forked from Minki/linux
60177d31d2
Commit0bf380bc70
("mm: compaction: check pfn_valid when entering a new MAX_ORDER_NR_PAGES block during isolation for migration") added a check for pfn_valid() when isolating pages for migration as the scanner does not necessarily start pageblock-aligned. Since commitc89511ab2f
("mm: compaction: Restart compaction from near where it left off"), the free scanner has the same problem. This patch makes sure that the pfn range passed to isolate_freepages_block() is within the same block so that pfn_valid() checks are unnecessary. In answer to Henrik's wondering why others have not reported this: reproducing this requires a large enough hole with the right aligment to have compaction walk into a PFN range with no memmap. Size and alignment depends in the memory model - 4M for FLATMEM and 128M for SPARSEMEM on x86. It needs a "lucky" machine. Reported-by: Henrik Rydberg <rydberg@euromail.se> Signed-off-by: Mel Gorman <mgorman@suse.de> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1241 lines
33 KiB
C
1241 lines
33 KiB
C
/*
|
|
* linux/mm/compaction.c
|
|
*
|
|
* Memory compaction for the reduction of external fragmentation. Note that
|
|
* this heavily depends upon page migration to do all the real heavy
|
|
* lifting
|
|
*
|
|
* Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
|
|
*/
|
|
#include <linux/swap.h>
|
|
#include <linux/migrate.h>
|
|
#include <linux/compaction.h>
|
|
#include <linux/mm_inline.h>
|
|
#include <linux/backing-dev.h>
|
|
#include <linux/sysctl.h>
|
|
#include <linux/sysfs.h>
|
|
#include "internal.h"
|
|
|
|
#if defined CONFIG_COMPACTION || defined CONFIG_CMA
|
|
|
|
#define CREATE_TRACE_POINTS
|
|
#include <trace/events/compaction.h>
|
|
|
|
static unsigned long release_freepages(struct list_head *freelist)
|
|
{
|
|
struct page *page, *next;
|
|
unsigned long count = 0;
|
|
|
|
list_for_each_entry_safe(page, next, freelist, lru) {
|
|
list_del(&page->lru);
|
|
__free_page(page);
|
|
count++;
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
static void map_pages(struct list_head *list)
|
|
{
|
|
struct page *page;
|
|
|
|
list_for_each_entry(page, list, lru) {
|
|
arch_alloc_page(page, 0);
|
|
kernel_map_pages(page, 1, 1);
|
|
}
|
|
}
|
|
|
|
static inline bool migrate_async_suitable(int migratetype)
|
|
{
|
|
return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
|
|
}
|
|
|
|
#ifdef CONFIG_COMPACTION
|
|
/* Returns true if the pageblock should be scanned for pages to isolate. */
|
|
static inline bool isolation_suitable(struct compact_control *cc,
|
|
struct page *page)
|
|
{
|
|
if (cc->ignore_skip_hint)
|
|
return true;
|
|
|
|
return !get_pageblock_skip(page);
|
|
}
|
|
|
|
/*
|
|
* This function is called to clear all cached information on pageblocks that
|
|
* should be skipped for page isolation when the migrate and free page scanner
|
|
* meet.
|
|
*/
|
|
static void __reset_isolation_suitable(struct zone *zone)
|
|
{
|
|
unsigned long start_pfn = zone->zone_start_pfn;
|
|
unsigned long end_pfn = zone->zone_start_pfn + zone->spanned_pages;
|
|
unsigned long pfn;
|
|
|
|
zone->compact_cached_migrate_pfn = start_pfn;
|
|
zone->compact_cached_free_pfn = end_pfn;
|
|
zone->compact_blockskip_flush = false;
|
|
|
|
/* Walk the zone and mark every pageblock as suitable for isolation */
|
|
for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
|
|
struct page *page;
|
|
|
|
cond_resched();
|
|
|
|
if (!pfn_valid(pfn))
|
|
continue;
|
|
|
|
page = pfn_to_page(pfn);
|
|
if (zone != page_zone(page))
|
|
continue;
|
|
|
|
clear_pageblock_skip(page);
|
|
}
|
|
}
|
|
|
|
void reset_isolation_suitable(pg_data_t *pgdat)
|
|
{
|
|
int zoneid;
|
|
|
|
for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
|
|
struct zone *zone = &pgdat->node_zones[zoneid];
|
|
if (!populated_zone(zone))
|
|
continue;
|
|
|
|
/* Only flush if a full compaction finished recently */
|
|
if (zone->compact_blockskip_flush)
|
|
__reset_isolation_suitable(zone);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If no pages were isolated then mark this pageblock to be skipped in the
|
|
* future. The information is later cleared by __reset_isolation_suitable().
|
|
*/
|
|
static void update_pageblock_skip(struct compact_control *cc,
|
|
struct page *page, unsigned long nr_isolated,
|
|
bool migrate_scanner)
|
|
{
|
|
struct zone *zone = cc->zone;
|
|
if (!page)
|
|
return;
|
|
|
|
if (!nr_isolated) {
|
|
unsigned long pfn = page_to_pfn(page);
|
|
set_pageblock_skip(page);
|
|
|
|
/* Update where compaction should restart */
|
|
if (migrate_scanner) {
|
|
if (!cc->finished_update_migrate &&
|
|
pfn > zone->compact_cached_migrate_pfn)
|
|
zone->compact_cached_migrate_pfn = pfn;
|
|
} else {
|
|
if (!cc->finished_update_free &&
|
|
pfn < zone->compact_cached_free_pfn)
|
|
zone->compact_cached_free_pfn = pfn;
|
|
}
|
|
}
|
|
}
|
|
#else
|
|
static inline bool isolation_suitable(struct compact_control *cc,
|
|
struct page *page)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
static void update_pageblock_skip(struct compact_control *cc,
|
|
struct page *page, unsigned long nr_isolated,
|
|
bool migrate_scanner)
|
|
{
|
|
}
|
|
#endif /* CONFIG_COMPACTION */
|
|
|
|
static inline bool should_release_lock(spinlock_t *lock)
|
|
{
|
|
return need_resched() || spin_is_contended(lock);
|
|
}
|
|
|
|
/*
|
|
* Compaction requires the taking of some coarse locks that are potentially
|
|
* very heavily contended. Check if the process needs to be scheduled or
|
|
* if the lock is contended. For async compaction, back out in the event
|
|
* if contention is severe. For sync compaction, schedule.
|
|
*
|
|
* Returns true if the lock is held.
|
|
* Returns false if the lock is released and compaction should abort
|
|
*/
|
|
static bool compact_checklock_irqsave(spinlock_t *lock, unsigned long *flags,
|
|
bool locked, struct compact_control *cc)
|
|
{
|
|
if (should_release_lock(lock)) {
|
|
if (locked) {
|
|
spin_unlock_irqrestore(lock, *flags);
|
|
locked = false;
|
|
}
|
|
|
|
/* async aborts if taking too long or contended */
|
|
if (!cc->sync) {
|
|
cc->contended = true;
|
|
return false;
|
|
}
|
|
|
|
cond_resched();
|
|
}
|
|
|
|
if (!locked)
|
|
spin_lock_irqsave(lock, *flags);
|
|
return true;
|
|
}
|
|
|
|
static inline bool compact_trylock_irqsave(spinlock_t *lock,
|
|
unsigned long *flags, struct compact_control *cc)
|
|
{
|
|
return compact_checklock_irqsave(lock, flags, false, cc);
|
|
}
|
|
|
|
/* Returns true if the page is within a block suitable for migration to */
|
|
static bool suitable_migration_target(struct page *page)
|
|
{
|
|
int migratetype = get_pageblock_migratetype(page);
|
|
|
|
/* Don't interfere with memory hot-remove or the min_free_kbytes blocks */
|
|
if (migratetype == MIGRATE_ISOLATE || migratetype == MIGRATE_RESERVE)
|
|
return false;
|
|
|
|
/* If the page is a large free page, then allow migration */
|
|
if (PageBuddy(page) && page_order(page) >= pageblock_order)
|
|
return true;
|
|
|
|
/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
|
|
if (migrate_async_suitable(migratetype))
|
|
return true;
|
|
|
|
/* Otherwise skip the block */
|
|
return false;
|
|
}
|
|
|
|
static void compact_capture_page(struct compact_control *cc)
|
|
{
|
|
unsigned long flags;
|
|
int mtype, mtype_low, mtype_high;
|
|
|
|
if (!cc->page || *cc->page)
|
|
return;
|
|
|
|
/*
|
|
* For MIGRATE_MOVABLE allocations we capture a suitable page ASAP
|
|
* regardless of the migratetype of the freelist is is captured from.
|
|
* This is fine because the order for a high-order MIGRATE_MOVABLE
|
|
* allocation is typically at least a pageblock size and overall
|
|
* fragmentation is not impaired. Other allocation types must
|
|
* capture pages from their own migratelist because otherwise they
|
|
* could pollute other pageblocks like MIGRATE_MOVABLE with
|
|
* difficult to move pages and making fragmentation worse overall.
|
|
*/
|
|
if (cc->migratetype == MIGRATE_MOVABLE) {
|
|
mtype_low = 0;
|
|
mtype_high = MIGRATE_PCPTYPES;
|
|
} else {
|
|
mtype_low = cc->migratetype;
|
|
mtype_high = cc->migratetype + 1;
|
|
}
|
|
|
|
/* Speculatively examine the free lists without zone lock */
|
|
for (mtype = mtype_low; mtype < mtype_high; mtype++) {
|
|
int order;
|
|
for (order = cc->order; order < MAX_ORDER; order++) {
|
|
struct page *page;
|
|
struct free_area *area;
|
|
area = &(cc->zone->free_area[order]);
|
|
if (list_empty(&area->free_list[mtype]))
|
|
continue;
|
|
|
|
/* Take the lock and attempt capture of the page */
|
|
if (!compact_trylock_irqsave(&cc->zone->lock, &flags, cc))
|
|
return;
|
|
if (!list_empty(&area->free_list[mtype])) {
|
|
page = list_entry(area->free_list[mtype].next,
|
|
struct page, lru);
|
|
if (capture_free_page(page, cc->order, mtype)) {
|
|
spin_unlock_irqrestore(&cc->zone->lock,
|
|
flags);
|
|
*cc->page = page;
|
|
return;
|
|
}
|
|
}
|
|
spin_unlock_irqrestore(&cc->zone->lock, flags);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Isolate free pages onto a private freelist. Caller must hold zone->lock.
|
|
* If @strict is true, will abort returning 0 on any invalid PFNs or non-free
|
|
* pages inside of the pageblock (even though it may still end up isolating
|
|
* some pages).
|
|
*/
|
|
static unsigned long isolate_freepages_block(struct compact_control *cc,
|
|
unsigned long blockpfn,
|
|
unsigned long end_pfn,
|
|
struct list_head *freelist,
|
|
bool strict)
|
|
{
|
|
int nr_scanned = 0, total_isolated = 0;
|
|
struct page *cursor, *valid_page = NULL;
|
|
unsigned long nr_strict_required = end_pfn - blockpfn;
|
|
unsigned long flags;
|
|
bool locked = false;
|
|
|
|
cursor = pfn_to_page(blockpfn);
|
|
|
|
/* Isolate free pages. */
|
|
for (; blockpfn < end_pfn; blockpfn++, cursor++) {
|
|
int isolated, i;
|
|
struct page *page = cursor;
|
|
|
|
nr_scanned++;
|
|
if (!pfn_valid_within(blockpfn))
|
|
continue;
|
|
if (!valid_page)
|
|
valid_page = page;
|
|
if (!PageBuddy(page))
|
|
continue;
|
|
|
|
/*
|
|
* The zone lock must be held to isolate freepages.
|
|
* Unfortunately this is a very coarse lock and can be
|
|
* heavily contended if there are parallel allocations
|
|
* or parallel compactions. For async compaction do not
|
|
* spin on the lock and we acquire the lock as late as
|
|
* possible.
|
|
*/
|
|
locked = compact_checklock_irqsave(&cc->zone->lock, &flags,
|
|
locked, cc);
|
|
if (!locked)
|
|
break;
|
|
|
|
/* Recheck this is a suitable migration target under lock */
|
|
if (!strict && !suitable_migration_target(page))
|
|
break;
|
|
|
|
/* Recheck this is a buddy page under lock */
|
|
if (!PageBuddy(page))
|
|
continue;
|
|
|
|
/* Found a free page, break it into order-0 pages */
|
|
isolated = split_free_page(page);
|
|
if (!isolated && strict)
|
|
break;
|
|
total_isolated += isolated;
|
|
for (i = 0; i < isolated; i++) {
|
|
list_add(&page->lru, freelist);
|
|
page++;
|
|
}
|
|
|
|
/* If a page was split, advance to the end of it */
|
|
if (isolated) {
|
|
blockpfn += isolated - 1;
|
|
cursor += isolated - 1;
|
|
}
|
|
}
|
|
|
|
trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
|
|
|
|
/*
|
|
* If strict isolation is requested by CMA then check that all the
|
|
* pages requested were isolated. If there were any failures, 0 is
|
|
* returned and CMA will fail.
|
|
*/
|
|
if (strict && nr_strict_required > total_isolated)
|
|
total_isolated = 0;
|
|
|
|
if (locked)
|
|
spin_unlock_irqrestore(&cc->zone->lock, flags);
|
|
|
|
/* Update the pageblock-skip if the whole pageblock was scanned */
|
|
if (blockpfn == end_pfn)
|
|
update_pageblock_skip(cc, valid_page, total_isolated, false);
|
|
|
|
return total_isolated;
|
|
}
|
|
|
|
/**
|
|
* isolate_freepages_range() - isolate free pages.
|
|
* @start_pfn: The first PFN to start isolating.
|
|
* @end_pfn: The one-past-last PFN.
|
|
*
|
|
* Non-free pages, invalid PFNs, or zone boundaries within the
|
|
* [start_pfn, end_pfn) range are considered errors, cause function to
|
|
* undo its actions and return zero.
|
|
*
|
|
* Otherwise, function returns one-past-the-last PFN of isolated page
|
|
* (which may be greater then end_pfn if end fell in a middle of
|
|
* a free page).
|
|
*/
|
|
unsigned long
|
|
isolate_freepages_range(struct compact_control *cc,
|
|
unsigned long start_pfn, unsigned long end_pfn)
|
|
{
|
|
unsigned long isolated, pfn, block_end_pfn;
|
|
LIST_HEAD(freelist);
|
|
|
|
for (pfn = start_pfn; pfn < end_pfn; pfn += isolated) {
|
|
if (!pfn_valid(pfn) || cc->zone != page_zone(pfn_to_page(pfn)))
|
|
break;
|
|
|
|
/*
|
|
* On subsequent iterations ALIGN() is actually not needed,
|
|
* but we keep it that we not to complicate the code.
|
|
*/
|
|
block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
|
|
block_end_pfn = min(block_end_pfn, end_pfn);
|
|
|
|
isolated = isolate_freepages_block(cc, pfn, block_end_pfn,
|
|
&freelist, true);
|
|
|
|
/*
|
|
* In strict mode, isolate_freepages_block() returns 0 if
|
|
* there are any holes in the block (ie. invalid PFNs or
|
|
* non-free pages).
|
|
*/
|
|
if (!isolated)
|
|
break;
|
|
|
|
/*
|
|
* If we managed to isolate pages, it is always (1 << n) *
|
|
* pageblock_nr_pages for some non-negative n. (Max order
|
|
* page may span two pageblocks).
|
|
*/
|
|
}
|
|
|
|
/* split_free_page does not map the pages */
|
|
map_pages(&freelist);
|
|
|
|
if (pfn < end_pfn) {
|
|
/* Loop terminated early, cleanup. */
|
|
release_freepages(&freelist);
|
|
return 0;
|
|
}
|
|
|
|
/* We don't use freelists for anything. */
|
|
return pfn;
|
|
}
|
|
|
|
/* Update the number of anon and file isolated pages in the zone */
|
|
static void acct_isolated(struct zone *zone, bool locked, struct compact_control *cc)
|
|
{
|
|
struct page *page;
|
|
unsigned int count[2] = { 0, };
|
|
|
|
list_for_each_entry(page, &cc->migratepages, lru)
|
|
count[!!page_is_file_cache(page)]++;
|
|
|
|
/* If locked we can use the interrupt unsafe versions */
|
|
if (locked) {
|
|
__mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
|
|
__mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
|
|
} else {
|
|
mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
|
|
mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
|
|
}
|
|
}
|
|
|
|
/* Similar to reclaim, but different enough that they don't share logic */
|
|
static bool too_many_isolated(struct zone *zone)
|
|
{
|
|
unsigned long active, inactive, isolated;
|
|
|
|
inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
|
|
zone_page_state(zone, NR_INACTIVE_ANON);
|
|
active = zone_page_state(zone, NR_ACTIVE_FILE) +
|
|
zone_page_state(zone, NR_ACTIVE_ANON);
|
|
isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
|
|
zone_page_state(zone, NR_ISOLATED_ANON);
|
|
|
|
return isolated > (inactive + active) / 2;
|
|
}
|
|
|
|
/**
|
|
* isolate_migratepages_range() - isolate all migrate-able pages in range.
|
|
* @zone: Zone pages are in.
|
|
* @cc: Compaction control structure.
|
|
* @low_pfn: The first PFN of the range.
|
|
* @end_pfn: The one-past-the-last PFN of the range.
|
|
* @unevictable: true if it allows to isolate unevictable pages
|
|
*
|
|
* Isolate all pages that can be migrated from the range specified by
|
|
* [low_pfn, end_pfn). Returns zero if there is a fatal signal
|
|
* pending), otherwise PFN of the first page that was not scanned
|
|
* (which may be both less, equal to or more then end_pfn).
|
|
*
|
|
* Assumes that cc->migratepages is empty and cc->nr_migratepages is
|
|
* zero.
|
|
*
|
|
* Apart from cc->migratepages and cc->nr_migratetypes this function
|
|
* does not modify any cc's fields, in particular it does not modify
|
|
* (or read for that matter) cc->migrate_pfn.
|
|
*/
|
|
unsigned long
|
|
isolate_migratepages_range(struct zone *zone, struct compact_control *cc,
|
|
unsigned long low_pfn, unsigned long end_pfn, bool unevictable)
|
|
{
|
|
unsigned long last_pageblock_nr = 0, pageblock_nr;
|
|
unsigned long nr_scanned = 0, nr_isolated = 0;
|
|
struct list_head *migratelist = &cc->migratepages;
|
|
isolate_mode_t mode = 0;
|
|
struct lruvec *lruvec;
|
|
unsigned long flags;
|
|
bool locked = false;
|
|
struct page *page = NULL, *valid_page = NULL;
|
|
|
|
/*
|
|
* Ensure that there are not too many pages isolated from the LRU
|
|
* list by either parallel reclaimers or compaction. If there are,
|
|
* delay for some time until fewer pages are isolated
|
|
*/
|
|
while (unlikely(too_many_isolated(zone))) {
|
|
/* async migration should just abort */
|
|
if (!cc->sync)
|
|
return 0;
|
|
|
|
congestion_wait(BLK_RW_ASYNC, HZ/10);
|
|
|
|
if (fatal_signal_pending(current))
|
|
return 0;
|
|
}
|
|
|
|
/* Time to isolate some pages for migration */
|
|
cond_resched();
|
|
for (; low_pfn < end_pfn; low_pfn++) {
|
|
/* give a chance to irqs before checking need_resched() */
|
|
if (locked && !((low_pfn+1) % SWAP_CLUSTER_MAX)) {
|
|
if (should_release_lock(&zone->lru_lock)) {
|
|
spin_unlock_irqrestore(&zone->lru_lock, flags);
|
|
locked = false;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* migrate_pfn does not necessarily start aligned to a
|
|
* pageblock. Ensure that pfn_valid is called when moving
|
|
* into a new MAX_ORDER_NR_PAGES range in case of large
|
|
* memory holes within the zone
|
|
*/
|
|
if ((low_pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
|
|
if (!pfn_valid(low_pfn)) {
|
|
low_pfn += MAX_ORDER_NR_PAGES - 1;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (!pfn_valid_within(low_pfn))
|
|
continue;
|
|
nr_scanned++;
|
|
|
|
/*
|
|
* Get the page and ensure the page is within the same zone.
|
|
* See the comment in isolate_freepages about overlapping
|
|
* nodes. It is deliberate that the new zone lock is not taken
|
|
* as memory compaction should not move pages between nodes.
|
|
*/
|
|
page = pfn_to_page(low_pfn);
|
|
if (page_zone(page) != zone)
|
|
continue;
|
|
|
|
if (!valid_page)
|
|
valid_page = page;
|
|
|
|
/* If isolation recently failed, do not retry */
|
|
pageblock_nr = low_pfn >> pageblock_order;
|
|
if (!isolation_suitable(cc, page))
|
|
goto next_pageblock;
|
|
|
|
/* Skip if free */
|
|
if (PageBuddy(page))
|
|
continue;
|
|
|
|
/*
|
|
* For async migration, also only scan in MOVABLE blocks. Async
|
|
* migration is optimistic to see if the minimum amount of work
|
|
* satisfies the allocation
|
|
*/
|
|
if (!cc->sync && last_pageblock_nr != pageblock_nr &&
|
|
!migrate_async_suitable(get_pageblock_migratetype(page))) {
|
|
cc->finished_update_migrate = true;
|
|
goto next_pageblock;
|
|
}
|
|
|
|
/* Check may be lockless but that's ok as we recheck later */
|
|
if (!PageLRU(page))
|
|
continue;
|
|
|
|
/*
|
|
* PageLRU is set. lru_lock normally excludes isolation
|
|
* splitting and collapsing (collapsing has already happened
|
|
* if PageLRU is set) but the lock is not necessarily taken
|
|
* here and it is wasteful to take it just to check transhuge.
|
|
* Check TransHuge without lock and skip the whole pageblock if
|
|
* it's either a transhuge or hugetlbfs page, as calling
|
|
* compound_order() without preventing THP from splitting the
|
|
* page underneath us may return surprising results.
|
|
*/
|
|
if (PageTransHuge(page)) {
|
|
if (!locked)
|
|
goto next_pageblock;
|
|
low_pfn += (1 << compound_order(page)) - 1;
|
|
continue;
|
|
}
|
|
|
|
/* Check if it is ok to still hold the lock */
|
|
locked = compact_checklock_irqsave(&zone->lru_lock, &flags,
|
|
locked, cc);
|
|
if (!locked || fatal_signal_pending(current))
|
|
break;
|
|
|
|
/* Recheck PageLRU and PageTransHuge under lock */
|
|
if (!PageLRU(page))
|
|
continue;
|
|
if (PageTransHuge(page)) {
|
|
low_pfn += (1 << compound_order(page)) - 1;
|
|
continue;
|
|
}
|
|
|
|
if (!cc->sync)
|
|
mode |= ISOLATE_ASYNC_MIGRATE;
|
|
|
|
if (unevictable)
|
|
mode |= ISOLATE_UNEVICTABLE;
|
|
|
|
lruvec = mem_cgroup_page_lruvec(page, zone);
|
|
|
|
/* Try isolate the page */
|
|
if (__isolate_lru_page(page, mode) != 0)
|
|
continue;
|
|
|
|
VM_BUG_ON(PageTransCompound(page));
|
|
|
|
/* Successfully isolated */
|
|
cc->finished_update_migrate = true;
|
|
del_page_from_lru_list(page, lruvec, page_lru(page));
|
|
list_add(&page->lru, migratelist);
|
|
cc->nr_migratepages++;
|
|
nr_isolated++;
|
|
|
|
/* Avoid isolating too much */
|
|
if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
|
|
++low_pfn;
|
|
break;
|
|
}
|
|
|
|
continue;
|
|
|
|
next_pageblock:
|
|
low_pfn += pageblock_nr_pages;
|
|
low_pfn = ALIGN(low_pfn, pageblock_nr_pages) - 1;
|
|
last_pageblock_nr = pageblock_nr;
|
|
}
|
|
|
|
acct_isolated(zone, locked, cc);
|
|
|
|
if (locked)
|
|
spin_unlock_irqrestore(&zone->lru_lock, flags);
|
|
|
|
/* Update the pageblock-skip if the whole pageblock was scanned */
|
|
if (low_pfn == end_pfn)
|
|
update_pageblock_skip(cc, valid_page, nr_isolated, true);
|
|
|
|
trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);
|
|
|
|
return low_pfn;
|
|
}
|
|
|
|
#endif /* CONFIG_COMPACTION || CONFIG_CMA */
|
|
#ifdef CONFIG_COMPACTION
|
|
/*
|
|
* Based on information in the current compact_control, find blocks
|
|
* suitable for isolating free pages from and then isolate them.
|
|
*/
|
|
static void isolate_freepages(struct zone *zone,
|
|
struct compact_control *cc)
|
|
{
|
|
struct page *page;
|
|
unsigned long high_pfn, low_pfn, pfn, zone_end_pfn, end_pfn;
|
|
int nr_freepages = cc->nr_freepages;
|
|
struct list_head *freelist = &cc->freepages;
|
|
|
|
/*
|
|
* Initialise the free scanner. The starting point is where we last
|
|
* scanned from (or the end of the zone if starting). The low point
|
|
* is the end of the pageblock the migration scanner is using.
|
|
*/
|
|
pfn = cc->free_pfn;
|
|
low_pfn = cc->migrate_pfn + pageblock_nr_pages;
|
|
|
|
/*
|
|
* Take care that if the migration scanner is at the end of the zone
|
|
* that the free scanner does not accidentally move to the next zone
|
|
* in the next isolation cycle.
|
|
*/
|
|
high_pfn = min(low_pfn, pfn);
|
|
|
|
zone_end_pfn = zone->zone_start_pfn + zone->spanned_pages;
|
|
|
|
/*
|
|
* Isolate free pages until enough are available to migrate the
|
|
* pages on cc->migratepages. We stop searching if the migrate
|
|
* and free page scanners meet or enough free pages are isolated.
|
|
*/
|
|
for (; pfn > low_pfn && cc->nr_migratepages > nr_freepages;
|
|
pfn -= pageblock_nr_pages) {
|
|
unsigned long isolated;
|
|
|
|
if (!pfn_valid(pfn))
|
|
continue;
|
|
|
|
/*
|
|
* Check for overlapping nodes/zones. It's possible on some
|
|
* configurations to have a setup like
|
|
* node0 node1 node0
|
|
* i.e. it's possible that all pages within a zones range of
|
|
* pages do not belong to a single zone.
|
|
*/
|
|
page = pfn_to_page(pfn);
|
|
if (page_zone(page) != zone)
|
|
continue;
|
|
|
|
/* Check the block is suitable for migration */
|
|
if (!suitable_migration_target(page))
|
|
continue;
|
|
|
|
/* If isolation recently failed, do not retry */
|
|
if (!isolation_suitable(cc, page))
|
|
continue;
|
|
|
|
/* Found a block suitable for isolating free pages from */
|
|
isolated = 0;
|
|
|
|
/*
|
|
* As pfn may not start aligned, pfn+pageblock_nr_page
|
|
* may cross a MAX_ORDER_NR_PAGES boundary and miss
|
|
* a pfn_valid check. Ensure isolate_freepages_block()
|
|
* only scans within a pageblock
|
|
*/
|
|
end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
|
|
end_pfn = min(end_pfn, zone_end_pfn);
|
|
isolated = isolate_freepages_block(cc, pfn, end_pfn,
|
|
freelist, false);
|
|
nr_freepages += isolated;
|
|
|
|
/*
|
|
* Record the highest PFN we isolated pages from. When next
|
|
* looking for free pages, the search will restart here as
|
|
* page migration may have returned some pages to the allocator
|
|
*/
|
|
if (isolated) {
|
|
cc->finished_update_free = true;
|
|
high_pfn = max(high_pfn, pfn);
|
|
}
|
|
}
|
|
|
|
/* split_free_page does not map the pages */
|
|
map_pages(freelist);
|
|
|
|
cc->free_pfn = high_pfn;
|
|
cc->nr_freepages = nr_freepages;
|
|
}
|
|
|
|
/*
|
|
* This is a migrate-callback that "allocates" freepages by taking pages
|
|
* from the isolated freelists in the block we are migrating to.
|
|
*/
|
|
static struct page *compaction_alloc(struct page *migratepage,
|
|
unsigned long data,
|
|
int **result)
|
|
{
|
|
struct compact_control *cc = (struct compact_control *)data;
|
|
struct page *freepage;
|
|
|
|
/* Isolate free pages if necessary */
|
|
if (list_empty(&cc->freepages)) {
|
|
isolate_freepages(cc->zone, cc);
|
|
|
|
if (list_empty(&cc->freepages))
|
|
return NULL;
|
|
}
|
|
|
|
freepage = list_entry(cc->freepages.next, struct page, lru);
|
|
list_del(&freepage->lru);
|
|
cc->nr_freepages--;
|
|
|
|
return freepage;
|
|
}
|
|
|
|
/*
|
|
* We cannot control nr_migratepages and nr_freepages fully when migration is
|
|
* running as migrate_pages() has no knowledge of compact_control. When
|
|
* migration is complete, we count the number of pages on the lists by hand.
|
|
*/
|
|
static void update_nr_listpages(struct compact_control *cc)
|
|
{
|
|
int nr_migratepages = 0;
|
|
int nr_freepages = 0;
|
|
struct page *page;
|
|
|
|
list_for_each_entry(page, &cc->migratepages, lru)
|
|
nr_migratepages++;
|
|
list_for_each_entry(page, &cc->freepages, lru)
|
|
nr_freepages++;
|
|
|
|
cc->nr_migratepages = nr_migratepages;
|
|
cc->nr_freepages = nr_freepages;
|
|
}
|
|
|
|
/* possible outcome of isolate_migratepages */
|
|
typedef enum {
|
|
ISOLATE_ABORT, /* Abort compaction now */
|
|
ISOLATE_NONE, /* No pages isolated, continue scanning */
|
|
ISOLATE_SUCCESS, /* Pages isolated, migrate */
|
|
} isolate_migrate_t;
|
|
|
|
/*
|
|
* Isolate all pages that can be migrated from the block pointed to by
|
|
* the migrate scanner within compact_control.
|
|
*/
|
|
static isolate_migrate_t isolate_migratepages(struct zone *zone,
|
|
struct compact_control *cc)
|
|
{
|
|
unsigned long low_pfn, end_pfn;
|
|
|
|
/* Do not scan outside zone boundaries */
|
|
low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn);
|
|
|
|
/* Only scan within a pageblock boundary */
|
|
end_pfn = ALIGN(low_pfn + pageblock_nr_pages, pageblock_nr_pages);
|
|
|
|
/* Do not cross the free scanner or scan within a memory hole */
|
|
if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) {
|
|
cc->migrate_pfn = end_pfn;
|
|
return ISOLATE_NONE;
|
|
}
|
|
|
|
/* Perform the isolation */
|
|
low_pfn = isolate_migratepages_range(zone, cc, low_pfn, end_pfn, false);
|
|
if (!low_pfn || cc->contended)
|
|
return ISOLATE_ABORT;
|
|
|
|
cc->migrate_pfn = low_pfn;
|
|
|
|
return ISOLATE_SUCCESS;
|
|
}
|
|
|
|
static int compact_finished(struct zone *zone,
|
|
struct compact_control *cc)
|
|
{
|
|
unsigned long watermark;
|
|
|
|
if (fatal_signal_pending(current))
|
|
return COMPACT_PARTIAL;
|
|
|
|
/* Compaction run completes if the migrate and free scanner meet */
|
|
if (cc->free_pfn <= cc->migrate_pfn) {
|
|
/*
|
|
* Mark that the PG_migrate_skip information should be cleared
|
|
* by kswapd when it goes to sleep. kswapd does not set the
|
|
* flag itself as the decision to be clear should be directly
|
|
* based on an allocation request.
|
|
*/
|
|
if (!current_is_kswapd())
|
|
zone->compact_blockskip_flush = true;
|
|
|
|
return COMPACT_COMPLETE;
|
|
}
|
|
|
|
/*
|
|
* order == -1 is expected when compacting via
|
|
* /proc/sys/vm/compact_memory
|
|
*/
|
|
if (cc->order == -1)
|
|
return COMPACT_CONTINUE;
|
|
|
|
/* Compaction run is not finished if the watermark is not met */
|
|
watermark = low_wmark_pages(zone);
|
|
watermark += (1 << cc->order);
|
|
|
|
if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
|
|
return COMPACT_CONTINUE;
|
|
|
|
/* Direct compactor: Is a suitable page free? */
|
|
if (cc->page) {
|
|
/* Was a suitable page captured? */
|
|
if (*cc->page)
|
|
return COMPACT_PARTIAL;
|
|
} else {
|
|
unsigned int order;
|
|
for (order = cc->order; order < MAX_ORDER; order++) {
|
|
struct free_area *area = &zone->free_area[cc->order];
|
|
/* Job done if page is free of the right migratetype */
|
|
if (!list_empty(&area->free_list[cc->migratetype]))
|
|
return COMPACT_PARTIAL;
|
|
|
|
/* Job done if allocation would set block type */
|
|
if (cc->order >= pageblock_order && area->nr_free)
|
|
return COMPACT_PARTIAL;
|
|
}
|
|
}
|
|
|
|
return COMPACT_CONTINUE;
|
|
}
|
|
|
|
/*
|
|
* compaction_suitable: Is this suitable to run compaction on this zone now?
|
|
* Returns
|
|
* COMPACT_SKIPPED - If there are too few free pages for compaction
|
|
* COMPACT_PARTIAL - If the allocation would succeed without compaction
|
|
* COMPACT_CONTINUE - If compaction should run now
|
|
*/
|
|
unsigned long compaction_suitable(struct zone *zone, int order)
|
|
{
|
|
int fragindex;
|
|
unsigned long watermark;
|
|
|
|
/*
|
|
* order == -1 is expected when compacting via
|
|
* /proc/sys/vm/compact_memory
|
|
*/
|
|
if (order == -1)
|
|
return COMPACT_CONTINUE;
|
|
|
|
/*
|
|
* Watermarks for order-0 must be met for compaction. Note the 2UL.
|
|
* This is because during migration, copies of pages need to be
|
|
* allocated and for a short time, the footprint is higher
|
|
*/
|
|
watermark = low_wmark_pages(zone) + (2UL << order);
|
|
if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
|
|
return COMPACT_SKIPPED;
|
|
|
|
/*
|
|
* fragmentation index determines if allocation failures are due to
|
|
* low memory or external fragmentation
|
|
*
|
|
* index of -1000 implies allocations might succeed depending on
|
|
* watermarks
|
|
* index towards 0 implies failure is due to lack of memory
|
|
* index towards 1000 implies failure is due to fragmentation
|
|
*
|
|
* Only compact if a failure would be due to fragmentation.
|
|
*/
|
|
fragindex = fragmentation_index(zone, order);
|
|
if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
|
|
return COMPACT_SKIPPED;
|
|
|
|
if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark,
|
|
0, 0))
|
|
return COMPACT_PARTIAL;
|
|
|
|
return COMPACT_CONTINUE;
|
|
}
|
|
|
|
static int compact_zone(struct zone *zone, struct compact_control *cc)
|
|
{
|
|
int ret;
|
|
unsigned long start_pfn = zone->zone_start_pfn;
|
|
unsigned long end_pfn = zone->zone_start_pfn + zone->spanned_pages;
|
|
|
|
ret = compaction_suitable(zone, cc->order);
|
|
switch (ret) {
|
|
case COMPACT_PARTIAL:
|
|
case COMPACT_SKIPPED:
|
|
/* Compaction is likely to fail */
|
|
return ret;
|
|
case COMPACT_CONTINUE:
|
|
/* Fall through to compaction */
|
|
;
|
|
}
|
|
|
|
/*
|
|
* Setup to move all movable pages to the end of the zone. Used cached
|
|
* information on where the scanners should start but check that it
|
|
* is initialised by ensuring the values are within zone boundaries.
|
|
*/
|
|
cc->migrate_pfn = zone->compact_cached_migrate_pfn;
|
|
cc->free_pfn = zone->compact_cached_free_pfn;
|
|
if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
|
|
cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
|
|
zone->compact_cached_free_pfn = cc->free_pfn;
|
|
}
|
|
if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
|
|
cc->migrate_pfn = start_pfn;
|
|
zone->compact_cached_migrate_pfn = cc->migrate_pfn;
|
|
}
|
|
|
|
/*
|
|
* Clear pageblock skip if there were failures recently and compaction
|
|
* is about to be retried after being deferred. kswapd does not do
|
|
* this reset as it'll reset the cached information when going to sleep.
|
|
*/
|
|
if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
|
|
__reset_isolation_suitable(zone);
|
|
|
|
migrate_prep_local();
|
|
|
|
while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
|
|
unsigned long nr_migrate, nr_remaining;
|
|
int err;
|
|
|
|
switch (isolate_migratepages(zone, cc)) {
|
|
case ISOLATE_ABORT:
|
|
ret = COMPACT_PARTIAL;
|
|
putback_lru_pages(&cc->migratepages);
|
|
cc->nr_migratepages = 0;
|
|
goto out;
|
|
case ISOLATE_NONE:
|
|
continue;
|
|
case ISOLATE_SUCCESS:
|
|
;
|
|
}
|
|
|
|
nr_migrate = cc->nr_migratepages;
|
|
err = migrate_pages(&cc->migratepages, compaction_alloc,
|
|
(unsigned long)cc, false,
|
|
cc->sync ? MIGRATE_SYNC_LIGHT : MIGRATE_ASYNC);
|
|
update_nr_listpages(cc);
|
|
nr_remaining = cc->nr_migratepages;
|
|
|
|
count_vm_event(COMPACTBLOCKS);
|
|
count_vm_events(COMPACTPAGES, nr_migrate - nr_remaining);
|
|
if (nr_remaining)
|
|
count_vm_events(COMPACTPAGEFAILED, nr_remaining);
|
|
trace_mm_compaction_migratepages(nr_migrate - nr_remaining,
|
|
nr_remaining);
|
|
|
|
/* Release LRU pages not migrated */
|
|
if (err) {
|
|
putback_lru_pages(&cc->migratepages);
|
|
cc->nr_migratepages = 0;
|
|
if (err == -ENOMEM) {
|
|
ret = COMPACT_PARTIAL;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/* Capture a page now if it is a suitable size */
|
|
compact_capture_page(cc);
|
|
}
|
|
|
|
out:
|
|
/* Release free pages and check accounting */
|
|
cc->nr_freepages -= release_freepages(&cc->freepages);
|
|
VM_BUG_ON(cc->nr_freepages != 0);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static unsigned long compact_zone_order(struct zone *zone,
|
|
int order, gfp_t gfp_mask,
|
|
bool sync, bool *contended,
|
|
struct page **page)
|
|
{
|
|
unsigned long ret;
|
|
struct compact_control cc = {
|
|
.nr_freepages = 0,
|
|
.nr_migratepages = 0,
|
|
.order = order,
|
|
.migratetype = allocflags_to_migratetype(gfp_mask),
|
|
.zone = zone,
|
|
.sync = sync,
|
|
.page = page,
|
|
};
|
|
INIT_LIST_HEAD(&cc.freepages);
|
|
INIT_LIST_HEAD(&cc.migratepages);
|
|
|
|
ret = compact_zone(zone, &cc);
|
|
|
|
VM_BUG_ON(!list_empty(&cc.freepages));
|
|
VM_BUG_ON(!list_empty(&cc.migratepages));
|
|
|
|
*contended = cc.contended;
|
|
return ret;
|
|
}
|
|
|
|
int sysctl_extfrag_threshold = 500;
|
|
|
|
/**
|
|
* try_to_compact_pages - Direct compact to satisfy a high-order allocation
|
|
* @zonelist: The zonelist used for the current allocation
|
|
* @order: The order of the current allocation
|
|
* @gfp_mask: The GFP mask of the current allocation
|
|
* @nodemask: The allowed nodes to allocate from
|
|
* @sync: Whether migration is synchronous or not
|
|
* @contended: Return value that is true if compaction was aborted due to lock contention
|
|
* @page: Optionally capture a free page of the requested order during compaction
|
|
*
|
|
* This is the main entry point for direct page compaction.
|
|
*/
|
|
unsigned long try_to_compact_pages(struct zonelist *zonelist,
|
|
int order, gfp_t gfp_mask, nodemask_t *nodemask,
|
|
bool sync, bool *contended, struct page **page)
|
|
{
|
|
enum zone_type high_zoneidx = gfp_zone(gfp_mask);
|
|
int may_enter_fs = gfp_mask & __GFP_FS;
|
|
int may_perform_io = gfp_mask & __GFP_IO;
|
|
struct zoneref *z;
|
|
struct zone *zone;
|
|
int rc = COMPACT_SKIPPED;
|
|
int alloc_flags = 0;
|
|
|
|
/* Check if the GFP flags allow compaction */
|
|
if (!order || !may_enter_fs || !may_perform_io)
|
|
return rc;
|
|
|
|
count_vm_event(COMPACTSTALL);
|
|
|
|
#ifdef CONFIG_CMA
|
|
if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
|
|
alloc_flags |= ALLOC_CMA;
|
|
#endif
|
|
/* Compact each zone in the list */
|
|
for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
|
|
nodemask) {
|
|
int status;
|
|
|
|
status = compact_zone_order(zone, order, gfp_mask, sync,
|
|
contended, page);
|
|
rc = max(status, rc);
|
|
|
|
/* If a normal allocation would succeed, stop compacting */
|
|
if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0,
|
|
alloc_flags))
|
|
break;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
|
|
/* Compact all zones within a node */
|
|
static int __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
|
|
{
|
|
int zoneid;
|
|
struct zone *zone;
|
|
|
|
for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
|
|
|
|
zone = &pgdat->node_zones[zoneid];
|
|
if (!populated_zone(zone))
|
|
continue;
|
|
|
|
cc->nr_freepages = 0;
|
|
cc->nr_migratepages = 0;
|
|
cc->zone = zone;
|
|
INIT_LIST_HEAD(&cc->freepages);
|
|
INIT_LIST_HEAD(&cc->migratepages);
|
|
|
|
if (cc->order == -1 || !compaction_deferred(zone, cc->order))
|
|
compact_zone(zone, cc);
|
|
|
|
if (cc->order > 0) {
|
|
int ok = zone_watermark_ok(zone, cc->order,
|
|
low_wmark_pages(zone), 0, 0);
|
|
if (ok && cc->order >= zone->compact_order_failed)
|
|
zone->compact_order_failed = cc->order + 1;
|
|
/* Currently async compaction is never deferred. */
|
|
else if (!ok && cc->sync)
|
|
defer_compaction(zone, cc->order);
|
|
}
|
|
|
|
VM_BUG_ON(!list_empty(&cc->freepages));
|
|
VM_BUG_ON(!list_empty(&cc->migratepages));
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int compact_pgdat(pg_data_t *pgdat, int order)
|
|
{
|
|
struct compact_control cc = {
|
|
.order = order,
|
|
.sync = false,
|
|
.page = NULL,
|
|
};
|
|
|
|
return __compact_pgdat(pgdat, &cc);
|
|
}
|
|
|
|
static int compact_node(int nid)
|
|
{
|
|
struct compact_control cc = {
|
|
.order = -1,
|
|
.sync = true,
|
|
.page = NULL,
|
|
};
|
|
|
|
return __compact_pgdat(NODE_DATA(nid), &cc);
|
|
}
|
|
|
|
/* Compact all nodes in the system */
|
|
static int compact_nodes(void)
|
|
{
|
|
int nid;
|
|
|
|
/* Flush pending updates to the LRU lists */
|
|
lru_add_drain_all();
|
|
|
|
for_each_online_node(nid)
|
|
compact_node(nid);
|
|
|
|
return COMPACT_COMPLETE;
|
|
}
|
|
|
|
/* The written value is actually unused, all memory is compacted */
|
|
int sysctl_compact_memory;
|
|
|
|
/* This is the entry point for compacting all nodes via /proc/sys/vm */
|
|
int sysctl_compaction_handler(struct ctl_table *table, int write,
|
|
void __user *buffer, size_t *length, loff_t *ppos)
|
|
{
|
|
if (write)
|
|
return compact_nodes();
|
|
|
|
return 0;
|
|
}
|
|
|
|
int sysctl_extfrag_handler(struct ctl_table *table, int write,
|
|
void __user *buffer, size_t *length, loff_t *ppos)
|
|
{
|
|
proc_dointvec_minmax(table, write, buffer, length, ppos);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
|
|
ssize_t sysfs_compact_node(struct device *dev,
|
|
struct device_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
int nid = dev->id;
|
|
|
|
if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
|
|
/* Flush pending updates to the LRU lists */
|
|
lru_add_drain_all();
|
|
|
|
compact_node(nid);
|
|
}
|
|
|
|
return count;
|
|
}
|
|
static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
|
|
|
|
int compaction_register_node(struct node *node)
|
|
{
|
|
return device_create_file(&node->dev, &dev_attr_compact);
|
|
}
|
|
|
|
void compaction_unregister_node(struct node *node)
|
|
{
|
|
return device_remove_file(&node->dev, &dev_attr_compact);
|
|
}
|
|
#endif /* CONFIG_SYSFS && CONFIG_NUMA */
|
|
|
|
#endif /* CONFIG_COMPACTION */
|