linux/drivers/gpu/drm/i915/intel_display.c
Daniel Vetter a1ceb67751 Merge the modeset-rework, basic conversion into drm-intel-next
As a quick reference I'll detail the motivation and design of the new code a
bit here (mostly stitched together from patchbomb announcements and commits
introducing the new concepts).

The crtc helper code has the fundamental assumption that encoders and crtcs can
be enabled/disabled in any order, as long as we take care of depencies (which
means that enabled encoders need an enabled crtc to feed them data,
essentially).

Our hw works differently. We already have tons of ugly cases where crtc code
enables encoder hw (or encoder->mode_set enables stuff that should only be
enabled in enocder->commit) to work around these issues. But on the disable
side we can't pull off similar tricks - there we actually need to rework the
modeset sequence that controls all this. And this is also the real motivation
why I've finally undertaken this rewrite: eDP on my shiny new Ivybridge
Ultrabook is broken, and it's broken due to the wrong disable sequence ...

The new code introduces a few interfaces and concepts:

- Add new encoder->enable/disable functions which are directly called from the
crtc->enable/disable function. This ensures that the encoder's can be
enabled/disabled at a very specific in the modeset sequence, controlled by our
platform specific code (instead of the crtc helper code calling them at a time
it deems convenient).

- Rework the dpms code - our code has mostly 1:1 connector:encoder mappings and
does support cloning on only a few encoders, so we can simplify things quite a
bit.

- Also only ever disable/enable the entire output pipeline. This ensures that
we obey the right sequence of enabling/disabling things, trying to be clever
here mostly just complicates the code and results in bugs. For cloneable
encoders this requires a bit of special handling to ensure that outputs can
still be disabled individually, but it simplifies the common case.

- Add infrastructure to read out the current hw state. No amount of careful
ordering will help us if we brick the hw on the initial modeset setup. Which
could happen if we just randomly disable things, oblivious to the state set up
by the bios. Hence we need to be able to read that out. As a benefit, we grow a
few generic functions useful to cross-check our modeset code with actual hw
state.

With all this in place, we can copy&paste the crtc helper code into the
drm/i915 driver and start to rework it:

- As detailed above, the new code only disables/enables an entire output pipe.
As a preparation for global mode-changes (e.g. reassigning shared resources) it
keeps track of which pipes need to be touched by a set of bitmasks.

- To ensure that we correctly disable the current display pipes, we need to
know the currently active connector/encoder/crtc linking. The old crtc helper
simply overwrote these links with the new setup, the new code stages the new
links in ->new_* pointers. Those get commited to the real linking pointers once
the old output configuration has been torn down, before the ->mode_set
callbacks are called.

- Finally the code adds tons of self-consistency checks by employing the new hw
state readout functions to cross-check the actual hw state with what the
datastructure think it should be. These checks are done both after every
modeset and after the hw state has been read out and sanitized at boot/resume
time. All these checks greatly helped in tracking down regressions and bugs in
the new code.

With this new basis, a lot of cleanups and improvements to the code are now
possible (besides the DP fixes that ultimately made me write this), but not yet
done:

- I think we should create struct intel_mode and use it as the adjusted mode
everywhere to store little pieces like needs_tvclock, pipe dithering values or
dp link parameters. That would still be a layering violation, but at least we
wouldn't need to recompute these kinds of things in intel_display.c. Especially
the port bpc computation needed for selecting the pipe bpc and dithering
settings in intel_display.c is rather gross.

- In a related rework we could implement ->mode_valid in terms of ->mode_fixup
in a generic way - I've hunted down too many bugs where ->mode_valid did the
right thing, but ->mode_fixup didn't. Or vice versa, resulting in funny bugs
for user-supplied modes.

- Ditch the idea to rework the hdp handling in the common crtc helper code and
just move things to i915.ko. Which would rid us of the ->detect crtc helper
dependencies.

- LVDS wire pair and pll enabling is all done in the crtc->mode_set function
currently. We should be able to move this to the crtc_enable callbacks (or in
the case of the LVDS wire pair enabling, into some encoder callback).

Last, but not least, this new code should also help in enabling a few neat
features: The hw state readout code prepares (but there are still big pieces
missing) for fastboot, i.e. avoiding the inital modeset at boot-up and just
taking over the configuration left behind by the bios. We also should be able
to extend the configuration checks in the beginning of the modeset sequence and
make better decisions about shared resources (which is the entire point behind
the atomic/global modeset ioctl).

Tested-by: Jani Nikula <jani.nikula@intel.com>
Tested-by: Ben Widawsky <ben@bwidawsk.net>
Tested-by: Damien Lespiau <damien.lespiau@intel.com>
Tested-by: Rodrigo Vivi <rodrigo.vivi@gmail.com>
Acked-by: Chris Wilson <chris@chris-wilson.co.uk>
Tested-by: Vijay Purushothaman <vijay.a.purushothaman@intel.com>
Acked-by: Vijay Purushothaman <vijay.a.purushothaman@intel.com>
Tested-by: Paulo Zanoni <paulo.r.zanoni@intel.com>
Acked-by: Paulo Zanoni <paulo.r.zanoni@intel.com>
Tested-by: Jesse Barnes <jbarnes@virtuousgeek.org>

Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2012-09-06 22:52:43 +02:00

8458 lines
225 KiB
C

/*
* Copyright © 2006-2007 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
*/
#include <linux/dmi.h>
#include <linux/module.h>
#include <linux/input.h>
#include <linux/i2c.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/vgaarb.h>
#include <drm/drm_edid.h>
#include "drmP.h"
#include "intel_drv.h"
#include "i915_drm.h"
#include "i915_drv.h"
#include "i915_trace.h"
#include "drm_dp_helper.h"
#include "drm_crtc_helper.h"
#include <linux/dma_remapping.h>
#define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
static void intel_increase_pllclock(struct drm_crtc *crtc);
static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
typedef struct {
/* given values */
int n;
int m1, m2;
int p1, p2;
/* derived values */
int dot;
int vco;
int m;
int p;
} intel_clock_t;
typedef struct {
int min, max;
} intel_range_t;
typedef struct {
int dot_limit;
int p2_slow, p2_fast;
} intel_p2_t;
#define INTEL_P2_NUM 2
typedef struct intel_limit intel_limit_t;
struct intel_limit {
intel_range_t dot, vco, n, m, m1, m2, p, p1;
intel_p2_t p2;
bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
int, int, intel_clock_t *, intel_clock_t *);
};
/* FDI */
#define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
static bool
intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
int target, int refclk, intel_clock_t *match_clock,
intel_clock_t *best_clock);
static bool
intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
int target, int refclk, intel_clock_t *match_clock,
intel_clock_t *best_clock);
static bool
intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
int target, int refclk, intel_clock_t *match_clock,
intel_clock_t *best_clock);
static bool
intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
int target, int refclk, intel_clock_t *match_clock,
intel_clock_t *best_clock);
static bool
intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
int target, int refclk, intel_clock_t *match_clock,
intel_clock_t *best_clock);
static inline u32 /* units of 100MHz */
intel_fdi_link_freq(struct drm_device *dev)
{
if (IS_GEN5(dev)) {
struct drm_i915_private *dev_priv = dev->dev_private;
return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
} else
return 27;
}
static const intel_limit_t intel_limits_i8xx_dvo = {
.dot = { .min = 25000, .max = 350000 },
.vco = { .min = 930000, .max = 1400000 },
.n = { .min = 3, .max = 16 },
.m = { .min = 96, .max = 140 },
.m1 = { .min = 18, .max = 26 },
.m2 = { .min = 6, .max = 16 },
.p = { .min = 4, .max = 128 },
.p1 = { .min = 2, .max = 33 },
.p2 = { .dot_limit = 165000,
.p2_slow = 4, .p2_fast = 2 },
.find_pll = intel_find_best_PLL,
};
static const intel_limit_t intel_limits_i8xx_lvds = {
.dot = { .min = 25000, .max = 350000 },
.vco = { .min = 930000, .max = 1400000 },
.n = { .min = 3, .max = 16 },
.m = { .min = 96, .max = 140 },
.m1 = { .min = 18, .max = 26 },
.m2 = { .min = 6, .max = 16 },
.p = { .min = 4, .max = 128 },
.p1 = { .min = 1, .max = 6 },
.p2 = { .dot_limit = 165000,
.p2_slow = 14, .p2_fast = 7 },
.find_pll = intel_find_best_PLL,
};
static const intel_limit_t intel_limits_i9xx_sdvo = {
.dot = { .min = 20000, .max = 400000 },
.vco = { .min = 1400000, .max = 2800000 },
.n = { .min = 1, .max = 6 },
.m = { .min = 70, .max = 120 },
.m1 = { .min = 10, .max = 22 },
.m2 = { .min = 5, .max = 9 },
.p = { .min = 5, .max = 80 },
.p1 = { .min = 1, .max = 8 },
.p2 = { .dot_limit = 200000,
.p2_slow = 10, .p2_fast = 5 },
.find_pll = intel_find_best_PLL,
};
static const intel_limit_t intel_limits_i9xx_lvds = {
.dot = { .min = 20000, .max = 400000 },
.vco = { .min = 1400000, .max = 2800000 },
.n = { .min = 1, .max = 6 },
.m = { .min = 70, .max = 120 },
.m1 = { .min = 10, .max = 22 },
.m2 = { .min = 5, .max = 9 },
.p = { .min = 7, .max = 98 },
.p1 = { .min = 1, .max = 8 },
.p2 = { .dot_limit = 112000,
.p2_slow = 14, .p2_fast = 7 },
.find_pll = intel_find_best_PLL,
};
static const intel_limit_t intel_limits_g4x_sdvo = {
.dot = { .min = 25000, .max = 270000 },
.vco = { .min = 1750000, .max = 3500000},
.n = { .min = 1, .max = 4 },
.m = { .min = 104, .max = 138 },
.m1 = { .min = 17, .max = 23 },
.m2 = { .min = 5, .max = 11 },
.p = { .min = 10, .max = 30 },
.p1 = { .min = 1, .max = 3},
.p2 = { .dot_limit = 270000,
.p2_slow = 10,
.p2_fast = 10
},
.find_pll = intel_g4x_find_best_PLL,
};
static const intel_limit_t intel_limits_g4x_hdmi = {
.dot = { .min = 22000, .max = 400000 },
.vco = { .min = 1750000, .max = 3500000},
.n = { .min = 1, .max = 4 },
.m = { .min = 104, .max = 138 },
.m1 = { .min = 16, .max = 23 },
.m2 = { .min = 5, .max = 11 },
.p = { .min = 5, .max = 80 },
.p1 = { .min = 1, .max = 8},
.p2 = { .dot_limit = 165000,
.p2_slow = 10, .p2_fast = 5 },
.find_pll = intel_g4x_find_best_PLL,
};
static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
.dot = { .min = 20000, .max = 115000 },
.vco = { .min = 1750000, .max = 3500000 },
.n = { .min = 1, .max = 3 },
.m = { .min = 104, .max = 138 },
.m1 = { .min = 17, .max = 23 },
.m2 = { .min = 5, .max = 11 },
.p = { .min = 28, .max = 112 },
.p1 = { .min = 2, .max = 8 },
.p2 = { .dot_limit = 0,
.p2_slow = 14, .p2_fast = 14
},
.find_pll = intel_g4x_find_best_PLL,
};
static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
.dot = { .min = 80000, .max = 224000 },
.vco = { .min = 1750000, .max = 3500000 },
.n = { .min = 1, .max = 3 },
.m = { .min = 104, .max = 138 },
.m1 = { .min = 17, .max = 23 },
.m2 = { .min = 5, .max = 11 },
.p = { .min = 14, .max = 42 },
.p1 = { .min = 2, .max = 6 },
.p2 = { .dot_limit = 0,
.p2_slow = 7, .p2_fast = 7
},
.find_pll = intel_g4x_find_best_PLL,
};
static const intel_limit_t intel_limits_g4x_display_port = {
.dot = { .min = 161670, .max = 227000 },
.vco = { .min = 1750000, .max = 3500000},
.n = { .min = 1, .max = 2 },
.m = { .min = 97, .max = 108 },
.m1 = { .min = 0x10, .max = 0x12 },
.m2 = { .min = 0x05, .max = 0x06 },
.p = { .min = 10, .max = 20 },
.p1 = { .min = 1, .max = 2},
.p2 = { .dot_limit = 0,
.p2_slow = 10, .p2_fast = 10 },
.find_pll = intel_find_pll_g4x_dp,
};
static const intel_limit_t intel_limits_pineview_sdvo = {
.dot = { .min = 20000, .max = 400000},
.vco = { .min = 1700000, .max = 3500000 },
/* Pineview's Ncounter is a ring counter */
.n = { .min = 3, .max = 6 },
.m = { .min = 2, .max = 256 },
/* Pineview only has one combined m divider, which we treat as m2. */
.m1 = { .min = 0, .max = 0 },
.m2 = { .min = 0, .max = 254 },
.p = { .min = 5, .max = 80 },
.p1 = { .min = 1, .max = 8 },
.p2 = { .dot_limit = 200000,
.p2_slow = 10, .p2_fast = 5 },
.find_pll = intel_find_best_PLL,
};
static const intel_limit_t intel_limits_pineview_lvds = {
.dot = { .min = 20000, .max = 400000 },
.vco = { .min = 1700000, .max = 3500000 },
.n = { .min = 3, .max = 6 },
.m = { .min = 2, .max = 256 },
.m1 = { .min = 0, .max = 0 },
.m2 = { .min = 0, .max = 254 },
.p = { .min = 7, .max = 112 },
.p1 = { .min = 1, .max = 8 },
.p2 = { .dot_limit = 112000,
.p2_slow = 14, .p2_fast = 14 },
.find_pll = intel_find_best_PLL,
};
/* Ironlake / Sandybridge
*
* We calculate clock using (register_value + 2) for N/M1/M2, so here
* the range value for them is (actual_value - 2).
*/
static const intel_limit_t intel_limits_ironlake_dac = {
.dot = { .min = 25000, .max = 350000 },
.vco = { .min = 1760000, .max = 3510000 },
.n = { .min = 1, .max = 5 },
.m = { .min = 79, .max = 127 },
.m1 = { .min = 12, .max = 22 },
.m2 = { .min = 5, .max = 9 },
.p = { .min = 5, .max = 80 },
.p1 = { .min = 1, .max = 8 },
.p2 = { .dot_limit = 225000,
.p2_slow = 10, .p2_fast = 5 },
.find_pll = intel_g4x_find_best_PLL,
};
static const intel_limit_t intel_limits_ironlake_single_lvds = {
.dot = { .min = 25000, .max = 350000 },
.vco = { .min = 1760000, .max = 3510000 },
.n = { .min = 1, .max = 3 },
.m = { .min = 79, .max = 118 },
.m1 = { .min = 12, .max = 22 },
.m2 = { .min = 5, .max = 9 },
.p = { .min = 28, .max = 112 },
.p1 = { .min = 2, .max = 8 },
.p2 = { .dot_limit = 225000,
.p2_slow = 14, .p2_fast = 14 },
.find_pll = intel_g4x_find_best_PLL,
};
static const intel_limit_t intel_limits_ironlake_dual_lvds = {
.dot = { .min = 25000, .max = 350000 },
.vco = { .min = 1760000, .max = 3510000 },
.n = { .min = 1, .max = 3 },
.m = { .min = 79, .max = 127 },
.m1 = { .min = 12, .max = 22 },
.m2 = { .min = 5, .max = 9 },
.p = { .min = 14, .max = 56 },
.p1 = { .min = 2, .max = 8 },
.p2 = { .dot_limit = 225000,
.p2_slow = 7, .p2_fast = 7 },
.find_pll = intel_g4x_find_best_PLL,
};
/* LVDS 100mhz refclk limits. */
static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
.dot = { .min = 25000, .max = 350000 },
.vco = { .min = 1760000, .max = 3510000 },
.n = { .min = 1, .max = 2 },
.m = { .min = 79, .max = 126 },
.m1 = { .min = 12, .max = 22 },
.m2 = { .min = 5, .max = 9 },
.p = { .min = 28, .max = 112 },
.p1 = { .min = 2, .max = 8 },
.p2 = { .dot_limit = 225000,
.p2_slow = 14, .p2_fast = 14 },
.find_pll = intel_g4x_find_best_PLL,
};
static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
.dot = { .min = 25000, .max = 350000 },
.vco = { .min = 1760000, .max = 3510000 },
.n = { .min = 1, .max = 3 },
.m = { .min = 79, .max = 126 },
.m1 = { .min = 12, .max = 22 },
.m2 = { .min = 5, .max = 9 },
.p = { .min = 14, .max = 42 },
.p1 = { .min = 2, .max = 6 },
.p2 = { .dot_limit = 225000,
.p2_slow = 7, .p2_fast = 7 },
.find_pll = intel_g4x_find_best_PLL,
};
static const intel_limit_t intel_limits_ironlake_display_port = {
.dot = { .min = 25000, .max = 350000 },
.vco = { .min = 1760000, .max = 3510000},
.n = { .min = 1, .max = 2 },
.m = { .min = 81, .max = 90 },
.m1 = { .min = 12, .max = 22 },
.m2 = { .min = 5, .max = 9 },
.p = { .min = 10, .max = 20 },
.p1 = { .min = 1, .max = 2},
.p2 = { .dot_limit = 0,
.p2_slow = 10, .p2_fast = 10 },
.find_pll = intel_find_pll_ironlake_dp,
};
static const intel_limit_t intel_limits_vlv_dac = {
.dot = { .min = 25000, .max = 270000 },
.vco = { .min = 4000000, .max = 6000000 },
.n = { .min = 1, .max = 7 },
.m = { .min = 22, .max = 450 }, /* guess */
.m1 = { .min = 2, .max = 3 },
.m2 = { .min = 11, .max = 156 },
.p = { .min = 10, .max = 30 },
.p1 = { .min = 2, .max = 3 },
.p2 = { .dot_limit = 270000,
.p2_slow = 2, .p2_fast = 20 },
.find_pll = intel_vlv_find_best_pll,
};
static const intel_limit_t intel_limits_vlv_hdmi = {
.dot = { .min = 20000, .max = 165000 },
.vco = { .min = 5994000, .max = 4000000 },
.n = { .min = 1, .max = 7 },
.m = { .min = 60, .max = 300 }, /* guess */
.m1 = { .min = 2, .max = 3 },
.m2 = { .min = 11, .max = 156 },
.p = { .min = 10, .max = 30 },
.p1 = { .min = 2, .max = 3 },
.p2 = { .dot_limit = 270000,
.p2_slow = 2, .p2_fast = 20 },
.find_pll = intel_vlv_find_best_pll,
};
static const intel_limit_t intel_limits_vlv_dp = {
.dot = { .min = 162000, .max = 270000 },
.vco = { .min = 5994000, .max = 4000000 },
.n = { .min = 1, .max = 7 },
.m = { .min = 60, .max = 300 }, /* guess */
.m1 = { .min = 2, .max = 3 },
.m2 = { .min = 11, .max = 156 },
.p = { .min = 10, .max = 30 },
.p1 = { .min = 2, .max = 3 },
.p2 = { .dot_limit = 270000,
.p2_slow = 2, .p2_fast = 20 },
.find_pll = intel_vlv_find_best_pll,
};
u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
{
unsigned long flags;
u32 val = 0;
spin_lock_irqsave(&dev_priv->dpio_lock, flags);
if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
DRM_ERROR("DPIO idle wait timed out\n");
goto out_unlock;
}
I915_WRITE(DPIO_REG, reg);
I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
DPIO_BYTE);
if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
DRM_ERROR("DPIO read wait timed out\n");
goto out_unlock;
}
val = I915_READ(DPIO_DATA);
out_unlock:
spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
return val;
}
static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
u32 val)
{
unsigned long flags;
spin_lock_irqsave(&dev_priv->dpio_lock, flags);
if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
DRM_ERROR("DPIO idle wait timed out\n");
goto out_unlock;
}
I915_WRITE(DPIO_DATA, val);
I915_WRITE(DPIO_REG, reg);
I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
DPIO_BYTE);
if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
DRM_ERROR("DPIO write wait timed out\n");
out_unlock:
spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
}
static void vlv_init_dpio(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
/* Reset the DPIO config */
I915_WRITE(DPIO_CTL, 0);
POSTING_READ(DPIO_CTL);
I915_WRITE(DPIO_CTL, 1);
POSTING_READ(DPIO_CTL);
}
static int intel_dual_link_lvds_callback(const struct dmi_system_id *id)
{
DRM_INFO("Forcing lvds to dual link mode on %s\n", id->ident);
return 1;
}
static const struct dmi_system_id intel_dual_link_lvds[] = {
{
.callback = intel_dual_link_lvds_callback,
.ident = "Apple MacBook Pro (Core i5/i7 Series)",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Apple Inc."),
DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro8,2"),
},
},
{ } /* terminating entry */
};
static bool is_dual_link_lvds(struct drm_i915_private *dev_priv,
unsigned int reg)
{
unsigned int val;
/* use the module option value if specified */
if (i915_lvds_channel_mode > 0)
return i915_lvds_channel_mode == 2;
if (dmi_check_system(intel_dual_link_lvds))
return true;
if (dev_priv->lvds_val)
val = dev_priv->lvds_val;
else {
/* BIOS should set the proper LVDS register value at boot, but
* in reality, it doesn't set the value when the lid is closed;
* we need to check "the value to be set" in VBT when LVDS
* register is uninitialized.
*/
val = I915_READ(reg);
if (!(val & ~(LVDS_PIPE_MASK | LVDS_DETECTED)))
val = dev_priv->bios_lvds_val;
dev_priv->lvds_val = val;
}
return (val & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP;
}
static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
int refclk)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
const intel_limit_t *limit;
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
if (is_dual_link_lvds(dev_priv, PCH_LVDS)) {
/* LVDS dual channel */
if (refclk == 100000)
limit = &intel_limits_ironlake_dual_lvds_100m;
else
limit = &intel_limits_ironlake_dual_lvds;
} else {
if (refclk == 100000)
limit = &intel_limits_ironlake_single_lvds_100m;
else
limit = &intel_limits_ironlake_single_lvds;
}
} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
HAS_eDP)
limit = &intel_limits_ironlake_display_port;
else
limit = &intel_limits_ironlake_dac;
return limit;
}
static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
const intel_limit_t *limit;
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
if (is_dual_link_lvds(dev_priv, LVDS))
/* LVDS with dual channel */
limit = &intel_limits_g4x_dual_channel_lvds;
else
/* LVDS with dual channel */
limit = &intel_limits_g4x_single_channel_lvds;
} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
limit = &intel_limits_g4x_hdmi;
} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
limit = &intel_limits_g4x_sdvo;
} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
limit = &intel_limits_g4x_display_port;
} else /* The option is for other outputs */
limit = &intel_limits_i9xx_sdvo;
return limit;
}
static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
{
struct drm_device *dev = crtc->dev;
const intel_limit_t *limit;
if (HAS_PCH_SPLIT(dev))
limit = intel_ironlake_limit(crtc, refclk);
else if (IS_G4X(dev)) {
limit = intel_g4x_limit(crtc);
} else if (IS_PINEVIEW(dev)) {
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
limit = &intel_limits_pineview_lvds;
else
limit = &intel_limits_pineview_sdvo;
} else if (IS_VALLEYVIEW(dev)) {
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
limit = &intel_limits_vlv_dac;
else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
limit = &intel_limits_vlv_hdmi;
else
limit = &intel_limits_vlv_dp;
} else if (!IS_GEN2(dev)) {
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
limit = &intel_limits_i9xx_lvds;
else
limit = &intel_limits_i9xx_sdvo;
} else {
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
limit = &intel_limits_i8xx_lvds;
else
limit = &intel_limits_i8xx_dvo;
}
return limit;
}
/* m1 is reserved as 0 in Pineview, n is a ring counter */
static void pineview_clock(int refclk, intel_clock_t *clock)
{
clock->m = clock->m2 + 2;
clock->p = clock->p1 * clock->p2;
clock->vco = refclk * clock->m / clock->n;
clock->dot = clock->vco / clock->p;
}
static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
{
if (IS_PINEVIEW(dev)) {
pineview_clock(refclk, clock);
return;
}
clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
clock->p = clock->p1 * clock->p2;
clock->vco = refclk * clock->m / (clock->n + 2);
clock->dot = clock->vco / clock->p;
}
/**
* Returns whether any output on the specified pipe is of the specified type
*/
bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
{
struct drm_device *dev = crtc->dev;
struct intel_encoder *encoder;
for_each_encoder_on_crtc(dev, crtc, encoder)
if (encoder->type == type)
return true;
return false;
}
#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
/**
* Returns whether the given set of divisors are valid for a given refclk with
* the given connectors.
*/
static bool intel_PLL_is_valid(struct drm_device *dev,
const intel_limit_t *limit,
const intel_clock_t *clock)
{
if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
INTELPllInvalid("p1 out of range\n");
if (clock->p < limit->p.min || limit->p.max < clock->p)
INTELPllInvalid("p out of range\n");
if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
INTELPllInvalid("m2 out of range\n");
if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
INTELPllInvalid("m1 out of range\n");
if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
INTELPllInvalid("m1 <= m2\n");
if (clock->m < limit->m.min || limit->m.max < clock->m)
INTELPllInvalid("m out of range\n");
if (clock->n < limit->n.min || limit->n.max < clock->n)
INTELPllInvalid("n out of range\n");
if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
INTELPllInvalid("vco out of range\n");
/* XXX: We may need to be checking "Dot clock" depending on the multiplier,
* connector, etc., rather than just a single range.
*/
if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
INTELPllInvalid("dot out of range\n");
return true;
}
static bool
intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
int target, int refclk, intel_clock_t *match_clock,
intel_clock_t *best_clock)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
intel_clock_t clock;
int err = target;
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
(I915_READ(LVDS)) != 0) {
/*
* For LVDS, if the panel is on, just rely on its current
* settings for dual-channel. We haven't figured out how to
* reliably set up different single/dual channel state, if we
* even can.
*/
if (is_dual_link_lvds(dev_priv, LVDS))
clock.p2 = limit->p2.p2_fast;
else
clock.p2 = limit->p2.p2_slow;
} else {
if (target < limit->p2.dot_limit)
clock.p2 = limit->p2.p2_slow;
else
clock.p2 = limit->p2.p2_fast;
}
memset(best_clock, 0, sizeof(*best_clock));
for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
clock.m1++) {
for (clock.m2 = limit->m2.min;
clock.m2 <= limit->m2.max; clock.m2++) {
/* m1 is always 0 in Pineview */
if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
break;
for (clock.n = limit->n.min;
clock.n <= limit->n.max; clock.n++) {
for (clock.p1 = limit->p1.min;
clock.p1 <= limit->p1.max; clock.p1++) {
int this_err;
intel_clock(dev, refclk, &clock);
if (!intel_PLL_is_valid(dev, limit,
&clock))
continue;
if (match_clock &&
clock.p != match_clock->p)
continue;
this_err = abs(clock.dot - target);
if (this_err < err) {
*best_clock = clock;
err = this_err;
}
}
}
}
}
return (err != target);
}
static bool
intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
int target, int refclk, intel_clock_t *match_clock,
intel_clock_t *best_clock)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
intel_clock_t clock;
int max_n;
bool found;
/* approximately equals target * 0.00585 */
int err_most = (target >> 8) + (target >> 9);
found = false;
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
int lvds_reg;
if (HAS_PCH_SPLIT(dev))
lvds_reg = PCH_LVDS;
else
lvds_reg = LVDS;
if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
LVDS_CLKB_POWER_UP)
clock.p2 = limit->p2.p2_fast;
else
clock.p2 = limit->p2.p2_slow;
} else {
if (target < limit->p2.dot_limit)
clock.p2 = limit->p2.p2_slow;
else
clock.p2 = limit->p2.p2_fast;
}
memset(best_clock, 0, sizeof(*best_clock));
max_n = limit->n.max;
/* based on hardware requirement, prefer smaller n to precision */
for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
/* based on hardware requirement, prefere larger m1,m2 */
for (clock.m1 = limit->m1.max;
clock.m1 >= limit->m1.min; clock.m1--) {
for (clock.m2 = limit->m2.max;
clock.m2 >= limit->m2.min; clock.m2--) {
for (clock.p1 = limit->p1.max;
clock.p1 >= limit->p1.min; clock.p1--) {
int this_err;
intel_clock(dev, refclk, &clock);
if (!intel_PLL_is_valid(dev, limit,
&clock))
continue;
if (match_clock &&
clock.p != match_clock->p)
continue;
this_err = abs(clock.dot - target);
if (this_err < err_most) {
*best_clock = clock;
err_most = this_err;
max_n = clock.n;
found = true;
}
}
}
}
}
return found;
}
static bool
intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
int target, int refclk, intel_clock_t *match_clock,
intel_clock_t *best_clock)
{
struct drm_device *dev = crtc->dev;
intel_clock_t clock;
if (target < 200000) {
clock.n = 1;
clock.p1 = 2;
clock.p2 = 10;
clock.m1 = 12;
clock.m2 = 9;
} else {
clock.n = 2;
clock.p1 = 1;
clock.p2 = 10;
clock.m1 = 14;
clock.m2 = 8;
}
intel_clock(dev, refclk, &clock);
memcpy(best_clock, &clock, sizeof(intel_clock_t));
return true;
}
/* DisplayPort has only two frequencies, 162MHz and 270MHz */
static bool
intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
int target, int refclk, intel_clock_t *match_clock,
intel_clock_t *best_clock)
{
intel_clock_t clock;
if (target < 200000) {
clock.p1 = 2;
clock.p2 = 10;
clock.n = 2;
clock.m1 = 23;
clock.m2 = 8;
} else {
clock.p1 = 1;
clock.p2 = 10;
clock.n = 1;
clock.m1 = 14;
clock.m2 = 2;
}
clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
clock.p = (clock.p1 * clock.p2);
clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
clock.vco = 0;
memcpy(best_clock, &clock, sizeof(intel_clock_t));
return true;
}
static bool
intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
int target, int refclk, intel_clock_t *match_clock,
intel_clock_t *best_clock)
{
u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
u32 m, n, fastclk;
u32 updrate, minupdate, fracbits, p;
unsigned long bestppm, ppm, absppm;
int dotclk, flag;
flag = 0;
dotclk = target * 1000;
bestppm = 1000000;
ppm = absppm = 0;
fastclk = dotclk / (2*100);
updrate = 0;
minupdate = 19200;
fracbits = 1;
n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
bestm1 = bestm2 = bestp1 = bestp2 = 0;
/* based on hardware requirement, prefer smaller n to precision */
for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
updrate = refclk / n;
for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
if (p2 > 10)
p2 = p2 - 1;
p = p1 * p2;
/* based on hardware requirement, prefer bigger m1,m2 values */
for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
m2 = (((2*(fastclk * p * n / m1 )) +
refclk) / (2*refclk));
m = m1 * m2;
vco = updrate * m;
if (vco >= limit->vco.min && vco < limit->vco.max) {
ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
absppm = (ppm > 0) ? ppm : (-ppm);
if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
bestppm = 0;
flag = 1;
}
if (absppm < bestppm - 10) {
bestppm = absppm;
flag = 1;
}
if (flag) {
bestn = n;
bestm1 = m1;
bestm2 = m2;
bestp1 = p1;
bestp2 = p2;
flag = 0;
}
}
}
}
}
}
best_clock->n = bestn;
best_clock->m1 = bestm1;
best_clock->m2 = bestm2;
best_clock->p1 = bestp1;
best_clock->p2 = bestp2;
return true;
}
static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 frame, frame_reg = PIPEFRAME(pipe);
frame = I915_READ(frame_reg);
if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
DRM_DEBUG_KMS("vblank wait timed out\n");
}
/**
* intel_wait_for_vblank - wait for vblank on a given pipe
* @dev: drm device
* @pipe: pipe to wait for
*
* Wait for vblank to occur on a given pipe. Needed for various bits of
* mode setting code.
*/
void intel_wait_for_vblank(struct drm_device *dev, int pipe)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int pipestat_reg = PIPESTAT(pipe);
if (INTEL_INFO(dev)->gen >= 5) {
ironlake_wait_for_vblank(dev, pipe);
return;
}
/* Clear existing vblank status. Note this will clear any other
* sticky status fields as well.
*
* This races with i915_driver_irq_handler() with the result
* that either function could miss a vblank event. Here it is not
* fatal, as we will either wait upon the next vblank interrupt or
* timeout. Generally speaking intel_wait_for_vblank() is only
* called during modeset at which time the GPU should be idle and
* should *not* be performing page flips and thus not waiting on
* vblanks...
* Currently, the result of us stealing a vblank from the irq
* handler is that a single frame will be skipped during swapbuffers.
*/
I915_WRITE(pipestat_reg,
I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
/* Wait for vblank interrupt bit to set */
if (wait_for(I915_READ(pipestat_reg) &
PIPE_VBLANK_INTERRUPT_STATUS,
50))
DRM_DEBUG_KMS("vblank wait timed out\n");
}
/*
* intel_wait_for_pipe_off - wait for pipe to turn off
* @dev: drm device
* @pipe: pipe to wait for
*
* After disabling a pipe, we can't wait for vblank in the usual way,
* spinning on the vblank interrupt status bit, since we won't actually
* see an interrupt when the pipe is disabled.
*
* On Gen4 and above:
* wait for the pipe register state bit to turn off
*
* Otherwise:
* wait for the display line value to settle (it usually
* ends up stopping at the start of the next frame).
*
*/
void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
{
struct drm_i915_private *dev_priv = dev->dev_private;
if (INTEL_INFO(dev)->gen >= 4) {
int reg = PIPECONF(pipe);
/* Wait for the Pipe State to go off */
if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
100))
WARN(1, "pipe_off wait timed out\n");
} else {
u32 last_line, line_mask;
int reg = PIPEDSL(pipe);
unsigned long timeout = jiffies + msecs_to_jiffies(100);
if (IS_GEN2(dev))
line_mask = DSL_LINEMASK_GEN2;
else
line_mask = DSL_LINEMASK_GEN3;
/* Wait for the display line to settle */
do {
last_line = I915_READ(reg) & line_mask;
mdelay(5);
} while (((I915_READ(reg) & line_mask) != last_line) &&
time_after(timeout, jiffies));
if (time_after(jiffies, timeout))
WARN(1, "pipe_off wait timed out\n");
}
}
static const char *state_string(bool enabled)
{
return enabled ? "on" : "off";
}
/* Only for pre-ILK configs */
static void assert_pll(struct drm_i915_private *dev_priv,
enum pipe pipe, bool state)
{
int reg;
u32 val;
bool cur_state;
reg = DPLL(pipe);
val = I915_READ(reg);
cur_state = !!(val & DPLL_VCO_ENABLE);
WARN(cur_state != state,
"PLL state assertion failure (expected %s, current %s)\n",
state_string(state), state_string(cur_state));
}
#define assert_pll_enabled(d, p) assert_pll(d, p, true)
#define assert_pll_disabled(d, p) assert_pll(d, p, false)
/* For ILK+ */
static void assert_pch_pll(struct drm_i915_private *dev_priv,
struct intel_pch_pll *pll,
struct intel_crtc *crtc,
bool state)
{
u32 val;
bool cur_state;
if (HAS_PCH_LPT(dev_priv->dev)) {
DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
return;
}
if (WARN (!pll,
"asserting PCH PLL %s with no PLL\n", state_string(state)))
return;
val = I915_READ(pll->pll_reg);
cur_state = !!(val & DPLL_VCO_ENABLE);
WARN(cur_state != state,
"PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
pll->pll_reg, state_string(state), state_string(cur_state), val);
/* Make sure the selected PLL is correctly attached to the transcoder */
if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
u32 pch_dpll;
pch_dpll = I915_READ(PCH_DPLL_SEL);
cur_state = pll->pll_reg == _PCH_DPLL_B;
if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
"PLL[%d] not attached to this transcoder %d: %08x\n",
cur_state, crtc->pipe, pch_dpll)) {
cur_state = !!(val >> (4*crtc->pipe + 3));
WARN(cur_state != state,
"PLL[%d] not %s on this transcoder %d: %08x\n",
pll->pll_reg == _PCH_DPLL_B,
state_string(state),
crtc->pipe,
val);
}
}
}
#define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
#define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
static void assert_fdi_tx(struct drm_i915_private *dev_priv,
enum pipe pipe, bool state)
{
int reg;
u32 val;
bool cur_state;
if (IS_HASWELL(dev_priv->dev)) {
/* On Haswell, DDI is used instead of FDI_TX_CTL */
reg = DDI_FUNC_CTL(pipe);
val = I915_READ(reg);
cur_state = !!(val & PIPE_DDI_FUNC_ENABLE);
} else {
reg = FDI_TX_CTL(pipe);
val = I915_READ(reg);
cur_state = !!(val & FDI_TX_ENABLE);
}
WARN(cur_state != state,
"FDI TX state assertion failure (expected %s, current %s)\n",
state_string(state), state_string(cur_state));
}
#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
static void assert_fdi_rx(struct drm_i915_private *dev_priv,
enum pipe pipe, bool state)
{
int reg;
u32 val;
bool cur_state;
if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
DRM_ERROR("Attempting to enable FDI_RX on Haswell pipe > 0\n");
return;
} else {
reg = FDI_RX_CTL(pipe);
val = I915_READ(reg);
cur_state = !!(val & FDI_RX_ENABLE);
}
WARN(cur_state != state,
"FDI RX state assertion failure (expected %s, current %s)\n",
state_string(state), state_string(cur_state));
}
#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
int reg;
u32 val;
/* ILK FDI PLL is always enabled */
if (dev_priv->info->gen == 5)
return;
/* On Haswell, DDI ports are responsible for the FDI PLL setup */
if (IS_HASWELL(dev_priv->dev))
return;
reg = FDI_TX_CTL(pipe);
val = I915_READ(reg);
WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
}
static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
int reg;
u32 val;
if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
DRM_ERROR("Attempting to enable FDI on Haswell with pipe > 0\n");
return;
}
reg = FDI_RX_CTL(pipe);
val = I915_READ(reg);
WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
}
static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
int pp_reg, lvds_reg;
u32 val;
enum pipe panel_pipe = PIPE_A;
bool locked = true;
if (HAS_PCH_SPLIT(dev_priv->dev)) {
pp_reg = PCH_PP_CONTROL;
lvds_reg = PCH_LVDS;
} else {
pp_reg = PP_CONTROL;
lvds_reg = LVDS;
}
val = I915_READ(pp_reg);
if (!(val & PANEL_POWER_ON) ||
((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
locked = false;
if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
panel_pipe = PIPE_B;
WARN(panel_pipe == pipe && locked,
"panel assertion failure, pipe %c regs locked\n",
pipe_name(pipe));
}
void assert_pipe(struct drm_i915_private *dev_priv,
enum pipe pipe, bool state)
{
int reg;
u32 val;
bool cur_state;
/* if we need the pipe A quirk it must be always on */
if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
state = true;
reg = PIPECONF(pipe);
val = I915_READ(reg);
cur_state = !!(val & PIPECONF_ENABLE);
WARN(cur_state != state,
"pipe %c assertion failure (expected %s, current %s)\n",
pipe_name(pipe), state_string(state), state_string(cur_state));
}
static void assert_plane(struct drm_i915_private *dev_priv,
enum plane plane, bool state)
{
int reg;
u32 val;
bool cur_state;
reg = DSPCNTR(plane);
val = I915_READ(reg);
cur_state = !!(val & DISPLAY_PLANE_ENABLE);
WARN(cur_state != state,
"plane %c assertion failure (expected %s, current %s)\n",
plane_name(plane), state_string(state), state_string(cur_state));
}
#define assert_plane_enabled(d, p) assert_plane(d, p, true)
#define assert_plane_disabled(d, p) assert_plane(d, p, false)
static void assert_planes_disabled(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
int reg, i;
u32 val;
int cur_pipe;
/* Planes are fixed to pipes on ILK+ */
if (HAS_PCH_SPLIT(dev_priv->dev)) {
reg = DSPCNTR(pipe);
val = I915_READ(reg);
WARN((val & DISPLAY_PLANE_ENABLE),
"plane %c assertion failure, should be disabled but not\n",
plane_name(pipe));
return;
}
/* Need to check both planes against the pipe */
for (i = 0; i < 2; i++) {
reg = DSPCNTR(i);
val = I915_READ(reg);
cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
DISPPLANE_SEL_PIPE_SHIFT;
WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
"plane %c assertion failure, should be off on pipe %c but is still active\n",
plane_name(i), pipe_name(pipe));
}
}
static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
{
u32 val;
bool enabled;
if (HAS_PCH_LPT(dev_priv->dev)) {
DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
return;
}
val = I915_READ(PCH_DREF_CONTROL);
enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
DREF_SUPERSPREAD_SOURCE_MASK));
WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
}
static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
int reg;
u32 val;
bool enabled;
reg = TRANSCONF(pipe);
val = I915_READ(reg);
enabled = !!(val & TRANS_ENABLE);
WARN(enabled,
"transcoder assertion failed, should be off on pipe %c but is still active\n",
pipe_name(pipe));
}
static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
enum pipe pipe, u32 port_sel, u32 val)
{
if ((val & DP_PORT_EN) == 0)
return false;
if (HAS_PCH_CPT(dev_priv->dev)) {
u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
return false;
} else {
if ((val & DP_PIPE_MASK) != (pipe << 30))
return false;
}
return true;
}
static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
enum pipe pipe, u32 val)
{
if ((val & PORT_ENABLE) == 0)
return false;
if (HAS_PCH_CPT(dev_priv->dev)) {
if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
return false;
} else {
if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
return false;
}
return true;
}
static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
enum pipe pipe, u32 val)
{
if ((val & LVDS_PORT_EN) == 0)
return false;
if (HAS_PCH_CPT(dev_priv->dev)) {
if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
return false;
} else {
if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
return false;
}
return true;
}
static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
enum pipe pipe, u32 val)
{
if ((val & ADPA_DAC_ENABLE) == 0)
return false;
if (HAS_PCH_CPT(dev_priv->dev)) {
if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
return false;
} else {
if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
return false;
}
return true;
}
static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
enum pipe pipe, int reg, u32 port_sel)
{
u32 val = I915_READ(reg);
WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
"PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
reg, pipe_name(pipe));
WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_PIPE_B_SELECT),
"IBX PCH dp port still using transcoder B\n");
}
static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
enum pipe pipe, int reg)
{
u32 val = I915_READ(reg);
WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
"PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
reg, pipe_name(pipe));
WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_PIPE_B_SELECT),
"IBX PCH hdmi port still using transcoder B\n");
}
static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
int reg;
u32 val;
assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
reg = PCH_ADPA;
val = I915_READ(reg);
WARN(adpa_pipe_enabled(dev_priv, pipe, val),
"PCH VGA enabled on transcoder %c, should be disabled\n",
pipe_name(pipe));
reg = PCH_LVDS;
val = I915_READ(reg);
WARN(lvds_pipe_enabled(dev_priv, pipe, val),
"PCH LVDS enabled on transcoder %c, should be disabled\n",
pipe_name(pipe));
assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
}
/**
* intel_enable_pll - enable a PLL
* @dev_priv: i915 private structure
* @pipe: pipe PLL to enable
*
* Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
* make sure the PLL reg is writable first though, since the panel write
* protect mechanism may be enabled.
*
* Note! This is for pre-ILK only.
*
* Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
*/
static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
{
int reg;
u32 val;
/* No really, not for ILK+ */
BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
/* PLL is protected by panel, make sure we can write it */
if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
assert_panel_unlocked(dev_priv, pipe);
reg = DPLL(pipe);
val = I915_READ(reg);
val |= DPLL_VCO_ENABLE;
/* We do this three times for luck */
I915_WRITE(reg, val);
POSTING_READ(reg);
udelay(150); /* wait for warmup */
I915_WRITE(reg, val);
POSTING_READ(reg);
udelay(150); /* wait for warmup */
I915_WRITE(reg, val);
POSTING_READ(reg);
udelay(150); /* wait for warmup */
}
/**
* intel_disable_pll - disable a PLL
* @dev_priv: i915 private structure
* @pipe: pipe PLL to disable
*
* Disable the PLL for @pipe, making sure the pipe is off first.
*
* Note! This is for pre-ILK only.
*/
static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
{
int reg;
u32 val;
/* Don't disable pipe A or pipe A PLLs if needed */
if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
return;
/* Make sure the pipe isn't still relying on us */
assert_pipe_disabled(dev_priv, pipe);
reg = DPLL(pipe);
val = I915_READ(reg);
val &= ~DPLL_VCO_ENABLE;
I915_WRITE(reg, val);
POSTING_READ(reg);
}
/* SBI access */
static void
intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value)
{
unsigned long flags;
spin_lock_irqsave(&dev_priv->dpio_lock, flags);
if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
100)) {
DRM_ERROR("timeout waiting for SBI to become ready\n");
goto out_unlock;
}
I915_WRITE(SBI_ADDR,
(reg << 16));
I915_WRITE(SBI_DATA,
value);
I915_WRITE(SBI_CTL_STAT,
SBI_BUSY |
SBI_CTL_OP_CRWR);
if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
100)) {
DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
goto out_unlock;
}
out_unlock:
spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
}
static u32
intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg)
{
unsigned long flags;
u32 value = 0;
spin_lock_irqsave(&dev_priv->dpio_lock, flags);
if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
100)) {
DRM_ERROR("timeout waiting for SBI to become ready\n");
goto out_unlock;
}
I915_WRITE(SBI_ADDR,
(reg << 16));
I915_WRITE(SBI_CTL_STAT,
SBI_BUSY |
SBI_CTL_OP_CRRD);
if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
100)) {
DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
goto out_unlock;
}
value = I915_READ(SBI_DATA);
out_unlock:
spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
return value;
}
/**
* intel_enable_pch_pll - enable PCH PLL
* @dev_priv: i915 private structure
* @pipe: pipe PLL to enable
*
* The PCH PLL needs to be enabled before the PCH transcoder, since it
* drives the transcoder clock.
*/
static void intel_enable_pch_pll(struct intel_crtc *intel_crtc)
{
struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
struct intel_pch_pll *pll;
int reg;
u32 val;
/* PCH PLLs only available on ILK, SNB and IVB */
BUG_ON(dev_priv->info->gen < 5);
pll = intel_crtc->pch_pll;
if (pll == NULL)
return;
if (WARN_ON(pll->refcount == 0))
return;
DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
pll->pll_reg, pll->active, pll->on,
intel_crtc->base.base.id);
/* PCH refclock must be enabled first */
assert_pch_refclk_enabled(dev_priv);
if (pll->active++ && pll->on) {
assert_pch_pll_enabled(dev_priv, pll, NULL);
return;
}
DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
reg = pll->pll_reg;
val = I915_READ(reg);
val |= DPLL_VCO_ENABLE;
I915_WRITE(reg, val);
POSTING_READ(reg);
udelay(200);
pll->on = true;
}
static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
{
struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
struct intel_pch_pll *pll = intel_crtc->pch_pll;
int reg;
u32 val;
/* PCH only available on ILK+ */
BUG_ON(dev_priv->info->gen < 5);
if (pll == NULL)
return;
if (WARN_ON(pll->refcount == 0))
return;
DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
pll->pll_reg, pll->active, pll->on,
intel_crtc->base.base.id);
if (WARN_ON(pll->active == 0)) {
assert_pch_pll_disabled(dev_priv, pll, NULL);
return;
}
if (--pll->active) {
assert_pch_pll_enabled(dev_priv, pll, NULL);
return;
}
DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
/* Make sure transcoder isn't still depending on us */
assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
reg = pll->pll_reg;
val = I915_READ(reg);
val &= ~DPLL_VCO_ENABLE;
I915_WRITE(reg, val);
POSTING_READ(reg);
udelay(200);
pll->on = false;
}
static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
int reg;
u32 val, pipeconf_val;
struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
/* PCH only available on ILK+ */
BUG_ON(dev_priv->info->gen < 5);
/* Make sure PCH DPLL is enabled */
assert_pch_pll_enabled(dev_priv,
to_intel_crtc(crtc)->pch_pll,
to_intel_crtc(crtc));
/* FDI must be feeding us bits for PCH ports */
assert_fdi_tx_enabled(dev_priv, pipe);
assert_fdi_rx_enabled(dev_priv, pipe);
if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
DRM_ERROR("Attempting to enable transcoder on Haswell with pipe > 0\n");
return;
}
reg = TRANSCONF(pipe);
val = I915_READ(reg);
pipeconf_val = I915_READ(PIPECONF(pipe));
if (HAS_PCH_IBX(dev_priv->dev)) {
/*
* make the BPC in transcoder be consistent with
* that in pipeconf reg.
*/
val &= ~PIPE_BPC_MASK;
val |= pipeconf_val & PIPE_BPC_MASK;
}
val &= ~TRANS_INTERLACE_MASK;
if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
if (HAS_PCH_IBX(dev_priv->dev) &&
intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
val |= TRANS_LEGACY_INTERLACED_ILK;
else
val |= TRANS_INTERLACED;
else
val |= TRANS_PROGRESSIVE;
I915_WRITE(reg, val | TRANS_ENABLE);
if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
DRM_ERROR("failed to enable transcoder %d\n", pipe);
}
static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
int reg;
u32 val;
/* FDI relies on the transcoder */
assert_fdi_tx_disabled(dev_priv, pipe);
assert_fdi_rx_disabled(dev_priv, pipe);
/* Ports must be off as well */
assert_pch_ports_disabled(dev_priv, pipe);
reg = TRANSCONF(pipe);
val = I915_READ(reg);
val &= ~TRANS_ENABLE;
I915_WRITE(reg, val);
/* wait for PCH transcoder off, transcoder state */
if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
DRM_ERROR("failed to disable transcoder %d\n", pipe);
}
/**
* intel_enable_pipe - enable a pipe, asserting requirements
* @dev_priv: i915 private structure
* @pipe: pipe to enable
* @pch_port: on ILK+, is this pipe driving a PCH port or not
*
* Enable @pipe, making sure that various hardware specific requirements
* are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
*
* @pipe should be %PIPE_A or %PIPE_B.
*
* Will wait until the pipe is actually running (i.e. first vblank) before
* returning.
*/
static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
bool pch_port)
{
int reg;
u32 val;
/*
* A pipe without a PLL won't actually be able to drive bits from
* a plane. On ILK+ the pipe PLLs are integrated, so we don't
* need the check.
*/
if (!HAS_PCH_SPLIT(dev_priv->dev))
assert_pll_enabled(dev_priv, pipe);
else {
if (pch_port) {
/* if driving the PCH, we need FDI enabled */
assert_fdi_rx_pll_enabled(dev_priv, pipe);
assert_fdi_tx_pll_enabled(dev_priv, pipe);
}
/* FIXME: assert CPU port conditions for SNB+ */
}
reg = PIPECONF(pipe);
val = I915_READ(reg);
if (val & PIPECONF_ENABLE)
return;
I915_WRITE(reg, val | PIPECONF_ENABLE);
intel_wait_for_vblank(dev_priv->dev, pipe);
}
/**
* intel_disable_pipe - disable a pipe, asserting requirements
* @dev_priv: i915 private structure
* @pipe: pipe to disable
*
* Disable @pipe, making sure that various hardware specific requirements
* are met, if applicable, e.g. plane disabled, panel fitter off, etc.
*
* @pipe should be %PIPE_A or %PIPE_B.
*
* Will wait until the pipe has shut down before returning.
*/
static void intel_disable_pipe(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
int reg;
u32 val;
/*
* Make sure planes won't keep trying to pump pixels to us,
* or we might hang the display.
*/
assert_planes_disabled(dev_priv, pipe);
/* Don't disable pipe A or pipe A PLLs if needed */
if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
return;
reg = PIPECONF(pipe);
val = I915_READ(reg);
if ((val & PIPECONF_ENABLE) == 0)
return;
I915_WRITE(reg, val & ~PIPECONF_ENABLE);
intel_wait_for_pipe_off(dev_priv->dev, pipe);
}
/*
* Plane regs are double buffered, going from enabled->disabled needs a
* trigger in order to latch. The display address reg provides this.
*/
void intel_flush_display_plane(struct drm_i915_private *dev_priv,
enum plane plane)
{
I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
}
/**
* intel_enable_plane - enable a display plane on a given pipe
* @dev_priv: i915 private structure
* @plane: plane to enable
* @pipe: pipe being fed
*
* Enable @plane on @pipe, making sure that @pipe is running first.
*/
static void intel_enable_plane(struct drm_i915_private *dev_priv,
enum plane plane, enum pipe pipe)
{
int reg;
u32 val;
/* If the pipe isn't enabled, we can't pump pixels and may hang */
assert_pipe_enabled(dev_priv, pipe);
reg = DSPCNTR(plane);
val = I915_READ(reg);
if (val & DISPLAY_PLANE_ENABLE)
return;
I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
intel_flush_display_plane(dev_priv, plane);
intel_wait_for_vblank(dev_priv->dev, pipe);
}
/**
* intel_disable_plane - disable a display plane
* @dev_priv: i915 private structure
* @plane: plane to disable
* @pipe: pipe consuming the data
*
* Disable @plane; should be an independent operation.
*/
static void intel_disable_plane(struct drm_i915_private *dev_priv,
enum plane plane, enum pipe pipe)
{
int reg;
u32 val;
reg = DSPCNTR(plane);
val = I915_READ(reg);
if ((val & DISPLAY_PLANE_ENABLE) == 0)
return;
I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
intel_flush_display_plane(dev_priv, plane);
intel_wait_for_vblank(dev_priv->dev, pipe);
}
static void disable_pch_dp(struct drm_i915_private *dev_priv,
enum pipe pipe, int reg, u32 port_sel)
{
u32 val = I915_READ(reg);
if (dp_pipe_enabled(dev_priv, pipe, port_sel, val)) {
DRM_DEBUG_KMS("Disabling pch dp %x on pipe %d\n", reg, pipe);
I915_WRITE(reg, val & ~DP_PORT_EN);
}
}
static void disable_pch_hdmi(struct drm_i915_private *dev_priv,
enum pipe pipe, int reg)
{
u32 val = I915_READ(reg);
if (hdmi_pipe_enabled(dev_priv, pipe, val)) {
DRM_DEBUG_KMS("Disabling pch HDMI %x on pipe %d\n",
reg, pipe);
I915_WRITE(reg, val & ~PORT_ENABLE);
}
}
/* Disable any ports connected to this transcoder */
static void intel_disable_pch_ports(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
u32 reg, val;
val = I915_READ(PCH_PP_CONTROL);
I915_WRITE(PCH_PP_CONTROL, val | PANEL_UNLOCK_REGS);
disable_pch_dp(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
disable_pch_dp(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
disable_pch_dp(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
reg = PCH_ADPA;
val = I915_READ(reg);
if (adpa_pipe_enabled(dev_priv, pipe, val))
I915_WRITE(reg, val & ~ADPA_DAC_ENABLE);
reg = PCH_LVDS;
val = I915_READ(reg);
if (lvds_pipe_enabled(dev_priv, pipe, val)) {
DRM_DEBUG_KMS("disable lvds on pipe %d val 0x%08x\n", pipe, val);
I915_WRITE(reg, val & ~LVDS_PORT_EN);
POSTING_READ(reg);
udelay(100);
}
disable_pch_hdmi(dev_priv, pipe, HDMIB);
disable_pch_hdmi(dev_priv, pipe, HDMIC);
disable_pch_hdmi(dev_priv, pipe, HDMID);
}
int
intel_pin_and_fence_fb_obj(struct drm_device *dev,
struct drm_i915_gem_object *obj,
struct intel_ring_buffer *pipelined)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 alignment;
int ret;
switch (obj->tiling_mode) {
case I915_TILING_NONE:
if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
alignment = 128 * 1024;
else if (INTEL_INFO(dev)->gen >= 4)
alignment = 4 * 1024;
else
alignment = 64 * 1024;
break;
case I915_TILING_X:
/* pin() will align the object as required by fence */
alignment = 0;
break;
case I915_TILING_Y:
/* FIXME: Is this true? */
DRM_ERROR("Y tiled not allowed for scan out buffers\n");
return -EINVAL;
default:
BUG();
}
dev_priv->mm.interruptible = false;
ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
if (ret)
goto err_interruptible;
/* Install a fence for tiled scan-out. Pre-i965 always needs a
* fence, whereas 965+ only requires a fence if using
* framebuffer compression. For simplicity, we always install
* a fence as the cost is not that onerous.
*/
ret = i915_gem_object_get_fence(obj);
if (ret)
goto err_unpin;
i915_gem_object_pin_fence(obj);
dev_priv->mm.interruptible = true;
return 0;
err_unpin:
i915_gem_object_unpin(obj);
err_interruptible:
dev_priv->mm.interruptible = true;
return ret;
}
void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
{
i915_gem_object_unpin_fence(obj);
i915_gem_object_unpin(obj);
}
/* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
* is assumed to be a power-of-two. */
static unsigned long gen4_compute_dspaddr_offset_xtiled(int *x, int *y,
unsigned int bpp,
unsigned int pitch)
{
int tile_rows, tiles;
tile_rows = *y / 8;
*y %= 8;
tiles = *x / (512/bpp);
*x %= 512/bpp;
return tile_rows * pitch * 8 + tiles * 4096;
}
static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
int x, int y)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_framebuffer *intel_fb;
struct drm_i915_gem_object *obj;
int plane = intel_crtc->plane;
unsigned long linear_offset;
u32 dspcntr;
u32 reg;
switch (plane) {
case 0:
case 1:
break;
default:
DRM_ERROR("Can't update plane %d in SAREA\n", plane);
return -EINVAL;
}
intel_fb = to_intel_framebuffer(fb);
obj = intel_fb->obj;
reg = DSPCNTR(plane);
dspcntr = I915_READ(reg);
/* Mask out pixel format bits in case we change it */
dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
switch (fb->bits_per_pixel) {
case 8:
dspcntr |= DISPPLANE_8BPP;
break;
case 16:
if (fb->depth == 15)
dspcntr |= DISPPLANE_15_16BPP;
else
dspcntr |= DISPPLANE_16BPP;
break;
case 24:
case 32:
dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
break;
default:
DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
return -EINVAL;
}
if (INTEL_INFO(dev)->gen >= 4) {
if (obj->tiling_mode != I915_TILING_NONE)
dspcntr |= DISPPLANE_TILED;
else
dspcntr &= ~DISPPLANE_TILED;
}
I915_WRITE(reg, dspcntr);
linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
if (INTEL_INFO(dev)->gen >= 4) {
intel_crtc->dspaddr_offset =
gen4_compute_dspaddr_offset_xtiled(&x, &y,
fb->bits_per_pixel / 8,
fb->pitches[0]);
linear_offset -= intel_crtc->dspaddr_offset;
} else {
intel_crtc->dspaddr_offset = linear_offset;
}
DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
if (INTEL_INFO(dev)->gen >= 4) {
I915_MODIFY_DISPBASE(DSPSURF(plane),
obj->gtt_offset + intel_crtc->dspaddr_offset);
I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
I915_WRITE(DSPLINOFF(plane), linear_offset);
} else
I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
POSTING_READ(reg);
return 0;
}
static int ironlake_update_plane(struct drm_crtc *crtc,
struct drm_framebuffer *fb, int x, int y)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_framebuffer *intel_fb;
struct drm_i915_gem_object *obj;
int plane = intel_crtc->plane;
unsigned long linear_offset;
u32 dspcntr;
u32 reg;
switch (plane) {
case 0:
case 1:
case 2:
break;
default:
DRM_ERROR("Can't update plane %d in SAREA\n", plane);
return -EINVAL;
}
intel_fb = to_intel_framebuffer(fb);
obj = intel_fb->obj;
reg = DSPCNTR(plane);
dspcntr = I915_READ(reg);
/* Mask out pixel format bits in case we change it */
dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
switch (fb->bits_per_pixel) {
case 8:
dspcntr |= DISPPLANE_8BPP;
break;
case 16:
if (fb->depth != 16)
return -EINVAL;
dspcntr |= DISPPLANE_16BPP;
break;
case 24:
case 32:
if (fb->depth == 24)
dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
else if (fb->depth == 30)
dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
else
return -EINVAL;
break;
default:
DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
return -EINVAL;
}
if (obj->tiling_mode != I915_TILING_NONE)
dspcntr |= DISPPLANE_TILED;
else
dspcntr &= ~DISPPLANE_TILED;
/* must disable */
dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
I915_WRITE(reg, dspcntr);
linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
intel_crtc->dspaddr_offset =
gen4_compute_dspaddr_offset_xtiled(&x, &y,
fb->bits_per_pixel / 8,
fb->pitches[0]);
linear_offset -= intel_crtc->dspaddr_offset;
DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
I915_MODIFY_DISPBASE(DSPSURF(plane),
obj->gtt_offset + intel_crtc->dspaddr_offset);
I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
I915_WRITE(DSPLINOFF(plane), linear_offset);
POSTING_READ(reg);
return 0;
}
/* Assume fb object is pinned & idle & fenced and just update base pointers */
static int
intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
int x, int y, enum mode_set_atomic state)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
if (dev_priv->display.disable_fbc)
dev_priv->display.disable_fbc(dev);
intel_increase_pllclock(crtc);
return dev_priv->display.update_plane(crtc, fb, x, y);
}
static int
intel_finish_fb(struct drm_framebuffer *old_fb)
{
struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
bool was_interruptible = dev_priv->mm.interruptible;
int ret;
wait_event(dev_priv->pending_flip_queue,
atomic_read(&dev_priv->mm.wedged) ||
atomic_read(&obj->pending_flip) == 0);
/* Big Hammer, we also need to ensure that any pending
* MI_WAIT_FOR_EVENT inside a user batch buffer on the
* current scanout is retired before unpinning the old
* framebuffer.
*
* This should only fail upon a hung GPU, in which case we
* can safely continue.
*/
dev_priv->mm.interruptible = false;
ret = i915_gem_object_finish_gpu(obj);
dev_priv->mm.interruptible = was_interruptible;
return ret;
}
static int
intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
struct drm_framebuffer *fb)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_master_private *master_priv;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct drm_framebuffer *old_fb;
int ret;
/* no fb bound */
if (!fb) {
DRM_ERROR("No FB bound\n");
return 0;
}
if(intel_crtc->plane > dev_priv->num_pipe) {
DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
intel_crtc->plane,
dev_priv->num_pipe);
return -EINVAL;
}
mutex_lock(&dev->struct_mutex);
ret = intel_pin_and_fence_fb_obj(dev,
to_intel_framebuffer(fb)->obj,
NULL);
if (ret != 0) {
mutex_unlock(&dev->struct_mutex);
DRM_ERROR("pin & fence failed\n");
return ret;
}
if (crtc->fb)
intel_finish_fb(crtc->fb);
ret = dev_priv->display.update_plane(crtc, fb, x, y);
if (ret) {
intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
mutex_unlock(&dev->struct_mutex);
DRM_ERROR("failed to update base address\n");
return ret;
}
old_fb = crtc->fb;
crtc->fb = fb;
if (old_fb) {
intel_wait_for_vblank(dev, intel_crtc->pipe);
intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
}
intel_update_fbc(dev);
mutex_unlock(&dev->struct_mutex);
if (!dev->primary->master)
return 0;
master_priv = dev->primary->master->driver_priv;
if (!master_priv->sarea_priv)
return 0;
if (intel_crtc->pipe) {
master_priv->sarea_priv->pipeB_x = x;
master_priv->sarea_priv->pipeB_y = y;
} else {
master_priv->sarea_priv->pipeA_x = x;
master_priv->sarea_priv->pipeA_y = y;
}
return 0;
}
static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 dpa_ctl;
DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
dpa_ctl = I915_READ(DP_A);
dpa_ctl &= ~DP_PLL_FREQ_MASK;
if (clock < 200000) {
u32 temp;
dpa_ctl |= DP_PLL_FREQ_160MHZ;
/* workaround for 160Mhz:
1) program 0x4600c bits 15:0 = 0x8124
2) program 0x46010 bit 0 = 1
3) program 0x46034 bit 24 = 1
4) program 0x64000 bit 14 = 1
*/
temp = I915_READ(0x4600c);
temp &= 0xffff0000;
I915_WRITE(0x4600c, temp | 0x8124);
temp = I915_READ(0x46010);
I915_WRITE(0x46010, temp | 1);
temp = I915_READ(0x46034);
I915_WRITE(0x46034, temp | (1 << 24));
} else {
dpa_ctl |= DP_PLL_FREQ_270MHZ;
}
I915_WRITE(DP_A, dpa_ctl);
POSTING_READ(DP_A);
udelay(500);
}
static void intel_fdi_normal_train(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
u32 reg, temp;
/* enable normal train */
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
if (IS_IVYBRIDGE(dev)) {
temp &= ~FDI_LINK_TRAIN_NONE_IVB;
temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
} else {
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
}
I915_WRITE(reg, temp);
reg = FDI_RX_CTL(pipe);
temp = I915_READ(reg);
if (HAS_PCH_CPT(dev)) {
temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
temp |= FDI_LINK_TRAIN_NORMAL_CPT;
} else {
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_NONE;
}
I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
/* wait one idle pattern time */
POSTING_READ(reg);
udelay(1000);
/* IVB wants error correction enabled */
if (IS_IVYBRIDGE(dev))
I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
FDI_FE_ERRC_ENABLE);
}
static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 flags = I915_READ(SOUTH_CHICKEN1);
flags |= FDI_PHASE_SYNC_OVR(pipe);
I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
flags |= FDI_PHASE_SYNC_EN(pipe);
I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
POSTING_READ(SOUTH_CHICKEN1);
}
/* The FDI link training functions for ILK/Ibexpeak. */
static void ironlake_fdi_link_train(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
int plane = intel_crtc->plane;
u32 reg, temp, tries;
/* FDI needs bits from pipe & plane first */
assert_pipe_enabled(dev_priv, pipe);
assert_plane_enabled(dev_priv, plane);
/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
for train result */
reg = FDI_RX_IMR(pipe);
temp = I915_READ(reg);
temp &= ~FDI_RX_SYMBOL_LOCK;
temp &= ~FDI_RX_BIT_LOCK;
I915_WRITE(reg, temp);
I915_READ(reg);
udelay(150);
/* enable CPU FDI TX and PCH FDI RX */
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~(7 << 19);
temp |= (intel_crtc->fdi_lanes - 1) << 19;
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_1;
I915_WRITE(reg, temp | FDI_TX_ENABLE);
reg = FDI_RX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_1;
I915_WRITE(reg, temp | FDI_RX_ENABLE);
POSTING_READ(reg);
udelay(150);
/* Ironlake workaround, enable clock pointer after FDI enable*/
if (HAS_PCH_IBX(dev)) {
I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
FDI_RX_PHASE_SYNC_POINTER_EN);
}
reg = FDI_RX_IIR(pipe);
for (tries = 0; tries < 5; tries++) {
temp = I915_READ(reg);
DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
if ((temp & FDI_RX_BIT_LOCK)) {
DRM_DEBUG_KMS("FDI train 1 done.\n");
I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
break;
}
}
if (tries == 5)
DRM_ERROR("FDI train 1 fail!\n");
/* Train 2 */
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_2;
I915_WRITE(reg, temp);
reg = FDI_RX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_2;
I915_WRITE(reg, temp);
POSTING_READ(reg);
udelay(150);
reg = FDI_RX_IIR(pipe);
for (tries = 0; tries < 5; tries++) {
temp = I915_READ(reg);
DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
if (temp & FDI_RX_SYMBOL_LOCK) {
I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
DRM_DEBUG_KMS("FDI train 2 done.\n");
break;
}
}
if (tries == 5)
DRM_ERROR("FDI train 2 fail!\n");
DRM_DEBUG_KMS("FDI train done\n");
}
static const int snb_b_fdi_train_param[] = {
FDI_LINK_TRAIN_400MV_0DB_SNB_B,
FDI_LINK_TRAIN_400MV_6DB_SNB_B,
FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
FDI_LINK_TRAIN_800MV_0DB_SNB_B,
};
/* The FDI link training functions for SNB/Cougarpoint. */
static void gen6_fdi_link_train(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
u32 reg, temp, i, retry;
/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
for train result */
reg = FDI_RX_IMR(pipe);
temp = I915_READ(reg);
temp &= ~FDI_RX_SYMBOL_LOCK;
temp &= ~FDI_RX_BIT_LOCK;
I915_WRITE(reg, temp);
POSTING_READ(reg);
udelay(150);
/* enable CPU FDI TX and PCH FDI RX */
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~(7 << 19);
temp |= (intel_crtc->fdi_lanes - 1) << 19;
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_1;
temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
/* SNB-B */
temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
I915_WRITE(reg, temp | FDI_TX_ENABLE);
reg = FDI_RX_CTL(pipe);
temp = I915_READ(reg);
if (HAS_PCH_CPT(dev)) {
temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
} else {
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_1;
}
I915_WRITE(reg, temp | FDI_RX_ENABLE);
POSTING_READ(reg);
udelay(150);
if (HAS_PCH_CPT(dev))
cpt_phase_pointer_enable(dev, pipe);
for (i = 0; i < 4; i++) {
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
temp |= snb_b_fdi_train_param[i];
I915_WRITE(reg, temp);
POSTING_READ(reg);
udelay(500);
for (retry = 0; retry < 5; retry++) {
reg = FDI_RX_IIR(pipe);
temp = I915_READ(reg);
DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
if (temp & FDI_RX_BIT_LOCK) {
I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
DRM_DEBUG_KMS("FDI train 1 done.\n");
break;
}
udelay(50);
}
if (retry < 5)
break;
}
if (i == 4)
DRM_ERROR("FDI train 1 fail!\n");
/* Train 2 */
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_2;
if (IS_GEN6(dev)) {
temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
/* SNB-B */
temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
}
I915_WRITE(reg, temp);
reg = FDI_RX_CTL(pipe);
temp = I915_READ(reg);
if (HAS_PCH_CPT(dev)) {
temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
} else {
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_2;
}
I915_WRITE(reg, temp);
POSTING_READ(reg);
udelay(150);
for (i = 0; i < 4; i++) {
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
temp |= snb_b_fdi_train_param[i];
I915_WRITE(reg, temp);
POSTING_READ(reg);
udelay(500);
for (retry = 0; retry < 5; retry++) {
reg = FDI_RX_IIR(pipe);
temp = I915_READ(reg);
DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
if (temp & FDI_RX_SYMBOL_LOCK) {
I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
DRM_DEBUG_KMS("FDI train 2 done.\n");
break;
}
udelay(50);
}
if (retry < 5)
break;
}
if (i == 4)
DRM_ERROR("FDI train 2 fail!\n");
DRM_DEBUG_KMS("FDI train done.\n");
}
/* Manual link training for Ivy Bridge A0 parts */
static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
u32 reg, temp, i;
/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
for train result */
reg = FDI_RX_IMR(pipe);
temp = I915_READ(reg);
temp &= ~FDI_RX_SYMBOL_LOCK;
temp &= ~FDI_RX_BIT_LOCK;
I915_WRITE(reg, temp);
POSTING_READ(reg);
udelay(150);
/* enable CPU FDI TX and PCH FDI RX */
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~(7 << 19);
temp |= (intel_crtc->fdi_lanes - 1) << 19;
temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
temp |= FDI_COMPOSITE_SYNC;
I915_WRITE(reg, temp | FDI_TX_ENABLE);
reg = FDI_RX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~FDI_LINK_TRAIN_AUTO;
temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
temp |= FDI_COMPOSITE_SYNC;
I915_WRITE(reg, temp | FDI_RX_ENABLE);
POSTING_READ(reg);
udelay(150);
if (HAS_PCH_CPT(dev))
cpt_phase_pointer_enable(dev, pipe);
for (i = 0; i < 4; i++) {
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
temp |= snb_b_fdi_train_param[i];
I915_WRITE(reg, temp);
POSTING_READ(reg);
udelay(500);
reg = FDI_RX_IIR(pipe);
temp = I915_READ(reg);
DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
if (temp & FDI_RX_BIT_LOCK ||
(I915_READ(reg) & FDI_RX_BIT_LOCK)) {
I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
DRM_DEBUG_KMS("FDI train 1 done.\n");
break;
}
}
if (i == 4)
DRM_ERROR("FDI train 1 fail!\n");
/* Train 2 */
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~FDI_LINK_TRAIN_NONE_IVB;
temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
I915_WRITE(reg, temp);
reg = FDI_RX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
I915_WRITE(reg, temp);
POSTING_READ(reg);
udelay(150);
for (i = 0; i < 4; i++) {
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
temp |= snb_b_fdi_train_param[i];
I915_WRITE(reg, temp);
POSTING_READ(reg);
udelay(500);
reg = FDI_RX_IIR(pipe);
temp = I915_READ(reg);
DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
if (temp & FDI_RX_SYMBOL_LOCK) {
I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
DRM_DEBUG_KMS("FDI train 2 done.\n");
break;
}
}
if (i == 4)
DRM_ERROR("FDI train 2 fail!\n");
DRM_DEBUG_KMS("FDI train done.\n");
}
static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
{
struct drm_device *dev = intel_crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int pipe = intel_crtc->pipe;
u32 reg, temp;
/* Write the TU size bits so error detection works */
I915_WRITE(FDI_RX_TUSIZE1(pipe),
I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
/* enable PCH FDI RX PLL, wait warmup plus DMI latency */
reg = FDI_RX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~((0x7 << 19) | (0x7 << 16));
temp |= (intel_crtc->fdi_lanes - 1) << 19;
temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
POSTING_READ(reg);
udelay(200);
/* Switch from Rawclk to PCDclk */
temp = I915_READ(reg);
I915_WRITE(reg, temp | FDI_PCDCLK);
POSTING_READ(reg);
udelay(200);
/* On Haswell, the PLL configuration for ports and pipes is handled
* separately, as part of DDI setup */
if (!IS_HASWELL(dev)) {
/* Enable CPU FDI TX PLL, always on for Ironlake */
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
if ((temp & FDI_TX_PLL_ENABLE) == 0) {
I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
POSTING_READ(reg);
udelay(100);
}
}
}
static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
{
struct drm_device *dev = intel_crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int pipe = intel_crtc->pipe;
u32 reg, temp;
/* Switch from PCDclk to Rawclk */
reg = FDI_RX_CTL(pipe);
temp = I915_READ(reg);
I915_WRITE(reg, temp & ~FDI_PCDCLK);
/* Disable CPU FDI TX PLL */
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
POSTING_READ(reg);
udelay(100);
reg = FDI_RX_CTL(pipe);
temp = I915_READ(reg);
I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
/* Wait for the clocks to turn off. */
POSTING_READ(reg);
udelay(100);
}
static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 flags = I915_READ(SOUTH_CHICKEN1);
flags &= ~(FDI_PHASE_SYNC_EN(pipe));
I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
POSTING_READ(SOUTH_CHICKEN1);
}
static void ironlake_fdi_disable(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
u32 reg, temp;
/* disable CPU FDI tx and PCH FDI rx */
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
POSTING_READ(reg);
reg = FDI_RX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~(0x7 << 16);
temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
POSTING_READ(reg);
udelay(100);
/* Ironlake workaround, disable clock pointer after downing FDI */
if (HAS_PCH_IBX(dev)) {
I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
I915_WRITE(FDI_RX_CHICKEN(pipe),
I915_READ(FDI_RX_CHICKEN(pipe) &
~FDI_RX_PHASE_SYNC_POINTER_EN));
} else if (HAS_PCH_CPT(dev)) {
cpt_phase_pointer_disable(dev, pipe);
}
/* still set train pattern 1 */
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_1;
I915_WRITE(reg, temp);
reg = FDI_RX_CTL(pipe);
temp = I915_READ(reg);
if (HAS_PCH_CPT(dev)) {
temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
} else {
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_1;
}
/* BPC in FDI rx is consistent with that in PIPECONF */
temp &= ~(0x07 << 16);
temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
I915_WRITE(reg, temp);
POSTING_READ(reg);
udelay(100);
}
static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
if (crtc->fb == NULL)
return;
mutex_lock(&dev->struct_mutex);
intel_finish_fb(crtc->fb);
mutex_unlock(&dev->struct_mutex);
}
static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct intel_encoder *intel_encoder;
/*
* If there's a non-PCH eDP on this crtc, it must be DP_A, and that
* must be driven by its own crtc; no sharing is possible.
*/
for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
/* On Haswell, LPT PCH handles the VGA connection via FDI, and Haswell
* CPU handles all others */
if (IS_HASWELL(dev)) {
/* It is still unclear how this will work on PPT, so throw up a warning */
WARN_ON(!HAS_PCH_LPT(dev));
if (intel_encoder->type == INTEL_OUTPUT_ANALOG) {
DRM_DEBUG_KMS("Haswell detected DAC encoder, assuming is PCH\n");
return true;
} else {
DRM_DEBUG_KMS("Haswell detected encoder %d, assuming is CPU\n",
intel_encoder->type);
return false;
}
}
switch (intel_encoder->type) {
case INTEL_OUTPUT_EDP:
if (!intel_encoder_is_pch_edp(&intel_encoder->base))
return false;
continue;
}
}
return true;
}
/* Program iCLKIP clock to the desired frequency */
static void lpt_program_iclkip(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 divsel, phaseinc, auxdiv, phasedir = 0;
u32 temp;
/* It is necessary to ungate the pixclk gate prior to programming
* the divisors, and gate it back when it is done.
*/
I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
/* Disable SSCCTL */
intel_sbi_write(dev_priv, SBI_SSCCTL6,
intel_sbi_read(dev_priv, SBI_SSCCTL6) |
SBI_SSCCTL_DISABLE);
/* 20MHz is a corner case which is out of range for the 7-bit divisor */
if (crtc->mode.clock == 20000) {
auxdiv = 1;
divsel = 0x41;
phaseinc = 0x20;
} else {
/* The iCLK virtual clock root frequency is in MHz,
* but the crtc->mode.clock in in KHz. To get the divisors,
* it is necessary to divide one by another, so we
* convert the virtual clock precision to KHz here for higher
* precision.
*/
u32 iclk_virtual_root_freq = 172800 * 1000;
u32 iclk_pi_range = 64;
u32 desired_divisor, msb_divisor_value, pi_value;
desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
msb_divisor_value = desired_divisor / iclk_pi_range;
pi_value = desired_divisor % iclk_pi_range;
auxdiv = 0;
divsel = msb_divisor_value - 2;
phaseinc = pi_value;
}
/* This should not happen with any sane values */
WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
~SBI_SSCDIVINTPHASE_INCVAL_MASK);
DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
crtc->mode.clock,
auxdiv,
divsel,
phasedir,
phaseinc);
/* Program SSCDIVINTPHASE6 */
temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6);
temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
intel_sbi_write(dev_priv,
SBI_SSCDIVINTPHASE6,
temp);
/* Program SSCAUXDIV */
temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6);
temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
intel_sbi_write(dev_priv,
SBI_SSCAUXDIV6,
temp);
/* Enable modulator and associated divider */
temp = intel_sbi_read(dev_priv, SBI_SSCCTL6);
temp &= ~SBI_SSCCTL_DISABLE;
intel_sbi_write(dev_priv,
SBI_SSCCTL6,
temp);
/* Wait for initialization time */
udelay(24);
I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
}
/*
* Enable PCH resources required for PCH ports:
* - PCH PLLs
* - FDI training & RX/TX
* - update transcoder timings
* - DP transcoding bits
* - transcoder
*/
static void ironlake_pch_enable(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
u32 reg, temp;
assert_transcoder_disabled(dev_priv, pipe);
/* For PCH output, training FDI link */
dev_priv->display.fdi_link_train(crtc);
intel_enable_pch_pll(intel_crtc);
if (HAS_PCH_LPT(dev)) {
DRM_DEBUG_KMS("LPT detected: programming iCLKIP\n");
lpt_program_iclkip(crtc);
} else if (HAS_PCH_CPT(dev)) {
u32 sel;
temp = I915_READ(PCH_DPLL_SEL);
switch (pipe) {
default:
case 0:
temp |= TRANSA_DPLL_ENABLE;
sel = TRANSA_DPLLB_SEL;
break;
case 1:
temp |= TRANSB_DPLL_ENABLE;
sel = TRANSB_DPLLB_SEL;
break;
case 2:
temp |= TRANSC_DPLL_ENABLE;
sel = TRANSC_DPLLB_SEL;
break;
}
if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
temp |= sel;
else
temp &= ~sel;
I915_WRITE(PCH_DPLL_SEL, temp);
}
/* set transcoder timing, panel must allow it */
assert_panel_unlocked(dev_priv, pipe);
I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
I915_WRITE(TRANS_VSYNCSHIFT(pipe), I915_READ(VSYNCSHIFT(pipe)));
if (!IS_HASWELL(dev))
intel_fdi_normal_train(crtc);
/* For PCH DP, enable TRANS_DP_CTL */
if (HAS_PCH_CPT(dev) &&
(intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
reg = TRANS_DP_CTL(pipe);
temp = I915_READ(reg);
temp &= ~(TRANS_DP_PORT_SEL_MASK |
TRANS_DP_SYNC_MASK |
TRANS_DP_BPC_MASK);
temp |= (TRANS_DP_OUTPUT_ENABLE |
TRANS_DP_ENH_FRAMING);
temp |= bpc << 9; /* same format but at 11:9 */
if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
switch (intel_trans_dp_port_sel(crtc)) {
case PCH_DP_B:
temp |= TRANS_DP_PORT_SEL_B;
break;
case PCH_DP_C:
temp |= TRANS_DP_PORT_SEL_C;
break;
case PCH_DP_D:
temp |= TRANS_DP_PORT_SEL_D;
break;
default:
DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
temp |= TRANS_DP_PORT_SEL_B;
break;
}
I915_WRITE(reg, temp);
}
intel_enable_transcoder(dev_priv, pipe);
}
static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
{
struct intel_pch_pll *pll = intel_crtc->pch_pll;
if (pll == NULL)
return;
if (pll->refcount == 0) {
WARN(1, "bad PCH PLL refcount\n");
return;
}
--pll->refcount;
intel_crtc->pch_pll = NULL;
}
static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
{
struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
struct intel_pch_pll *pll;
int i;
pll = intel_crtc->pch_pll;
if (pll) {
DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
intel_crtc->base.base.id, pll->pll_reg);
goto prepare;
}
if (HAS_PCH_IBX(dev_priv->dev)) {
/* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
i = intel_crtc->pipe;
pll = &dev_priv->pch_plls[i];
DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
intel_crtc->base.base.id, pll->pll_reg);
goto found;
}
for (i = 0; i < dev_priv->num_pch_pll; i++) {
pll = &dev_priv->pch_plls[i];
/* Only want to check enabled timings first */
if (pll->refcount == 0)
continue;
if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
fp == I915_READ(pll->fp0_reg)) {
DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
intel_crtc->base.base.id,
pll->pll_reg, pll->refcount, pll->active);
goto found;
}
}
/* Ok no matching timings, maybe there's a free one? */
for (i = 0; i < dev_priv->num_pch_pll; i++) {
pll = &dev_priv->pch_plls[i];
if (pll->refcount == 0) {
DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
intel_crtc->base.base.id, pll->pll_reg);
goto found;
}
}
return NULL;
found:
intel_crtc->pch_pll = pll;
pll->refcount++;
DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
prepare: /* separate function? */
DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
/* Wait for the clocks to stabilize before rewriting the regs */
I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
POSTING_READ(pll->pll_reg);
udelay(150);
I915_WRITE(pll->fp0_reg, fp);
I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
pll->on = false;
return pll;
}
void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
u32 temp;
temp = I915_READ(dslreg);
udelay(500);
if (wait_for(I915_READ(dslreg) != temp, 5)) {
/* Without this, mode sets may fail silently on FDI */
I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
udelay(250);
I915_WRITE(tc2reg, 0);
if (wait_for(I915_READ(dslreg) != temp, 5))
DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
}
}
static void ironlake_crtc_enable(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_encoder *encoder;
int pipe = intel_crtc->pipe;
int plane = intel_crtc->plane;
u32 temp;
bool is_pch_port;
WARN_ON(!crtc->enabled);
if (intel_crtc->active)
return;
intel_crtc->active = true;
intel_update_watermarks(dev);
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
temp = I915_READ(PCH_LVDS);
if ((temp & LVDS_PORT_EN) == 0)
I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
}
is_pch_port = intel_crtc_driving_pch(crtc);
if (is_pch_port)
ironlake_fdi_pll_enable(intel_crtc);
else
ironlake_fdi_disable(crtc);
/* Enable panel fitting for LVDS */
if (dev_priv->pch_pf_size &&
(intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
/* Force use of hard-coded filter coefficients
* as some pre-programmed values are broken,
* e.g. x201.
*/
I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
}
/*
* On ILK+ LUT must be loaded before the pipe is running but with
* clocks enabled
*/
intel_crtc_load_lut(crtc);
intel_enable_pipe(dev_priv, pipe, is_pch_port);
intel_enable_plane(dev_priv, plane, pipe);
if (is_pch_port)
ironlake_pch_enable(crtc);
mutex_lock(&dev->struct_mutex);
intel_update_fbc(dev);
mutex_unlock(&dev->struct_mutex);
intel_crtc_update_cursor(crtc, true);
for_each_encoder_on_crtc(dev, crtc, encoder)
encoder->enable(encoder);
if (HAS_PCH_CPT(dev))
intel_cpt_verify_modeset(dev, intel_crtc->pipe);
}
static void ironlake_crtc_disable(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_encoder *encoder;
int pipe = intel_crtc->pipe;
int plane = intel_crtc->plane;
u32 reg, temp;
if (!intel_crtc->active)
return;
for_each_encoder_on_crtc(dev, crtc, encoder)
encoder->disable(encoder);
intel_crtc_wait_for_pending_flips(crtc);
drm_vblank_off(dev, pipe);
intel_crtc_update_cursor(crtc, false);
intel_disable_plane(dev_priv, plane, pipe);
if (dev_priv->cfb_plane == plane)
intel_disable_fbc(dev);
intel_disable_pipe(dev_priv, pipe);
/* Disable PF */
I915_WRITE(PF_CTL(pipe), 0);
I915_WRITE(PF_WIN_SZ(pipe), 0);
ironlake_fdi_disable(crtc);
/* This is a horrible layering violation; we should be doing this in
* the connector/encoder ->prepare instead, but we don't always have
* enough information there about the config to know whether it will
* actually be necessary or just cause undesired flicker.
*/
intel_disable_pch_ports(dev_priv, pipe);
intel_disable_transcoder(dev_priv, pipe);
if (HAS_PCH_CPT(dev)) {
/* disable TRANS_DP_CTL */
reg = TRANS_DP_CTL(pipe);
temp = I915_READ(reg);
temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
temp |= TRANS_DP_PORT_SEL_NONE;
I915_WRITE(reg, temp);
/* disable DPLL_SEL */
temp = I915_READ(PCH_DPLL_SEL);
switch (pipe) {
case 0:
temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
break;
case 1:
temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
break;
case 2:
/* C shares PLL A or B */
temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
break;
default:
BUG(); /* wtf */
}
I915_WRITE(PCH_DPLL_SEL, temp);
}
/* disable PCH DPLL */
intel_disable_pch_pll(intel_crtc);
ironlake_fdi_pll_disable(intel_crtc);
intel_crtc->active = false;
intel_update_watermarks(dev);
mutex_lock(&dev->struct_mutex);
intel_update_fbc(dev);
mutex_unlock(&dev->struct_mutex);
}
static void ironlake_crtc_off(struct drm_crtc *crtc)
{
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
intel_put_pch_pll(intel_crtc);
}
static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
{
if (!enable && intel_crtc->overlay) {
struct drm_device *dev = intel_crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
mutex_lock(&dev->struct_mutex);
dev_priv->mm.interruptible = false;
(void) intel_overlay_switch_off(intel_crtc->overlay);
dev_priv->mm.interruptible = true;
mutex_unlock(&dev->struct_mutex);
}
/* Let userspace switch the overlay on again. In most cases userspace
* has to recompute where to put it anyway.
*/
}
static void i9xx_crtc_enable(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_encoder *encoder;
int pipe = intel_crtc->pipe;
int plane = intel_crtc->plane;
WARN_ON(!crtc->enabled);
if (intel_crtc->active)
return;
intel_crtc->active = true;
intel_update_watermarks(dev);
intel_enable_pll(dev_priv, pipe);
intel_enable_pipe(dev_priv, pipe, false);
intel_enable_plane(dev_priv, plane, pipe);
intel_crtc_load_lut(crtc);
intel_update_fbc(dev);
/* Give the overlay scaler a chance to enable if it's on this pipe */
intel_crtc_dpms_overlay(intel_crtc, true);
intel_crtc_update_cursor(crtc, true);
for_each_encoder_on_crtc(dev, crtc, encoder)
encoder->enable(encoder);
}
static void i9xx_crtc_disable(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_encoder *encoder;
int pipe = intel_crtc->pipe;
int plane = intel_crtc->plane;
if (!intel_crtc->active)
return;
for_each_encoder_on_crtc(dev, crtc, encoder)
encoder->disable(encoder);
/* Give the overlay scaler a chance to disable if it's on this pipe */
intel_crtc_wait_for_pending_flips(crtc);
drm_vblank_off(dev, pipe);
intel_crtc_dpms_overlay(intel_crtc, false);
intel_crtc_update_cursor(crtc, false);
if (dev_priv->cfb_plane == plane)
intel_disable_fbc(dev);
intel_disable_plane(dev_priv, plane, pipe);
intel_disable_pipe(dev_priv, pipe);
intel_disable_pll(dev_priv, pipe);
intel_crtc->active = false;
intel_update_fbc(dev);
intel_update_watermarks(dev);
}
static void i9xx_crtc_off(struct drm_crtc *crtc)
{
}
static void intel_crtc_update_sarea(struct drm_crtc *crtc,
bool enabled)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_master_private *master_priv;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
if (!dev->primary->master)
return;
master_priv = dev->primary->master->driver_priv;
if (!master_priv->sarea_priv)
return;
switch (pipe) {
case 0:
master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
break;
case 1:
master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
break;
default:
DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
break;
}
}
/**
* Sets the power management mode of the pipe and plane.
*/
void intel_crtc_update_dpms(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_encoder *intel_encoder;
bool enable = false;
for_each_encoder_on_crtc(dev, crtc, intel_encoder)
enable |= intel_encoder->connectors_active;
if (enable)
dev_priv->display.crtc_enable(crtc);
else
dev_priv->display.crtc_disable(crtc);
intel_crtc_update_sarea(crtc, enable);
}
static void intel_crtc_noop(struct drm_crtc *crtc)
{
}
static void intel_crtc_disable(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_connector *connector;
struct drm_i915_private *dev_priv = dev->dev_private;
/* crtc should still be enabled when we disable it. */
WARN_ON(!crtc->enabled);
dev_priv->display.crtc_disable(crtc);
intel_crtc_update_sarea(crtc, false);
dev_priv->display.off(crtc);
assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
if (crtc->fb) {
mutex_lock(&dev->struct_mutex);
intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
mutex_unlock(&dev->struct_mutex);
crtc->fb = NULL;
}
/* Update computed state. */
list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
if (!connector->encoder || !connector->encoder->crtc)
continue;
if (connector->encoder->crtc != crtc)
continue;
connector->dpms = DRM_MODE_DPMS_OFF;
to_intel_encoder(connector->encoder)->connectors_active = false;
}
}
void intel_modeset_disable(struct drm_device *dev)
{
struct drm_crtc *crtc;
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
if (crtc->enabled)
intel_crtc_disable(crtc);
}
}
void intel_encoder_noop(struct drm_encoder *encoder)
{
}
void intel_encoder_destroy(struct drm_encoder *encoder)
{
struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
drm_encoder_cleanup(encoder);
kfree(intel_encoder);
}
/* Simple dpms helper for encodres with just one connector, no cloning and only
* one kind of off state. It clamps all !ON modes to fully OFF and changes the
* state of the entire output pipe. */
void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
{
if (mode == DRM_MODE_DPMS_ON) {
encoder->connectors_active = true;
intel_crtc_update_dpms(encoder->base.crtc);
} else {
encoder->connectors_active = false;
intel_crtc_update_dpms(encoder->base.crtc);
}
}
/* Cross check the actual hw state with our own modeset state tracking (and it's
* internal consistency). */
static void intel_connector_check_state(struct intel_connector *connector)
{
if (connector->get_hw_state(connector)) {
struct intel_encoder *encoder = connector->encoder;
struct drm_crtc *crtc;
bool encoder_enabled;
enum pipe pipe;
DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
connector->base.base.id,
drm_get_connector_name(&connector->base));
WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
"wrong connector dpms state\n");
WARN(connector->base.encoder != &encoder->base,
"active connector not linked to encoder\n");
WARN(!encoder->connectors_active,
"encoder->connectors_active not set\n");
encoder_enabled = encoder->get_hw_state(encoder, &pipe);
WARN(!encoder_enabled, "encoder not enabled\n");
if (WARN_ON(!encoder->base.crtc))
return;
crtc = encoder->base.crtc;
WARN(!crtc->enabled, "crtc not enabled\n");
WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
WARN(pipe != to_intel_crtc(crtc)->pipe,
"encoder active on the wrong pipe\n");
}
}
/* Even simpler default implementation, if there's really no special case to
* consider. */
void intel_connector_dpms(struct drm_connector *connector, int mode)
{
struct intel_encoder *encoder = intel_attached_encoder(connector);
/* All the simple cases only support two dpms states. */
if (mode != DRM_MODE_DPMS_ON)
mode = DRM_MODE_DPMS_OFF;
if (mode == connector->dpms)
return;
connector->dpms = mode;
/* Only need to change hw state when actually enabled */
if (encoder->base.crtc)
intel_encoder_dpms(encoder, mode);
else
WARN_ON(encoder->connectors_active != false);
intel_modeset_check_state(connector->dev);
}
/* Simple connector->get_hw_state implementation for encoders that support only
* one connector and no cloning and hence the encoder state determines the state
* of the connector. */
bool intel_connector_get_hw_state(struct intel_connector *connector)
{
enum pipe pipe = 0;
struct intel_encoder *encoder = connector->encoder;
return encoder->get_hw_state(encoder, &pipe);
}
static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
const struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct drm_device *dev = crtc->dev;
if (HAS_PCH_SPLIT(dev)) {
/* FDI link clock is fixed at 2.7G */
if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
return false;
}
/* All interlaced capable intel hw wants timings in frames. Note though
* that intel_lvds_mode_fixup does some funny tricks with the crtc
* timings, so we need to be careful not to clobber these.*/
if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
drm_mode_set_crtcinfo(adjusted_mode, 0);
/* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
* with a hsync front porch of 0.
*/
if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
adjusted_mode->hsync_start == adjusted_mode->hdisplay)
return false;
return true;
}
static int valleyview_get_display_clock_speed(struct drm_device *dev)
{
return 400000; /* FIXME */
}
static int i945_get_display_clock_speed(struct drm_device *dev)
{
return 400000;
}
static int i915_get_display_clock_speed(struct drm_device *dev)
{
return 333000;
}
static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
{
return 200000;
}
static int i915gm_get_display_clock_speed(struct drm_device *dev)
{
u16 gcfgc = 0;
pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
return 133000;
else {
switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
case GC_DISPLAY_CLOCK_333_MHZ:
return 333000;
default:
case GC_DISPLAY_CLOCK_190_200_MHZ:
return 190000;
}
}
}
static int i865_get_display_clock_speed(struct drm_device *dev)
{
return 266000;
}
static int i855_get_display_clock_speed(struct drm_device *dev)
{
u16 hpllcc = 0;
/* Assume that the hardware is in the high speed state. This
* should be the default.
*/
switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
case GC_CLOCK_133_200:
case GC_CLOCK_100_200:
return 200000;
case GC_CLOCK_166_250:
return 250000;
case GC_CLOCK_100_133:
return 133000;
}
/* Shouldn't happen */
return 0;
}
static int i830_get_display_clock_speed(struct drm_device *dev)
{
return 133000;
}
struct fdi_m_n {
u32 tu;
u32 gmch_m;
u32 gmch_n;
u32 link_m;
u32 link_n;
};
static void
fdi_reduce_ratio(u32 *num, u32 *den)
{
while (*num > 0xffffff || *den > 0xffffff) {
*num >>= 1;
*den >>= 1;
}
}
static void
ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
int link_clock, struct fdi_m_n *m_n)
{
m_n->tu = 64; /* default size */
/* BUG_ON(pixel_clock > INT_MAX / 36); */
m_n->gmch_m = bits_per_pixel * pixel_clock;
m_n->gmch_n = link_clock * nlanes * 8;
fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
m_n->link_m = pixel_clock;
m_n->link_n = link_clock;
fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
}
static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
{
if (i915_panel_use_ssc >= 0)
return i915_panel_use_ssc != 0;
return dev_priv->lvds_use_ssc
&& !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
}
/**
* intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
* @crtc: CRTC structure
* @mode: requested mode
*
* A pipe may be connected to one or more outputs. Based on the depth of the
* attached framebuffer, choose a good color depth to use on the pipe.
*
* If possible, match the pipe depth to the fb depth. In some cases, this
* isn't ideal, because the connected output supports a lesser or restricted
* set of depths. Resolve that here:
* LVDS typically supports only 6bpc, so clamp down in that case
* HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
* Displays may support a restricted set as well, check EDID and clamp as
* appropriate.
* DP may want to dither down to 6bpc to fit larger modes
*
* RETURNS:
* Dithering requirement (i.e. false if display bpc and pipe bpc match,
* true if they don't match).
*/
static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
struct drm_framebuffer *fb,
unsigned int *pipe_bpp,
struct drm_display_mode *mode)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_connector *connector;
struct intel_encoder *intel_encoder;
unsigned int display_bpc = UINT_MAX, bpc;
/* Walk the encoders & connectors on this crtc, get min bpc */
for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
unsigned int lvds_bpc;
if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
LVDS_A3_POWER_UP)
lvds_bpc = 8;
else
lvds_bpc = 6;
if (lvds_bpc < display_bpc) {
DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
display_bpc = lvds_bpc;
}
continue;
}
/* Not one of the known troublemakers, check the EDID */
list_for_each_entry(connector, &dev->mode_config.connector_list,
head) {
if (connector->encoder != &intel_encoder->base)
continue;
/* Don't use an invalid EDID bpc value */
if (connector->display_info.bpc &&
connector->display_info.bpc < display_bpc) {
DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
display_bpc = connector->display_info.bpc;
}
}
/*
* HDMI is either 12 or 8, so if the display lets 10bpc sneak
* through, clamp it down. (Note: >12bpc will be caught below.)
*/
if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
if (display_bpc > 8 && display_bpc < 12) {
DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
display_bpc = 12;
} else {
DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
display_bpc = 8;
}
}
}
if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
display_bpc = 6;
}
/*
* We could just drive the pipe at the highest bpc all the time and
* enable dithering as needed, but that costs bandwidth. So choose
* the minimum value that expresses the full color range of the fb but
* also stays within the max display bpc discovered above.
*/
switch (fb->depth) {
case 8:
bpc = 8; /* since we go through a colormap */
break;
case 15:
case 16:
bpc = 6; /* min is 18bpp */
break;
case 24:
bpc = 8;
break;
case 30:
bpc = 10;
break;
case 48:
bpc = 12;
break;
default:
DRM_DEBUG("unsupported depth, assuming 24 bits\n");
bpc = min((unsigned int)8, display_bpc);
break;
}
display_bpc = min(display_bpc, bpc);
DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
bpc, display_bpc);
*pipe_bpp = display_bpc * 3;
return display_bpc != bpc;
}
static int vlv_get_refclk(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int refclk = 27000; /* for DP & HDMI */
return 100000; /* only one validated so far */
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
refclk = 96000;
} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
if (intel_panel_use_ssc(dev_priv))
refclk = 100000;
else
refclk = 96000;
} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
refclk = 100000;
}
return refclk;
}
static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int refclk;
if (IS_VALLEYVIEW(dev)) {
refclk = vlv_get_refclk(crtc);
} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
refclk = dev_priv->lvds_ssc_freq * 1000;
DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
refclk / 1000);
} else if (!IS_GEN2(dev)) {
refclk = 96000;
} else {
refclk = 48000;
}
return refclk;
}
static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
intel_clock_t *clock)
{
/* SDVO TV has fixed PLL values depend on its clock range,
this mirrors vbios setting. */
if (adjusted_mode->clock >= 100000
&& adjusted_mode->clock < 140500) {
clock->p1 = 2;
clock->p2 = 10;
clock->n = 3;
clock->m1 = 16;
clock->m2 = 8;
} else if (adjusted_mode->clock >= 140500
&& adjusted_mode->clock <= 200000) {
clock->p1 = 1;
clock->p2 = 10;
clock->n = 6;
clock->m1 = 12;
clock->m2 = 8;
}
}
static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
intel_clock_t *clock,
intel_clock_t *reduced_clock)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
u32 fp, fp2 = 0;
if (IS_PINEVIEW(dev)) {
fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
if (reduced_clock)
fp2 = (1 << reduced_clock->n) << 16 |
reduced_clock->m1 << 8 | reduced_clock->m2;
} else {
fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
if (reduced_clock)
fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
reduced_clock->m2;
}
I915_WRITE(FP0(pipe), fp);
intel_crtc->lowfreq_avail = false;
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
reduced_clock && i915_powersave) {
I915_WRITE(FP1(pipe), fp2);
intel_crtc->lowfreq_avail = true;
} else {
I915_WRITE(FP1(pipe), fp);
}
}
static void intel_update_lvds(struct drm_crtc *crtc, intel_clock_t *clock,
struct drm_display_mode *adjusted_mode)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
u32 temp;
temp = I915_READ(LVDS);
temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
if (pipe == 1) {
temp |= LVDS_PIPEB_SELECT;
} else {
temp &= ~LVDS_PIPEB_SELECT;
}
/* set the corresponsding LVDS_BORDER bit */
temp |= dev_priv->lvds_border_bits;
/* Set the B0-B3 data pairs corresponding to whether we're going to
* set the DPLLs for dual-channel mode or not.
*/
if (clock->p2 == 7)
temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
else
temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
/* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
* appropriately here, but we need to look more thoroughly into how
* panels behave in the two modes.
*/
/* set the dithering flag on LVDS as needed */
if (INTEL_INFO(dev)->gen >= 4) {
if (dev_priv->lvds_dither)
temp |= LVDS_ENABLE_DITHER;
else
temp &= ~LVDS_ENABLE_DITHER;
}
temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
temp |= LVDS_HSYNC_POLARITY;
if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
temp |= LVDS_VSYNC_POLARITY;
I915_WRITE(LVDS, temp);
}
static void vlv_update_pll(struct drm_crtc *crtc,
struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode,
intel_clock_t *clock, intel_clock_t *reduced_clock,
int refclk, int num_connectors)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
u32 dpll, mdiv, pdiv;
u32 bestn, bestm1, bestm2, bestp1, bestp2;
bool is_hdmi;
is_hdmi = intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
bestn = clock->n;
bestm1 = clock->m1;
bestm2 = clock->m2;
bestp1 = clock->p1;
bestp2 = clock->p2;
/* Enable DPIO clock input */
dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
I915_WRITE(DPLL(pipe), dpll);
POSTING_READ(DPLL(pipe));
mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
mdiv |= ((bestn << DPIO_N_SHIFT));
mdiv |= (1 << DPIO_POST_DIV_SHIFT);
mdiv |= (1 << DPIO_K_SHIFT);
mdiv |= DPIO_ENABLE_CALIBRATION;
intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
pdiv = DPIO_REFSEL_OVERRIDE | (5 << DPIO_PLL_MODESEL_SHIFT) |
(3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
(8 << DPIO_DRIVER_CTL_SHIFT) | (5 << DPIO_CLK_BIAS_CTL_SHIFT);
intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x009f0051);
dpll |= DPLL_VCO_ENABLE;
I915_WRITE(DPLL(pipe), dpll);
POSTING_READ(DPLL(pipe));
if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
DRM_ERROR("DPLL %d failed to lock\n", pipe);
if (is_hdmi) {
u32 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
if (temp > 1)
temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
else
temp = 0;
I915_WRITE(DPLL_MD(pipe), temp);
POSTING_READ(DPLL_MD(pipe));
}
intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x641); /* ??? */
}
static void i9xx_update_pll(struct drm_crtc *crtc,
struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode,
intel_clock_t *clock, intel_clock_t *reduced_clock,
int num_connectors)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
u32 dpll;
bool is_sdvo;
is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
dpll = DPLL_VGA_MODE_DIS;
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
dpll |= DPLLB_MODE_LVDS;
else
dpll |= DPLLB_MODE_DAC_SERIAL;
if (is_sdvo) {
int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
if (pixel_multiplier > 1) {
if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
}
dpll |= DPLL_DVO_HIGH_SPEED;
}
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
dpll |= DPLL_DVO_HIGH_SPEED;
/* compute bitmask from p1 value */
if (IS_PINEVIEW(dev))
dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
else {
dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
if (IS_G4X(dev) && reduced_clock)
dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
}
switch (clock->p2) {
case 5:
dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
break;
case 7:
dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
break;
case 10:
dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
break;
case 14:
dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
break;
}
if (INTEL_INFO(dev)->gen >= 4)
dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
dpll |= PLL_REF_INPUT_TVCLKINBC;
else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
/* XXX: just matching BIOS for now */
/* dpll |= PLL_REF_INPUT_TVCLKINBC; */
dpll |= 3;
else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
intel_panel_use_ssc(dev_priv) && num_connectors < 2)
dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
else
dpll |= PLL_REF_INPUT_DREFCLK;
dpll |= DPLL_VCO_ENABLE;
I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
POSTING_READ(DPLL(pipe));
udelay(150);
/* The LVDS pin pair needs to be on before the DPLLs are enabled.
* This is an exception to the general rule that mode_set doesn't turn
* things on.
*/
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
intel_update_lvds(crtc, clock, adjusted_mode);
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
intel_dp_set_m_n(crtc, mode, adjusted_mode);
I915_WRITE(DPLL(pipe), dpll);
/* Wait for the clocks to stabilize. */
POSTING_READ(DPLL(pipe));
udelay(150);
if (INTEL_INFO(dev)->gen >= 4) {
u32 temp = 0;
if (is_sdvo) {
temp = intel_mode_get_pixel_multiplier(adjusted_mode);
if (temp > 1)
temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
else
temp = 0;
}
I915_WRITE(DPLL_MD(pipe), temp);
} else {
/* The pixel multiplier can only be updated once the
* DPLL is enabled and the clocks are stable.
*
* So write it again.
*/
I915_WRITE(DPLL(pipe), dpll);
}
}
static void i8xx_update_pll(struct drm_crtc *crtc,
struct drm_display_mode *adjusted_mode,
intel_clock_t *clock,
int num_connectors)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
u32 dpll;
dpll = DPLL_VGA_MODE_DIS;
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
} else {
if (clock->p1 == 2)
dpll |= PLL_P1_DIVIDE_BY_TWO;
else
dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
if (clock->p2 == 4)
dpll |= PLL_P2_DIVIDE_BY_4;
}
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
/* XXX: just matching BIOS for now */
/* dpll |= PLL_REF_INPUT_TVCLKINBC; */
dpll |= 3;
else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
intel_panel_use_ssc(dev_priv) && num_connectors < 2)
dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
else
dpll |= PLL_REF_INPUT_DREFCLK;
dpll |= DPLL_VCO_ENABLE;
I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
POSTING_READ(DPLL(pipe));
udelay(150);
I915_WRITE(DPLL(pipe), dpll);
/* Wait for the clocks to stabilize. */
POSTING_READ(DPLL(pipe));
udelay(150);
/* The LVDS pin pair needs to be on before the DPLLs are enabled.
* This is an exception to the general rule that mode_set doesn't turn
* things on.
*/
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
intel_update_lvds(crtc, clock, adjusted_mode);
/* The pixel multiplier can only be updated once the
* DPLL is enabled and the clocks are stable.
*
* So write it again.
*/
I915_WRITE(DPLL(pipe), dpll);
}
static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode,
int x, int y,
struct drm_framebuffer *fb)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
int plane = intel_crtc->plane;
int refclk, num_connectors = 0;
intel_clock_t clock, reduced_clock;
u32 dspcntr, pipeconf, vsyncshift;
bool ok, has_reduced_clock = false, is_sdvo = false;
bool is_lvds = false, is_tv = false, is_dp = false;
struct intel_encoder *encoder;
const intel_limit_t *limit;
int ret;
for_each_encoder_on_crtc(dev, crtc, encoder) {
switch (encoder->type) {
case INTEL_OUTPUT_LVDS:
is_lvds = true;
break;
case INTEL_OUTPUT_SDVO:
case INTEL_OUTPUT_HDMI:
is_sdvo = true;
if (encoder->needs_tv_clock)
is_tv = true;
break;
case INTEL_OUTPUT_TVOUT:
is_tv = true;
break;
case INTEL_OUTPUT_DISPLAYPORT:
is_dp = true;
break;
}
num_connectors++;
}
refclk = i9xx_get_refclk(crtc, num_connectors);
/*
* Returns a set of divisors for the desired target clock with the given
* refclk, or FALSE. The returned values represent the clock equation:
* reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
*/
limit = intel_limit(crtc, refclk);
ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
&clock);
if (!ok) {
DRM_ERROR("Couldn't find PLL settings for mode!\n");
return -EINVAL;
}
/* Ensure that the cursor is valid for the new mode before changing... */
intel_crtc_update_cursor(crtc, true);
if (is_lvds && dev_priv->lvds_downclock_avail) {
/*
* Ensure we match the reduced clock's P to the target clock.
* If the clocks don't match, we can't switch the display clock
* by using the FP0/FP1. In such case we will disable the LVDS
* downclock feature.
*/
has_reduced_clock = limit->find_pll(limit, crtc,
dev_priv->lvds_downclock,
refclk,
&clock,
&reduced_clock);
}
if (is_sdvo && is_tv)
i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
i9xx_update_pll_dividers(crtc, &clock, has_reduced_clock ?
&reduced_clock : NULL);
if (IS_GEN2(dev))
i8xx_update_pll(crtc, adjusted_mode, &clock, num_connectors);
else if (IS_VALLEYVIEW(dev))
vlv_update_pll(crtc, mode,adjusted_mode, &clock, NULL,
refclk, num_connectors);
else
i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
has_reduced_clock ? &reduced_clock : NULL,
num_connectors);
/* setup pipeconf */
pipeconf = I915_READ(PIPECONF(pipe));
/* Set up the display plane register */
dspcntr = DISPPLANE_GAMMA_ENABLE;
if (pipe == 0)
dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
else
dspcntr |= DISPPLANE_SEL_PIPE_B;
if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
/* Enable pixel doubling when the dot clock is > 90% of the (display)
* core speed.
*
* XXX: No double-wide on 915GM pipe B. Is that the only reason for the
* pipe == 0 check?
*/
if (mode->clock >
dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
pipeconf |= PIPECONF_DOUBLE_WIDE;
else
pipeconf &= ~PIPECONF_DOUBLE_WIDE;
}
/* default to 8bpc */
pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
if (is_dp) {
if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
pipeconf |= PIPECONF_BPP_6 |
PIPECONF_DITHER_EN |
PIPECONF_DITHER_TYPE_SP;
}
}
DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
drm_mode_debug_printmodeline(mode);
if (HAS_PIPE_CXSR(dev)) {
if (intel_crtc->lowfreq_avail) {
DRM_DEBUG_KMS("enabling CxSR downclocking\n");
pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
} else {
DRM_DEBUG_KMS("disabling CxSR downclocking\n");
pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
}
}
pipeconf &= ~PIPECONF_INTERLACE_MASK;
if (!IS_GEN2(dev) &&
adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
/* the chip adds 2 halflines automatically */
adjusted_mode->crtc_vtotal -= 1;
adjusted_mode->crtc_vblank_end -= 1;
vsyncshift = adjusted_mode->crtc_hsync_start
- adjusted_mode->crtc_htotal/2;
} else {
pipeconf |= PIPECONF_PROGRESSIVE;
vsyncshift = 0;
}
if (!IS_GEN3(dev))
I915_WRITE(VSYNCSHIFT(pipe), vsyncshift);
I915_WRITE(HTOTAL(pipe),
(adjusted_mode->crtc_hdisplay - 1) |
((adjusted_mode->crtc_htotal - 1) << 16));
I915_WRITE(HBLANK(pipe),
(adjusted_mode->crtc_hblank_start - 1) |
((adjusted_mode->crtc_hblank_end - 1) << 16));
I915_WRITE(HSYNC(pipe),
(adjusted_mode->crtc_hsync_start - 1) |
((adjusted_mode->crtc_hsync_end - 1) << 16));
I915_WRITE(VTOTAL(pipe),
(adjusted_mode->crtc_vdisplay - 1) |
((adjusted_mode->crtc_vtotal - 1) << 16));
I915_WRITE(VBLANK(pipe),
(adjusted_mode->crtc_vblank_start - 1) |
((adjusted_mode->crtc_vblank_end - 1) << 16));
I915_WRITE(VSYNC(pipe),
(adjusted_mode->crtc_vsync_start - 1) |
((adjusted_mode->crtc_vsync_end - 1) << 16));
/* pipesrc and dspsize control the size that is scaled from,
* which should always be the user's requested size.
*/
I915_WRITE(DSPSIZE(plane),
((mode->vdisplay - 1) << 16) |
(mode->hdisplay - 1));
I915_WRITE(DSPPOS(plane), 0);
I915_WRITE(PIPESRC(pipe),
((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
I915_WRITE(PIPECONF(pipe), pipeconf);
POSTING_READ(PIPECONF(pipe));
intel_enable_pipe(dev_priv, pipe, false);
intel_wait_for_vblank(dev, pipe);
I915_WRITE(DSPCNTR(plane), dspcntr);
POSTING_READ(DSPCNTR(plane));
ret = intel_pipe_set_base(crtc, x, y, fb);
intel_update_watermarks(dev);
return ret;
}
/*
* Initialize reference clocks when the driver loads
*/
void ironlake_init_pch_refclk(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_mode_config *mode_config = &dev->mode_config;
struct intel_encoder *encoder;
u32 temp;
bool has_lvds = false;
bool has_cpu_edp = false;
bool has_pch_edp = false;
bool has_panel = false;
bool has_ck505 = false;
bool can_ssc = false;
/* We need to take the global config into account */
list_for_each_entry(encoder, &mode_config->encoder_list,
base.head) {
switch (encoder->type) {
case INTEL_OUTPUT_LVDS:
has_panel = true;
has_lvds = true;
break;
case INTEL_OUTPUT_EDP:
has_panel = true;
if (intel_encoder_is_pch_edp(&encoder->base))
has_pch_edp = true;
else
has_cpu_edp = true;
break;
}
}
if (HAS_PCH_IBX(dev)) {
has_ck505 = dev_priv->display_clock_mode;
can_ssc = has_ck505;
} else {
has_ck505 = false;
can_ssc = true;
}
DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
has_panel, has_lvds, has_pch_edp, has_cpu_edp,
has_ck505);
/* Ironlake: try to setup display ref clock before DPLL
* enabling. This is only under driver's control after
* PCH B stepping, previous chipset stepping should be
* ignoring this setting.
*/
temp = I915_READ(PCH_DREF_CONTROL);
/* Always enable nonspread source */
temp &= ~DREF_NONSPREAD_SOURCE_MASK;
if (has_ck505)
temp |= DREF_NONSPREAD_CK505_ENABLE;
else
temp |= DREF_NONSPREAD_SOURCE_ENABLE;
if (has_panel) {
temp &= ~DREF_SSC_SOURCE_MASK;
temp |= DREF_SSC_SOURCE_ENABLE;
/* SSC must be turned on before enabling the CPU output */
if (intel_panel_use_ssc(dev_priv) && can_ssc) {
DRM_DEBUG_KMS("Using SSC on panel\n");
temp |= DREF_SSC1_ENABLE;
} else
temp &= ~DREF_SSC1_ENABLE;
/* Get SSC going before enabling the outputs */
I915_WRITE(PCH_DREF_CONTROL, temp);
POSTING_READ(PCH_DREF_CONTROL);
udelay(200);
temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
/* Enable CPU source on CPU attached eDP */
if (has_cpu_edp) {
if (intel_panel_use_ssc(dev_priv) && can_ssc) {
DRM_DEBUG_KMS("Using SSC on eDP\n");
temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
}
else
temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
} else
temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
I915_WRITE(PCH_DREF_CONTROL, temp);
POSTING_READ(PCH_DREF_CONTROL);
udelay(200);
} else {
DRM_DEBUG_KMS("Disabling SSC entirely\n");
temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
/* Turn off CPU output */
temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
I915_WRITE(PCH_DREF_CONTROL, temp);
POSTING_READ(PCH_DREF_CONTROL);
udelay(200);
/* Turn off the SSC source */
temp &= ~DREF_SSC_SOURCE_MASK;
temp |= DREF_SSC_SOURCE_DISABLE;
/* Turn off SSC1 */
temp &= ~ DREF_SSC1_ENABLE;
I915_WRITE(PCH_DREF_CONTROL, temp);
POSTING_READ(PCH_DREF_CONTROL);
udelay(200);
}
}
static int ironlake_get_refclk(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_encoder *encoder;
struct intel_encoder *edp_encoder = NULL;
int num_connectors = 0;
bool is_lvds = false;
for_each_encoder_on_crtc(dev, crtc, encoder) {
switch (encoder->type) {
case INTEL_OUTPUT_LVDS:
is_lvds = true;
break;
case INTEL_OUTPUT_EDP:
edp_encoder = encoder;
break;
}
num_connectors++;
}
if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
dev_priv->lvds_ssc_freq);
return dev_priv->lvds_ssc_freq * 1000;
}
return 120000;
}
static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode,
int x, int y,
struct drm_framebuffer *fb)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
int plane = intel_crtc->plane;
int refclk, num_connectors = 0;
intel_clock_t clock, reduced_clock;
u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
bool ok, has_reduced_clock = false, is_sdvo = false;
bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
struct intel_encoder *encoder, *edp_encoder = NULL;
const intel_limit_t *limit;
int ret;
struct fdi_m_n m_n = {0};
u32 temp;
int target_clock, pixel_multiplier, lane, link_bw, factor;
unsigned int pipe_bpp;
bool dither;
bool is_cpu_edp = false, is_pch_edp = false;
for_each_encoder_on_crtc(dev, crtc, encoder) {
switch (encoder->type) {
case INTEL_OUTPUT_LVDS:
is_lvds = true;
break;
case INTEL_OUTPUT_SDVO:
case INTEL_OUTPUT_HDMI:
is_sdvo = true;
if (encoder->needs_tv_clock)
is_tv = true;
break;
case INTEL_OUTPUT_TVOUT:
is_tv = true;
break;
case INTEL_OUTPUT_ANALOG:
is_crt = true;
break;
case INTEL_OUTPUT_DISPLAYPORT:
is_dp = true;
break;
case INTEL_OUTPUT_EDP:
is_dp = true;
if (intel_encoder_is_pch_edp(&encoder->base))
is_pch_edp = true;
else
is_cpu_edp = true;
edp_encoder = encoder;
break;
}
num_connectors++;
}
refclk = ironlake_get_refclk(crtc);
/*
* Returns a set of divisors for the desired target clock with the given
* refclk, or FALSE. The returned values represent the clock equation:
* reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
*/
limit = intel_limit(crtc, refclk);
ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
&clock);
if (!ok) {
DRM_ERROR("Couldn't find PLL settings for mode!\n");
return -EINVAL;
}
/* Ensure that the cursor is valid for the new mode before changing... */
intel_crtc_update_cursor(crtc, true);
if (is_lvds && dev_priv->lvds_downclock_avail) {
/*
* Ensure we match the reduced clock's P to the target clock.
* If the clocks don't match, we can't switch the display clock
* by using the FP0/FP1. In such case we will disable the LVDS
* downclock feature.
*/
has_reduced_clock = limit->find_pll(limit, crtc,
dev_priv->lvds_downclock,
refclk,
&clock,
&reduced_clock);
}
if (is_sdvo && is_tv)
i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
/* FDI link */
pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
lane = 0;
/* CPU eDP doesn't require FDI link, so just set DP M/N
according to current link config */
if (is_cpu_edp) {
intel_edp_link_config(edp_encoder, &lane, &link_bw);
} else {
/* FDI is a binary signal running at ~2.7GHz, encoding
* each output octet as 10 bits. The actual frequency
* is stored as a divider into a 100MHz clock, and the
* mode pixel clock is stored in units of 1KHz.
* Hence the bw of each lane in terms of the mode signal
* is:
*/
link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
}
/* [e]DP over FDI requires target mode clock instead of link clock. */
if (edp_encoder)
target_clock = intel_edp_target_clock(edp_encoder, mode);
else if (is_dp)
target_clock = mode->clock;
else
target_clock = adjusted_mode->clock;
/* determine panel color depth */
temp = I915_READ(PIPECONF(pipe));
temp &= ~PIPE_BPC_MASK;
dither = intel_choose_pipe_bpp_dither(crtc, fb, &pipe_bpp, mode);
switch (pipe_bpp) {
case 18:
temp |= PIPE_6BPC;
break;
case 24:
temp |= PIPE_8BPC;
break;
case 30:
temp |= PIPE_10BPC;
break;
case 36:
temp |= PIPE_12BPC;
break;
default:
WARN(1, "intel_choose_pipe_bpp returned invalid value %d\n",
pipe_bpp);
temp |= PIPE_8BPC;
pipe_bpp = 24;
break;
}
intel_crtc->bpp = pipe_bpp;
I915_WRITE(PIPECONF(pipe), temp);
if (!lane) {
/*
* Account for spread spectrum to avoid
* oversubscribing the link. Max center spread
* is 2.5%; use 5% for safety's sake.
*/
u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
lane = bps / (link_bw * 8) + 1;
}
intel_crtc->fdi_lanes = lane;
if (pixel_multiplier > 1)
link_bw *= pixel_multiplier;
ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
&m_n);
fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
if (has_reduced_clock)
fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
reduced_clock.m2;
/* Enable autotuning of the PLL clock (if permissible) */
factor = 21;
if (is_lvds) {
if ((intel_panel_use_ssc(dev_priv) &&
dev_priv->lvds_ssc_freq == 100) ||
(I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
factor = 25;
} else if (is_sdvo && is_tv)
factor = 20;
if (clock.m < factor * clock.n)
fp |= FP_CB_TUNE;
dpll = 0;
if (is_lvds)
dpll |= DPLLB_MODE_LVDS;
else
dpll |= DPLLB_MODE_DAC_SERIAL;
if (is_sdvo) {
int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
if (pixel_multiplier > 1) {
dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
}
dpll |= DPLL_DVO_HIGH_SPEED;
}
if (is_dp && !is_cpu_edp)
dpll |= DPLL_DVO_HIGH_SPEED;
/* compute bitmask from p1 value */
dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
/* also FPA1 */
dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
switch (clock.p2) {
case 5:
dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
break;
case 7:
dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
break;
case 10:
dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
break;
case 14:
dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
break;
}
if (is_sdvo && is_tv)
dpll |= PLL_REF_INPUT_TVCLKINBC;
else if (is_tv)
/* XXX: just matching BIOS for now */
/* dpll |= PLL_REF_INPUT_TVCLKINBC; */
dpll |= 3;
else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
else
dpll |= PLL_REF_INPUT_DREFCLK;
/* setup pipeconf */
pipeconf = I915_READ(PIPECONF(pipe));
/* Set up the display plane register */
dspcntr = DISPPLANE_GAMMA_ENABLE;
DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
drm_mode_debug_printmodeline(mode);
/* CPU eDP is the only output that doesn't need a PCH PLL of its own on
* pre-Haswell/LPT generation */
if (HAS_PCH_LPT(dev)) {
DRM_DEBUG_KMS("LPT detected: no PLL for pipe %d necessary\n",
pipe);
} else if (!is_cpu_edp) {
struct intel_pch_pll *pll;
pll = intel_get_pch_pll(intel_crtc, dpll, fp);
if (pll == NULL) {
DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
pipe);
return -EINVAL;
}
} else
intel_put_pch_pll(intel_crtc);
/* The LVDS pin pair needs to be on before the DPLLs are enabled.
* This is an exception to the general rule that mode_set doesn't turn
* things on.
*/
if (is_lvds) {
temp = I915_READ(PCH_LVDS);
temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
if (HAS_PCH_CPT(dev)) {
temp &= ~PORT_TRANS_SEL_MASK;
temp |= PORT_TRANS_SEL_CPT(pipe);
} else {
if (pipe == 1)
temp |= LVDS_PIPEB_SELECT;
else
temp &= ~LVDS_PIPEB_SELECT;
}
/* set the corresponsding LVDS_BORDER bit */
temp |= dev_priv->lvds_border_bits;
/* Set the B0-B3 data pairs corresponding to whether we're going to
* set the DPLLs for dual-channel mode or not.
*/
if (clock.p2 == 7)
temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
else
temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
/* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
* appropriately here, but we need to look more thoroughly into how
* panels behave in the two modes.
*/
temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
temp |= LVDS_HSYNC_POLARITY;
if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
temp |= LVDS_VSYNC_POLARITY;
I915_WRITE(PCH_LVDS, temp);
}
pipeconf &= ~PIPECONF_DITHER_EN;
pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
if ((is_lvds && dev_priv->lvds_dither) || dither) {
pipeconf |= PIPECONF_DITHER_EN;
pipeconf |= PIPECONF_DITHER_TYPE_SP;
}
if (is_dp && !is_cpu_edp) {
intel_dp_set_m_n(crtc, mode, adjusted_mode);
} else {
/* For non-DP output, clear any trans DP clock recovery setting.*/
I915_WRITE(TRANSDATA_M1(pipe), 0);
I915_WRITE(TRANSDATA_N1(pipe), 0);
I915_WRITE(TRANSDPLINK_M1(pipe), 0);
I915_WRITE(TRANSDPLINK_N1(pipe), 0);
}
if (intel_crtc->pch_pll) {
I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
/* Wait for the clocks to stabilize. */
POSTING_READ(intel_crtc->pch_pll->pll_reg);
udelay(150);
/* The pixel multiplier can only be updated once the
* DPLL is enabled and the clocks are stable.
*
* So write it again.
*/
I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
}
intel_crtc->lowfreq_avail = false;
if (intel_crtc->pch_pll) {
if (is_lvds && has_reduced_clock && i915_powersave) {
I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
intel_crtc->lowfreq_avail = true;
} else {
I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
}
}
pipeconf &= ~PIPECONF_INTERLACE_MASK;
if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
pipeconf |= PIPECONF_INTERLACED_ILK;
/* the chip adds 2 halflines automatically */
adjusted_mode->crtc_vtotal -= 1;
adjusted_mode->crtc_vblank_end -= 1;
I915_WRITE(VSYNCSHIFT(pipe),
adjusted_mode->crtc_hsync_start
- adjusted_mode->crtc_htotal/2);
} else {
pipeconf |= PIPECONF_PROGRESSIVE;
I915_WRITE(VSYNCSHIFT(pipe), 0);
}
I915_WRITE(HTOTAL(pipe),
(adjusted_mode->crtc_hdisplay - 1) |
((adjusted_mode->crtc_htotal - 1) << 16));
I915_WRITE(HBLANK(pipe),
(adjusted_mode->crtc_hblank_start - 1) |
((adjusted_mode->crtc_hblank_end - 1) << 16));
I915_WRITE(HSYNC(pipe),
(adjusted_mode->crtc_hsync_start - 1) |
((adjusted_mode->crtc_hsync_end - 1) << 16));
I915_WRITE(VTOTAL(pipe),
(adjusted_mode->crtc_vdisplay - 1) |
((adjusted_mode->crtc_vtotal - 1) << 16));
I915_WRITE(VBLANK(pipe),
(adjusted_mode->crtc_vblank_start - 1) |
((adjusted_mode->crtc_vblank_end - 1) << 16));
I915_WRITE(VSYNC(pipe),
(adjusted_mode->crtc_vsync_start - 1) |
((adjusted_mode->crtc_vsync_end - 1) << 16));
/* pipesrc controls the size that is scaled from, which should
* always be the user's requested size.
*/
I915_WRITE(PIPESRC(pipe),
((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
if (is_cpu_edp)
ironlake_set_pll_edp(crtc, adjusted_mode->clock);
I915_WRITE(PIPECONF(pipe), pipeconf);
POSTING_READ(PIPECONF(pipe));
intel_wait_for_vblank(dev, pipe);
I915_WRITE(DSPCNTR(plane), dspcntr);
POSTING_READ(DSPCNTR(plane));
ret = intel_pipe_set_base(crtc, x, y, fb);
intel_update_watermarks(dev);
intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
return ret;
}
static int intel_crtc_mode_set(struct drm_crtc *crtc,
struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode,
int x, int y,
struct drm_framebuffer *fb)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
int ret;
drm_vblank_pre_modeset(dev, pipe);
ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
x, y, fb);
drm_vblank_post_modeset(dev, pipe);
return ret;
}
static bool intel_eld_uptodate(struct drm_connector *connector,
int reg_eldv, uint32_t bits_eldv,
int reg_elda, uint32_t bits_elda,
int reg_edid)
{
struct drm_i915_private *dev_priv = connector->dev->dev_private;
uint8_t *eld = connector->eld;
uint32_t i;
i = I915_READ(reg_eldv);
i &= bits_eldv;
if (!eld[0])
return !i;
if (!i)
return false;
i = I915_READ(reg_elda);
i &= ~bits_elda;
I915_WRITE(reg_elda, i);
for (i = 0; i < eld[2]; i++)
if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
return false;
return true;
}
static void g4x_write_eld(struct drm_connector *connector,
struct drm_crtc *crtc)
{
struct drm_i915_private *dev_priv = connector->dev->dev_private;
uint8_t *eld = connector->eld;
uint32_t eldv;
uint32_t len;
uint32_t i;
i = I915_READ(G4X_AUD_VID_DID);
if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
eldv = G4X_ELDV_DEVCL_DEVBLC;
else
eldv = G4X_ELDV_DEVCTG;
if (intel_eld_uptodate(connector,
G4X_AUD_CNTL_ST, eldv,
G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
G4X_HDMIW_HDMIEDID))
return;
i = I915_READ(G4X_AUD_CNTL_ST);
i &= ~(eldv | G4X_ELD_ADDR);
len = (i >> 9) & 0x1f; /* ELD buffer size */
I915_WRITE(G4X_AUD_CNTL_ST, i);
if (!eld[0])
return;
len = min_t(uint8_t, eld[2], len);
DRM_DEBUG_DRIVER("ELD size %d\n", len);
for (i = 0; i < len; i++)
I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
i = I915_READ(G4X_AUD_CNTL_ST);
i |= eldv;
I915_WRITE(G4X_AUD_CNTL_ST, i);
}
static void haswell_write_eld(struct drm_connector *connector,
struct drm_crtc *crtc)
{
struct drm_i915_private *dev_priv = connector->dev->dev_private;
uint8_t *eld = connector->eld;
struct drm_device *dev = crtc->dev;
uint32_t eldv;
uint32_t i;
int len;
int pipe = to_intel_crtc(crtc)->pipe;
int tmp;
int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
int aud_config = HSW_AUD_CFG(pipe);
int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
/* Audio output enable */
DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
tmp = I915_READ(aud_cntrl_st2);
tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
I915_WRITE(aud_cntrl_st2, tmp);
/* Wait for 1 vertical blank */
intel_wait_for_vblank(dev, pipe);
/* Set ELD valid state */
tmp = I915_READ(aud_cntrl_st2);
DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
I915_WRITE(aud_cntrl_st2, tmp);
tmp = I915_READ(aud_cntrl_st2);
DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
/* Enable HDMI mode */
tmp = I915_READ(aud_config);
DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
/* clear N_programing_enable and N_value_index */
tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
I915_WRITE(aud_config, tmp);
DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
eldv = AUDIO_ELD_VALID_A << (pipe * 4);
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
} else
I915_WRITE(aud_config, 0);
if (intel_eld_uptodate(connector,
aud_cntrl_st2, eldv,
aud_cntl_st, IBX_ELD_ADDRESS,
hdmiw_hdmiedid))
return;
i = I915_READ(aud_cntrl_st2);
i &= ~eldv;
I915_WRITE(aud_cntrl_st2, i);
if (!eld[0])
return;
i = I915_READ(aud_cntl_st);
i &= ~IBX_ELD_ADDRESS;
I915_WRITE(aud_cntl_st, i);
i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
DRM_DEBUG_DRIVER("port num:%d\n", i);
len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
DRM_DEBUG_DRIVER("ELD size %d\n", len);
for (i = 0; i < len; i++)
I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
i = I915_READ(aud_cntrl_st2);
i |= eldv;
I915_WRITE(aud_cntrl_st2, i);
}
static void ironlake_write_eld(struct drm_connector *connector,
struct drm_crtc *crtc)
{
struct drm_i915_private *dev_priv = connector->dev->dev_private;
uint8_t *eld = connector->eld;
uint32_t eldv;
uint32_t i;
int len;
int hdmiw_hdmiedid;
int aud_config;
int aud_cntl_st;
int aud_cntrl_st2;
int pipe = to_intel_crtc(crtc)->pipe;
if (HAS_PCH_IBX(connector->dev)) {
hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
aud_config = IBX_AUD_CFG(pipe);
aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
} else {
hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
aud_config = CPT_AUD_CFG(pipe);
aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
}
DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
i = I915_READ(aud_cntl_st);
i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
if (!i) {
DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
/* operate blindly on all ports */
eldv = IBX_ELD_VALIDB;
eldv |= IBX_ELD_VALIDB << 4;
eldv |= IBX_ELD_VALIDB << 8;
} else {
DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
}
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
} else
I915_WRITE(aud_config, 0);
if (intel_eld_uptodate(connector,
aud_cntrl_st2, eldv,
aud_cntl_st, IBX_ELD_ADDRESS,
hdmiw_hdmiedid))
return;
i = I915_READ(aud_cntrl_st2);
i &= ~eldv;
I915_WRITE(aud_cntrl_st2, i);
if (!eld[0])
return;
i = I915_READ(aud_cntl_st);
i &= ~IBX_ELD_ADDRESS;
I915_WRITE(aud_cntl_st, i);
len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
DRM_DEBUG_DRIVER("ELD size %d\n", len);
for (i = 0; i < len; i++)
I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
i = I915_READ(aud_cntrl_st2);
i |= eldv;
I915_WRITE(aud_cntrl_st2, i);
}
void intel_write_eld(struct drm_encoder *encoder,
struct drm_display_mode *mode)
{
struct drm_crtc *crtc = encoder->crtc;
struct drm_connector *connector;
struct drm_device *dev = encoder->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
connector = drm_select_eld(encoder, mode);
if (!connector)
return;
DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
connector->base.id,
drm_get_connector_name(connector),
connector->encoder->base.id,
drm_get_encoder_name(connector->encoder));
connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
if (dev_priv->display.write_eld)
dev_priv->display.write_eld(connector, crtc);
}
/** Loads the palette/gamma unit for the CRTC with the prepared values */
void intel_crtc_load_lut(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int palreg = PALETTE(intel_crtc->pipe);
int i;
/* The clocks have to be on to load the palette. */
if (!crtc->enabled || !intel_crtc->active)
return;
/* use legacy palette for Ironlake */
if (HAS_PCH_SPLIT(dev))
palreg = LGC_PALETTE(intel_crtc->pipe);
for (i = 0; i < 256; i++) {
I915_WRITE(palreg + 4 * i,
(intel_crtc->lut_r[i] << 16) |
(intel_crtc->lut_g[i] << 8) |
intel_crtc->lut_b[i]);
}
}
static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
bool visible = base != 0;
u32 cntl;
if (intel_crtc->cursor_visible == visible)
return;
cntl = I915_READ(_CURACNTR);
if (visible) {
/* On these chipsets we can only modify the base whilst
* the cursor is disabled.
*/
I915_WRITE(_CURABASE, base);
cntl &= ~(CURSOR_FORMAT_MASK);
/* XXX width must be 64, stride 256 => 0x00 << 28 */
cntl |= CURSOR_ENABLE |
CURSOR_GAMMA_ENABLE |
CURSOR_FORMAT_ARGB;
} else
cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
I915_WRITE(_CURACNTR, cntl);
intel_crtc->cursor_visible = visible;
}
static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
bool visible = base != 0;
if (intel_crtc->cursor_visible != visible) {
uint32_t cntl = I915_READ(CURCNTR(pipe));
if (base) {
cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
cntl |= pipe << 28; /* Connect to correct pipe */
} else {
cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
cntl |= CURSOR_MODE_DISABLE;
}
I915_WRITE(CURCNTR(pipe), cntl);
intel_crtc->cursor_visible = visible;
}
/* and commit changes on next vblank */
I915_WRITE(CURBASE(pipe), base);
}
static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
bool visible = base != 0;
if (intel_crtc->cursor_visible != visible) {
uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
if (base) {
cntl &= ~CURSOR_MODE;
cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
} else {
cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
cntl |= CURSOR_MODE_DISABLE;
}
I915_WRITE(CURCNTR_IVB(pipe), cntl);
intel_crtc->cursor_visible = visible;
}
/* and commit changes on next vblank */
I915_WRITE(CURBASE_IVB(pipe), base);
}
/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
static void intel_crtc_update_cursor(struct drm_crtc *crtc,
bool on)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
int x = intel_crtc->cursor_x;
int y = intel_crtc->cursor_y;
u32 base, pos;
bool visible;
pos = 0;
if (on && crtc->enabled && crtc->fb) {
base = intel_crtc->cursor_addr;
if (x > (int) crtc->fb->width)
base = 0;
if (y > (int) crtc->fb->height)
base = 0;
} else
base = 0;
if (x < 0) {
if (x + intel_crtc->cursor_width < 0)
base = 0;
pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
x = -x;
}
pos |= x << CURSOR_X_SHIFT;
if (y < 0) {
if (y + intel_crtc->cursor_height < 0)
base = 0;
pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
y = -y;
}
pos |= y << CURSOR_Y_SHIFT;
visible = base != 0;
if (!visible && !intel_crtc->cursor_visible)
return;
if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
I915_WRITE(CURPOS_IVB(pipe), pos);
ivb_update_cursor(crtc, base);
} else {
I915_WRITE(CURPOS(pipe), pos);
if (IS_845G(dev) || IS_I865G(dev))
i845_update_cursor(crtc, base);
else
i9xx_update_cursor(crtc, base);
}
}
static int intel_crtc_cursor_set(struct drm_crtc *crtc,
struct drm_file *file,
uint32_t handle,
uint32_t width, uint32_t height)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct drm_i915_gem_object *obj;
uint32_t addr;
int ret;
/* if we want to turn off the cursor ignore width and height */
if (!handle) {
DRM_DEBUG_KMS("cursor off\n");
addr = 0;
obj = NULL;
mutex_lock(&dev->struct_mutex);
goto finish;
}
/* Currently we only support 64x64 cursors */
if (width != 64 || height != 64) {
DRM_ERROR("we currently only support 64x64 cursors\n");
return -EINVAL;
}
obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
if (&obj->base == NULL)
return -ENOENT;
if (obj->base.size < width * height * 4) {
DRM_ERROR("buffer is to small\n");
ret = -ENOMEM;
goto fail;
}
/* we only need to pin inside GTT if cursor is non-phy */
mutex_lock(&dev->struct_mutex);
if (!dev_priv->info->cursor_needs_physical) {
if (obj->tiling_mode) {
DRM_ERROR("cursor cannot be tiled\n");
ret = -EINVAL;
goto fail_locked;
}
ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
if (ret) {
DRM_ERROR("failed to move cursor bo into the GTT\n");
goto fail_locked;
}
ret = i915_gem_object_put_fence(obj);
if (ret) {
DRM_ERROR("failed to release fence for cursor");
goto fail_unpin;
}
addr = obj->gtt_offset;
} else {
int align = IS_I830(dev) ? 16 * 1024 : 256;
ret = i915_gem_attach_phys_object(dev, obj,
(intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
align);
if (ret) {
DRM_ERROR("failed to attach phys object\n");
goto fail_locked;
}
addr = obj->phys_obj->handle->busaddr;
}
if (IS_GEN2(dev))
I915_WRITE(CURSIZE, (height << 12) | width);
finish:
if (intel_crtc->cursor_bo) {
if (dev_priv->info->cursor_needs_physical) {
if (intel_crtc->cursor_bo != obj)
i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
} else
i915_gem_object_unpin(intel_crtc->cursor_bo);
drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
}
mutex_unlock(&dev->struct_mutex);
intel_crtc->cursor_addr = addr;
intel_crtc->cursor_bo = obj;
intel_crtc->cursor_width = width;
intel_crtc->cursor_height = height;
intel_crtc_update_cursor(crtc, true);
return 0;
fail_unpin:
i915_gem_object_unpin(obj);
fail_locked:
mutex_unlock(&dev->struct_mutex);
fail:
drm_gem_object_unreference_unlocked(&obj->base);
return ret;
}
static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
{
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
intel_crtc->cursor_x = x;
intel_crtc->cursor_y = y;
intel_crtc_update_cursor(crtc, true);
return 0;
}
/** Sets the color ramps on behalf of RandR */
void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
u16 blue, int regno)
{
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
intel_crtc->lut_r[regno] = red >> 8;
intel_crtc->lut_g[regno] = green >> 8;
intel_crtc->lut_b[regno] = blue >> 8;
}
void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
u16 *blue, int regno)
{
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
*red = intel_crtc->lut_r[regno] << 8;
*green = intel_crtc->lut_g[regno] << 8;
*blue = intel_crtc->lut_b[regno] << 8;
}
static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
u16 *blue, uint32_t start, uint32_t size)
{
int end = (start + size > 256) ? 256 : start + size, i;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
for (i = start; i < end; i++) {
intel_crtc->lut_r[i] = red[i] >> 8;
intel_crtc->lut_g[i] = green[i] >> 8;
intel_crtc->lut_b[i] = blue[i] >> 8;
}
intel_crtc_load_lut(crtc);
}
/**
* Get a pipe with a simple mode set on it for doing load-based monitor
* detection.
*
* It will be up to the load-detect code to adjust the pipe as appropriate for
* its requirements. The pipe will be connected to no other encoders.
*
* Currently this code will only succeed if there is a pipe with no encoders
* configured for it. In the future, it could choose to temporarily disable
* some outputs to free up a pipe for its use.
*
* \return crtc, or NULL if no pipes are available.
*/
/* VESA 640x480x72Hz mode to set on the pipe */
static struct drm_display_mode load_detect_mode = {
DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
};
static struct drm_framebuffer *
intel_framebuffer_create(struct drm_device *dev,
struct drm_mode_fb_cmd2 *mode_cmd,
struct drm_i915_gem_object *obj)
{
struct intel_framebuffer *intel_fb;
int ret;
intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
if (!intel_fb) {
drm_gem_object_unreference_unlocked(&obj->base);
return ERR_PTR(-ENOMEM);
}
ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
if (ret) {
drm_gem_object_unreference_unlocked(&obj->base);
kfree(intel_fb);
return ERR_PTR(ret);
}
return &intel_fb->base;
}
static u32
intel_framebuffer_pitch_for_width(int width, int bpp)
{
u32 pitch = DIV_ROUND_UP(width * bpp, 8);
return ALIGN(pitch, 64);
}
static u32
intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
{
u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
}
static struct drm_framebuffer *
intel_framebuffer_create_for_mode(struct drm_device *dev,
struct drm_display_mode *mode,
int depth, int bpp)
{
struct drm_i915_gem_object *obj;
struct drm_mode_fb_cmd2 mode_cmd;
obj = i915_gem_alloc_object(dev,
intel_framebuffer_size_for_mode(mode, bpp));
if (obj == NULL)
return ERR_PTR(-ENOMEM);
mode_cmd.width = mode->hdisplay;
mode_cmd.height = mode->vdisplay;
mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
bpp);
mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
return intel_framebuffer_create(dev, &mode_cmd, obj);
}
static struct drm_framebuffer *
mode_fits_in_fbdev(struct drm_device *dev,
struct drm_display_mode *mode)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_gem_object *obj;
struct drm_framebuffer *fb;
if (dev_priv->fbdev == NULL)
return NULL;
obj = dev_priv->fbdev->ifb.obj;
if (obj == NULL)
return NULL;
fb = &dev_priv->fbdev->ifb.base;
if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
fb->bits_per_pixel))
return NULL;
if (obj->base.size < mode->vdisplay * fb->pitches[0])
return NULL;
return fb;
}
bool intel_get_load_detect_pipe(struct drm_connector *connector,
struct drm_display_mode *mode,
struct intel_load_detect_pipe *old)
{
struct intel_crtc *intel_crtc;
struct intel_encoder *intel_encoder =
intel_attached_encoder(connector);
struct drm_crtc *possible_crtc;
struct drm_encoder *encoder = &intel_encoder->base;
struct drm_crtc *crtc = NULL;
struct drm_device *dev = encoder->dev;
struct drm_framebuffer *fb;
int i = -1;
DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
connector->base.id, drm_get_connector_name(connector),
encoder->base.id, drm_get_encoder_name(encoder));
/*
* Algorithm gets a little messy:
*
* - if the connector already has an assigned crtc, use it (but make
* sure it's on first)
*
* - try to find the first unused crtc that can drive this connector,
* and use that if we find one
*/
/* See if we already have a CRTC for this connector */
if (encoder->crtc) {
crtc = encoder->crtc;
old->dpms_mode = connector->dpms;
old->load_detect_temp = false;
/* Make sure the crtc and connector are running */
if (connector->dpms != DRM_MODE_DPMS_ON)
connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
return true;
}
/* Find an unused one (if possible) */
list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
i++;
if (!(encoder->possible_crtcs & (1 << i)))
continue;
if (!possible_crtc->enabled) {
crtc = possible_crtc;
break;
}
}
/*
* If we didn't find an unused CRTC, don't use any.
*/
if (!crtc) {
DRM_DEBUG_KMS("no pipe available for load-detect\n");
return false;
}
intel_encoder->new_crtc = to_intel_crtc(crtc);
to_intel_connector(connector)->new_encoder = intel_encoder;
intel_crtc = to_intel_crtc(crtc);
old->dpms_mode = connector->dpms;
old->load_detect_temp = true;
old->release_fb = NULL;
if (!mode)
mode = &load_detect_mode;
/* We need a framebuffer large enough to accommodate all accesses
* that the plane may generate whilst we perform load detection.
* We can not rely on the fbcon either being present (we get called
* during its initialisation to detect all boot displays, or it may
* not even exist) or that it is large enough to satisfy the
* requested mode.
*/
fb = mode_fits_in_fbdev(dev, mode);
if (fb == NULL) {
DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
old->release_fb = fb;
} else
DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
if (IS_ERR(fb)) {
DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
goto fail;
}
if (!intel_set_mode(crtc, mode, 0, 0, fb)) {
DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
if (old->release_fb)
old->release_fb->funcs->destroy(old->release_fb);
goto fail;
}
/* let the connector get through one full cycle before testing */
intel_wait_for_vblank(dev, intel_crtc->pipe);
return true;
fail:
connector->encoder = NULL;
encoder->crtc = NULL;
return false;
}
void intel_release_load_detect_pipe(struct drm_connector *connector,
struct intel_load_detect_pipe *old)
{
struct intel_encoder *intel_encoder =
intel_attached_encoder(connector);
struct drm_encoder *encoder = &intel_encoder->base;
DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
connector->base.id, drm_get_connector_name(connector),
encoder->base.id, drm_get_encoder_name(encoder));
if (old->load_detect_temp) {
struct drm_crtc *crtc = encoder->crtc;
to_intel_connector(connector)->new_encoder = NULL;
intel_encoder->new_crtc = NULL;
intel_set_mode(crtc, NULL, 0, 0, NULL);
if (old->release_fb)
old->release_fb->funcs->destroy(old->release_fb);
return;
}
/* Switch crtc and encoder back off if necessary */
if (old->dpms_mode != DRM_MODE_DPMS_ON)
connector->funcs->dpms(connector, old->dpms_mode);
}
/* Returns the clock of the currently programmed mode of the given pipe. */
static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
u32 dpll = I915_READ(DPLL(pipe));
u32 fp;
intel_clock_t clock;
if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
fp = I915_READ(FP0(pipe));
else
fp = I915_READ(FP1(pipe));
clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
if (IS_PINEVIEW(dev)) {
clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
} else {
clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
}
if (!IS_GEN2(dev)) {
if (IS_PINEVIEW(dev))
clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
else
clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
DPLL_FPA01_P1_POST_DIV_SHIFT);
switch (dpll & DPLL_MODE_MASK) {
case DPLLB_MODE_DAC_SERIAL:
clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
5 : 10;
break;
case DPLLB_MODE_LVDS:
clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
7 : 14;
break;
default:
DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
"mode\n", (int)(dpll & DPLL_MODE_MASK));
return 0;
}
/* XXX: Handle the 100Mhz refclk */
intel_clock(dev, 96000, &clock);
} else {
bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
if (is_lvds) {
clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
DPLL_FPA01_P1_POST_DIV_SHIFT);
clock.p2 = 14;
if ((dpll & PLL_REF_INPUT_MASK) ==
PLLB_REF_INPUT_SPREADSPECTRUMIN) {
/* XXX: might not be 66MHz */
intel_clock(dev, 66000, &clock);
} else
intel_clock(dev, 48000, &clock);
} else {
if (dpll & PLL_P1_DIVIDE_BY_TWO)
clock.p1 = 2;
else {
clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
}
if (dpll & PLL_P2_DIVIDE_BY_4)
clock.p2 = 4;
else
clock.p2 = 2;
intel_clock(dev, 48000, &clock);
}
}
/* XXX: It would be nice to validate the clocks, but we can't reuse
* i830PllIsValid() because it relies on the xf86_config connector
* configuration being accurate, which it isn't necessarily.
*/
return clock.dot;
}
/** Returns the currently programmed mode of the given pipe. */
struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
struct drm_crtc *crtc)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
struct drm_display_mode *mode;
int htot = I915_READ(HTOTAL(pipe));
int hsync = I915_READ(HSYNC(pipe));
int vtot = I915_READ(VTOTAL(pipe));
int vsync = I915_READ(VSYNC(pipe));
mode = kzalloc(sizeof(*mode), GFP_KERNEL);
if (!mode)
return NULL;
mode->clock = intel_crtc_clock_get(dev, crtc);
mode->hdisplay = (htot & 0xffff) + 1;
mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
mode->hsync_start = (hsync & 0xffff) + 1;
mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
mode->vdisplay = (vtot & 0xffff) + 1;
mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
mode->vsync_start = (vsync & 0xffff) + 1;
mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
drm_mode_set_name(mode);
return mode;
}
static void intel_increase_pllclock(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
drm_i915_private_t *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
int dpll_reg = DPLL(pipe);
int dpll;
if (HAS_PCH_SPLIT(dev))
return;
if (!dev_priv->lvds_downclock_avail)
return;
dpll = I915_READ(dpll_reg);
if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
DRM_DEBUG_DRIVER("upclocking LVDS\n");
assert_panel_unlocked(dev_priv, pipe);
dpll &= ~DISPLAY_RATE_SELECT_FPA1;
I915_WRITE(dpll_reg, dpll);
intel_wait_for_vblank(dev, pipe);
dpll = I915_READ(dpll_reg);
if (dpll & DISPLAY_RATE_SELECT_FPA1)
DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
}
}
static void intel_decrease_pllclock(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
drm_i915_private_t *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
if (HAS_PCH_SPLIT(dev))
return;
if (!dev_priv->lvds_downclock_avail)
return;
/*
* Since this is called by a timer, we should never get here in
* the manual case.
*/
if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
int pipe = intel_crtc->pipe;
int dpll_reg = DPLL(pipe);
int dpll;
DRM_DEBUG_DRIVER("downclocking LVDS\n");
assert_panel_unlocked(dev_priv, pipe);
dpll = I915_READ(dpll_reg);
dpll |= DISPLAY_RATE_SELECT_FPA1;
I915_WRITE(dpll_reg, dpll);
intel_wait_for_vblank(dev, pipe);
dpll = I915_READ(dpll_reg);
if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
}
}
void intel_mark_busy(struct drm_device *dev)
{
i915_update_gfx_val(dev->dev_private);
}
void intel_mark_idle(struct drm_device *dev)
{
}
void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
{
struct drm_device *dev = obj->base.dev;
struct drm_crtc *crtc;
if (!i915_powersave)
return;
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
if (!crtc->fb)
continue;
if (to_intel_framebuffer(crtc->fb)->obj == obj)
intel_increase_pllclock(crtc);
}
}
void intel_mark_fb_idle(struct drm_i915_gem_object *obj)
{
struct drm_device *dev = obj->base.dev;
struct drm_crtc *crtc;
if (!i915_powersave)
return;
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
if (!crtc->fb)
continue;
if (to_intel_framebuffer(crtc->fb)->obj == obj)
intel_decrease_pllclock(crtc);
}
}
static void intel_crtc_destroy(struct drm_crtc *crtc)
{
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct intel_unpin_work *work;
unsigned long flags;
spin_lock_irqsave(&dev->event_lock, flags);
work = intel_crtc->unpin_work;
intel_crtc->unpin_work = NULL;
spin_unlock_irqrestore(&dev->event_lock, flags);
if (work) {
cancel_work_sync(&work->work);
kfree(work);
}
drm_crtc_cleanup(crtc);
kfree(intel_crtc);
}
static void intel_unpin_work_fn(struct work_struct *__work)
{
struct intel_unpin_work *work =
container_of(__work, struct intel_unpin_work, work);
mutex_lock(&work->dev->struct_mutex);
intel_unpin_fb_obj(work->old_fb_obj);
drm_gem_object_unreference(&work->pending_flip_obj->base);
drm_gem_object_unreference(&work->old_fb_obj->base);
intel_update_fbc(work->dev);
mutex_unlock(&work->dev->struct_mutex);
kfree(work);
}
static void do_intel_finish_page_flip(struct drm_device *dev,
struct drm_crtc *crtc)
{
drm_i915_private_t *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_unpin_work *work;
struct drm_i915_gem_object *obj;
struct drm_pending_vblank_event *e;
struct timeval tnow, tvbl;
unsigned long flags;
/* Ignore early vblank irqs */
if (intel_crtc == NULL)
return;
do_gettimeofday(&tnow);
spin_lock_irqsave(&dev->event_lock, flags);
work = intel_crtc->unpin_work;
if (work == NULL || !work->pending) {
spin_unlock_irqrestore(&dev->event_lock, flags);
return;
}
intel_crtc->unpin_work = NULL;
if (work->event) {
e = work->event;
e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
/* Called before vblank count and timestamps have
* been updated for the vblank interval of flip
* completion? Need to increment vblank count and
* add one videorefresh duration to returned timestamp
* to account for this. We assume this happened if we
* get called over 0.9 frame durations after the last
* timestamped vblank.
*
* This calculation can not be used with vrefresh rates
* below 5Hz (10Hz to be on the safe side) without
* promoting to 64 integers.
*/
if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
9 * crtc->framedur_ns) {
e->event.sequence++;
tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
crtc->framedur_ns);
}
e->event.tv_sec = tvbl.tv_sec;
e->event.tv_usec = tvbl.tv_usec;
list_add_tail(&e->base.link,
&e->base.file_priv->event_list);
wake_up_interruptible(&e->base.file_priv->event_wait);
}
drm_vblank_put(dev, intel_crtc->pipe);
spin_unlock_irqrestore(&dev->event_lock, flags);
obj = work->old_fb_obj;
atomic_clear_mask(1 << intel_crtc->plane,
&obj->pending_flip.counter);
if (atomic_read(&obj->pending_flip) == 0)
wake_up(&dev_priv->pending_flip_queue);
schedule_work(&work->work);
trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
}
void intel_finish_page_flip(struct drm_device *dev, int pipe)
{
drm_i915_private_t *dev_priv = dev->dev_private;
struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
do_intel_finish_page_flip(dev, crtc);
}
void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
{
drm_i915_private_t *dev_priv = dev->dev_private;
struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
do_intel_finish_page_flip(dev, crtc);
}
void intel_prepare_page_flip(struct drm_device *dev, int plane)
{
drm_i915_private_t *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc =
to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
unsigned long flags;
spin_lock_irqsave(&dev->event_lock, flags);
if (intel_crtc->unpin_work) {
if ((++intel_crtc->unpin_work->pending) > 1)
DRM_ERROR("Prepared flip multiple times\n");
} else {
DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
}
spin_unlock_irqrestore(&dev->event_lock, flags);
}
static int intel_gen2_queue_flip(struct drm_device *dev,
struct drm_crtc *crtc,
struct drm_framebuffer *fb,
struct drm_i915_gem_object *obj)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
u32 flip_mask;
struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
int ret;
ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
if (ret)
goto err;
ret = intel_ring_begin(ring, 6);
if (ret)
goto err_unpin;
/* Can't queue multiple flips, so wait for the previous
* one to finish before executing the next.
*/
if (intel_crtc->plane)
flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
else
flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
intel_ring_emit(ring, MI_NOOP);
intel_ring_emit(ring, MI_DISPLAY_FLIP |
MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
intel_ring_emit(ring, fb->pitches[0]);
intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
intel_ring_emit(ring, 0); /* aux display base address, unused */
intel_ring_advance(ring);
return 0;
err_unpin:
intel_unpin_fb_obj(obj);
err:
return ret;
}
static int intel_gen3_queue_flip(struct drm_device *dev,
struct drm_crtc *crtc,
struct drm_framebuffer *fb,
struct drm_i915_gem_object *obj)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
u32 flip_mask;
struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
int ret;
ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
if (ret)
goto err;
ret = intel_ring_begin(ring, 6);
if (ret)
goto err_unpin;
if (intel_crtc->plane)
flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
else
flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
intel_ring_emit(ring, MI_NOOP);
intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
intel_ring_emit(ring, fb->pitches[0]);
intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
intel_ring_emit(ring, MI_NOOP);
intel_ring_advance(ring);
return 0;
err_unpin:
intel_unpin_fb_obj(obj);
err:
return ret;
}
static int intel_gen4_queue_flip(struct drm_device *dev,
struct drm_crtc *crtc,
struct drm_framebuffer *fb,
struct drm_i915_gem_object *obj)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
uint32_t pf, pipesrc;
struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
int ret;
ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
if (ret)
goto err;
ret = intel_ring_begin(ring, 4);
if (ret)
goto err_unpin;
/* i965+ uses the linear or tiled offsets from the
* Display Registers (which do not change across a page-flip)
* so we need only reprogram the base address.
*/
intel_ring_emit(ring, MI_DISPLAY_FLIP |
MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
intel_ring_emit(ring, fb->pitches[0]);
intel_ring_emit(ring,
(obj->gtt_offset + intel_crtc->dspaddr_offset) |
obj->tiling_mode);
/* XXX Enabling the panel-fitter across page-flip is so far
* untested on non-native modes, so ignore it for now.
* pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
*/
pf = 0;
pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
intel_ring_emit(ring, pf | pipesrc);
intel_ring_advance(ring);
return 0;
err_unpin:
intel_unpin_fb_obj(obj);
err:
return ret;
}
static int intel_gen6_queue_flip(struct drm_device *dev,
struct drm_crtc *crtc,
struct drm_framebuffer *fb,
struct drm_i915_gem_object *obj)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
uint32_t pf, pipesrc;
int ret;
ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
if (ret)
goto err;
ret = intel_ring_begin(ring, 4);
if (ret)
goto err_unpin;
intel_ring_emit(ring, MI_DISPLAY_FLIP |
MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
/* Contrary to the suggestions in the documentation,
* "Enable Panel Fitter" does not seem to be required when page
* flipping with a non-native mode, and worse causes a normal
* modeset to fail.
* pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
*/
pf = 0;
pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
intel_ring_emit(ring, pf | pipesrc);
intel_ring_advance(ring);
return 0;
err_unpin:
intel_unpin_fb_obj(obj);
err:
return ret;
}
/*
* On gen7 we currently use the blit ring because (in early silicon at least)
* the render ring doesn't give us interrpts for page flip completion, which
* means clients will hang after the first flip is queued. Fortunately the
* blit ring generates interrupts properly, so use it instead.
*/
static int intel_gen7_queue_flip(struct drm_device *dev,
struct drm_crtc *crtc,
struct drm_framebuffer *fb,
struct drm_i915_gem_object *obj)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
uint32_t plane_bit = 0;
int ret;
ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
if (ret)
goto err;
switch(intel_crtc->plane) {
case PLANE_A:
plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
break;
case PLANE_B:
plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
break;
case PLANE_C:
plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
break;
default:
WARN_ONCE(1, "unknown plane in flip command\n");
ret = -ENODEV;
goto err_unpin;
}
ret = intel_ring_begin(ring, 4);
if (ret)
goto err_unpin;
intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
intel_ring_emit(ring, (MI_NOOP));
intel_ring_advance(ring);
return 0;
err_unpin:
intel_unpin_fb_obj(obj);
err:
return ret;
}
static int intel_default_queue_flip(struct drm_device *dev,
struct drm_crtc *crtc,
struct drm_framebuffer *fb,
struct drm_i915_gem_object *obj)
{
return -ENODEV;
}
static int intel_crtc_page_flip(struct drm_crtc *crtc,
struct drm_framebuffer *fb,
struct drm_pending_vblank_event *event)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_framebuffer *intel_fb;
struct drm_i915_gem_object *obj;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_unpin_work *work;
unsigned long flags;
int ret;
/* Can't change pixel format via MI display flips. */
if (fb->pixel_format != crtc->fb->pixel_format)
return -EINVAL;
/*
* TILEOFF/LINOFF registers can't be changed via MI display flips.
* Note that pitch changes could also affect these register.
*/
if (INTEL_INFO(dev)->gen > 3 &&
(fb->offsets[0] != crtc->fb->offsets[0] ||
fb->pitches[0] != crtc->fb->pitches[0]))
return -EINVAL;
work = kzalloc(sizeof *work, GFP_KERNEL);
if (work == NULL)
return -ENOMEM;
work->event = event;
work->dev = crtc->dev;
intel_fb = to_intel_framebuffer(crtc->fb);
work->old_fb_obj = intel_fb->obj;
INIT_WORK(&work->work, intel_unpin_work_fn);
ret = drm_vblank_get(dev, intel_crtc->pipe);
if (ret)
goto free_work;
/* We borrow the event spin lock for protecting unpin_work */
spin_lock_irqsave(&dev->event_lock, flags);
if (intel_crtc->unpin_work) {
spin_unlock_irqrestore(&dev->event_lock, flags);
kfree(work);
drm_vblank_put(dev, intel_crtc->pipe);
DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
return -EBUSY;
}
intel_crtc->unpin_work = work;
spin_unlock_irqrestore(&dev->event_lock, flags);
intel_fb = to_intel_framebuffer(fb);
obj = intel_fb->obj;
ret = i915_mutex_lock_interruptible(dev);
if (ret)
goto cleanup;
/* Reference the objects for the scheduled work. */
drm_gem_object_reference(&work->old_fb_obj->base);
drm_gem_object_reference(&obj->base);
crtc->fb = fb;
work->pending_flip_obj = obj;
work->enable_stall_check = true;
/* Block clients from rendering to the new back buffer until
* the flip occurs and the object is no longer visible.
*/
atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
if (ret)
goto cleanup_pending;
intel_disable_fbc(dev);
intel_mark_fb_busy(obj);
mutex_unlock(&dev->struct_mutex);
trace_i915_flip_request(intel_crtc->plane, obj);
return 0;
cleanup_pending:
atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
drm_gem_object_unreference(&work->old_fb_obj->base);
drm_gem_object_unreference(&obj->base);
mutex_unlock(&dev->struct_mutex);
cleanup:
spin_lock_irqsave(&dev->event_lock, flags);
intel_crtc->unpin_work = NULL;
spin_unlock_irqrestore(&dev->event_lock, flags);
drm_vblank_put(dev, intel_crtc->pipe);
free_work:
kfree(work);
return ret;
}
static struct drm_crtc_helper_funcs intel_helper_funcs = {
.mode_set_base_atomic = intel_pipe_set_base_atomic,
.load_lut = intel_crtc_load_lut,
.disable = intel_crtc_noop,
};
bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
{
struct intel_encoder *other_encoder;
struct drm_crtc *crtc = &encoder->new_crtc->base;
if (WARN_ON(!crtc))
return false;
list_for_each_entry(other_encoder,
&crtc->dev->mode_config.encoder_list,
base.head) {
if (&other_encoder->new_crtc->base != crtc ||
encoder == other_encoder)
continue;
else
return true;
}
return false;
}
static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
struct drm_crtc *crtc)
{
struct drm_device *dev;
struct drm_crtc *tmp;
int crtc_mask = 1;
WARN(!crtc, "checking null crtc?\n");
dev = crtc->dev;
list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
if (tmp == crtc)
break;
crtc_mask <<= 1;
}
if (encoder->possible_crtcs & crtc_mask)
return true;
return false;
}
/**
* intel_modeset_update_staged_output_state
*
* Updates the staged output configuration state, e.g. after we've read out the
* current hw state.
*/
static void intel_modeset_update_staged_output_state(struct drm_device *dev)
{
struct intel_encoder *encoder;
struct intel_connector *connector;
list_for_each_entry(connector, &dev->mode_config.connector_list,
base.head) {
connector->new_encoder =
to_intel_encoder(connector->base.encoder);
}
list_for_each_entry(encoder, &dev->mode_config.encoder_list,
base.head) {
encoder->new_crtc =
to_intel_crtc(encoder->base.crtc);
}
}
/**
* intel_modeset_commit_output_state
*
* This function copies the stage display pipe configuration to the real one.
*/
static void intel_modeset_commit_output_state(struct drm_device *dev)
{
struct intel_encoder *encoder;
struct intel_connector *connector;
list_for_each_entry(connector, &dev->mode_config.connector_list,
base.head) {
connector->base.encoder = &connector->new_encoder->base;
}
list_for_each_entry(encoder, &dev->mode_config.encoder_list,
base.head) {
encoder->base.crtc = &encoder->new_crtc->base;
}
}
static struct drm_display_mode *
intel_modeset_adjusted_mode(struct drm_crtc *crtc,
struct drm_display_mode *mode)
{
struct drm_device *dev = crtc->dev;
struct drm_display_mode *adjusted_mode;
struct drm_encoder_helper_funcs *encoder_funcs;
struct intel_encoder *encoder;
adjusted_mode = drm_mode_duplicate(dev, mode);
if (!adjusted_mode)
return ERR_PTR(-ENOMEM);
/* Pass our mode to the connectors and the CRTC to give them a chance to
* adjust it according to limitations or connector properties, and also
* a chance to reject the mode entirely.
*/
list_for_each_entry(encoder, &dev->mode_config.encoder_list,
base.head) {
if (&encoder->new_crtc->base != crtc)
continue;
encoder_funcs = encoder->base.helper_private;
if (!(encoder_funcs->mode_fixup(&encoder->base, mode,
adjusted_mode))) {
DRM_DEBUG_KMS("Encoder fixup failed\n");
goto fail;
}
}
if (!(intel_crtc_mode_fixup(crtc, mode, adjusted_mode))) {
DRM_DEBUG_KMS("CRTC fixup failed\n");
goto fail;
}
DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
return adjusted_mode;
fail:
drm_mode_destroy(dev, adjusted_mode);
return ERR_PTR(-EINVAL);
}
/* Computes which crtcs are affected and sets the relevant bits in the mask. For
* simplicity we use the crtc's pipe number (because it's easier to obtain). */
static void
intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
unsigned *prepare_pipes, unsigned *disable_pipes)
{
struct intel_crtc *intel_crtc;
struct drm_device *dev = crtc->dev;
struct intel_encoder *encoder;
struct intel_connector *connector;
struct drm_crtc *tmp_crtc;
*disable_pipes = *modeset_pipes = *prepare_pipes = 0;
/* Check which crtcs have changed outputs connected to them, these need
* to be part of the prepare_pipes mask. We don't (yet) support global
* modeset across multiple crtcs, so modeset_pipes will only have one
* bit set at most. */
list_for_each_entry(connector, &dev->mode_config.connector_list,
base.head) {
if (connector->base.encoder == &connector->new_encoder->base)
continue;
if (connector->base.encoder) {
tmp_crtc = connector->base.encoder->crtc;
*prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
}
if (connector->new_encoder)
*prepare_pipes |=
1 << connector->new_encoder->new_crtc->pipe;
}
list_for_each_entry(encoder, &dev->mode_config.encoder_list,
base.head) {
if (encoder->base.crtc == &encoder->new_crtc->base)
continue;
if (encoder->base.crtc) {
tmp_crtc = encoder->base.crtc;
*prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
}
if (encoder->new_crtc)
*prepare_pipes |= 1 << encoder->new_crtc->pipe;
}
/* Check for any pipes that will be fully disabled ... */
list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
base.head) {
bool used = false;
/* Don't try to disable disabled crtcs. */
if (!intel_crtc->base.enabled)
continue;
list_for_each_entry(encoder, &dev->mode_config.encoder_list,
base.head) {
if (encoder->new_crtc == intel_crtc)
used = true;
}
if (!used)
*disable_pipes |= 1 << intel_crtc->pipe;
}
/* set_mode is also used to update properties on life display pipes. */
intel_crtc = to_intel_crtc(crtc);
if (crtc->enabled)
*prepare_pipes |= 1 << intel_crtc->pipe;
/* We only support modeset on one single crtc, hence we need to do that
* only for the passed in crtc iff we change anything else than just
* disable crtcs.
*
* This is actually not true, to be fully compatible with the old crtc
* helper we automatically disable _any_ output (i.e. doesn't need to be
* connected to the crtc we're modesetting on) if it's disconnected.
* Which is a rather nutty api (since changed the output configuration
* without userspace's explicit request can lead to confusion), but
* alas. Hence we currently need to modeset on all pipes we prepare. */
if (*prepare_pipes)
*modeset_pipes = *prepare_pipes;
/* ... and mask these out. */
*modeset_pipes &= ~(*disable_pipes);
*prepare_pipes &= ~(*disable_pipes);
}
static bool intel_crtc_in_use(struct drm_crtc *crtc)
{
struct drm_encoder *encoder;
struct drm_device *dev = crtc->dev;
list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
if (encoder->crtc == crtc)
return true;
return false;
}
static void
intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
{
struct intel_encoder *intel_encoder;
struct intel_crtc *intel_crtc;
struct drm_connector *connector;
list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
base.head) {
if (!intel_encoder->base.crtc)
continue;
intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
if (prepare_pipes & (1 << intel_crtc->pipe))
intel_encoder->connectors_active = false;
}
intel_modeset_commit_output_state(dev);
/* Update computed state. */
list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
base.head) {
intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
}
list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
if (!connector->encoder || !connector->encoder->crtc)
continue;
intel_crtc = to_intel_crtc(connector->encoder->crtc);
if (prepare_pipes & (1 << intel_crtc->pipe)) {
connector->dpms = DRM_MODE_DPMS_ON;
intel_encoder = to_intel_encoder(connector->encoder);
intel_encoder->connectors_active = true;
}
}
}
#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
list_for_each_entry((intel_crtc), \
&(dev)->mode_config.crtc_list, \
base.head) \
if (mask & (1 <<(intel_crtc)->pipe)) \
void
intel_modeset_check_state(struct drm_device *dev)
{
struct intel_crtc *crtc;
struct intel_encoder *encoder;
struct intel_connector *connector;
list_for_each_entry(connector, &dev->mode_config.connector_list,
base.head) {
/* This also checks the encoder/connector hw state with the
* ->get_hw_state callbacks. */
intel_connector_check_state(connector);
WARN(&connector->new_encoder->base != connector->base.encoder,
"connector's staged encoder doesn't match current encoder\n");
}
list_for_each_entry(encoder, &dev->mode_config.encoder_list,
base.head) {
bool enabled = false;
bool active = false;
enum pipe pipe, tracked_pipe;
DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
encoder->base.base.id,
drm_get_encoder_name(&encoder->base));
WARN(&encoder->new_crtc->base != encoder->base.crtc,
"encoder's stage crtc doesn't match current crtc\n");
WARN(encoder->connectors_active && !encoder->base.crtc,
"encoder's active_connectors set, but no crtc\n");
list_for_each_entry(connector, &dev->mode_config.connector_list,
base.head) {
if (connector->base.encoder != &encoder->base)
continue;
enabled = true;
if (connector->base.dpms != DRM_MODE_DPMS_OFF)
active = true;
}
WARN(!!encoder->base.crtc != enabled,
"encoder's enabled state mismatch "
"(expected %i, found %i)\n",
!!encoder->base.crtc, enabled);
WARN(active && !encoder->base.crtc,
"active encoder with no crtc\n");
WARN(encoder->connectors_active != active,
"encoder's computed active state doesn't match tracked active state "
"(expected %i, found %i)\n", active, encoder->connectors_active);
active = encoder->get_hw_state(encoder, &pipe);
WARN(active != encoder->connectors_active,
"encoder's hw state doesn't match sw tracking "
"(expected %i, found %i)\n",
encoder->connectors_active, active);
if (!encoder->base.crtc)
continue;
tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
WARN(active && pipe != tracked_pipe,
"active encoder's pipe doesn't match"
"(expected %i, found %i)\n",
tracked_pipe, pipe);
}
list_for_each_entry(crtc, &dev->mode_config.crtc_list,
base.head) {
bool enabled = false;
bool active = false;
DRM_DEBUG_KMS("[CRTC:%d]\n",
crtc->base.base.id);
WARN(crtc->active && !crtc->base.enabled,
"active crtc, but not enabled in sw tracking\n");
list_for_each_entry(encoder, &dev->mode_config.encoder_list,
base.head) {
if (encoder->base.crtc != &crtc->base)
continue;
enabled = true;
if (encoder->connectors_active)
active = true;
}
WARN(active != crtc->active,
"crtc's computed active state doesn't match tracked active state "
"(expected %i, found %i)\n", active, crtc->active);
WARN(enabled != crtc->base.enabled,
"crtc's computed enabled state doesn't match tracked enabled state "
"(expected %i, found %i)\n", enabled, crtc->base.enabled);
assert_pipe(dev->dev_private, crtc->pipe, crtc->active);
}
}
bool intel_set_mode(struct drm_crtc *crtc,
struct drm_display_mode *mode,
int x, int y, struct drm_framebuffer *fb)
{
struct drm_device *dev = crtc->dev;
drm_i915_private_t *dev_priv = dev->dev_private;
struct drm_display_mode *adjusted_mode, saved_mode, saved_hwmode;
struct drm_encoder_helper_funcs *encoder_funcs;
struct drm_encoder *encoder;
struct intel_crtc *intel_crtc;
unsigned disable_pipes, prepare_pipes, modeset_pipes;
bool ret = true;
intel_modeset_affected_pipes(crtc, &modeset_pipes,
&prepare_pipes, &disable_pipes);
DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
modeset_pipes, prepare_pipes, disable_pipes);
for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
intel_crtc_disable(&intel_crtc->base);
saved_hwmode = crtc->hwmode;
saved_mode = crtc->mode;
/* Hack: Because we don't (yet) support global modeset on multiple
* crtcs, we don't keep track of the new mode for more than one crtc.
* Hence simply check whether any bit is set in modeset_pipes in all the
* pieces of code that are not yet converted to deal with mutliple crtcs
* changing their mode at the same time. */
adjusted_mode = NULL;
if (modeset_pipes) {
adjusted_mode = intel_modeset_adjusted_mode(crtc, mode);
if (IS_ERR(adjusted_mode)) {
return false;
}
}
for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
if (intel_crtc->base.enabled)
dev_priv->display.crtc_disable(&intel_crtc->base);
}
if (modeset_pipes) {
crtc->mode = *mode;
crtc->x = x;
crtc->y = y;
}
/* Only after disabling all output pipelines that will be changed can we
* update the the output configuration. */
intel_modeset_update_state(dev, prepare_pipes);
/* Set up the DPLL and any encoders state that needs to adjust or depend
* on the DPLL.
*/
for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
ret = !intel_crtc_mode_set(&intel_crtc->base,
mode, adjusted_mode,
x, y, fb);
if (!ret)
goto done;
list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
if (encoder->crtc != &intel_crtc->base)
continue;
DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
encoder->base.id, drm_get_encoder_name(encoder),
mode->base.id, mode->name);
encoder_funcs = encoder->helper_private;
encoder_funcs->mode_set(encoder, mode, adjusted_mode);
}
}
/* Now enable the clocks, plane, pipe, and connectors that we set up. */
for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
dev_priv->display.crtc_enable(&intel_crtc->base);
if (modeset_pipes) {
/* Store real post-adjustment hardware mode. */
crtc->hwmode = *adjusted_mode;
/* Calculate and store various constants which
* are later needed by vblank and swap-completion
* timestamping. They are derived from true hwmode.
*/
drm_calc_timestamping_constants(crtc);
}
/* FIXME: add subpixel order */
done:
drm_mode_destroy(dev, adjusted_mode);
if (!ret && crtc->enabled) {
crtc->hwmode = saved_hwmode;
crtc->mode = saved_mode;
} else {
intel_modeset_check_state(dev);
}
return ret;
}
#undef for_each_intel_crtc_masked
static void intel_set_config_free(struct intel_set_config *config)
{
if (!config)
return;
kfree(config->save_connector_encoders);
kfree(config->save_encoder_crtcs);
kfree(config);
}
static int intel_set_config_save_state(struct drm_device *dev,
struct intel_set_config *config)
{
struct drm_encoder *encoder;
struct drm_connector *connector;
int count;
config->save_encoder_crtcs =
kcalloc(dev->mode_config.num_encoder,
sizeof(struct drm_crtc *), GFP_KERNEL);
if (!config->save_encoder_crtcs)
return -ENOMEM;
config->save_connector_encoders =
kcalloc(dev->mode_config.num_connector,
sizeof(struct drm_encoder *), GFP_KERNEL);
if (!config->save_connector_encoders)
return -ENOMEM;
/* Copy data. Note that driver private data is not affected.
* Should anything bad happen only the expected state is
* restored, not the drivers personal bookkeeping.
*/
count = 0;
list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
config->save_encoder_crtcs[count++] = encoder->crtc;
}
count = 0;
list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
config->save_connector_encoders[count++] = connector->encoder;
}
return 0;
}
static void intel_set_config_restore_state(struct drm_device *dev,
struct intel_set_config *config)
{
struct intel_encoder *encoder;
struct intel_connector *connector;
int count;
count = 0;
list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
encoder->new_crtc =
to_intel_crtc(config->save_encoder_crtcs[count++]);
}
count = 0;
list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
connector->new_encoder =
to_intel_encoder(config->save_connector_encoders[count++]);
}
}
static void
intel_set_config_compute_mode_changes(struct drm_mode_set *set,
struct intel_set_config *config)
{
/* We should be able to check here if the fb has the same properties
* and then just flip_or_move it */
if (set->crtc->fb != set->fb) {
/* If we have no fb then treat it as a full mode set */
if (set->crtc->fb == NULL) {
DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
config->mode_changed = true;
} else if (set->fb == NULL) {
config->mode_changed = true;
} else if (set->fb->depth != set->crtc->fb->depth) {
config->mode_changed = true;
} else if (set->fb->bits_per_pixel !=
set->crtc->fb->bits_per_pixel) {
config->mode_changed = true;
} else
config->fb_changed = true;
}
if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
config->fb_changed = true;
if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
DRM_DEBUG_KMS("modes are different, full mode set\n");
drm_mode_debug_printmodeline(&set->crtc->mode);
drm_mode_debug_printmodeline(set->mode);
config->mode_changed = true;
}
}
static int
intel_modeset_stage_output_state(struct drm_device *dev,
struct drm_mode_set *set,
struct intel_set_config *config)
{
struct drm_crtc *new_crtc;
struct intel_connector *connector;
struct intel_encoder *encoder;
int count, ro;
/* The upper layers ensure that we either disabl a crtc or have a list
* of connectors. For paranoia, double-check this. */
WARN_ON(!set->fb && (set->num_connectors != 0));
WARN_ON(set->fb && (set->num_connectors == 0));
count = 0;
list_for_each_entry(connector, &dev->mode_config.connector_list,
base.head) {
/* Otherwise traverse passed in connector list and get encoders
* for them. */
for (ro = 0; ro < set->num_connectors; ro++) {
if (set->connectors[ro] == &connector->base) {
connector->new_encoder = connector->encoder;
break;
}
}
/* If we disable the crtc, disable all its connectors. Also, if
* the connector is on the changing crtc but not on the new
* connector list, disable it. */
if ((!set->fb || ro == set->num_connectors) &&
connector->base.encoder &&
connector->base.encoder->crtc == set->crtc) {
connector->new_encoder = NULL;
DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
connector->base.base.id,
drm_get_connector_name(&connector->base));
}
if (&connector->new_encoder->base != connector->base.encoder) {
DRM_DEBUG_KMS("encoder changed, full mode switch\n");
config->mode_changed = true;
}
/* Disable all disconnected encoders. */
if (connector->base.status == connector_status_disconnected)
connector->new_encoder = NULL;
}
/* connector->new_encoder is now updated for all connectors. */
/* Update crtc of enabled connectors. */
count = 0;
list_for_each_entry(connector, &dev->mode_config.connector_list,
base.head) {
if (!connector->new_encoder)
continue;
new_crtc = connector->new_encoder->base.crtc;
for (ro = 0; ro < set->num_connectors; ro++) {
if (set->connectors[ro] == &connector->base)
new_crtc = set->crtc;
}
/* Make sure the new CRTC will work with the encoder */
if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
new_crtc)) {
return -EINVAL;
}
connector->encoder->new_crtc = to_intel_crtc(new_crtc);
DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
connector->base.base.id,
drm_get_connector_name(&connector->base),
new_crtc->base.id);
}
/* Check for any encoders that needs to be disabled. */
list_for_each_entry(encoder, &dev->mode_config.encoder_list,
base.head) {
list_for_each_entry(connector,
&dev->mode_config.connector_list,
base.head) {
if (connector->new_encoder == encoder) {
WARN_ON(!connector->new_encoder->new_crtc);
goto next_encoder;
}
}
encoder->new_crtc = NULL;
next_encoder:
/* Only now check for crtc changes so we don't miss encoders
* that will be disabled. */
if (&encoder->new_crtc->base != encoder->base.crtc) {
DRM_DEBUG_KMS("crtc changed, full mode switch\n");
config->mode_changed = true;
}
}
/* Now we've also updated encoder->new_crtc for all encoders. */
return 0;
}
static int intel_crtc_set_config(struct drm_mode_set *set)
{
struct drm_device *dev;
struct drm_mode_set save_set;
struct intel_set_config *config;
int ret;
int i;
BUG_ON(!set);
BUG_ON(!set->crtc);
BUG_ON(!set->crtc->helper_private);
if (!set->mode)
set->fb = NULL;
/* The fb helper likes to play gross jokes with ->mode_set_config.
* Unfortunately the crtc helper doesn't do much at all for this case,
* so we have to cope with this madness until the fb helper is fixed up. */
if (set->fb && set->num_connectors == 0)
return 0;
if (set->fb) {
DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
set->crtc->base.id, set->fb->base.id,
(int)set->num_connectors, set->x, set->y);
} else {
DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
}
dev = set->crtc->dev;
ret = -ENOMEM;
config = kzalloc(sizeof(*config), GFP_KERNEL);
if (!config)
goto out_config;
ret = intel_set_config_save_state(dev, config);
if (ret)
goto out_config;
save_set.crtc = set->crtc;
save_set.mode = &set->crtc->mode;
save_set.x = set->crtc->x;
save_set.y = set->crtc->y;
save_set.fb = set->crtc->fb;
/* Compute whether we need a full modeset, only an fb base update or no
* change at all. In the future we might also check whether only the
* mode changed, e.g. for LVDS where we only change the panel fitter in
* such cases. */
intel_set_config_compute_mode_changes(set, config);
ret = intel_modeset_stage_output_state(dev, set, config);
if (ret)
goto fail;
if (config->mode_changed) {
if (set->mode) {
DRM_DEBUG_KMS("attempting to set mode from"
" userspace\n");
drm_mode_debug_printmodeline(set->mode);
}
if (!intel_set_mode(set->crtc, set->mode,
set->x, set->y, set->fb)) {
DRM_ERROR("failed to set mode on [CRTC:%d]\n",
set->crtc->base.id);
ret = -EINVAL;
goto fail;
}
if (set->crtc->enabled) {
DRM_DEBUG_KMS("Setting connector DPMS state to on\n");
for (i = 0; i < set->num_connectors; i++) {
DRM_DEBUG_KMS("\t[CONNECTOR:%d:%s] set DPMS on\n", set->connectors[i]->base.id,
drm_get_connector_name(set->connectors[i]));
set->connectors[i]->funcs->dpms(set->connectors[i], DRM_MODE_DPMS_ON);
}
}
} else if (config->fb_changed) {
ret = intel_pipe_set_base(set->crtc,
set->x, set->y, set->fb);
}
intel_set_config_free(config);
return 0;
fail:
intel_set_config_restore_state(dev, config);
/* Try to restore the config */
if (config->mode_changed &&
!intel_set_mode(save_set.crtc, save_set.mode,
save_set.x, save_set.y, save_set.fb))
DRM_ERROR("failed to restore config after modeset failure\n");
out_config:
intel_set_config_free(config);
return ret;
}
static const struct drm_crtc_funcs intel_crtc_funcs = {
.cursor_set = intel_crtc_cursor_set,
.cursor_move = intel_crtc_cursor_move,
.gamma_set = intel_crtc_gamma_set,
.set_config = intel_crtc_set_config,
.destroy = intel_crtc_destroy,
.page_flip = intel_crtc_page_flip,
};
static void intel_pch_pll_init(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = dev->dev_private;
int i;
if (dev_priv->num_pch_pll == 0) {
DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
return;
}
for (i = 0; i < dev_priv->num_pch_pll; i++) {
dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
}
}
static void intel_crtc_init(struct drm_device *dev, int pipe)
{
drm_i915_private_t *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc;
int i;
intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
if (intel_crtc == NULL)
return;
drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
for (i = 0; i < 256; i++) {
intel_crtc->lut_r[i] = i;
intel_crtc->lut_g[i] = i;
intel_crtc->lut_b[i] = i;
}
/* Swap pipes & planes for FBC on pre-965 */
intel_crtc->pipe = pipe;
intel_crtc->plane = pipe;
if (IS_MOBILE(dev) && IS_GEN3(dev)) {
DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
intel_crtc->plane = !pipe;
}
BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
intel_crtc->bpp = 24; /* default for pre-Ironlake */
drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
}
int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
struct drm_mode_object *drmmode_obj;
struct intel_crtc *crtc;
if (!drm_core_check_feature(dev, DRIVER_MODESET))
return -ENODEV;
drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
DRM_MODE_OBJECT_CRTC);
if (!drmmode_obj) {
DRM_ERROR("no such CRTC id\n");
return -EINVAL;
}
crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
pipe_from_crtc_id->pipe = crtc->pipe;
return 0;
}
static int intel_encoder_clones(struct intel_encoder *encoder)
{
struct drm_device *dev = encoder->base.dev;
struct intel_encoder *source_encoder;
int index_mask = 0;
int entry = 0;
list_for_each_entry(source_encoder,
&dev->mode_config.encoder_list, base.head) {
if (encoder == source_encoder)
index_mask |= (1 << entry);
/* Intel hw has only one MUX where enocoders could be cloned. */
if (encoder->cloneable && source_encoder->cloneable)
index_mask |= (1 << entry);
entry++;
}
return index_mask;
}
static bool has_edp_a(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
if (!IS_MOBILE(dev))
return false;
if ((I915_READ(DP_A) & DP_DETECTED) == 0)
return false;
if (IS_GEN5(dev) &&
(I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
return false;
return true;
}
static void intel_setup_outputs(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_encoder *encoder;
bool dpd_is_edp = false;
bool has_lvds;
has_lvds = intel_lvds_init(dev);
if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
/* disable the panel fitter on everything but LVDS */
I915_WRITE(PFIT_CONTROL, 0);
}
if (HAS_PCH_SPLIT(dev)) {
dpd_is_edp = intel_dpd_is_edp(dev);
if (has_edp_a(dev))
intel_dp_init(dev, DP_A, PORT_A);
if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
intel_dp_init(dev, PCH_DP_D, PORT_D);
}
intel_crt_init(dev);
if (IS_HASWELL(dev)) {
int found;
/* Haswell uses DDI functions to detect digital outputs */
found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
/* DDI A only supports eDP */
if (found)
intel_ddi_init(dev, PORT_A);
/* DDI B, C and D detection is indicated by the SFUSE_STRAP
* register */
found = I915_READ(SFUSE_STRAP);
if (found & SFUSE_STRAP_DDIB_DETECTED)
intel_ddi_init(dev, PORT_B);
if (found & SFUSE_STRAP_DDIC_DETECTED)
intel_ddi_init(dev, PORT_C);
if (found & SFUSE_STRAP_DDID_DETECTED)
intel_ddi_init(dev, PORT_D);
} else if (HAS_PCH_SPLIT(dev)) {
int found;
if (I915_READ(HDMIB) & PORT_DETECTED) {
/* PCH SDVOB multiplex with HDMIB */
found = intel_sdvo_init(dev, PCH_SDVOB, true);
if (!found)
intel_hdmi_init(dev, HDMIB, PORT_B);
if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
intel_dp_init(dev, PCH_DP_B, PORT_B);
}
if (I915_READ(HDMIC) & PORT_DETECTED)
intel_hdmi_init(dev, HDMIC, PORT_C);
if (!dpd_is_edp && I915_READ(HDMID) & PORT_DETECTED)
intel_hdmi_init(dev, HDMID, PORT_D);
if (I915_READ(PCH_DP_C) & DP_DETECTED)
intel_dp_init(dev, PCH_DP_C, PORT_C);
if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
intel_dp_init(dev, PCH_DP_D, PORT_D);
} else if (IS_VALLEYVIEW(dev)) {
int found;
if (I915_READ(SDVOB) & PORT_DETECTED) {
/* SDVOB multiplex with HDMIB */
found = intel_sdvo_init(dev, SDVOB, true);
if (!found)
intel_hdmi_init(dev, SDVOB, PORT_B);
if (!found && (I915_READ(DP_B) & DP_DETECTED))
intel_dp_init(dev, DP_B, PORT_B);
}
if (I915_READ(SDVOC) & PORT_DETECTED)
intel_hdmi_init(dev, SDVOC, PORT_C);
/* Shares lanes with HDMI on SDVOC */
if (I915_READ(DP_C) & DP_DETECTED)
intel_dp_init(dev, DP_C, PORT_C);
} else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
bool found = false;
if (I915_READ(SDVOB) & SDVO_DETECTED) {
DRM_DEBUG_KMS("probing SDVOB\n");
found = intel_sdvo_init(dev, SDVOB, true);
if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
intel_hdmi_init(dev, SDVOB, PORT_B);
}
if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
DRM_DEBUG_KMS("probing DP_B\n");
intel_dp_init(dev, DP_B, PORT_B);
}
}
/* Before G4X SDVOC doesn't have its own detect register */
if (I915_READ(SDVOB) & SDVO_DETECTED) {
DRM_DEBUG_KMS("probing SDVOC\n");
found = intel_sdvo_init(dev, SDVOC, false);
}
if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
if (SUPPORTS_INTEGRATED_HDMI(dev)) {
DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
intel_hdmi_init(dev, SDVOC, PORT_C);
}
if (SUPPORTS_INTEGRATED_DP(dev)) {
DRM_DEBUG_KMS("probing DP_C\n");
intel_dp_init(dev, DP_C, PORT_C);
}
}
if (SUPPORTS_INTEGRATED_DP(dev) &&
(I915_READ(DP_D) & DP_DETECTED)) {
DRM_DEBUG_KMS("probing DP_D\n");
intel_dp_init(dev, DP_D, PORT_D);
}
} else if (IS_GEN2(dev))
intel_dvo_init(dev);
if (SUPPORTS_TV(dev))
intel_tv_init(dev);
list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
encoder->base.possible_crtcs = encoder->crtc_mask;
encoder->base.possible_clones =
intel_encoder_clones(encoder);
}
if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
ironlake_init_pch_refclk(dev);
}
static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
{
struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
drm_framebuffer_cleanup(fb);
drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
kfree(intel_fb);
}
static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
struct drm_file *file,
unsigned int *handle)
{
struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
struct drm_i915_gem_object *obj = intel_fb->obj;
return drm_gem_handle_create(file, &obj->base, handle);
}
static const struct drm_framebuffer_funcs intel_fb_funcs = {
.destroy = intel_user_framebuffer_destroy,
.create_handle = intel_user_framebuffer_create_handle,
};
int intel_framebuffer_init(struct drm_device *dev,
struct intel_framebuffer *intel_fb,
struct drm_mode_fb_cmd2 *mode_cmd,
struct drm_i915_gem_object *obj)
{
int ret;
if (obj->tiling_mode == I915_TILING_Y)
return -EINVAL;
if (mode_cmd->pitches[0] & 63)
return -EINVAL;
switch (mode_cmd->pixel_format) {
case DRM_FORMAT_RGB332:
case DRM_FORMAT_RGB565:
case DRM_FORMAT_XRGB8888:
case DRM_FORMAT_XBGR8888:
case DRM_FORMAT_ARGB8888:
case DRM_FORMAT_XRGB2101010:
case DRM_FORMAT_ARGB2101010:
/* RGB formats are common across chipsets */
break;
case DRM_FORMAT_YUYV:
case DRM_FORMAT_UYVY:
case DRM_FORMAT_YVYU:
case DRM_FORMAT_VYUY:
break;
default:
DRM_DEBUG_KMS("unsupported pixel format %u\n",
mode_cmd->pixel_format);
return -EINVAL;
}
ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
if (ret) {
DRM_ERROR("framebuffer init failed %d\n", ret);
return ret;
}
drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
intel_fb->obj = obj;
return 0;
}
static struct drm_framebuffer *
intel_user_framebuffer_create(struct drm_device *dev,
struct drm_file *filp,
struct drm_mode_fb_cmd2 *mode_cmd)
{
struct drm_i915_gem_object *obj;
obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
mode_cmd->handles[0]));
if (&obj->base == NULL)
return ERR_PTR(-ENOENT);
return intel_framebuffer_create(dev, mode_cmd, obj);
}
static const struct drm_mode_config_funcs intel_mode_funcs = {
.fb_create = intel_user_framebuffer_create,
.output_poll_changed = intel_fb_output_poll_changed,
};
/* Set up chip specific display functions */
static void intel_init_display(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
/* We always want a DPMS function */
if (HAS_PCH_SPLIT(dev)) {
dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
dev_priv->display.crtc_enable = ironlake_crtc_enable;
dev_priv->display.crtc_disable = ironlake_crtc_disable;
dev_priv->display.off = ironlake_crtc_off;
dev_priv->display.update_plane = ironlake_update_plane;
} else {
dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
dev_priv->display.crtc_enable = i9xx_crtc_enable;
dev_priv->display.crtc_disable = i9xx_crtc_disable;
dev_priv->display.off = i9xx_crtc_off;
dev_priv->display.update_plane = i9xx_update_plane;
}
/* Returns the core display clock speed */
if (IS_VALLEYVIEW(dev))
dev_priv->display.get_display_clock_speed =
valleyview_get_display_clock_speed;
else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
dev_priv->display.get_display_clock_speed =
i945_get_display_clock_speed;
else if (IS_I915G(dev))
dev_priv->display.get_display_clock_speed =
i915_get_display_clock_speed;
else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
dev_priv->display.get_display_clock_speed =
i9xx_misc_get_display_clock_speed;
else if (IS_I915GM(dev))
dev_priv->display.get_display_clock_speed =
i915gm_get_display_clock_speed;
else if (IS_I865G(dev))
dev_priv->display.get_display_clock_speed =
i865_get_display_clock_speed;
else if (IS_I85X(dev))
dev_priv->display.get_display_clock_speed =
i855_get_display_clock_speed;
else /* 852, 830 */
dev_priv->display.get_display_clock_speed =
i830_get_display_clock_speed;
if (HAS_PCH_SPLIT(dev)) {
if (IS_GEN5(dev)) {
dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
dev_priv->display.write_eld = ironlake_write_eld;
} else if (IS_GEN6(dev)) {
dev_priv->display.fdi_link_train = gen6_fdi_link_train;
dev_priv->display.write_eld = ironlake_write_eld;
} else if (IS_IVYBRIDGE(dev)) {
/* FIXME: detect B0+ stepping and use auto training */
dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
dev_priv->display.write_eld = ironlake_write_eld;
} else if (IS_HASWELL(dev)) {
dev_priv->display.fdi_link_train = hsw_fdi_link_train;
dev_priv->display.write_eld = haswell_write_eld;
} else
dev_priv->display.update_wm = NULL;
} else if (IS_G4X(dev)) {
dev_priv->display.write_eld = g4x_write_eld;
}
/* Default just returns -ENODEV to indicate unsupported */
dev_priv->display.queue_flip = intel_default_queue_flip;
switch (INTEL_INFO(dev)->gen) {
case 2:
dev_priv->display.queue_flip = intel_gen2_queue_flip;
break;
case 3:
dev_priv->display.queue_flip = intel_gen3_queue_flip;
break;
case 4:
case 5:
dev_priv->display.queue_flip = intel_gen4_queue_flip;
break;
case 6:
dev_priv->display.queue_flip = intel_gen6_queue_flip;
break;
case 7:
dev_priv->display.queue_flip = intel_gen7_queue_flip;
break;
}
}
/*
* Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
* resume, or other times. This quirk makes sure that's the case for
* affected systems.
*/
static void quirk_pipea_force(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
dev_priv->quirks |= QUIRK_PIPEA_FORCE;
DRM_INFO("applying pipe a force quirk\n");
}
/*
* Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
*/
static void quirk_ssc_force_disable(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
DRM_INFO("applying lvds SSC disable quirk\n");
}
/*
* A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
* brightness value
*/
static void quirk_invert_brightness(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
DRM_INFO("applying inverted panel brightness quirk\n");
}
struct intel_quirk {
int device;
int subsystem_vendor;
int subsystem_device;
void (*hook)(struct drm_device *dev);
};
static struct intel_quirk intel_quirks[] = {
/* HP Mini needs pipe A force quirk (LP: #322104) */
{ 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
/* Toshiba Protege R-205, S-209 needs pipe A force quirk */
{ 0x2592, 0x1179, 0x0001, quirk_pipea_force },
/* ThinkPad T60 needs pipe A force quirk (bug #16494) */
{ 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
/* 855 & before need to leave pipe A & dpll A up */
{ 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
{ 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
{ 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
/* Lenovo U160 cannot use SSC on LVDS */
{ 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
/* Sony Vaio Y cannot use SSC on LVDS */
{ 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
/* Acer Aspire 5734Z must invert backlight brightness */
{ 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
};
static void intel_init_quirks(struct drm_device *dev)
{
struct pci_dev *d = dev->pdev;
int i;
for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
struct intel_quirk *q = &intel_quirks[i];
if (d->device == q->device &&
(d->subsystem_vendor == q->subsystem_vendor ||
q->subsystem_vendor == PCI_ANY_ID) &&
(d->subsystem_device == q->subsystem_device ||
q->subsystem_device == PCI_ANY_ID))
q->hook(dev);
}
}
/* Disable the VGA plane that we never use */
static void i915_disable_vga(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u8 sr1;
u32 vga_reg;
if (HAS_PCH_SPLIT(dev))
vga_reg = CPU_VGACNTRL;
else
vga_reg = VGACNTRL;
vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
outb(SR01, VGA_SR_INDEX);
sr1 = inb(VGA_SR_DATA);
outb(sr1 | 1<<5, VGA_SR_DATA);
vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
udelay(300);
I915_WRITE(vga_reg, VGA_DISP_DISABLE);
POSTING_READ(vga_reg);
}
void intel_modeset_init_hw(struct drm_device *dev)
{
/* We attempt to init the necessary power wells early in the initialization
* time, so the subsystems that expect power to be enabled can work.
*/
intel_init_power_wells(dev);
intel_prepare_ddi(dev);
intel_init_clock_gating(dev);
mutex_lock(&dev->struct_mutex);
intel_enable_gt_powersave(dev);
mutex_unlock(&dev->struct_mutex);
}
void intel_modeset_init(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int i, ret;
drm_mode_config_init(dev);
dev->mode_config.min_width = 0;
dev->mode_config.min_height = 0;
dev->mode_config.preferred_depth = 24;
dev->mode_config.prefer_shadow = 1;
dev->mode_config.funcs = &intel_mode_funcs;
intel_init_quirks(dev);
intel_init_pm(dev);
intel_init_display(dev);
if (IS_GEN2(dev)) {
dev->mode_config.max_width = 2048;
dev->mode_config.max_height = 2048;
} else if (IS_GEN3(dev)) {
dev->mode_config.max_width = 4096;
dev->mode_config.max_height = 4096;
} else {
dev->mode_config.max_width = 8192;
dev->mode_config.max_height = 8192;
}
dev->mode_config.fb_base = dev_priv->mm.gtt_base_addr;
DRM_DEBUG_KMS("%d display pipe%s available.\n",
dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
for (i = 0; i < dev_priv->num_pipe; i++) {
intel_crtc_init(dev, i);
ret = intel_plane_init(dev, i);
if (ret)
DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
}
intel_pch_pll_init(dev);
/* Just disable it once at startup */
i915_disable_vga(dev);
intel_setup_outputs(dev);
}
static void
intel_connector_break_all_links(struct intel_connector *connector)
{
connector->base.dpms = DRM_MODE_DPMS_OFF;
connector->base.encoder = NULL;
connector->encoder->connectors_active = false;
connector->encoder->base.crtc = NULL;
}
static void intel_enable_pipe_a(struct drm_device *dev)
{
struct intel_connector *connector;
struct drm_connector *crt = NULL;
struct intel_load_detect_pipe load_detect_temp;
/* We can't just switch on the pipe A, we need to set things up with a
* proper mode and output configuration. As a gross hack, enable pipe A
* by enabling the load detect pipe once. */
list_for_each_entry(connector,
&dev->mode_config.connector_list,
base.head) {
if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
crt = &connector->base;
break;
}
}
if (!crt)
return;
if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
intel_release_load_detect_pipe(crt, &load_detect_temp);
}
static void intel_sanitize_crtc(struct intel_crtc *crtc)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 reg, val;
/* Clear any frame start delays used for debugging left by the BIOS */
reg = PIPECONF(crtc->pipe);
I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
/* We need to sanitize the plane -> pipe mapping first because this will
* disable the crtc (and hence change the state) if it is wrong. */
if (!HAS_PCH_SPLIT(dev)) {
struct intel_connector *connector;
bool plane;
reg = DSPCNTR(crtc->plane);
val = I915_READ(reg);
if ((val & DISPLAY_PLANE_ENABLE) == 0 &&
(!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
goto ok;
DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
crtc->base.base.id);
/* Pipe has the wrong plane attached and the plane is active.
* Temporarily change the plane mapping and disable everything
* ... */
plane = crtc->plane;
crtc->plane = !plane;
dev_priv->display.crtc_disable(&crtc->base);
crtc->plane = plane;
/* ... and break all links. */
list_for_each_entry(connector, &dev->mode_config.connector_list,
base.head) {
if (connector->encoder->base.crtc != &crtc->base)
continue;
intel_connector_break_all_links(connector);
}
WARN_ON(crtc->active);
crtc->base.enabled = false;
}
ok:
if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
crtc->pipe == PIPE_A && !crtc->active) {
/* BIOS forgot to enable pipe A, this mostly happens after
* resume. Force-enable the pipe to fix this, the update_dpms
* call below we restore the pipe to the right state, but leave
* the required bits on. */
intel_enable_pipe_a(dev);
}
/* Adjust the state of the output pipe according to whether we
* have active connectors/encoders. */
intel_crtc_update_dpms(&crtc->base);
if (crtc->active != crtc->base.enabled) {
struct intel_encoder *encoder;
/* This can happen either due to bugs in the get_hw_state
* functions or because the pipe is force-enabled due to the
* pipe A quirk. */
DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
crtc->base.base.id,
crtc->base.enabled ? "enabled" : "disabled",
crtc->active ? "enabled" : "disabled");
crtc->base.enabled = crtc->active;
/* Because we only establish the connector -> encoder ->
* crtc links if something is active, this means the
* crtc is now deactivated. Break the links. connector
* -> encoder links are only establish when things are
* actually up, hence no need to break them. */
WARN_ON(crtc->active);
for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
WARN_ON(encoder->connectors_active);
encoder->base.crtc = NULL;
}
}
}
static void intel_sanitize_encoder(struct intel_encoder *encoder)
{
struct intel_connector *connector;
struct drm_device *dev = encoder->base.dev;
/* We need to check both for a crtc link (meaning that the
* encoder is active and trying to read from a pipe) and the
* pipe itself being active. */
bool has_active_crtc = encoder->base.crtc &&
to_intel_crtc(encoder->base.crtc)->active;
if (encoder->connectors_active && !has_active_crtc) {
DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
encoder->base.base.id,
drm_get_encoder_name(&encoder->base));
/* Connector is active, but has no active pipe. This is
* fallout from our resume register restoring. Disable
* the encoder manually again. */
if (encoder->base.crtc) {
DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
encoder->base.base.id,
drm_get_encoder_name(&encoder->base));
encoder->disable(encoder);
}
/* Inconsistent output/port/pipe state happens presumably due to
* a bug in one of the get_hw_state functions. Or someplace else
* in our code, like the register restore mess on resume. Clamp
* things to off as a safer default. */
list_for_each_entry(connector,
&dev->mode_config.connector_list,
base.head) {
if (connector->encoder != encoder)
continue;
intel_connector_break_all_links(connector);
}
}
/* Enabled encoders without active connectors will be fixed in
* the crtc fixup. */
}
/* Scan out the current hw modeset state, sanitizes it and maps it into the drm
* and i915 state tracking structures. */
void intel_modeset_setup_hw_state(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
enum pipe pipe;
u32 tmp;
struct intel_crtc *crtc;
struct intel_encoder *encoder;
struct intel_connector *connector;
for_each_pipe(pipe) {
crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
tmp = I915_READ(PIPECONF(pipe));
if (tmp & PIPECONF_ENABLE)
crtc->active = true;
else
crtc->active = false;
crtc->base.enabled = crtc->active;
DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
crtc->base.base.id,
crtc->active ? "enabled" : "disabled");
}
list_for_each_entry(encoder, &dev->mode_config.encoder_list,
base.head) {
pipe = 0;
if (encoder->get_hw_state(encoder, &pipe)) {
encoder->base.crtc =
dev_priv->pipe_to_crtc_mapping[pipe];
} else {
encoder->base.crtc = NULL;
}
encoder->connectors_active = false;
DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
encoder->base.base.id,
drm_get_encoder_name(&encoder->base),
encoder->base.crtc ? "enabled" : "disabled",
pipe);
}
list_for_each_entry(connector, &dev->mode_config.connector_list,
base.head) {
if (connector->get_hw_state(connector)) {
connector->base.dpms = DRM_MODE_DPMS_ON;
connector->encoder->connectors_active = true;
connector->base.encoder = &connector->encoder->base;
} else {
connector->base.dpms = DRM_MODE_DPMS_OFF;
connector->base.encoder = NULL;
}
DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
connector->base.base.id,
drm_get_connector_name(&connector->base),
connector->base.encoder ? "enabled" : "disabled");
}
/* HW state is read out, now we need to sanitize this mess. */
list_for_each_entry(encoder, &dev->mode_config.encoder_list,
base.head) {
intel_sanitize_encoder(encoder);
}
for_each_pipe(pipe) {
crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
intel_sanitize_crtc(crtc);
}
intel_modeset_update_staged_output_state(dev);
intel_modeset_check_state(dev);
}
void intel_modeset_gem_init(struct drm_device *dev)
{
intel_modeset_init_hw(dev);
intel_setup_overlay(dev);
intel_modeset_setup_hw_state(dev);
}
void intel_modeset_cleanup(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_crtc *crtc;
struct intel_crtc *intel_crtc;
drm_kms_helper_poll_fini(dev);
mutex_lock(&dev->struct_mutex);
intel_unregister_dsm_handler();
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
/* Skip inactive CRTCs */
if (!crtc->fb)
continue;
intel_crtc = to_intel_crtc(crtc);
intel_increase_pllclock(crtc);
}
intel_disable_fbc(dev);
intel_disable_gt_powersave(dev);
ironlake_teardown_rc6(dev);
if (IS_VALLEYVIEW(dev))
vlv_init_dpio(dev);
mutex_unlock(&dev->struct_mutex);
/* Disable the irq before mode object teardown, for the irq might
* enqueue unpin/hotplug work. */
drm_irq_uninstall(dev);
cancel_work_sync(&dev_priv->hotplug_work);
cancel_work_sync(&dev_priv->rps.work);
/* flush any delayed tasks or pending work */
flush_scheduled_work();
drm_mode_config_cleanup(dev);
}
/*
* Return which encoder is currently attached for connector.
*/
struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
{
return &intel_attached_encoder(connector)->base;
}
void intel_connector_attach_encoder(struct intel_connector *connector,
struct intel_encoder *encoder)
{
connector->encoder = encoder;
drm_mode_connector_attach_encoder(&connector->base,
&encoder->base);
}
/*
* set vga decode state - true == enable VGA decode
*/
int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u16 gmch_ctrl;
pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
if (state)
gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
else
gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
return 0;
}
#ifdef CONFIG_DEBUG_FS
#include <linux/seq_file.h>
struct intel_display_error_state {
struct intel_cursor_error_state {
u32 control;
u32 position;
u32 base;
u32 size;
} cursor[I915_MAX_PIPES];
struct intel_pipe_error_state {
u32 conf;
u32 source;
u32 htotal;
u32 hblank;
u32 hsync;
u32 vtotal;
u32 vblank;
u32 vsync;
} pipe[I915_MAX_PIPES];
struct intel_plane_error_state {
u32 control;
u32 stride;
u32 size;
u32 pos;
u32 addr;
u32 surface;
u32 tile_offset;
} plane[I915_MAX_PIPES];
};
struct intel_display_error_state *
intel_display_capture_error_state(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = dev->dev_private;
struct intel_display_error_state *error;
int i;
error = kmalloc(sizeof(*error), GFP_ATOMIC);
if (error == NULL)
return NULL;
for_each_pipe(i) {
error->cursor[i].control = I915_READ(CURCNTR(i));
error->cursor[i].position = I915_READ(CURPOS(i));
error->cursor[i].base = I915_READ(CURBASE(i));
error->plane[i].control = I915_READ(DSPCNTR(i));
error->plane[i].stride = I915_READ(DSPSTRIDE(i));
error->plane[i].size = I915_READ(DSPSIZE(i));
error->plane[i].pos = I915_READ(DSPPOS(i));
error->plane[i].addr = I915_READ(DSPADDR(i));
if (INTEL_INFO(dev)->gen >= 4) {
error->plane[i].surface = I915_READ(DSPSURF(i));
error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
}
error->pipe[i].conf = I915_READ(PIPECONF(i));
error->pipe[i].source = I915_READ(PIPESRC(i));
error->pipe[i].htotal = I915_READ(HTOTAL(i));
error->pipe[i].hblank = I915_READ(HBLANK(i));
error->pipe[i].hsync = I915_READ(HSYNC(i));
error->pipe[i].vtotal = I915_READ(VTOTAL(i));
error->pipe[i].vblank = I915_READ(VBLANK(i));
error->pipe[i].vsync = I915_READ(VSYNC(i));
}
return error;
}
void
intel_display_print_error_state(struct seq_file *m,
struct drm_device *dev,
struct intel_display_error_state *error)
{
drm_i915_private_t *dev_priv = dev->dev_private;
int i;
seq_printf(m, "Num Pipes: %d\n", dev_priv->num_pipe);
for_each_pipe(i) {
seq_printf(m, "Pipe [%d]:\n", i);
seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
seq_printf(m, "Plane [%d]:\n", i);
seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
seq_printf(m, " POS: %08x\n", error->plane[i].pos);
seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
if (INTEL_INFO(dev)->gen >= 4) {
seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
}
seq_printf(m, "Cursor [%d]:\n", i);
seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
seq_printf(m, " POS: %08x\n", error->cursor[i].position);
seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
}
}
#endif