the clock can be set right. Otherwise,
|
|
* various programs will get confused when the clock gets warped.
|
|
*/
|
|
|
|
int do_sys_settimeofday64(const struct timespec64 *tv, const struct timezone *tz)
|
|
{
|
|
static int firsttime = 1;
|
|
int error = 0;
|
|
|
|
if (tv && !timespec64_valid(tv))
|
|
return -EINVAL;
|
|
|
|
error = security_settime64(tv, tz);
|
|
if (error)
|
|
return error;
|
|
|
|
if (tz) {
|
|
/* Verify we're witin the +-15 hrs range */
|
|
if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60)
|
|
return -EINVAL;
|
|
|
|
sys_tz = *tz;
|
|
update_vsyscall_tz();
|
|
if (firsttime) {
|
|
firsttime = 0;
|
|
if (!tv)
|
|
timekeeping_warp_clock();
|
|
}
|
|
}
|
|
if (tv)
|
|
return do_settimeofday64(tv);
|
|
return 0;
|
|
}
|
|
|
|
SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
|
|
struct timezone __user *, tz)
|
|
{
|
|
struct timespec64 new_ts;
|
|
struct timeval user_tv;
|
|
struct timezone new_tz;
|
|
|
|
if (tv) {
|
|
if (copy_from_user(&user_tv, tv, sizeof(*tv)))
|
|
return -EFAULT;
|
|
|
|
if (!timeval_valid(&user_tv))
|
|
return -EINVAL;
|
|
|
|
new_ts.tv_sec = user_tv.tv_sec;
|
|
new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
|
|
}
|
|
if (tz) {
|
|
if (copy_from_user(&new_tz, tz, sizeof(*tz)))
|
|
return -EFAULT;
|
|
}
|
|
|
|
return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
|
|
}
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
COMPAT_SYSCALL_DEFINE2(gettimeofday, struct compat_timeval __user *, tv,
|
|
struct timezone __user *, tz)
|
|
{
|
|
if (tv) {
|
|
struct timeval ktv;
|
|
|
|
do_gettimeofday(&ktv);
|
|
if (compat_put_timeval(&ktv, tv))
|
|
return -EFAULT;
|
|
}
|
|
if (tz) {
|
|
if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
|
|
return -EFAULT;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
COMPAT_SYSCALL_DEFINE2(settimeofday, struct compat_timeval __user *, tv,
|
|
struct timezone __user *, tz)
|
|
{
|
|
struct timespec64 new_ts;
|
|
struct timeval user_tv;
|
|
struct timezone new_tz;
|
|
|
|
if (tv) {
|
|
if (compat_get_timeval(&user_tv, tv))
|
|
return -EFAULT;
|
|
new_ts.tv_sec = user_tv.tv_sec;
|
|
new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
|
|
}
|
|
if (tz) {
|
|
if (copy_from_user(&new_tz, tz, sizeof(*tz)))
|
|
return -EFAULT;
|
|
}
|
|
|
|
return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
|
|
}
|
|
#endif
|
|
|
|
SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
|
|
{
|
|
struct timex txc; /* Local copy of parameter */
|
|
int ret;
|
|
|
|
/* Copy the user data space into the kernel copy
|
|
* structure. But bear in mind that the structures
|
|
* may change
|
|
*/
|
|
if (copy_from_user(&txc, txc_p, sizeof(struct timex)))
|
|
return -EFAULT;
|
|
ret = do_adjtimex(&txc);
|
|
return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
|
|
}
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
|
|
COMPAT_SYSCALL_DEFINE1(adjtimex, struct compat_timex __user *, utp)
|
|
{
|
|
struct timex txc;
|
|
int err, ret;
|
|
|
|
err = compat_get_timex(&txc, utp);
|
|
if (err)
|
|
return err;
|
|
|
|
ret = do_adjtimex(&txc);
|
|
|
|
err = compat_put_timex(utp, &txc);
|
|
if (err)
|
|
return err;
|
|
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Convert jiffies to milliseconds and back.
|
|
*
|
|
* Avoid unnecessary multiplications/divisions in the
|
|
* two most common HZ cases:
|
|
*/
|
|
unsigned int jiffies_to_msecs(const unsigned long j)
|
|
{
|
|
#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
|
|
return (MSEC_PER_SEC / HZ) * j;
|
|
#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
|
|
return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
|
|
#else
|
|
# if BITS_PER_LONG == 32
|
|
return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
|
|
# else
|
|
return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
|
|
# endif
|
|
#endif
|
|
}
|
|
EXPORT_SYMBOL(jiffies_to_msecs);
|
|
|
|
unsigned int jiffies_to_usecs(const unsigned long j)
|
|
{
|
|
/*
|
|
* Hz usually doesn't go much further MSEC_PER_SEC.
|
|
* jiffies_to_usecs() and usecs_to_jiffies() depend on that.
|
|
*/
|
|
BUILD_BUG_ON(HZ > USEC_PER_SEC);
|
|
|
|
#if !(USEC_PER_SEC % HZ)
|
|
return (USEC_PER_SEC / HZ) * j;
|
|
#else
|
|
# if BITS_PER_LONG == 32
|
|
return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
|
|
# else
|
|
return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
|
|
# endif
|
|
#endif
|
|
}
|
|
EXPORT_SYMBOL(jiffies_to_usecs);
|
|
|
|
/**
|
|
* timespec_trunc - Truncate timespec to a granularity
|
|
* @t: Timespec
|
|
* @gran: Granularity in ns.
|
|
*
|
|
* Truncate a timespec to a granularity. Always rounds down. gran must
|
|
* not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
|
|
*/
|
|
struct timespec timespec_trunc(struct timespec t, unsigned gran)
|
|
{
|
|
/* Avoid division in the common cases 1 ns and 1 s. */
|
|
if (gran == 1) {
|
|
/* nothing */
|
|
} else if (gran == NSEC_PER_SEC) {
|
|
t.tv_nsec = 0;
|
|
} else if (gran > 1 && gran < NSEC_PER_SEC) {
|
|
t.tv_nsec -= t.tv_nsec % gran;
|
|
} else {
|
|
WARN(1, "illegal file time granularity: %u", gran);
|
|
}
|
|
return t;
|
|
}
|
|
EXPORT_SYMBOL(timespec_trunc);
|
|
|
|
/*
|
|
* mktime64 - Converts date to seconds.
|
|
* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
|
|
* Assumes input in normal date format, i.e. 1980-12-31 23:59:59
|
|
* => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
|
|
*
|
|
* [For the Julian calendar (which was used in Russia before 1917,
|
|
* Britain & colonies before 1752, anywhere else before 1582,
|
|
* and is still in use by some communities) leave out the
|
|
* -year/100+year/400 terms, and add 10.]
|
|
*
|
|
* This algorithm was first published by Gauss (I think).
|
|
*
|
|
* A leap second can be indicated by calling this function with sec as
|
|
* 60 (allowable under ISO 8601). The leap second is treated the same
|
|
* as the following second since they don't exist in UNIX time.
|
|
*
|
|
* An encoding of midnight at the end of the day as 24:00:00 - ie. midnight
|
|
* tomorrow - (allowable under ISO 8601) is supported.
|
|
*/
|
|
time64_t mktime64(const unsigned int year0, const unsigned int mon0,
|
|
const unsigned int day, const unsigned int hour,
|
|
const unsigned int min, const unsigned int sec)
|
|
{
|
|
unsigned int mon = mon0, year = year0;
|
|
|
|
/* 1..12 -> 11,12,1..10 */
|
|
if (0 >= (int) (mon -= 2)) {
|
|
mon += 12; /* Puts Feb last since it has leap day */
|
|
year -= 1;
|
|
}
|
|
|
|
return ((((time64_t)
|
|
(year/4 - year/100 + year/400 + 367*mon/12 + day) +
|
|
year*365 - 719499
|
|
)*24 + hour /* now have hours - midnight tomorrow handled here */
|
|
)*60 + min /* now have minutes */
|
|
)*60 + sec; /* finally seconds */
|
|
}
|
|
EXPORT_SYMBOL(mktime64);
|
|
|
|
#if __BITS_PER_LONG == 32
|
|
/**
|
|
* set_normalized_timespec - set timespec sec and nsec parts and normalize
|
|
*
|
|
* @ts: pointer to timespec variable to be set
|
|
* @sec: seconds to set
|
|
* @nsec: nanoseconds to set
|
|
*
|
|
* Set seconds and nanoseconds field of a timespec variable and
|
|
* normalize to the timespec storage format
|
|
*
|
|
* Note: The tv_nsec part is always in the range of
|
|
* 0 <= tv_nsec < NSEC_PER_SEC
|
|
* For negative values only the tv_sec field is negative !
|
|
*/
|
|
void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
|
|
{
|
|
while (nsec >= NSEC_PER_SEC) {
|
|
/*
|
|
* The following asm() prevents the compiler from
|
|
* optimising this loop into a modulo operation. See
|
|
* also __iter_div_u64_rem() in include/linux/time.h
|
|
*/
|
|
asm("" : "+rm"(nsec));
|
|
nsec -= NSEC_PER_SEC;
|
|
++sec;
|
|
}
|
|
while (nsec < 0) {
|
|
asm("" : "+rm"(nsec));
|
|
nsec += NSEC_PER_SEC;
|
|
--sec;
|
|
}
|
|
ts->tv_sec = sec;
|
|
ts->tv_nsec = nsec;
|
|
}
|
|
EXPORT_SYMBOL(set_normalized_timespec);
|
|
|
|
/**
|
|
* ns_to_timespec - Convert nanoseconds to timespec
|
|
* @nsec: the nanoseconds value to be converted
|
|
*
|
|
* Returns the timespec representation of the nsec parameter.
|
|
*/
|
|
struct timespec ns_to_timespec(const s64 nsec)
|
|
{
|
|
struct timespec ts;
|
|
s32 rem;
|
|
|
|
if (!nsec)
|
|
return (struct timespec) {0, 0};
|
|
|
|
ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
|
|
if (unlikely(rem < 0)) {
|
|
ts.tv_sec--;
|
|
rem += NSEC_PER_SEC;
|
|
}
|
|
ts.tv_nsec = rem;
|
|
|
|
return ts;
|
|
}
|
|
EXPORT_SYMBOL(ns_to_timespec);
|
|
#endif
|
|
|
|
/**
|
|
* ns_to_timeval - Convert nanoseconds to timeval
|
|
* @nsec: the nanoseconds value to be converted
|
|
*
|
|
* Returns the timeval representation of the nsec parameter.
|
|
*/
|
|
struct timeval ns_to_timeval(const s64 nsec)
|
|
{
|
|
struct timespec ts = ns_to_timespec(nsec);
|
|
struct timeval tv;
|
|
|
|
tv.tv_sec = ts.tv_sec;
|
|
tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
|
|
|
|
return tv;
|
|
}
|
|
EXPORT_SYMBOL(ns_to_timeval);
|
|
|
|
struct __kernel_old_timeval ns_to_kernel_old_timeval(const s64 nsec)
|
|
{
|
|
struct timespec64 ts = ns_to_timespec64(nsec);
|
|
struct __kernel_old_timeval tv;
|
|
|
|
tv.tv_sec = ts.tv_sec;
|
|
tv.tv_usec = (suseconds_t)ts.tv_nsec / 1000;
|
|
|
|
return tv;
|
|
}
|
|
EXPORT_SYMBOL(ns_to_kernel_old_timeval);
|
|
|
|
/**
|
|
* set_normalized_timespec - set timespec sec and nsec parts and normalize
|
|
*
|
|
* @ts: pointer to timespec variable to be set
|
|
* @sec: seconds to set
|
|
* @nsec: nanoseconds to set
|
|
*
|
|
* Set seconds and nanoseconds field of a timespec variable and
|
|
* normalize to the timespec storage format
|
|
*
|
|
* Note: The tv_nsec part is always in the range of
|
|
* 0 <= tv_nsec < NSEC_PER_SEC
|
|
* For negative values only the tv_sec field is negative !
|
|
*/
|
|
void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
|
|
{
|
|
while (nsec >= NSEC_PER_SEC) {
|
|
/*
|
|
* The following asm() prevents the compiler from
|
|
* optimising this loop into a modulo operation. See
|
|
* also __iter_div_u64_rem() in include/linux/time.h
|
|
*/
|
|
asm("" : "+rm"(nsec));
|
|
nsec -= NSEC_PER_SEC;
|
|
++sec;
|
|
}
|
|
while (nsec < 0) {
|
|
asm("" : "+rm"(nsec));
|
|
nsec += NSEC_PER_SEC;
|
|
--sec;
|
|
}
|
|
ts->tv_sec = sec;
|
|
ts->tv_nsec = nsec;
|
|
}
|
|
EXPORT_SYMBOL(set_normalized_timespec64);
|
|
|
|
/**
|
|
* ns_to_timespec64 - Convert nanoseconds to timespec64
|
|
* @nsec: the nanoseconds value to be converted
|
|
*
|
|
* Returns the timespec64 representation of the nsec parameter.
|
|
*/
|
|
struct timespec64 ns_to_timespec64(const s64 nsec)
|
|
{
|
|
struct timespec64 ts;
|
|
s32 rem;
|
|
|
|
if (!nsec)
|
|
return (struct timespec64) {0, 0};
|
|
|
|
ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
|
|
if (unlikely(rem < 0)) {
|
|
ts.tv_sec--;
|
|
rem += NSEC_PER_SEC;
|
|
}
|
|
ts.tv_nsec = rem;
|
|
|
|
return ts;
|
|
}
|
|
EXPORT_SYMBOL(ns_to_timespec64);
|
|
|
|
/**
|
|
* msecs_to_jiffies: - convert milliseconds to jiffies
|
|
* @m: time in milliseconds
|
|
*
|
|
* conversion is done as follows:
|
|
*
|
|
* - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
|
|
*
|
|
* - 'too large' values [that would result in larger than
|
|
* MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
|
|
*
|
|
* - all other values are converted to jiffies by either multiplying
|
|
* the input value by a factor or dividing it with a factor and
|
|
* handling any 32-bit overflows.
|
|
* for the details see __msecs_to_jiffies()
|
|
*
|
|
* msecs_to_jiffies() checks for the passed in value being a constant
|
|
* via __builtin_constant_p() allowing gcc to eliminate most of the
|
|
* code, __msecs_to_jiffies() is called if the value passed does not
|
|
* allow constant folding and the actual conversion must be done at
|
|
* runtime.
|
|
* the _msecs_to_jiffies helpers are the HZ dependent conversion
|
|
* routines found in include/linux/jiffies.h
|
|
*/
|
|
unsigned long __msecs_to_jiffies(const unsigned int m)
|
|
{
|
|
/*
|
|
* Negative value, means infinite timeout:
|
|
*/
|
|
if ((int)m < 0)
|
|
return MAX_JIFFY_OFFSET;
|
|
return _msecs_to_jiffies(m);
|
|
}
|
|
EXPORT_SYMBOL(__msecs_to_jiffies);
|
|
|
|
unsigned long __usecs_to_jiffies(const unsigned int u)
|
|
{
|
|
if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
|
|
return MAX_JIFFY_OFFSET;
|
|
return _usecs_to_jiffies(u);
|
|
}
|
|
EXPORT_SYMBOL(__usecs_to_jiffies);
|
|
|
|
/*
|
|
* The TICK_NSEC - 1 rounds up the value to the next resolution. Note
|
|
* that a remainder subtract here would not do the right thing as the
|
|
* resolution values don't fall on second boundries. I.e. the line:
|
|
* nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
|
|
* Note that due to the small error in the multiplier here, this
|
|
* rounding is incorrect for sufficiently large values of tv_nsec, but
|
|
* well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
|
|
* OK.
|
|
*
|
|
* Rather, we just shift the bits off the right.
|
|
*
|
|
* The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
|
|
* value to a scaled second value.
|
|
*/
|
|
static unsigned long
|
|
__timespec64_to_jiffies(u64 sec, long nsec)
|
|
{
|
|
nsec = nsec + TICK_NSEC - 1;
|
|
|
|
if (sec >= MAX_SEC_IN_JIFFIES){
|
|
sec = MAX_SEC_IN_JIFFIES;
|
|
nsec = 0;
|
|
}
|
|
return ((sec * SEC_CONVERSION) +
|
|
(((u64)nsec * NSEC_CONVERSION) >>
|
|
(NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
|
|
|
|
}
|
|
|
|
static unsigned long
|
|
__timespec_to_jiffies(unsigned long sec, long nsec)
|
|
{
|
|
return __timespec64_to_jiffies((u64)sec, nsec);
|
|
}
|
|
|
|
unsigned long
|
|
timespec64_to_jiffies(const struct timespec64 *value)
|
|
{
|
|
return __timespec64_to_jiffies(value->tv_sec, value->tv_nsec);
|
|
}
|
|
EXPORT_SYMBOL(timespec64_to_jiffies);
|
|
|
|
void
|
|
jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value)
|
|
{
|
|
/*
|
|
* Convert jiffies to nanoseconds and separate with
|
|
* one divide.
|
|
*/
|
|
u32 rem;
|
|
value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
|
|
NSEC_PER_SEC, &rem);
|
|
value->tv_nsec = rem;
|
|
}
|
|
EXPORT_SYMBOL(jiffies_to_timespec64);
|
|
|
|
/*
|
|
* We could use a similar algorithm to timespec_to_jiffies (with a
|
|
* different multiplier for usec instead of nsec). But this has a
|
|
* problem with rounding: we can't exactly add TICK_NSEC - 1 to the
|
|
* usec value, since it's not necessarily integral.
|
|
*
|
|
* We could instead round in the intermediate scaled representation
|
|
* (i.e. in units of 1/2^(large scale) jiffies) but that's also
|
|
* perilous: the scaling introduces a small positive error, which
|
|
* combined with a division-rounding-upward (i.e. adding 2^(scale) - 1
|
|
* units to the intermediate before shifting) leads to accidental
|
|
* overflow and overestimates.
|
|
*
|
|
* At the cost of one additional multiplication by a constant, just
|
|
* use the timespec implementation.
|
|
*/
|
|
unsigned long
|
|
timeval_to_jiffies(const struct timeval *value)
|
|
{
|
|
return __timespec_to_jiffies(value->tv_sec,
|
|
value->tv_usec * NSEC_PER_USEC);
|
|
}
|
|
EXPORT_SYMBOL(timeval_to_jiffies);
|
|
|
|
void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
|
|
{
|
|
/*
|
|
* Convert jiffies to nanoseconds and separate with
|
|
* one divide.
|
|
*/
|
|
u32 rem;
|
|
|
|
value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
|
|
NSEC_PER_SEC, &rem);
|
|
value->tv_usec = rem / NSEC_PER_USEC;
|
|
}
|
|
EXPORT_SYMBOL(jiffies_to_timeval);
|
|
|
|
/*
|
|
* Convert jiffies/jiffies_64 to clock_t and back.
|
|
*/
|
|
clock_t jiffies_to_clock_t(unsigned long x)
|
|
{
|
|
#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
|
|
# if HZ < USER_HZ
|
|
return x * (USER_HZ / HZ);
|
|
# else
|
|
return x / (HZ / USER_HZ);
|
|
# endif
|
|
#else
|
|
return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
|
|
#endif
|
|
}
|
|
EXPORT_SYMBOL(jiffies_to_clock_t);
|
|
|
|
unsigned long clock_t_to_jiffies(unsigned long x)
|
|
{
|
|
#if (HZ % USER_HZ)==0
|
|
if (x >= ~0UL / (HZ / USER_HZ))
|
|
return ~0UL;
|
|
return x * (HZ / USER_HZ);
|
|
#else
|
|
/* Don't worry about loss of precision here .. */
|
|
if (x >= ~0UL / HZ * USER_HZ)
|
|
return ~0UL;
|
|
|
|
/* .. but do try to contain it here */
|
|
return div_u64((u64)x * HZ, USER_HZ);
|
|
#endif
|
|
}
|
|
EXPORT_SYMBOL(clock_t_to_jiffies);
|
|
|
|
u64 jiffies_64_to_clock_t(u64 x)
|
|
{
|
|
#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
|
|
# if HZ < USER_HZ
|
|
x = div_u64(x * USER_HZ, HZ);
|
|
# elif HZ > USER_HZ
|
|
x = div_u64(x, HZ / USER_HZ);
|
|
# else
|
|
/* Nothing to do */
|
|
# endif
|
|
#else
|
|
/*
|
|
* There are better ways that don't overflow early,
|
|
* but even this doesn't overflow in hundreds of years
|
|
* in 64 bits, so..
|
|
*/
|
|
x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
|
|
#endif
|
|
return x;
|
|
}
|
|
EXPORT_SYMBOL(jiffies_64_to_clock_t);
|
|
|
|
u64 nsec_to_clock_t(u64 x)
|
|
{
|
|
#if (NSEC_PER_SEC % USER_HZ) == 0
|
|
return div_u64(x, NSEC_PER_SEC / USER_HZ);
|
|
#elif (USER_HZ % 512) == 0
|
|
return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
|
|
#else
|
|
/*
|
|
* max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
|
|
* overflow after 64.99 years.
|
|
* exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
|
|
*/
|
|
return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
|
|
#endif
|
|
}
|
|
|
|
u64 jiffies64_to_nsecs(u64 j)
|
|
{
|
|
#if !(NSEC_PER_SEC % HZ)
|
|
return (NSEC_PER_SEC / HZ) * j;
|
|
# else
|
|
return div_u64(j * HZ_TO_NSEC_NUM, HZ_TO_NSEC_DEN);
|
|
#endif
|
|
}
|
|
EXPORT_SYMBOL(jiffies64_to_nsecs);
|
|
|
|
/**
|
|
* nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
|
|
*
|
|
* @n: nsecs in u64
|
|
*
|
|
* Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
|
|
* And this doesn't return MAX_JIFFY_OFFSET since this function is designed
|
|
* for scheduler, not for use in device drivers to calculate timeout value.
|
|
*
|
|
* note:
|
|
* NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
|
|
* ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
|
|
*/
|
|
u64 nsecs_to_jiffies64(u64 n)
|
|
{
|
|
#if (NSEC_PER_SEC % HZ) == 0
|
|
/* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
|
|
return div_u64(n, NSEC_PER_SEC / HZ);
|
|
#elif (HZ % 512) == 0
|
|
/* overflow after 292 years if HZ = 1024 */
|
|
return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
|
|
#else
|
|
/*
|
|
* Generic case - optimized for cases where HZ is a multiple of 3.
|
|
* overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
|
|
*/
|
|
return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
|
|
#endif
|
|
}
|
|
EXPORT_SYMBOL(nsecs_to_jiffies64);
|
|
|
|
/**
|
|
* nsecs_to_jiffies - Convert nsecs in u64 to jiffies
|
|
*
|
|
* @n: nsecs in u64
|
|
*
|
|
* Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
|
|
* And this doesn't return MAX_JIFFY_OFFSET since this function is designed
|
|
* for scheduler, not for use in device drivers to calculate timeout value.
|
|
*
|
|
* note:
|
|
* NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
|
|
* ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
|
|
*/
|
|
unsigned long nsecs_to_jiffies(u64 n)
|
|
{
|
|
return (unsigned long)nsecs_to_jiffies64(n);
|
|
}
|
|
EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
|
|
|
|
/*
|
|
* Add two timespec64 values and do a safety check for overflow.
|
|
* It's assumed that both values are valid (>= 0).
|
|
* And, each timespec64 is in normalized form.
|
|
*/
|
|
struct timespec64 timespec64_add_safe(const struct timespec64 lhs,
|
|
const struct timespec64 rhs)
|
|
{
|
|
struct timespec64 res;
|
|
|
|
set_normalized_timespec64(&res, (timeu64_t) lhs.tv_sec + rhs.tv_sec,
|
|
lhs.tv_nsec + rhs.tv_nsec);
|
|
|
|
if (unlikely(res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)) {
|
|
res.tv_sec = TIME64_MAX;
|
|
res.tv_nsec = 0;
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
int get_timespec64(struct timespec64 *ts,
|
|
const struct timespec __user *uts)
|
|
{
|
|
struct timespec kts;
|
|
int ret;
|
|
|
|
ret = copy_from_user(&kts, uts, sizeof(kts));
|
|
if (ret)
|
|
return -EFAULT;
|
|
|
|
ts->tv_sec = kts.tv_sec;
|
|
ts->tv_nsec = kts.tv_nsec;
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(get_timespec64);
|
|
|
|
int put_timespec64(const struct timespec64 *ts,
|
|
struct timespec __user *uts)
|
|
{
|
|
struct timespec kts = {
|
|
.tv_sec = ts->tv_sec,
|
|
.tv_nsec = ts->tv_nsec
|
|
};
|
|
return copy_to_user(uts, &kts, sizeof(kts)) ? -EFAULT : 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(put_timespec64);
|
|
|
|
int get_itimerspec64(struct itimerspec64 *it,
|
|
const struct itimerspec __user *uit)
|
|
{
|
|
int ret;
|
|
|
|
ret = get_timespec64(&it->it_interval, &uit->it_interval);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = get_timespec64(&it->it_value, &uit->it_value);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(get_itimerspec64);
|
|
|
|
int put_itimerspec64(const struct itimerspec64 *it,
|
|
struct itimerspec __user *uit)
|
|
{
|
|
int ret;
|
|
|
|
ret = put_timespec64(&it->it_interval, &uit->it_interval);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = put_timespec64(&it->it_value, &uit->it_value);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(put_itimerspec64);
|