linux/sound/pci/hda/hda_codec.c
Takashi Iwai 9ba17b4d13 ALSA: hda - Implement uncached version of parameter reads
Sometimes we need the uncached reads, e.g. for refreshing the tree.
This patch provides the helper function for that and uses it for
refreshing widgets, reading subtrees and the whole proc reads.

Signed-off-by: Takashi Iwai <tiwai@suse.de>
2015-03-23 13:19:38 +01:00

5039 lines
135 KiB
C

/*
* Universal Interface for Intel High Definition Audio Codec
*
* Copyright (c) 2004 Takashi Iwai <tiwai@suse.de>
*
*
* This driver is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This driver is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/mutex.h>
#include <linux/module.h>
#include <linux/async.h>
#include <linux/pm.h>
#include <linux/pm_runtime.h>
#include <sound/core.h>
#include "hda_codec.h"
#include <sound/asoundef.h>
#include <sound/tlv.h>
#include <sound/initval.h>
#include <sound/jack.h>
#include "hda_local.h"
#include "hda_beep.h"
#include "hda_jack.h"
#include <sound/hda_hwdep.h>
#ifdef CONFIG_PM
#define codec_in_pm(codec) atomic_read(&(codec)->core.in_pm)
#define hda_codec_is_power_on(codec) \
(!pm_runtime_suspended(hda_codec_dev(codec)))
#else
#define codec_in_pm(codec) 0
#define hda_codec_is_power_on(codec) 1
#endif
#define codec_has_epss(codec) \
((codec)->core.power_caps & AC_PWRST_EPSS)
#define codec_has_clkstop(codec) \
((codec)->core.power_caps & AC_PWRST_CLKSTOP)
/**
* snd_hda_get_jack_location - Give a location string of the jack
* @cfg: pin default config value
*
* Parse the pin default config value and returns the string of the
* jack location, e.g. "Rear", "Front", etc.
*/
const char *snd_hda_get_jack_location(u32 cfg)
{
static char *bases[7] = {
"N/A", "Rear", "Front", "Left", "Right", "Top", "Bottom",
};
static unsigned char specials_idx[] = {
0x07, 0x08,
0x17, 0x18, 0x19,
0x37, 0x38
};
static char *specials[] = {
"Rear Panel", "Drive Bar",
"Riser", "HDMI", "ATAPI",
"Mobile-In", "Mobile-Out"
};
int i;
cfg = (cfg & AC_DEFCFG_LOCATION) >> AC_DEFCFG_LOCATION_SHIFT;
if ((cfg & 0x0f) < 7)
return bases[cfg & 0x0f];
for (i = 0; i < ARRAY_SIZE(specials_idx); i++) {
if (cfg == specials_idx[i])
return specials[i];
}
return "UNKNOWN";
}
EXPORT_SYMBOL_GPL(snd_hda_get_jack_location);
/**
* snd_hda_get_jack_connectivity - Give a connectivity string of the jack
* @cfg: pin default config value
*
* Parse the pin default config value and returns the string of the
* jack connectivity, i.e. external or internal connection.
*/
const char *snd_hda_get_jack_connectivity(u32 cfg)
{
static char *jack_locations[4] = { "Ext", "Int", "Sep", "Oth" };
return jack_locations[(cfg >> (AC_DEFCFG_LOCATION_SHIFT + 4)) & 3];
}
EXPORT_SYMBOL_GPL(snd_hda_get_jack_connectivity);
/**
* snd_hda_get_jack_type - Give a type string of the jack
* @cfg: pin default config value
*
* Parse the pin default config value and returns the string of the
* jack type, i.e. the purpose of the jack, such as Line-Out or CD.
*/
const char *snd_hda_get_jack_type(u32 cfg)
{
static char *jack_types[16] = {
"Line Out", "Speaker", "HP Out", "CD",
"SPDIF Out", "Digital Out", "Modem Line", "Modem Hand",
"Line In", "Aux", "Mic", "Telephony",
"SPDIF In", "Digital In", "Reserved", "Other"
};
return jack_types[(cfg & AC_DEFCFG_DEVICE)
>> AC_DEFCFG_DEVICE_SHIFT];
}
EXPORT_SYMBOL_GPL(snd_hda_get_jack_type);
/*
* Send and receive a verb - passed to exec_verb override for hdac_device
*/
static int codec_exec_verb(struct hdac_device *dev, unsigned int cmd,
unsigned int flags, unsigned int *res)
{
struct hda_codec *codec = container_of(dev, struct hda_codec, core);
struct hda_bus *bus = codec->bus;
int err;
if (cmd == ~0)
return -1;
again:
snd_hda_power_up(codec);
mutex_lock(&bus->core.cmd_mutex);
if (flags & HDA_RW_NO_RESPONSE_FALLBACK)
bus->no_response_fallback = 1;
err = snd_hdac_bus_exec_verb_unlocked(&bus->core, codec->core.addr,
cmd, res);
bus->no_response_fallback = 0;
mutex_unlock(&bus->core.cmd_mutex);
snd_hda_power_down(codec);
if (!codec_in_pm(codec) && res && err < 0 && bus->rirb_error) {
if (bus->response_reset) {
codec_dbg(codec,
"resetting BUS due to fatal communication error\n");
bus->ops.bus_reset(bus);
}
goto again;
}
/* clear reset-flag when the communication gets recovered */
if (!err || codec_in_pm(codec))
bus->response_reset = 0;
return err;
}
/**
* snd_hda_codec_read - send a command and get the response
* @codec: the HDA codec
* @nid: NID to send the command
* @flags: optional bit flags
* @verb: the verb to send
* @parm: the parameter for the verb
*
* Send a single command and read the corresponding response.
*
* Returns the obtained response value, or -1 for an error.
*/
unsigned int snd_hda_codec_read(struct hda_codec *codec, hda_nid_t nid,
int flags,
unsigned int verb, unsigned int parm)
{
unsigned int cmd = snd_hdac_make_cmd(&codec->core, nid, verb, parm);
unsigned int res;
if (snd_hdac_exec_verb(&codec->core, cmd, flags, &res))
return -1;
return res;
}
EXPORT_SYMBOL_GPL(snd_hda_codec_read);
/**
* snd_hda_codec_write - send a single command without waiting for response
* @codec: the HDA codec
* @nid: NID to send the command
* @flags: optional bit flags
* @verb: the verb to send
* @parm: the parameter for the verb
*
* Send a single command without waiting for response.
*
* Returns 0 if successful, or a negative error code.
*/
int snd_hda_codec_write(struct hda_codec *codec, hda_nid_t nid, int flags,
unsigned int verb, unsigned int parm)
{
unsigned int cmd = snd_hdac_make_cmd(&codec->core, nid, verb, parm);
return snd_hdac_exec_verb(&codec->core, cmd, flags, NULL);
}
EXPORT_SYMBOL_GPL(snd_hda_codec_write);
/**
* snd_hda_sequence_write - sequence writes
* @codec: the HDA codec
* @seq: VERB array to send
*
* Send the commands sequentially from the given array.
* The array must be terminated with NID=0.
*/
void snd_hda_sequence_write(struct hda_codec *codec, const struct hda_verb *seq)
{
for (; seq->nid; seq++)
snd_hda_codec_write(codec, seq->nid, 0, seq->verb, seq->param);
}
EXPORT_SYMBOL_GPL(snd_hda_sequence_write);
/* connection list element */
struct hda_conn_list {
struct list_head list;
int len;
hda_nid_t nid;
hda_nid_t conns[0];
};
/* look up the cached results */
static struct hda_conn_list *
lookup_conn_list(struct hda_codec *codec, hda_nid_t nid)
{
struct hda_conn_list *p;
list_for_each_entry(p, &codec->conn_list, list) {
if (p->nid == nid)
return p;
}
return NULL;
}
static int add_conn_list(struct hda_codec *codec, hda_nid_t nid, int len,
const hda_nid_t *list)
{
struct hda_conn_list *p;
p = kmalloc(sizeof(*p) + len * sizeof(hda_nid_t), GFP_KERNEL);
if (!p)
return -ENOMEM;
p->len = len;
p->nid = nid;
memcpy(p->conns, list, len * sizeof(hda_nid_t));
list_add(&p->list, &codec->conn_list);
return 0;
}
static void remove_conn_list(struct hda_codec *codec)
{
while (!list_empty(&codec->conn_list)) {
struct hda_conn_list *p;
p = list_first_entry(&codec->conn_list, typeof(*p), list);
list_del(&p->list);
kfree(p);
}
}
/* read the connection and add to the cache */
static int read_and_add_raw_conns(struct hda_codec *codec, hda_nid_t nid)
{
hda_nid_t list[32];
hda_nid_t *result = list;
int len;
len = snd_hda_get_raw_connections(codec, nid, list, ARRAY_SIZE(list));
if (len == -ENOSPC) {
len = snd_hda_get_num_raw_conns(codec, nid);
result = kmalloc(sizeof(hda_nid_t) * len, GFP_KERNEL);
if (!result)
return -ENOMEM;
len = snd_hda_get_raw_connections(codec, nid, result, len);
}
if (len >= 0)
len = snd_hda_override_conn_list(codec, nid, len, result);
if (result != list)
kfree(result);
return len;
}
/**
* snd_hda_get_conn_list - get connection list
* @codec: the HDA codec
* @nid: NID to parse
* @listp: the pointer to store NID list
*
* Parses the connection list of the given widget and stores the pointer
* to the list of NIDs.
*
* Returns the number of connections, or a negative error code.
*
* Note that the returned pointer isn't protected against the list
* modification. If snd_hda_override_conn_list() might be called
* concurrently, protect with a mutex appropriately.
*/
int snd_hda_get_conn_list(struct hda_codec *codec, hda_nid_t nid,
const hda_nid_t **listp)
{
bool added = false;
for (;;) {
int err;
const struct hda_conn_list *p;
/* if the connection-list is already cached, read it */
p = lookup_conn_list(codec, nid);
if (p) {
if (listp)
*listp = p->conns;
return p->len;
}
if (snd_BUG_ON(added))
return -EINVAL;
err = read_and_add_raw_conns(codec, nid);
if (err < 0)
return err;
added = true;
}
}
EXPORT_SYMBOL_GPL(snd_hda_get_conn_list);
/**
* snd_hda_get_connections - copy connection list
* @codec: the HDA codec
* @nid: NID to parse
* @conn_list: connection list array; when NULL, checks only the size
* @max_conns: max. number of connections to store
*
* Parses the connection list of the given widget and stores the list
* of NIDs.
*
* Returns the number of connections, or a negative error code.
*/
int snd_hda_get_connections(struct hda_codec *codec, hda_nid_t nid,
hda_nid_t *conn_list, int max_conns)
{
const hda_nid_t *list;
int len = snd_hda_get_conn_list(codec, nid, &list);
if (len > 0 && conn_list) {
if (len > max_conns) {
codec_err(codec, "Too many connections %d for NID 0x%x\n",
len, nid);
return -EINVAL;
}
memcpy(conn_list, list, len * sizeof(hda_nid_t));
}
return len;
}
EXPORT_SYMBOL_GPL(snd_hda_get_connections);
/**
* snd_hda_override_conn_list - add/modify the connection-list to cache
* @codec: the HDA codec
* @nid: NID to parse
* @len: number of connection list entries
* @list: the list of connection entries
*
* Add or modify the given connection-list to the cache. If the corresponding
* cache already exists, invalidate it and append a new one.
*
* Returns zero or a negative error code.
*/
int snd_hda_override_conn_list(struct hda_codec *codec, hda_nid_t nid, int len,
const hda_nid_t *list)
{
struct hda_conn_list *p;
p = lookup_conn_list(codec, nid);
if (p) {
list_del(&p->list);
kfree(p);
}
return add_conn_list(codec, nid, len, list);
}
EXPORT_SYMBOL_GPL(snd_hda_override_conn_list);
/**
* snd_hda_get_conn_index - get the connection index of the given NID
* @codec: the HDA codec
* @mux: NID containing the list
* @nid: NID to select
* @recursive: 1 when searching NID recursively, otherwise 0
*
* Parses the connection list of the widget @mux and checks whether the
* widget @nid is present. If it is, return the connection index.
* Otherwise it returns -1.
*/
int snd_hda_get_conn_index(struct hda_codec *codec, hda_nid_t mux,
hda_nid_t nid, int recursive)
{
const hda_nid_t *conn;
int i, nums;
nums = snd_hda_get_conn_list(codec, mux, &conn);
for (i = 0; i < nums; i++)
if (conn[i] == nid)
return i;
if (!recursive)
return -1;
if (recursive > 10) {
codec_dbg(codec, "too deep connection for 0x%x\n", nid);
return -1;
}
recursive++;
for (i = 0; i < nums; i++) {
unsigned int type = get_wcaps_type(get_wcaps(codec, conn[i]));
if (type == AC_WID_PIN || type == AC_WID_AUD_OUT)
continue;
if (snd_hda_get_conn_index(codec, conn[i], nid, recursive) >= 0)
return i;
}
return -1;
}
EXPORT_SYMBOL_GPL(snd_hda_get_conn_index);
/* return DEVLIST_LEN parameter of the given widget */
static unsigned int get_num_devices(struct hda_codec *codec, hda_nid_t nid)
{
unsigned int wcaps = get_wcaps(codec, nid);
unsigned int parm;
if (!codec->dp_mst || !(wcaps & AC_WCAP_DIGITAL) ||
get_wcaps_type(wcaps) != AC_WID_PIN)
return 0;
parm = snd_hda_param_read(codec, nid, AC_PAR_DEVLIST_LEN);
if (parm == -1 && codec->bus->rirb_error)
parm = 0;
return parm & AC_DEV_LIST_LEN_MASK;
}
/**
* snd_hda_get_devices - copy device list without cache
* @codec: the HDA codec
* @nid: NID of the pin to parse
* @dev_list: device list array
* @max_devices: max. number of devices to store
*
* Copy the device list. This info is dynamic and so not cached.
* Currently called only from hda_proc.c, so not exported.
*/
int snd_hda_get_devices(struct hda_codec *codec, hda_nid_t nid,
u8 *dev_list, int max_devices)
{
unsigned int parm;
int i, dev_len, devices;
parm = get_num_devices(codec, nid);
if (!parm) /* not multi-stream capable */
return 0;
dev_len = parm + 1;
dev_len = dev_len < max_devices ? dev_len : max_devices;
devices = 0;
while (devices < dev_len) {
parm = snd_hda_codec_read(codec, nid, 0,
AC_VERB_GET_DEVICE_LIST, devices);
if (parm == -1 && codec->bus->rirb_error)
break;
for (i = 0; i < 8; i++) {
dev_list[devices] = (u8)parm;
parm >>= 4;
devices++;
if (devices >= dev_len)
break;
}
}
return devices;
}
/*
* destructor
*/
static void snd_hda_bus_free(struct hda_bus *bus)
{
if (!bus)
return;
if (bus->ops.private_free)
bus->ops.private_free(bus);
snd_hdac_bus_exit(&bus->core);
kfree(bus);
}
static int snd_hda_bus_dev_free(struct snd_device *device)
{
snd_hda_bus_free(device->device_data);
return 0;
}
static int snd_hda_bus_dev_disconnect(struct snd_device *device)
{
struct hda_bus *bus = device->device_data;
bus->shutdown = 1;
return 0;
}
/* hdac_bus_ops translations */
static int _hda_bus_command(struct hdac_bus *_bus, unsigned int cmd)
{
struct hda_bus *bus = container_of(_bus, struct hda_bus, core);
return bus->ops.command(bus, cmd);
}
static int _hda_bus_get_response(struct hdac_bus *_bus, unsigned int addr,
unsigned int *res)
{
struct hda_bus *bus = container_of(_bus, struct hda_bus, core);
*res = bus->ops.get_response(bus, addr);
return bus->rirb_error ? -EIO : 0;
}
static const struct hdac_bus_ops bus_ops = {
.command = _hda_bus_command,
.get_response = _hda_bus_get_response,
};
/**
* snd_hda_bus_new - create a HDA bus
* @card: the card entry
* @busp: the pointer to store the created bus instance
*
* Returns 0 if successful, or a negative error code.
*/
int snd_hda_bus_new(struct snd_card *card,
struct hda_bus **busp)
{
struct hda_bus *bus;
int err;
static struct snd_device_ops dev_ops = {
.dev_disconnect = snd_hda_bus_dev_disconnect,
.dev_free = snd_hda_bus_dev_free,
};
if (busp)
*busp = NULL;
bus = kzalloc(sizeof(*bus), GFP_KERNEL);
if (!bus)
return -ENOMEM;
err = snd_hdac_bus_init(&bus->core, card->dev, &bus_ops);
if (err < 0) {
kfree(bus);
return err;
}
bus->card = card;
mutex_init(&bus->prepare_mutex);
err = snd_device_new(card, SNDRV_DEV_BUS, bus, &dev_ops);
if (err < 0) {
snd_hda_bus_free(bus);
return err;
}
if (busp)
*busp = bus;
return 0;
}
EXPORT_SYMBOL_GPL(snd_hda_bus_new);
/*
* read widget caps for each widget and store in cache
*/
static int read_widget_caps(struct hda_codec *codec, hda_nid_t fg_node)
{
int i;
hda_nid_t nid;
codec->wcaps = kmalloc(codec->core.num_nodes * 4, GFP_KERNEL);
if (!codec->wcaps)
return -ENOMEM;
nid = codec->core.start_nid;
for (i = 0; i < codec->core.num_nodes; i++, nid++)
codec->wcaps[i] = snd_hdac_read_parm_uncached(&codec->core,
nid, AC_PAR_AUDIO_WIDGET_CAP);
return 0;
}
/* read all pin default configurations and save codec->init_pins */
static int read_pin_defaults(struct hda_codec *codec)
{
hda_nid_t nid;
for_each_hda_codec_node(nid, codec) {
struct hda_pincfg *pin;
unsigned int wcaps = get_wcaps(codec, nid);
unsigned int wid_type = get_wcaps_type(wcaps);
if (wid_type != AC_WID_PIN)
continue;
pin = snd_array_new(&codec->init_pins);
if (!pin)
return -ENOMEM;
pin->nid = nid;
pin->cfg = snd_hda_codec_read(codec, nid, 0,
AC_VERB_GET_CONFIG_DEFAULT, 0);
pin->ctrl = snd_hda_codec_read(codec, nid, 0,
AC_VERB_GET_PIN_WIDGET_CONTROL,
0);
}
return 0;
}
/* look up the given pin config list and return the item matching with NID */
static struct hda_pincfg *look_up_pincfg(struct hda_codec *codec,
struct snd_array *array,
hda_nid_t nid)
{
int i;
for (i = 0; i < array->used; i++) {
struct hda_pincfg *pin = snd_array_elem(array, i);
if (pin->nid == nid)
return pin;
}
return NULL;
}
/* set the current pin config value for the given NID.
* the value is cached, and read via snd_hda_codec_get_pincfg()
*/
int snd_hda_add_pincfg(struct hda_codec *codec, struct snd_array *list,
hda_nid_t nid, unsigned int cfg)
{
struct hda_pincfg *pin;
/* the check below may be invalid when pins are added by a fixup
* dynamically (e.g. via snd_hda_codec_update_widgets()), so disabled
* for now
*/
/*
if (get_wcaps_type(get_wcaps(codec, nid)) != AC_WID_PIN)
return -EINVAL;
*/
pin = look_up_pincfg(codec, list, nid);
if (!pin) {
pin = snd_array_new(list);
if (!pin)
return -ENOMEM;
pin->nid = nid;
}
pin->cfg = cfg;
return 0;
}
/**
* snd_hda_codec_set_pincfg - Override a pin default configuration
* @codec: the HDA codec
* @nid: NID to set the pin config
* @cfg: the pin default config value
*
* Override a pin default configuration value in the cache.
* This value can be read by snd_hda_codec_get_pincfg() in a higher
* priority than the real hardware value.
*/
int snd_hda_codec_set_pincfg(struct hda_codec *codec,
hda_nid_t nid, unsigned int cfg)
{
return snd_hda_add_pincfg(codec, &codec->driver_pins, nid, cfg);
}
EXPORT_SYMBOL_GPL(snd_hda_codec_set_pincfg);
/**
* snd_hda_codec_get_pincfg - Obtain a pin-default configuration
* @codec: the HDA codec
* @nid: NID to get the pin config
*
* Get the current pin config value of the given pin NID.
* If the pincfg value is cached or overridden via sysfs or driver,
* returns the cached value.
*/
unsigned int snd_hda_codec_get_pincfg(struct hda_codec *codec, hda_nid_t nid)
{
struct hda_pincfg *pin;
#ifdef CONFIG_SND_HDA_RECONFIG
{
unsigned int cfg = 0;
mutex_lock(&codec->user_mutex);
pin = look_up_pincfg(codec, &codec->user_pins, nid);
if (pin)
cfg = pin->cfg;
mutex_unlock(&codec->user_mutex);
if (cfg)
return cfg;
}
#endif
pin = look_up_pincfg(codec, &codec->driver_pins, nid);
if (pin)
return pin->cfg;
pin = look_up_pincfg(codec, &codec->init_pins, nid);
if (pin)
return pin->cfg;
return 0;
}
EXPORT_SYMBOL_GPL(snd_hda_codec_get_pincfg);
/**
* snd_hda_codec_set_pin_target - remember the current pinctl target value
* @codec: the HDA codec
* @nid: pin NID
* @val: assigned pinctl value
*
* This function stores the given value to a pinctl target value in the
* pincfg table. This isn't always as same as the actually written value
* but can be referred at any time via snd_hda_codec_get_pin_target().
*/
int snd_hda_codec_set_pin_target(struct hda_codec *codec, hda_nid_t nid,
unsigned int val)
{
struct hda_pincfg *pin;
pin = look_up_pincfg(codec, &codec->init_pins, nid);
if (!pin)
return -EINVAL;
pin->target = val;
return 0;
}
EXPORT_SYMBOL_GPL(snd_hda_codec_set_pin_target);
/**
* snd_hda_codec_get_pin_target - return the current pinctl target value
* @codec: the HDA codec
* @nid: pin NID
*/
int snd_hda_codec_get_pin_target(struct hda_codec *codec, hda_nid_t nid)
{
struct hda_pincfg *pin;
pin = look_up_pincfg(codec, &codec->init_pins, nid);
if (!pin)
return 0;
return pin->target;
}
EXPORT_SYMBOL_GPL(snd_hda_codec_get_pin_target);
/**
* snd_hda_shutup_pins - Shut up all pins
* @codec: the HDA codec
*
* Clear all pin controls to shup up before suspend for avoiding click noise.
* The controls aren't cached so that they can be resumed properly.
*/
void snd_hda_shutup_pins(struct hda_codec *codec)
{
int i;
/* don't shut up pins when unloading the driver; otherwise it breaks
* the default pin setup at the next load of the driver
*/
if (codec->bus->shutdown)
return;
for (i = 0; i < codec->init_pins.used; i++) {
struct hda_pincfg *pin = snd_array_elem(&codec->init_pins, i);
/* use read here for syncing after issuing each verb */
snd_hda_codec_read(codec, pin->nid, 0,
AC_VERB_SET_PIN_WIDGET_CONTROL, 0);
}
codec->pins_shutup = 1;
}
EXPORT_SYMBOL_GPL(snd_hda_shutup_pins);
#ifdef CONFIG_PM
/* Restore the pin controls cleared previously via snd_hda_shutup_pins() */
static void restore_shutup_pins(struct hda_codec *codec)
{
int i;
if (!codec->pins_shutup)
return;
if (codec->bus->shutdown)
return;
for (i = 0; i < codec->init_pins.used; i++) {
struct hda_pincfg *pin = snd_array_elem(&codec->init_pins, i);
snd_hda_codec_write(codec, pin->nid, 0,
AC_VERB_SET_PIN_WIDGET_CONTROL,
pin->ctrl);
}
codec->pins_shutup = 0;
}
#endif
static void hda_jackpoll_work(struct work_struct *work)
{
struct hda_codec *codec =
container_of(work, struct hda_codec, jackpoll_work.work);
snd_hda_jack_set_dirty_all(codec);
snd_hda_jack_poll_all(codec);
if (!codec->jackpoll_interval)
return;
schedule_delayed_work(&codec->jackpoll_work,
codec->jackpoll_interval);
}
static void init_hda_cache(struct hda_cache_rec *cache,
unsigned int record_size);
static void free_hda_cache(struct hda_cache_rec *cache);
/* release all pincfg lists */
static void free_init_pincfgs(struct hda_codec *codec)
{
snd_array_free(&codec->driver_pins);
#ifdef CONFIG_SND_HDA_RECONFIG
snd_array_free(&codec->user_pins);
#endif
snd_array_free(&codec->init_pins);
}
/*
* audio-converter setup caches
*/
struct hda_cvt_setup {
hda_nid_t nid;
u8 stream_tag;
u8 channel_id;
u16 format_id;
unsigned char active; /* cvt is currently used */
unsigned char dirty; /* setups should be cleared */
};
/* get or create a cache entry for the given audio converter NID */
static struct hda_cvt_setup *
get_hda_cvt_setup(struct hda_codec *codec, hda_nid_t nid)
{
struct hda_cvt_setup *p;
int i;
for (i = 0; i < codec->cvt_setups.used; i++) {
p = snd_array_elem(&codec->cvt_setups, i);
if (p->nid == nid)
return p;
}
p = snd_array_new(&codec->cvt_setups);
if (p)
p->nid = nid;
return p;
}
/*
* PCM device
*/
static void release_pcm(struct kref *kref)
{
struct hda_pcm *pcm = container_of(kref, struct hda_pcm, kref);
if (pcm->pcm)
snd_device_free(pcm->codec->card, pcm->pcm);
clear_bit(pcm->device, pcm->codec->bus->pcm_dev_bits);
kfree(pcm->name);
kfree(pcm);
}
void snd_hda_codec_pcm_put(struct hda_pcm *pcm)
{
kref_put(&pcm->kref, release_pcm);
}
EXPORT_SYMBOL_GPL(snd_hda_codec_pcm_put);
struct hda_pcm *snd_hda_codec_pcm_new(struct hda_codec *codec,
const char *fmt, ...)
{
struct hda_pcm *pcm;
va_list args;
va_start(args, fmt);
pcm = kzalloc(sizeof(*pcm), GFP_KERNEL);
if (!pcm)
return NULL;
pcm->codec = codec;
kref_init(&pcm->kref);
pcm->name = kvasprintf(GFP_KERNEL, fmt, args);
if (!pcm->name) {
kfree(pcm);
return NULL;
}
list_add_tail(&pcm->list, &codec->pcm_list_head);
return pcm;
}
EXPORT_SYMBOL_GPL(snd_hda_codec_pcm_new);
/*
* codec destructor
*/
static void codec_release_pcms(struct hda_codec *codec)
{
struct hda_pcm *pcm, *n;
list_for_each_entry_safe(pcm, n, &codec->pcm_list_head, list) {
list_del_init(&pcm->list);
if (pcm->pcm)
snd_device_disconnect(codec->card, pcm->pcm);
snd_hda_codec_pcm_put(pcm);
}
}
void snd_hda_codec_cleanup_for_unbind(struct hda_codec *codec)
{
if (codec->registered) {
/* pm_runtime_put() is called in snd_hdac_device_exit() */
pm_runtime_get_noresume(hda_codec_dev(codec));
pm_runtime_disable(hda_codec_dev(codec));
codec->registered = 0;
}
cancel_delayed_work_sync(&codec->jackpoll_work);
if (!codec->in_freeing)
snd_hda_ctls_clear(codec);
codec_release_pcms(codec);
snd_hda_detach_beep_device(codec);
memset(&codec->patch_ops, 0, sizeof(codec->patch_ops));
snd_hda_jack_tbl_clear(codec);
codec->proc_widget_hook = NULL;
codec->spec = NULL;
free_hda_cache(&codec->amp_cache);
free_hda_cache(&codec->cmd_cache);
init_hda_cache(&codec->amp_cache, sizeof(struct hda_amp_info));
init_hda_cache(&codec->cmd_cache, sizeof(struct hda_cache_head));
/* free only driver_pins so that init_pins + user_pins are restored */
snd_array_free(&codec->driver_pins);
snd_array_free(&codec->cvt_setups);
snd_array_free(&codec->spdif_out);
snd_array_free(&codec->verbs);
codec->preset = NULL;
codec->slave_dig_outs = NULL;
codec->spdif_status_reset = 0;
snd_array_free(&codec->mixers);
snd_array_free(&codec->nids);
remove_conn_list(codec);
snd_hdac_regmap_exit(&codec->core);
}
static unsigned int hda_set_power_state(struct hda_codec *codec,
unsigned int power_state);
/* also called from hda_bind.c */
void snd_hda_codec_register(struct hda_codec *codec)
{
if (codec->registered)
return;
if (device_is_registered(hda_codec_dev(codec))) {
snd_hda_register_beep_device(codec);
pm_runtime_enable(hda_codec_dev(codec));
/* it was powered up in snd_hda_codec_new(), now all done */
snd_hda_power_down(codec);
codec->registered = 1;
}
}
static int snd_hda_codec_dev_register(struct snd_device *device)
{
snd_hda_codec_register(device->device_data);
return 0;
}
static int snd_hda_codec_dev_disconnect(struct snd_device *device)
{
struct hda_codec *codec = device->device_data;
snd_hda_detach_beep_device(codec);
return 0;
}
static int snd_hda_codec_dev_free(struct snd_device *device)
{
struct hda_codec *codec = device->device_data;
codec->in_freeing = 1;
snd_hdac_device_unregister(&codec->core);
put_device(hda_codec_dev(codec));
return 0;
}
static void snd_hda_codec_dev_release(struct device *dev)
{
struct hda_codec *codec = dev_to_hda_codec(dev);
free_init_pincfgs(codec);
snd_hdac_device_exit(&codec->core);
snd_hda_sysfs_clear(codec);
free_hda_cache(&codec->amp_cache);
free_hda_cache(&codec->cmd_cache);
kfree(codec->modelname);
kfree(codec->wcaps);
kfree(codec);
}
/**
* snd_hda_codec_new - create a HDA codec
* @bus: the bus to assign
* @codec_addr: the codec address
* @codecp: the pointer to store the generated codec
*
* Returns 0 if successful, or a negative error code.
*/
int snd_hda_codec_new(struct hda_bus *bus, struct snd_card *card,
unsigned int codec_addr, struct hda_codec **codecp)
{
struct hda_codec *codec;
char component[31];
hda_nid_t fg;
int err;
static struct snd_device_ops dev_ops = {
.dev_register = snd_hda_codec_dev_register,
.dev_disconnect = snd_hda_codec_dev_disconnect,
.dev_free = snd_hda_codec_dev_free,
};
if (snd_BUG_ON(!bus))
return -EINVAL;
if (snd_BUG_ON(codec_addr > HDA_MAX_CODEC_ADDRESS))
return -EINVAL;
codec = kzalloc(sizeof(*codec), GFP_KERNEL);
if (!codec)
return -ENOMEM;
sprintf(component, "hdaudioC%dD%d", card->number, codec_addr);
err = snd_hdac_device_init(&codec->core, &bus->core, component,
codec_addr);
if (err < 0) {
kfree(codec);
return err;
}
codec->core.dev.release = snd_hda_codec_dev_release;
codec->core.type = HDA_DEV_LEGACY;
codec->core.exec_verb = codec_exec_verb;
codec->bus = bus;
codec->card = card;
codec->addr = codec_addr;
mutex_init(&codec->spdif_mutex);
mutex_init(&codec->control_mutex);
mutex_init(&codec->hash_mutex);
init_hda_cache(&codec->amp_cache, sizeof(struct hda_amp_info));
init_hda_cache(&codec->cmd_cache, sizeof(struct hda_cache_head));
snd_array_init(&codec->mixers, sizeof(struct hda_nid_item), 32);
snd_array_init(&codec->nids, sizeof(struct hda_nid_item), 32);
snd_array_init(&codec->init_pins, sizeof(struct hda_pincfg), 16);
snd_array_init(&codec->driver_pins, sizeof(struct hda_pincfg), 16);
snd_array_init(&codec->cvt_setups, sizeof(struct hda_cvt_setup), 8);
snd_array_init(&codec->spdif_out, sizeof(struct hda_spdif_out), 16);
snd_array_init(&codec->jacktbl, sizeof(struct hda_jack_tbl), 16);
snd_array_init(&codec->verbs, sizeof(struct hda_verb *), 8);
INIT_LIST_HEAD(&codec->conn_list);
INIT_LIST_HEAD(&codec->pcm_list_head);
INIT_DELAYED_WORK(&codec->jackpoll_work, hda_jackpoll_work);
codec->depop_delay = -1;
codec->fixup_id = HDA_FIXUP_ID_NOT_SET;
#ifdef CONFIG_PM
codec->power_jiffies = jiffies;
#endif
snd_hda_sysfs_init(codec);
if (codec->bus->modelname) {
codec->modelname = kstrdup(codec->bus->modelname, GFP_KERNEL);
if (!codec->modelname) {
err = -ENODEV;
goto error;
}
}
fg = codec->core.afg ? codec->core.afg : codec->core.mfg;
err = read_widget_caps(codec, fg);
if (err < 0)
goto error;
err = read_pin_defaults(codec);
if (err < 0)
goto error;
/* power-up all before initialization */
hda_set_power_state(codec, AC_PWRST_D0);
snd_hda_codec_proc_new(codec);
snd_hda_create_hwdep(codec);
sprintf(component, "HDA:%08x,%08x,%08x", codec->core.vendor_id,
codec->core.subsystem_id, codec->core.revision_id);
snd_component_add(card, component);
err = snd_device_new(card, SNDRV_DEV_CODEC, codec, &dev_ops);
if (err < 0)
goto error;
if (codecp)
*codecp = codec;
return 0;
error:
put_device(hda_codec_dev(codec));
return err;
}
EXPORT_SYMBOL_GPL(snd_hda_codec_new);
/**
* snd_hda_codec_update_widgets - Refresh widget caps and pin defaults
* @codec: the HDA codec
*
* Forcibly refresh the all widget caps and the init pin configurations of
* the given codec.
*/
int snd_hda_codec_update_widgets(struct hda_codec *codec)
{
hda_nid_t fg;
int err;
err = snd_hdac_refresh_widgets(&codec->core);
if (err < 0)
return err;
/* Assume the function group node does not change,
* only the widget nodes may change.
*/
kfree(codec->wcaps);
fg = codec->core.afg ? codec->core.afg : codec->core.mfg;
err = read_widget_caps(codec, fg);
if (err < 0)
return err;
snd_array_free(&codec->init_pins);
err = read_pin_defaults(codec);
return err;
}
EXPORT_SYMBOL_GPL(snd_hda_codec_update_widgets);
/* update the stream-id if changed */
static void update_pcm_stream_id(struct hda_codec *codec,
struct hda_cvt_setup *p, hda_nid_t nid,
u32 stream_tag, int channel_id)
{
unsigned int oldval, newval;
if (p->stream_tag != stream_tag || p->channel_id != channel_id) {
oldval = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_CONV, 0);
newval = (stream_tag << 4) | channel_id;
if (oldval != newval)
snd_hda_codec_write(codec, nid, 0,
AC_VERB_SET_CHANNEL_STREAMID,
newval);
p->stream_tag = stream_tag;
p->channel_id = channel_id;
}
}
/* update the format-id if changed */
static void update_pcm_format(struct hda_codec *codec, struct hda_cvt_setup *p,
hda_nid_t nid, int format)
{
unsigned int oldval;
if (p->format_id != format) {
oldval = snd_hda_codec_read(codec, nid, 0,
AC_VERB_GET_STREAM_FORMAT, 0);
if (oldval != format) {
msleep(1);
snd_hda_codec_write(codec, nid, 0,
AC_VERB_SET_STREAM_FORMAT,
format);
}
p->format_id = format;
}
}
/**
* snd_hda_codec_setup_stream - set up the codec for streaming
* @codec: the CODEC to set up
* @nid: the NID to set up
* @stream_tag: stream tag to pass, it's between 0x1 and 0xf.
* @channel_id: channel id to pass, zero based.
* @format: stream format.
*/
void snd_hda_codec_setup_stream(struct hda_codec *codec, hda_nid_t nid,
u32 stream_tag,
int channel_id, int format)
{
struct hda_codec *c;
struct hda_cvt_setup *p;
int type;
int i;
if (!nid)
return;
codec_dbg(codec,
"hda_codec_setup_stream: NID=0x%x, stream=0x%x, channel=%d, format=0x%x\n",
nid, stream_tag, channel_id, format);
p = get_hda_cvt_setup(codec, nid);
if (!p)
return;
if (codec->patch_ops.stream_pm)
codec->patch_ops.stream_pm(codec, nid, true);
if (codec->pcm_format_first)
update_pcm_format(codec, p, nid, format);
update_pcm_stream_id(codec, p, nid, stream_tag, channel_id);
if (!codec->pcm_format_first)
update_pcm_format(codec, p, nid, format);
p->active = 1;
p->dirty = 0;
/* make other inactive cvts with the same stream-tag dirty */
type = get_wcaps_type(get_wcaps(codec, nid));
list_for_each_codec(c, codec->bus) {
for (i = 0; i < c->cvt_setups.used; i++) {
p = snd_array_elem(&c->cvt_setups, i);
if (!p->active && p->stream_tag == stream_tag &&
get_wcaps_type(get_wcaps(c, p->nid)) == type)
p->dirty = 1;
}
}
}
EXPORT_SYMBOL_GPL(snd_hda_codec_setup_stream);
static void really_cleanup_stream(struct hda_codec *codec,
struct hda_cvt_setup *q);
/**
* __snd_hda_codec_cleanup_stream - clean up the codec for closing
* @codec: the CODEC to clean up
* @nid: the NID to clean up
* @do_now: really clean up the stream instead of clearing the active flag
*/
void __snd_hda_codec_cleanup_stream(struct hda_codec *codec, hda_nid_t nid,
int do_now)
{
struct hda_cvt_setup *p;
if (!nid)
return;
if (codec->no_sticky_stream)
do_now = 1;
codec_dbg(codec, "hda_codec_cleanup_stream: NID=0x%x\n", nid);
p = get_hda_cvt_setup(codec, nid);
if (p) {
/* here we just clear the active flag when do_now isn't set;
* actual clean-ups will be done later in
* purify_inactive_streams() called from snd_hda_codec_prpapre()
*/
if (do_now)
really_cleanup_stream(codec, p);
else
p->active = 0;
}
}
EXPORT_SYMBOL_GPL(__snd_hda_codec_cleanup_stream);
static void really_cleanup_stream(struct hda_codec *codec,
struct hda_cvt_setup *q)
{
hda_nid_t nid = q->nid;
if (q->stream_tag || q->channel_id)
snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_CHANNEL_STREAMID, 0);
if (q->format_id)
snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_STREAM_FORMAT, 0
);
memset(q, 0, sizeof(*q));
q->nid = nid;
if (codec->patch_ops.stream_pm)
codec->patch_ops.stream_pm(codec, nid, false);
}
/* clean up the all conflicting obsolete streams */
static void purify_inactive_streams(struct hda_codec *codec)
{
struct hda_codec *c;
int i;
list_for_each_codec(c, codec->bus) {
for (i = 0; i < c->cvt_setups.used; i++) {
struct hda_cvt_setup *p;
p = snd_array_elem(&c->cvt_setups, i);
if (p->dirty)
really_cleanup_stream(c, p);
}
}
}
#ifdef CONFIG_PM
/* clean up all streams; called from suspend */
static void hda_cleanup_all_streams(struct hda_codec *codec)
{
int i;
for (i = 0; i < codec->cvt_setups.used; i++) {
struct hda_cvt_setup *p = snd_array_elem(&codec->cvt_setups, i);
if (p->stream_tag)
really_cleanup_stream(codec, p);
}
}
#endif
/*
* amp access functions
*/
/* FIXME: more better hash key? */
#define HDA_HASH_KEY(nid, dir, idx) (u32)((nid) + ((idx) << 16) + ((dir) << 24))
#define HDA_HASH_PINCAP_KEY(nid) (u32)((nid) + (0x02 << 24))
#define HDA_HASH_PARPCM_KEY(nid) (u32)((nid) + (0x03 << 24))
#define HDA_HASH_PARSTR_KEY(nid) (u32)((nid) + (0x04 << 24))
#define INFO_AMP_CAPS (1<<0)
#define INFO_AMP_VOL(ch) (1 << (1 + (ch)))
/* initialize the hash table */
static void init_hda_cache(struct hda_cache_rec *cache,
unsigned int record_size)
{
memset(cache, 0, sizeof(*cache));
memset(cache->hash, 0xff, sizeof(cache->hash));
snd_array_init(&cache->buf, record_size, 64);
}
static void free_hda_cache(struct hda_cache_rec *cache)
{
snd_array_free(&cache->buf);
}
/* query the hash. allocate an entry if not found. */
static struct hda_cache_head *get_hash(struct hda_cache_rec *cache, u32 key)
{
u16 idx = key % (u16)ARRAY_SIZE(cache->hash);
u16 cur = cache->hash[idx];
struct hda_cache_head *info;
while (cur != 0xffff) {
info = snd_array_elem(&cache->buf, cur);
if (info->key == key)
return info;
cur = info->next;
}
return NULL;
}
/* query the hash. allocate an entry if not found. */
static struct hda_cache_head *get_alloc_hash(struct hda_cache_rec *cache,
u32 key)
{
struct hda_cache_head *info = get_hash(cache, key);
if (!info) {
u16 idx, cur;
/* add a new hash entry */
info = snd_array_new(&cache->buf);
if (!info)
return NULL;
cur = snd_array_index(&cache->buf, info);
info->key = key;
info->val = 0;
info->dirty = 0;
idx = key % (u16)ARRAY_SIZE(cache->hash);
info->next = cache->hash[idx];
cache->hash[idx] = cur;
}
return info;
}
/* query and allocate an amp hash entry */
static inline struct hda_amp_info *
get_alloc_amp_hash(struct hda_codec *codec, u32 key)
{
return (struct hda_amp_info *)get_alloc_hash(&codec->amp_cache, key);
}
/* overwrite the value with the key in the caps hash */
static int write_caps_hash(struct hda_codec *codec, u32 key, unsigned int val)
{
struct hda_amp_info *info;
mutex_lock(&codec->hash_mutex);
info = get_alloc_amp_hash(codec, key);
if (!info) {
mutex_unlock(&codec->hash_mutex);
return -EINVAL;
}
info->amp_caps = val;
info->head.val |= INFO_AMP_CAPS;
mutex_unlock(&codec->hash_mutex);
return 0;
}
/* query the value from the caps hash; if not found, fetch the current
* value from the given function and store in the hash
*/
static unsigned int
query_caps_hash(struct hda_codec *codec, hda_nid_t nid, int dir, u32 key,
unsigned int (*func)(struct hda_codec *, hda_nid_t, int))
{
struct hda_amp_info *info;
unsigned int val;
mutex_lock(&codec->hash_mutex);
info = get_alloc_amp_hash(codec, key);
if (!info) {
mutex_unlock(&codec->hash_mutex);
return 0;
}
if (!(info->head.val & INFO_AMP_CAPS)) {
mutex_unlock(&codec->hash_mutex); /* for reentrance */
val = func(codec, nid, dir);
write_caps_hash(codec, key, val);
} else {
val = info->amp_caps;
mutex_unlock(&codec->hash_mutex);
}
return val;
}
static unsigned int read_amp_cap(struct hda_codec *codec, hda_nid_t nid,
int direction)
{
if (!(get_wcaps(codec, nid) & AC_WCAP_AMP_OVRD))
nid = codec->core.afg;
return snd_hda_param_read(codec, nid,
direction == HDA_OUTPUT ?
AC_PAR_AMP_OUT_CAP : AC_PAR_AMP_IN_CAP);
}
/**
* query_amp_caps - query AMP capabilities
* @codec: the HD-auio codec
* @nid: the NID to query
* @direction: either #HDA_INPUT or #HDA_OUTPUT
*
* Query AMP capabilities for the given widget and direction.
* Returns the obtained capability bits.
*
* When cap bits have been already read, this doesn't read again but
* returns the cached value.
*/
u32 query_amp_caps(struct hda_codec *codec, hda_nid_t nid, int direction)
{
return query_caps_hash(codec, nid, direction,
HDA_HASH_KEY(nid, direction, 0),
read_amp_cap);
}
EXPORT_SYMBOL_GPL(query_amp_caps);
/**
* snd_hda_check_amp_caps - query AMP capabilities
* @codec: the HD-audio codec
* @nid: the NID to query
* @dir: either #HDA_INPUT or #HDA_OUTPUT
* @bits: bit mask to check the result
*
* Check whether the widget has the given amp capability for the direction.
*/
bool snd_hda_check_amp_caps(struct hda_codec *codec, hda_nid_t nid,
int dir, unsigned int bits)
{
if (!nid)
return false;
if (get_wcaps(codec, nid) & (1 << (dir + 1)))
if (query_amp_caps(codec, nid, dir) & bits)
return true;
return false;
}
EXPORT_SYMBOL_GPL(snd_hda_check_amp_caps);
/**
* snd_hda_override_amp_caps - Override the AMP capabilities
* @codec: the CODEC to clean up
* @nid: the NID to clean up
* @dir: either #HDA_INPUT or #HDA_OUTPUT
* @caps: the capability bits to set
*
* Override the cached AMP caps bits value by the given one.
* This function is useful if the driver needs to adjust the AMP ranges,
* e.g. limit to 0dB, etc.
*
* Returns zero if successful or a negative error code.
*/
int snd_hda_override_amp_caps(struct hda_codec *codec, hda_nid_t nid, int dir,
unsigned int caps)
{
return write_caps_hash(codec, HDA_HASH_KEY(nid, dir, 0), caps);
}
EXPORT_SYMBOL_GPL(snd_hda_override_amp_caps);
static unsigned int read_pin_cap(struct hda_codec *codec, hda_nid_t nid,
int dir)
{
return snd_hda_param_read(codec, nid, AC_PAR_PIN_CAP);
}
/**
* snd_hda_query_pin_caps - Query PIN capabilities
* @codec: the HD-auio codec
* @nid: the NID to query
*
* Query PIN capabilities for the given widget.
* Returns the obtained capability bits.
*
* When cap bits have been already read, this doesn't read again but
* returns the cached value.
*/
u32 snd_hda_query_pin_caps(struct hda_codec *codec, hda_nid_t nid)
{
return query_caps_hash(codec, nid, 0, HDA_HASH_PINCAP_KEY(nid),
read_pin_cap);
}
EXPORT_SYMBOL_GPL(snd_hda_query_pin_caps);
/**
* snd_hda_override_pin_caps - Override the pin capabilities
* @codec: the CODEC
* @nid: the NID to override
* @caps: the capability bits to set
*
* Override the cached PIN capabilitiy bits value by the given one.
*
* Returns zero if successful or a negative error code.
*/
int snd_hda_override_pin_caps(struct hda_codec *codec, hda_nid_t nid,
unsigned int caps)
{
return write_caps_hash(codec, HDA_HASH_PINCAP_KEY(nid), caps);
}
EXPORT_SYMBOL_GPL(snd_hda_override_pin_caps);
/* read or sync the hash value with the current value;
* call within hash_mutex
*/
static struct hda_amp_info *
update_amp_hash(struct hda_codec *codec, hda_nid_t nid, int ch,
int direction, int index, bool init_only)
{
struct hda_amp_info *info;
unsigned int parm, val = 0;
bool val_read = false;
retry:
info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, index));
if (!info)
return NULL;
if (!(info->head.val & INFO_AMP_VOL(ch))) {
if (!val_read) {
mutex_unlock(&codec->hash_mutex);
parm = ch ? AC_AMP_GET_RIGHT : AC_AMP_GET_LEFT;
parm |= direction == HDA_OUTPUT ?
AC_AMP_GET_OUTPUT : AC_AMP_GET_INPUT;
parm |= index;
val = snd_hda_codec_read(codec, nid, 0,
AC_VERB_GET_AMP_GAIN_MUTE, parm);
val &= 0xff;
val_read = true;
mutex_lock(&codec->hash_mutex);
goto retry;
}
info->vol[ch] = val;
info->head.val |= INFO_AMP_VOL(ch);
} else if (init_only)
return NULL;
return info;
}
/*
* write the current volume in info to the h/w
*/
static void put_vol_mute(struct hda_codec *codec, unsigned int amp_caps,
hda_nid_t nid, int ch, int direction, int index,
int val)
{
u32 parm;
parm = ch ? AC_AMP_SET_RIGHT : AC_AMP_SET_LEFT;
parm |= direction == HDA_OUTPUT ? AC_AMP_SET_OUTPUT : AC_AMP_SET_INPUT;
parm |= index << AC_AMP_SET_INDEX_SHIFT;
if ((val & HDA_AMP_MUTE) && !(amp_caps & AC_AMPCAP_MUTE) &&
(amp_caps & AC_AMPCAP_MIN_MUTE))
; /* set the zero value as a fake mute */
else
parm |= val;
snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_AMP_GAIN_MUTE, parm);
}
/**
* snd_hda_codec_amp_read - Read AMP value
* @codec: HD-audio codec
* @nid: NID to read the AMP value
* @ch: channel (left=0 or right=1)
* @direction: #HDA_INPUT or #HDA_OUTPUT
* @index: the index value (only for input direction)
*
* Read AMP value. The volume is between 0 to 0x7f, 0x80 = mute bit.
*/
int snd_hda_codec_amp_read(struct hda_codec *codec, hda_nid_t nid, int ch,
int direction, int index)
{
struct hda_amp_info *info;
unsigned int val = 0;
mutex_lock(&codec->hash_mutex);
info = update_amp_hash(codec, nid, ch, direction, index, false);
if (info)
val = info->vol[ch];
mutex_unlock(&codec->hash_mutex);
return val;
}
EXPORT_SYMBOL_GPL(snd_hda_codec_amp_read);
static int codec_amp_update(struct hda_codec *codec, hda_nid_t nid, int ch,
int direction, int idx, int mask, int val,
bool init_only, bool cache_only)
{
struct hda_amp_info *info;
unsigned int caps;
if (snd_BUG_ON(mask & ~0xff))
mask &= 0xff;
val &= mask;
mutex_lock(&codec->hash_mutex);
info = update_amp_hash(codec, nid, ch, direction, idx, init_only);
if (!info) {
mutex_unlock(&codec->hash_mutex);
return 0;
}
val |= info->vol[ch] & ~mask;
if (info->vol[ch] == val) {
mutex_unlock(&codec->hash_mutex);
return 0;
}
info->vol[ch] = val;
info->head.dirty |= cache_only;
caps = info->amp_caps;
mutex_unlock(&codec->hash_mutex);
if (!cache_only)
put_vol_mute(codec, caps, nid, ch, direction, idx, val);
return 1;
}
/**
* snd_hda_codec_amp_update - update the AMP value
* @codec: HD-audio codec
* @nid: NID to read the AMP value
* @ch: channel (left=0 or right=1)
* @direction: #HDA_INPUT or #HDA_OUTPUT
* @idx: the index value (only for input direction)
* @mask: bit mask to set
* @val: the bits value to set
*
* Update the AMP value with a bit mask.
* Returns 0 if the value is unchanged, 1 if changed.
*/
int snd_hda_codec_amp_update(struct hda_codec *codec, hda_nid_t nid, int ch,
int direction, int idx, int mask, int val)
{
return codec_amp_update(codec, nid, ch, direction, idx, mask, val,
false, codec->cached_write);
}
EXPORT_SYMBOL_GPL(snd_hda_codec_amp_update);
/**
* snd_hda_codec_amp_stereo - update the AMP stereo values
* @codec: HD-audio codec
* @nid: NID to read the AMP value
* @direction: #HDA_INPUT or #HDA_OUTPUT
* @idx: the index value (only for input direction)
* @mask: bit mask to set
* @val: the bits value to set
*
* Update the AMP values like snd_hda_codec_amp_update(), but for a
* stereo widget with the same mask and value.
*/
int snd_hda_codec_amp_stereo(struct hda_codec *codec, hda_nid_t nid,
int direction, int idx, int mask, int val)
{
int ch, ret = 0;
if (snd_BUG_ON(mask & ~0xff))
mask &= 0xff;
for (ch = 0; ch < 2; ch++)
ret |= snd_hda_codec_amp_update(codec, nid, ch, direction,
idx, mask, val);
return ret;
}
EXPORT_SYMBOL_GPL(snd_hda_codec_amp_stereo);
/**
* snd_hda_codec_amp_init - initialize the AMP value
* @codec: the HDA codec
* @nid: NID to read the AMP value
* @ch: channel (left=0 or right=1)
* @dir: #HDA_INPUT or #HDA_OUTPUT
* @idx: the index value (only for input direction)
* @mask: bit mask to set
* @val: the bits value to set
*
* Works like snd_hda_codec_amp_update() but it writes the value only at
* the first access. If the amp was already initialized / updated beforehand,
* this does nothing.
*/
int snd_hda_codec_amp_init(struct hda_codec *codec, hda_nid_t nid, int ch,
int dir, int idx, int mask, int val)
{
return codec_amp_update(codec, nid, ch, dir, idx, mask, val, true,
codec->cached_write);
}
EXPORT_SYMBOL_GPL(snd_hda_codec_amp_init);
/**
* snd_hda_codec_amp_init_stereo - initialize the stereo AMP value
* @codec: the HDA codec
* @nid: NID to read the AMP value
* @dir: #HDA_INPUT or #HDA_OUTPUT
* @idx: the index value (only for input direction)
* @mask: bit mask to set
* @val: the bits value to set
*
* Call snd_hda_codec_amp_init() for both stereo channels.
*/
int snd_hda_codec_amp_init_stereo(struct hda_codec *codec, hda_nid_t nid,
int dir, int idx, int mask, int val)
{
int ch, ret = 0;
if (snd_BUG_ON(mask & ~0xff))
mask &= 0xff;
for (ch = 0; ch < 2; ch++)
ret |= snd_hda_codec_amp_init(codec, nid, ch, dir,
idx, mask, val);
return ret;
}
EXPORT_SYMBOL_GPL(snd_hda_codec_amp_init_stereo);
/**
* snd_hda_codec_resume_amp - Resume all AMP commands from the cache
* @codec: HD-audio codec
*
* Resume the all amp commands from the cache.
*/
void snd_hda_codec_resume_amp(struct hda_codec *codec)
{
int i;
mutex_lock(&codec->hash_mutex);
codec->cached_write = 0;
for (i = 0; i < codec->amp_cache.buf.used; i++) {
struct hda_amp_info *buffer;
u32 key;
hda_nid_t nid;
unsigned int idx, dir, ch;
struct hda_amp_info info;
buffer = snd_array_elem(&codec->amp_cache.buf, i);
if (!buffer->head.dirty)
continue;
buffer->head.dirty = 0;
info = *buffer;
key = info.head.key;
if (!key)
continue;
nid = key & 0xff;
idx = (key >> 16) & 0xff;
dir = (key >> 24) & 0xff;
for (ch = 0; ch < 2; ch++) {
if (!(info.head.val & INFO_AMP_VOL(ch)))
continue;
mutex_unlock(&codec->hash_mutex);
put_vol_mute(codec, info.amp_caps, nid, ch, dir, idx,
info.vol[ch]);
mutex_lock(&codec->hash_mutex);
}
}
mutex_unlock(&codec->hash_mutex);
}
EXPORT_SYMBOL_GPL(snd_hda_codec_resume_amp);
static u32 get_amp_max_value(struct hda_codec *codec, hda_nid_t nid, int dir,
unsigned int ofs)
{
u32 caps = query_amp_caps(codec, nid, dir);
/* get num steps */
caps = (caps & AC_AMPCAP_NUM_STEPS) >> AC_AMPCAP_NUM_STEPS_SHIFT;
if (ofs < caps)
caps -= ofs;
return caps;
}
/**
* snd_hda_mixer_amp_volume_info - Info callback for a standard AMP mixer
* @kcontrol: referred ctl element
* @uinfo: pointer to get/store the data
*
* The control element is supposed to have the private_value field
* set up via HDA_COMPOSE_AMP_VAL*() or related macros.
*/
int snd_hda_mixer_amp_volume_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
u16 nid = get_amp_nid(kcontrol);
u8 chs = get_amp_channels(kcontrol);
int dir = get_amp_direction(kcontrol);
unsigned int ofs = get_amp_offset(kcontrol);
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = chs == 3 ? 2 : 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = get_amp_max_value(codec, nid, dir, ofs);
if (!uinfo->value.integer.max) {
codec_warn(codec,
"num_steps = 0 for NID=0x%x (ctl = %s)\n",
nid, kcontrol->id.name);
return -EINVAL;
}
return 0;
}
EXPORT_SYMBOL_GPL(snd_hda_mixer_amp_volume_info);
static inline unsigned int
read_amp_value(struct hda_codec *codec, hda_nid_t nid,
int ch, int dir, int idx, unsigned int ofs)
{
unsigned int val;
val = snd_hda_codec_amp_read(codec, nid, ch, dir, idx);
val &= HDA_AMP_VOLMASK;
if (val >= ofs)
val -= ofs;
else
val = 0;
return val;
}
static inline int
update_amp_value(struct hda_codec *codec, hda_nid_t nid,
int ch, int dir, int idx, unsigned int ofs,
unsigned int val)
{
unsigned int maxval;
if (val > 0)
val += ofs;
/* ofs = 0: raw max value */
maxval = get_amp_max_value(codec, nid, dir, 0);
if (val > maxval)
val = maxval;
return codec_amp_update(codec, nid, ch, dir, idx, HDA_AMP_VOLMASK, val,
false, !hda_codec_is_power_on(codec));
}
/**
* snd_hda_mixer_amp_volume_get - Get callback for a standard AMP mixer volume
* @kcontrol: ctl element
* @ucontrol: pointer to get/store the data
*
* The control element is supposed to have the private_value field
* set up via HDA_COMPOSE_AMP_VAL*() or related macros.
*/
int snd_hda_mixer_amp_volume_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
hda_nid_t nid = get_amp_nid(kcontrol);
int chs = get_amp_channels(kcontrol);
int dir = get_amp_direction(kcontrol);
int idx = get_amp_index(kcontrol);
unsigned int ofs = get_amp_offset(kcontrol);
long *valp = ucontrol->value.integer.value;
if (chs & 1)
*valp++ = read_amp_value(codec, nid, 0, dir, idx, ofs);
if (chs & 2)
*valp = read_amp_value(codec, nid, 1, dir, idx, ofs);
return 0;
}
EXPORT_SYMBOL_GPL(snd_hda_mixer_amp_volume_get);
/**
* snd_hda_mixer_amp_volume_put - Put callback for a standard AMP mixer volume
* @kcontrol: ctl element
* @ucontrol: pointer to get/store the data
*
* The control element is supposed to have the private_value field
* set up via HDA_COMPOSE_AMP_VAL*() or related macros.
*/
int snd_hda_mixer_amp_volume_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
hda_nid_t nid = get_amp_nid(kcontrol);
int chs = get_amp_channels(kcontrol);
int dir = get_amp_direction(kcontrol);
int idx = get_amp_index(kcontrol);
unsigned int ofs = get_amp_offset(kcontrol);
long *valp = ucontrol->value.integer.value;
int change = 0;
if (chs & 1) {
change = update_amp_value(codec, nid, 0, dir, idx, ofs, *valp);
valp++;
}
if (chs & 2)
change |= update_amp_value(codec, nid, 1, dir, idx, ofs, *valp);
return change;
}
EXPORT_SYMBOL_GPL(snd_hda_mixer_amp_volume_put);
/**
* snd_hda_mixer_amp_volume_put - TLV callback for a standard AMP mixer volume
* @kcontrol: ctl element
* @op_flag: operation flag
* @size: byte size of input TLV
* @_tlv: TLV data
*
* The control element is supposed to have the private_value field
* set up via HDA_COMPOSE_AMP_VAL*() or related macros.
*/
int snd_hda_mixer_amp_tlv(struct snd_kcontrol *kcontrol, int op_flag,
unsigned int size, unsigned int __user *_tlv)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
hda_nid_t nid = get_amp_nid(kcontrol);
int dir = get_amp_direction(kcontrol);
unsigned int ofs = get_amp_offset(kcontrol);
bool min_mute = get_amp_min_mute(kcontrol);
u32 caps, val1, val2;
if (size < 4 * sizeof(unsigned int))
return -ENOMEM;
caps = query_amp_caps(codec, nid, dir);
val2 = (caps & AC_AMPCAP_STEP_SIZE) >> AC_AMPCAP_STEP_SIZE_SHIFT;
val2 = (val2 + 1) * 25;
val1 = -((caps & AC_AMPCAP_OFFSET) >> AC_AMPCAP_OFFSET_SHIFT);
val1 += ofs;
val1 = ((int)val1) * ((int)val2);
if (min_mute || (caps & AC_AMPCAP_MIN_MUTE))
val2 |= TLV_DB_SCALE_MUTE;
if (put_user(SNDRV_CTL_TLVT_DB_SCALE, _tlv))
return -EFAULT;
if (put_user(2 * sizeof(unsigned int), _tlv + 1))
return -EFAULT;
if (put_user(val1, _tlv + 2))
return -EFAULT;
if (put_user(val2, _tlv + 3))
return -EFAULT;
return 0;
}
EXPORT_SYMBOL_GPL(snd_hda_mixer_amp_tlv);
/**
* snd_hda_set_vmaster_tlv - Set TLV for a virtual master control
* @codec: HD-audio codec
* @nid: NID of a reference widget
* @dir: #HDA_INPUT or #HDA_OUTPUT
* @tlv: TLV data to be stored, at least 4 elements
*
* Set (static) TLV data for a virtual master volume using the AMP caps
* obtained from the reference NID.
* The volume range is recalculated as if the max volume is 0dB.
*/
void snd_hda_set_vmaster_tlv(struct hda_codec *codec, hda_nid_t nid, int dir,
unsigned int *tlv)
{
u32 caps;
int nums, step;
caps = query_amp_caps(codec, nid, dir);
nums = (caps & AC_AMPCAP_NUM_STEPS) >> AC_AMPCAP_NUM_STEPS_SHIFT;
step = (caps & AC_AMPCAP_STEP_SIZE) >> AC_AMPCAP_STEP_SIZE_SHIFT;
step = (step + 1) * 25;
tlv[0] = SNDRV_CTL_TLVT_DB_SCALE;
tlv[1] = 2 * sizeof(unsigned int);
tlv[2] = -nums * step;
tlv[3] = step;
}
EXPORT_SYMBOL_GPL(snd_hda_set_vmaster_tlv);
/* find a mixer control element with the given name */
static struct snd_kcontrol *
find_mixer_ctl(struct hda_codec *codec, const char *name, int dev, int idx)
{
struct snd_ctl_elem_id id;
memset(&id, 0, sizeof(id));
id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
id.device = dev;
id.index = idx;
if (snd_BUG_ON(strlen(name) >= sizeof(id.name)))
return NULL;
strcpy(id.name, name);
return snd_ctl_find_id(codec->card, &id);
}
/**
* snd_hda_find_mixer_ctl - Find a mixer control element with the given name
* @codec: HD-audio codec
* @name: ctl id name string
*
* Get the control element with the given id string and IFACE_MIXER.
*/
struct snd_kcontrol *snd_hda_find_mixer_ctl(struct hda_codec *codec,
const char *name)
{
return find_mixer_ctl(codec, name, 0, 0);
}
EXPORT_SYMBOL_GPL(snd_hda_find_mixer_ctl);
static int find_empty_mixer_ctl_idx(struct hda_codec *codec, const char *name,
int start_idx)
{
int i, idx;
/* 16 ctlrs should be large enough */
for (i = 0, idx = start_idx; i < 16; i++, idx++) {
if (!find_mixer_ctl(codec, name, 0, idx))
return idx;
}
return -EBUSY;
}
/**
* snd_hda_ctl_add - Add a control element and assign to the codec
* @codec: HD-audio codec
* @nid: corresponding NID (optional)
* @kctl: the control element to assign
*
* Add the given control element to an array inside the codec instance.
* All control elements belonging to a codec are supposed to be added
* by this function so that a proper clean-up works at the free or
* reconfiguration time.
*
* If non-zero @nid is passed, the NID is assigned to the control element.
* The assignment is shown in the codec proc file.
*
* snd_hda_ctl_add() checks the control subdev id field whether
* #HDA_SUBDEV_NID_FLAG bit is set. If set (and @nid is zero), the lower
* bits value is taken as the NID to assign. The #HDA_NID_ITEM_AMP bit
* specifies if kctl->private_value is a HDA amplifier value.
*/
int snd_hda_ctl_add(struct hda_codec *codec, hda_nid_t nid,
struct snd_kcontrol *kctl)
{
int err;
unsigned short flags = 0;
struct hda_nid_item *item;
if (kctl->id.subdevice & HDA_SUBDEV_AMP_FLAG) {
flags |= HDA_NID_ITEM_AMP;
if (nid == 0)
nid = get_amp_nid_(kctl->private_value);
}
if ((kctl->id.subdevice & HDA_SUBDEV_NID_FLAG) != 0 && nid == 0)
nid = kctl->id.subdevice & 0xffff;
if (kctl->id.subdevice & (HDA_SUBDEV_NID_FLAG|HDA_SUBDEV_AMP_FLAG))
kctl->id.subdevice = 0;
err = snd_ctl_add(codec->card, kctl);
if (err < 0)
return err;
item = snd_array_new(&codec->mixers);
if (!item)
return -ENOMEM;
item->kctl = kctl;
item->nid = nid;
item->flags = flags;
return 0;
}
EXPORT_SYMBOL_GPL(snd_hda_ctl_add);
/**
* snd_hda_add_nid - Assign a NID to a control element
* @codec: HD-audio codec
* @nid: corresponding NID (optional)
* @kctl: the control element to assign
* @index: index to kctl
*
* Add the given control element to an array inside the codec instance.
* This function is used when #snd_hda_ctl_add cannot be used for 1:1
* NID:KCTL mapping - for example "Capture Source" selector.
*/
int snd_hda_add_nid(struct hda_codec *codec, struct snd_kcontrol *kctl,
unsigned int index, hda_nid_t nid)
{
struct hda_nid_item *item;
if (nid > 0) {
item = snd_array_new(&codec->nids);
if (!item)
return -ENOMEM;
item->kctl = kctl;
item->index = index;
item->nid = nid;
return 0;
}
codec_err(codec, "no NID for mapping control %s:%d:%d\n",
kctl->id.name, kctl->id.index, index);
return -EINVAL;
}
EXPORT_SYMBOL_GPL(snd_hda_add_nid);
/**
* snd_hda_ctls_clear - Clear all controls assigned to the given codec
* @codec: HD-audio codec
*/
void snd_hda_ctls_clear(struct hda_codec *codec)
{
int i;
struct hda_nid_item *items = codec->mixers.list;
for (i = 0; i < codec->mixers.used; i++)
snd_ctl_remove(codec->card, items[i].kctl);
snd_array_free(&codec->mixers);
snd_array_free(&codec->nids);
}
/**
* snd_hda_lock_devices - pseudo device locking
* @bus: the BUS
*
* toggle card->shutdown to allow/disallow the device access (as a hack)
*/
int snd_hda_lock_devices(struct hda_bus *bus)
{
struct snd_card *card = bus->card;
struct hda_codec *codec;
spin_lock(&card->files_lock);
if (card->shutdown)
goto err_unlock;
card->shutdown = 1;
if (!list_empty(&card->ctl_files))
goto err_clear;
list_for_each_codec(codec, bus) {
struct hda_pcm *cpcm;
list_for_each_entry(cpcm, &codec->pcm_list_head, list) {
if (!cpcm->pcm)
continue;
if (cpcm->pcm->streams[0].substream_opened ||
cpcm->pcm->streams[1].substream_opened)
goto err_clear;
}
}
spin_unlock(&card->files_lock);
return 0;
err_clear:
card->shutdown = 0;
err_unlock:
spin_unlock(&card->files_lock);
return -EINVAL;
}
EXPORT_SYMBOL_GPL(snd_hda_lock_devices);
/**
* snd_hda_unlock_devices - pseudo device unlocking
* @bus: the BUS
*/
void snd_hda_unlock_devices(struct hda_bus *bus)
{
struct snd_card *card = bus->card;
spin_lock(&card->files_lock);
card->shutdown = 0;
spin_unlock(&card->files_lock);
}
EXPORT_SYMBOL_GPL(snd_hda_unlock_devices);
/**
* snd_hda_codec_reset - Clear all objects assigned to the codec
* @codec: HD-audio codec
*
* This frees the all PCM and control elements assigned to the codec, and
* clears the caches and restores the pin default configurations.
*
* When a device is being used, it returns -EBSY. If successfully freed,
* returns zero.
*/
int snd_hda_codec_reset(struct hda_codec *codec)
{
struct hda_bus *bus = codec->bus;
if (snd_hda_lock_devices(bus) < 0)
return -EBUSY;
/* OK, let it free */
snd_hdac_device_unregister(&codec->core);
/* allow device access again */
snd_hda_unlock_devices(bus);
return 0;
}
typedef int (*map_slave_func_t)(struct hda_codec *, void *, struct snd_kcontrol *);
/* apply the function to all matching slave ctls in the mixer list */
static int map_slaves(struct hda_codec *codec, const char * const *slaves,
const char *suffix, map_slave_func_t func, void *data)
{
struct hda_nid_item *items;
const char * const *s;
int i, err;
items = codec->mixers.list;
for (i = 0; i < codec->mixers.used; i++) {
struct snd_kcontrol *sctl = items[i].kctl;
if (!sctl || sctl->id.iface != SNDRV_CTL_ELEM_IFACE_MIXER)
continue;
for (s = slaves; *s; s++) {
char tmpname[sizeof(sctl->id.name)];
const char *name = *s;
if (suffix) {
snprintf(tmpname, sizeof(tmpname), "%s %s",
name, suffix);
name = tmpname;
}
if (!strcmp(sctl->id.name, name)) {
err = func(codec, data, sctl);
if (err)
return err;
break;
}
}
}
return 0;
}
static int check_slave_present(struct hda_codec *codec,
void *data, struct snd_kcontrol *sctl)
{
return 1;
}
/* guess the value corresponding to 0dB */
static int get_kctl_0dB_offset(struct hda_codec *codec,
struct snd_kcontrol *kctl, int *step_to_check)
{
int _tlv[4];
const int *tlv = NULL;
int val = -1;
if (kctl->vd[0].access & SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK) {
/* FIXME: set_fs() hack for obtaining user-space TLV data */
mm_segment_t fs = get_fs();
set_fs(get_ds());
if (!kctl->tlv.c(kctl, 0, sizeof(_tlv), _tlv))
tlv = _tlv;
set_fs(fs);
} else if (kctl->vd[0].access & SNDRV_CTL_ELEM_ACCESS_TLV_READ)
tlv = kctl->tlv.p;
if (tlv && tlv[0] == SNDRV_CTL_TLVT_DB_SCALE) {
int step = tlv[3];
step &= ~TLV_DB_SCALE_MUTE;
if (!step)
return -1;
if (*step_to_check && *step_to_check != step) {
codec_err(codec, "Mismatching dB step for vmaster slave (%d!=%d)\n",
- *step_to_check, step);
return -1;
}
*step_to_check = step;
val = -tlv[2] / step;
}
return val;
}
/* call kctl->put with the given value(s) */
static int put_kctl_with_value(struct snd_kcontrol *kctl, int val)
{
struct snd_ctl_elem_value *ucontrol;
ucontrol = kzalloc(sizeof(*ucontrol), GFP_KERNEL);
if (!ucontrol)
return -ENOMEM;
ucontrol->value.integer.value[0] = val;
ucontrol->value.integer.value[1] = val;
kctl->put(kctl, ucontrol);
kfree(ucontrol);
return 0;
}
/* initialize the slave volume with 0dB */
static int init_slave_0dB(struct hda_codec *codec,
void *data, struct snd_kcontrol *slave)
{
int offset = get_kctl_0dB_offset(codec, slave, data);
if (offset > 0)
put_kctl_with_value(slave, offset);
return 0;
}
/* unmute the slave */
static int init_slave_unmute(struct hda_codec *codec,
void *data, struct snd_kcontrol *slave)
{
return put_kctl_with_value(slave, 1);
}
static int add_slave(struct hda_codec *codec,
void *data, struct snd_kcontrol *slave)
{
return snd_ctl_add_slave(data, slave);
}
/**
* __snd_hda_add_vmaster - create a virtual master control and add slaves
* @codec: HD-audio codec
* @name: vmaster control name
* @tlv: TLV data (optional)
* @slaves: slave control names (optional)
* @suffix: suffix string to each slave name (optional)
* @init_slave_vol: initialize slaves to unmute/0dB
* @ctl_ret: store the vmaster kcontrol in return
*
* Create a virtual master control with the given name. The TLV data
* must be either NULL or a valid data.
*
* @slaves is a NULL-terminated array of strings, each of which is a
* slave control name. All controls with these names are assigned to
* the new virtual master control.
*
* This function returns zero if successful or a negative error code.
*/
int __snd_hda_add_vmaster(struct hda_codec *codec, char *name,
unsigned int *tlv, const char * const *slaves,
const char *suffix, bool init_slave_vol,
struct snd_kcontrol **ctl_ret)
{
struct snd_kcontrol *kctl;
int err;
if (ctl_ret)
*ctl_ret = NULL;
err = map_slaves(codec, slaves, suffix, check_slave_present, NULL);
if (err != 1) {
codec_dbg(codec, "No slave found for %s\n", name);
return 0;
}
kctl = snd_ctl_make_virtual_master(name, tlv);
if (!kctl)
return -ENOMEM;
err = snd_hda_ctl_add(codec, 0, kctl);
if (err < 0)
return err;
err = map_slaves(codec, slaves, suffix, add_slave, kctl);
if (err < 0)
return err;
/* init with master mute & zero volume */
put_kctl_with_value(kctl, 0);
if (init_slave_vol) {
int step = 0;
map_slaves(codec, slaves, suffix,
tlv ? init_slave_0dB : init_slave_unmute, &step);
}
if (ctl_ret)
*ctl_ret = kctl;
return 0;
}
EXPORT_SYMBOL_GPL(__snd_hda_add_vmaster);
/*
* mute-LED control using vmaster
*/
static int vmaster_mute_mode_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
static const char * const texts[] = {
"On", "Off", "Follow Master"
};
return snd_ctl_enum_info(uinfo, 1, 3, texts);
}
static int vmaster_mute_mode_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct hda_vmaster_mute_hook *hook = snd_kcontrol_chip(kcontrol);
ucontrol->value.enumerated.item[0] = hook->mute_mode;
return 0;
}
static int vmaster_mute_mode_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct hda_vmaster_mute_hook *hook = snd_kcontrol_chip(kcontrol);
unsigned int old_mode = hook->mute_mode;
hook->mute_mode = ucontrol->value.enumerated.item[0];
if (hook->mute_mode > HDA_VMUTE_FOLLOW_MASTER)
hook->mute_mode = HDA_VMUTE_FOLLOW_MASTER;
if (old_mode == hook->mute_mode)
return 0;
snd_hda_sync_vmaster_hook(hook);
return 1;
}
static struct snd_kcontrol_new vmaster_mute_mode = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Mute-LED Mode",
.info = vmaster_mute_mode_info,
.get = vmaster_mute_mode_get,
.put = vmaster_mute_mode_put,
};
/**
* snd_hda_add_vmaster_hook - Add a vmaster hook for mute-LED
* @codec: the HDA codec
* @hook: the vmaster hook object
* @expose_enum_ctl: flag to create an enum ctl
*
* Add a mute-LED hook with the given vmaster switch kctl.
* When @expose_enum_ctl is set, "Mute-LED Mode" control is automatically
* created and associated with the given hook.
*/
int snd_hda_add_vmaster_hook(struct hda_codec *codec,
struct hda_vmaster_mute_hook *hook,
bool expose_enum_ctl)
{
struct snd_kcontrol *kctl;
if (!hook->hook || !hook->sw_kctl)
return 0;
snd_ctl_add_vmaster_hook(hook->sw_kctl, hook->hook, codec);
hook->codec = codec;
hook->mute_mode = HDA_VMUTE_FOLLOW_MASTER;
if (!expose_enum_ctl)
return 0;
kctl = snd_ctl_new1(&vmaster_mute_mode, hook);
if (!kctl)
return -ENOMEM;
return snd_hda_ctl_add(codec, 0, kctl);
}
EXPORT_SYMBOL_GPL(snd_hda_add_vmaster_hook);
/**
* snd_hda_sync_vmaster_hook - Sync vmaster hook
* @hook: the vmaster hook
*
* Call the hook with the current value for synchronization.
* Should be called in init callback.
*/
void snd_hda_sync_vmaster_hook(struct hda_vmaster_mute_hook *hook)
{
if (!hook->hook || !hook->codec)
return;
/* don't call vmaster hook in the destructor since it might have
* been already destroyed
*/
if (hook->codec->bus->shutdown)
return;
switch (hook->mute_mode) {
case HDA_VMUTE_FOLLOW_MASTER:
snd_ctl_sync_vmaster_hook(hook->sw_kctl);
break;
default:
hook->hook(hook->codec, hook->mute_mode);
break;
}
}
EXPORT_SYMBOL_GPL(snd_hda_sync_vmaster_hook);
/**
* snd_hda_mixer_amp_switch_info - Info callback for a standard AMP mixer switch
* @kcontrol: referred ctl element
* @uinfo: pointer to get/store the data
*
* The control element is supposed to have the private_value field
* set up via HDA_COMPOSE_AMP_VAL*() or related macros.
*/
int snd_hda_mixer_amp_switch_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
int chs = get_amp_channels(kcontrol);
uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
uinfo->count = chs == 3 ? 2 : 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 1;
return 0;
}
EXPORT_SYMBOL_GPL(snd_hda_mixer_amp_switch_info);
/**
* snd_hda_mixer_amp_switch_get - Get callback for a standard AMP mixer switch
* @kcontrol: ctl element
* @ucontrol: pointer to get/store the data
*
* The control element is supposed to have the private_value field
* set up via HDA_COMPOSE_AMP_VAL*() or related macros.
*/
int snd_hda_mixer_amp_switch_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
hda_nid_t nid = get_amp_nid(kcontrol);
int chs = get_amp_channels(kcontrol);
int dir = get_amp_direction(kcontrol);
int idx = get_amp_index(kcontrol);
long *valp = ucontrol->value.integer.value;
if (chs & 1)
*valp++ = (snd_hda_codec_amp_read(codec, nid, 0, dir, idx) &
HDA_AMP_MUTE) ? 0 : 1;
if (chs & 2)
*valp = (snd_hda_codec_amp_read(codec, nid, 1, dir, idx) &
HDA_AMP_MUTE) ? 0 : 1;
return 0;
}
EXPORT_SYMBOL_GPL(snd_hda_mixer_amp_switch_get);
/**
* snd_hda_mixer_amp_switch_put - Put callback for a standard AMP mixer switch
* @kcontrol: ctl element
* @ucontrol: pointer to get/store the data
*
* The control element is supposed to have the private_value field
* set up via HDA_COMPOSE_AMP_VAL*() or related macros.
*/
int snd_hda_mixer_amp_switch_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
hda_nid_t nid = get_amp_nid(kcontrol);
int chs = get_amp_channels(kcontrol);
int dir = get_amp_direction(kcontrol);
int idx = get_amp_index(kcontrol);
long *valp = ucontrol->value.integer.value;
int change = 0;
if (chs & 1) {
change = codec_amp_update(codec, nid, 0, dir, idx,
HDA_AMP_MUTE,
*valp ? 0 : HDA_AMP_MUTE, false,
!hda_codec_is_power_on(codec));
valp++;
}
if (chs & 2)
change |= codec_amp_update(codec, nid, 1, dir, idx,
HDA_AMP_MUTE,
*valp ? 0 : HDA_AMP_MUTE, false,
!hda_codec_is_power_on(codec));
hda_call_check_power_status(codec, nid);
return change;
}
EXPORT_SYMBOL_GPL(snd_hda_mixer_amp_switch_put);
/*
* bound volume controls
*
* bind multiple volumes (# indices, from 0)
*/
#define AMP_VAL_IDX_SHIFT 19
#define AMP_VAL_IDX_MASK (0x0f<<19)
/**
* snd_hda_mixer_bind_switch_get - Get callback for a bound volume control
* @kcontrol: ctl element
* @ucontrol: pointer to get/store the data
*
* The control element is supposed to have the private_value field
* set up via HDA_BIND_MUTE*() macros.
*/
int snd_hda_mixer_bind_switch_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
unsigned long pval;
int err;
mutex_lock(&codec->control_mutex);
pval = kcontrol->private_value;
kcontrol->private_value = pval & ~AMP_VAL_IDX_MASK; /* index 0 */
err = snd_hda_mixer_amp_switch_get(kcontrol, ucontrol);
kcontrol->private_value = pval;
mutex_unlock(&codec->control_mutex);
return err;
}
EXPORT_SYMBOL_GPL(snd_hda_mixer_bind_switch_get);
/**
* snd_hda_mixer_bind_switch_put - Put callback for a bound volume control
* @kcontrol: ctl element
* @ucontrol: pointer to get/store the data
*
* The control element is supposed to have the private_value field
* set up via HDA_BIND_MUTE*() macros.
*/
int snd_hda_mixer_bind_switch_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
unsigned long pval;
int i, indices, err = 0, change = 0;
mutex_lock(&codec->control_mutex);
pval = kcontrol->private_value;
indices = (pval & AMP_VAL_IDX_MASK) >> AMP_VAL_IDX_SHIFT;
for (i = 0; i < indices; i++) {
kcontrol->private_value = (pval & ~AMP_VAL_IDX_MASK) |
(i << AMP_VAL_IDX_SHIFT);
err = snd_hda_mixer_amp_switch_put(kcontrol, ucontrol);
if (err < 0)
break;
change |= err;
}
kcontrol->private_value = pval;
mutex_unlock(&codec->control_mutex);
return err < 0 ? err : change;
}
EXPORT_SYMBOL_GPL(snd_hda_mixer_bind_switch_put);
/**
* snd_hda_mixer_bind_ctls_info - Info callback for a generic bound control
* @kcontrol: referred ctl element
* @uinfo: pointer to get/store the data
*
* The control element is supposed to have the private_value field
* set up via HDA_BIND_VOL() or HDA_BIND_SW() macros.
*/
int snd_hda_mixer_bind_ctls_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
struct hda_bind_ctls *c;
int err;
mutex_lock(&codec->control_mutex);
c = (struct hda_bind_ctls *)kcontrol->private_value;
kcontrol->private_value = *c->values;
err = c->ops->info(kcontrol, uinfo);
kcontrol->private_value = (long)c;
mutex_unlock(&codec->control_mutex);
return err;
}
EXPORT_SYMBOL_GPL(snd_hda_mixer_bind_ctls_info);
/**
* snd_hda_mixer_bind_ctls_get - Get callback for a generic bound control
* @kcontrol: ctl element
* @ucontrol: pointer to get/store the data
*
* The control element is supposed to have the private_value field
* set up via HDA_BIND_VOL() or HDA_BIND_SW() macros.
*/
int snd_hda_mixer_bind_ctls_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
struct hda_bind_ctls *c;
int err;
mutex_lock(&codec->control_mutex);
c = (struct hda_bind_ctls *)kcontrol->private_value;
kcontrol->private_value = *c->values;
err = c->ops->get(kcontrol, ucontrol);
kcontrol->private_value = (long)c;
mutex_unlock(&codec->control_mutex);
return err;
}
EXPORT_SYMBOL_GPL(snd_hda_mixer_bind_ctls_get);
/**
* snd_hda_mixer_bind_ctls_put - Put callback for a generic bound control
* @kcontrol: ctl element
* @ucontrol: pointer to get/store the data
*
* The control element is supposed to have the private_value field
* set up via HDA_BIND_VOL() or HDA_BIND_SW() macros.
*/
int snd_hda_mixer_bind_ctls_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
struct hda_bind_ctls *c;
unsigned long *vals;
int err = 0, change = 0;
mutex_lock(&codec->control_mutex);
c = (struct hda_bind_ctls *)kcontrol->private_value;
for (vals = c->values; *vals; vals++) {
kcontrol->private_value = *vals;
err = c->ops->put(kcontrol, ucontrol);
if (err < 0)
break;
change |= err;
}
kcontrol->private_value = (long)c;
mutex_unlock(&codec->control_mutex);
return err < 0 ? err : change;
}
EXPORT_SYMBOL_GPL(snd_hda_mixer_bind_ctls_put);
/**
* snd_hda_mixer_bind_tlv - TLV callback for a generic bound control
* @kcontrol: ctl element
* @op_flag: operation flag
* @size: byte size of input TLV
* @tlv: TLV data
*
* The control element is supposed to have the private_value field
* set up via HDA_BIND_VOL() macro.
*/
int snd_hda_mixer_bind_tlv(struct snd_kcontrol *kcontrol, int op_flag,
unsigned int size, unsigned int __user *tlv)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
struct hda_bind_ctls *c;
int err;
mutex_lock(&codec->control_mutex);
c = (struct hda_bind_ctls *)kcontrol->private_value;
kcontrol->private_value = *c->values;
err = c->ops->tlv(kcontrol, op_flag, size, tlv);
kcontrol->private_value = (long)c;
mutex_unlock(&codec->control_mutex);
return err;
}
EXPORT_SYMBOL_GPL(snd_hda_mixer_bind_tlv);
struct hda_ctl_ops snd_hda_bind_vol = {
.info = snd_hda_mixer_amp_volume_info,
.get = snd_hda_mixer_amp_volume_get,
.put = snd_hda_mixer_amp_volume_put,
.tlv = snd_hda_mixer_amp_tlv
};
EXPORT_SYMBOL_GPL(snd_hda_bind_vol);
struct hda_ctl_ops snd_hda_bind_sw = {
.info = snd_hda_mixer_amp_switch_info,
.get = snd_hda_mixer_amp_switch_get,
.put = snd_hda_mixer_amp_switch_put,
.tlv = snd_hda_mixer_amp_tlv
};
EXPORT_SYMBOL_GPL(snd_hda_bind_sw);
/*
* SPDIF out controls
*/
static int snd_hda_spdif_mask_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
uinfo->count = 1;
return 0;
}
static int snd_hda_spdif_cmask_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
ucontrol->value.iec958.status[0] = IEC958_AES0_PROFESSIONAL |
IEC958_AES0_NONAUDIO |
IEC958_AES0_CON_EMPHASIS_5015 |
IEC958_AES0_CON_NOT_COPYRIGHT;
ucontrol->value.iec958.status[1] = IEC958_AES1_CON_CATEGORY |
IEC958_AES1_CON_ORIGINAL;
return 0;
}
static int snd_hda_spdif_pmask_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
ucontrol->value.iec958.status[0] = IEC958_AES0_PROFESSIONAL |
IEC958_AES0_NONAUDIO |
IEC958_AES0_PRO_EMPHASIS_5015;
return 0;
}
static int snd_hda_spdif_default_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
int idx = kcontrol->private_value;
struct hda_spdif_out *spdif;
mutex_lock(&codec->spdif_mutex);
spdif = snd_array_elem(&codec->spdif_out, idx);
ucontrol->value.iec958.status[0] = spdif->status & 0xff;
ucontrol->value.iec958.status[1] = (spdif->status >> 8) & 0xff;
ucontrol->value.iec958.status[2] = (spdif->status >> 16) & 0xff;
ucontrol->value.iec958.status[3] = (spdif->status >> 24) & 0xff;
mutex_unlock(&codec->spdif_mutex);
return 0;
}
/* convert from SPDIF status bits to HDA SPDIF bits
* bit 0 (DigEn) is always set zero (to be filled later)
*/
static unsigned short convert_from_spdif_status(unsigned int sbits)
{
unsigned short val = 0;
if (sbits & IEC958_AES0_PROFESSIONAL)
val |= AC_DIG1_PROFESSIONAL;
if (sbits & IEC958_AES0_NONAUDIO)
val |= AC_DIG1_NONAUDIO;
if (sbits & IEC958_AES0_PROFESSIONAL) {
if ((sbits & IEC958_AES0_PRO_EMPHASIS) ==
IEC958_AES0_PRO_EMPHASIS_5015)
val |= AC_DIG1_EMPHASIS;
} else {
if ((sbits & IEC958_AES0_CON_EMPHASIS) ==
IEC958_AES0_CON_EMPHASIS_5015)
val |= AC_DIG1_EMPHASIS;
if (!(sbits & IEC958_AES0_CON_NOT_COPYRIGHT))
val |= AC_DIG1_COPYRIGHT;
if (sbits & (IEC958_AES1_CON_ORIGINAL << 8))
val |= AC_DIG1_LEVEL;
val |= sbits & (IEC958_AES1_CON_CATEGORY << 8);
}
return val;
}
/* convert to SPDIF status bits from HDA SPDIF bits
*/
static unsigned int convert_to_spdif_status(unsigned short val)
{
unsigned int sbits = 0;
if (val & AC_DIG1_NONAUDIO)
sbits |= IEC958_AES0_NONAUDIO;
if (val & AC_DIG1_PROFESSIONAL)
sbits |= IEC958_AES0_PROFESSIONAL;
if (sbits & IEC958_AES0_PROFESSIONAL) {
if (val & AC_DIG1_EMPHASIS)
sbits |= IEC958_AES0_PRO_EMPHASIS_5015;
} else {
if (val & AC_DIG1_EMPHASIS)
sbits |= IEC958_AES0_CON_EMPHASIS_5015;
if (!(val & AC_DIG1_COPYRIGHT))
sbits |= IEC958_AES0_CON_NOT_COPYRIGHT;
if (val & AC_DIG1_LEVEL)
sbits |= (IEC958_AES1_CON_ORIGINAL << 8);
sbits |= val & (0x7f << 8);
}
return sbits;
}
/* set digital convert verbs both for the given NID and its slaves */
static void set_dig_out(struct hda_codec *codec, hda_nid_t nid,
int verb, int val)
{
const hda_nid_t *d;
snd_hda_codec_write_cache(codec, nid, 0, verb, val);
d = codec->slave_dig_outs;
if (!d)
return;
for (; *d; d++)
snd_hda_codec_write_cache(codec, *d, 0, verb, val);
}
static inline void set_dig_out_convert(struct hda_codec *codec, hda_nid_t nid,
int dig1, int dig2)
{
if (dig1 != -1)
set_dig_out(codec, nid, AC_VERB_SET_DIGI_CONVERT_1, dig1);
if (dig2 != -1)
set_dig_out(codec, nid, AC_VERB_SET_DIGI_CONVERT_2, dig2);
}
static int snd_hda_spdif_default_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
int idx = kcontrol->private_value;
struct hda_spdif_out *spdif;
hda_nid_t nid;
unsigned short val;
int change;
mutex_lock(&codec->spdif_mutex);
spdif = snd_array_elem(&codec->spdif_out, idx);
nid = spdif->nid;
spdif->status = ucontrol->value.iec958.status[0] |
((unsigned int)ucontrol->value.iec958.status[1] << 8) |
((unsigned int)ucontrol->value.iec958.status[2] << 16) |
((unsigned int)ucontrol->value.iec958.status[3] << 24);
val = convert_from_spdif_status(spdif->status);
val |= spdif->ctls & 1;
change = spdif->ctls != val;
spdif->ctls = val;
if (change && nid != (u16)-1)
set_dig_out_convert(codec, nid, val & 0xff, (val >> 8) & 0xff);
mutex_unlock(&codec->spdif_mutex);
return change;
}
#define snd_hda_spdif_out_switch_info snd_ctl_boolean_mono_info
static int snd_hda_spdif_out_switch_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
int idx = kcontrol->private_value;
struct hda_spdif_out *spdif;
mutex_lock(&codec->spdif_mutex);
spdif = snd_array_elem(&codec->spdif_out, idx);
ucontrol->value.integer.value[0] = spdif->ctls & AC_DIG1_ENABLE;
mutex_unlock(&codec->spdif_mutex);
return 0;
}
static inline void set_spdif_ctls(struct hda_codec *codec, hda_nid_t nid,
int dig1, int dig2)
{
set_dig_out_convert(codec, nid, dig1, dig2);
/* unmute amp switch (if any) */
if ((get_wcaps(codec, nid) & AC_WCAP_OUT_AMP) &&
(dig1 & AC_DIG1_ENABLE))
snd_hda_codec_amp_stereo(codec, nid, HDA_OUTPUT, 0,
HDA_AMP_MUTE, 0);
}
static int snd_hda_spdif_out_switch_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
int idx = kcontrol->private_value;
struct hda_spdif_out *spdif;
hda_nid_t nid;
unsigned short val;
int change;
mutex_lock(&codec->spdif_mutex);
spdif = snd_array_elem(&codec->spdif_out, idx);
nid = spdif->nid;
val = spdif->ctls & ~AC_DIG1_ENABLE;
if (ucontrol->value.integer.value[0])
val |= AC_DIG1_ENABLE;
change = spdif->ctls != val;
spdif->ctls = val;
if (change && nid != (u16)-1)
set_spdif_ctls(codec, nid, val & 0xff, -1);
mutex_unlock(&codec->spdif_mutex);
return change;
}
static struct snd_kcontrol_new dig_mixes[] = {
{
.access = SNDRV_CTL_ELEM_ACCESS_READ,
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, CON_MASK),
.info = snd_hda_spdif_mask_info,
.get = snd_hda_spdif_cmask_get,
},
{
.access = SNDRV_CTL_ELEM_ACCESS_READ,
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, PRO_MASK),
.info = snd_hda_spdif_mask_info,
.get = snd_hda_spdif_pmask_get,
},
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
.info = snd_hda_spdif_mask_info,
.get = snd_hda_spdif_default_get,
.put = snd_hda_spdif_default_put,
},
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, SWITCH),
.info = snd_hda_spdif_out_switch_info,
.get = snd_hda_spdif_out_switch_get,
.put = snd_hda_spdif_out_switch_put,
},
{ } /* end */
};
/**
* snd_hda_create_dig_out_ctls - create Output SPDIF-related controls
* @codec: the HDA codec
* @associated_nid: NID that new ctls associated with
* @cvt_nid: converter NID
* @type: HDA_PCM_TYPE_*
* Creates controls related with the digital output.
* Called from each patch supporting the digital out.
*
* Returns 0 if successful, or a negative error code.
*/
int snd_hda_create_dig_out_ctls(struct hda_codec *codec,
hda_nid_t associated_nid,
hda_nid_t cvt_nid,
int type)
{
int err;
struct snd_kcontrol *kctl;
struct snd_kcontrol_new *dig_mix;
int idx = 0;
const int spdif_index = 16;
struct hda_spdif_out *spdif;
struct hda_bus *bus = codec->bus;
if (bus->primary_dig_out_type == HDA_PCM_TYPE_HDMI &&
type == HDA_PCM_TYPE_SPDIF) {
idx = spdif_index;
} else if (bus->primary_dig_out_type == HDA_PCM_TYPE_SPDIF &&
type == HDA_PCM_TYPE_HDMI) {
/* suppose a single SPDIF device */
for (dig_mix = dig_mixes; dig_mix->name; dig_mix++) {
kctl = find_mixer_ctl(codec, dig_mix->name, 0, 0);
if (!kctl)
break;
kctl->id.index = spdif_index;
}
bus->primary_dig_out_type = HDA_PCM_TYPE_HDMI;
}
if (!bus->primary_dig_out_type)
bus->primary_dig_out_type = type;
idx = find_empty_mixer_ctl_idx(codec, "IEC958 Playback Switch", idx);
if (idx < 0) {
codec_err(codec, "too many IEC958 outputs\n");
return -EBUSY;
}
spdif = snd_array_new(&codec->spdif_out);
if (!spdif)
return -ENOMEM;
for (dig_mix = dig_mixes; dig_mix->name; dig_mix++) {
kctl = snd_ctl_new1(dig_mix, codec);
if (!kctl)
return -ENOMEM;
kctl->id.index = idx;
kctl->private_value = codec->spdif_out.used - 1;
err = snd_hda_ctl_add(codec, associated_nid, kctl);
if (err < 0)
return err;
}
spdif->nid = cvt_nid;
spdif->ctls = snd_hda_codec_read(codec, cvt_nid, 0,
AC_VERB_GET_DIGI_CONVERT_1, 0);
spdif->status = convert_to_spdif_status(spdif->ctls);
return 0;
}
EXPORT_SYMBOL_GPL(snd_hda_create_dig_out_ctls);
/**
* snd_hda_spdif_out_of_nid - get the hda_spdif_out entry from the given NID
* @codec: the HDA codec
* @nid: widget NID
*
* call within spdif_mutex lock
*/
struct hda_spdif_out *snd_hda_spdif_out_of_nid(struct hda_codec *codec,
hda_nid_t nid)
{
int i;
for (i = 0; i < codec->spdif_out.used; i++) {
struct hda_spdif_out *spdif =
snd_array_elem(&codec->spdif_out, i);
if (spdif->nid == nid)
return spdif;
}
return NULL;
}
EXPORT_SYMBOL_GPL(snd_hda_spdif_out_of_nid);
/**
* snd_hda_spdif_ctls_unassign - Unassign the given SPDIF ctl
* @codec: the HDA codec
* @idx: the SPDIF ctl index
*
* Unassign the widget from the given SPDIF control.
*/
void snd_hda_spdif_ctls_unassign(struct hda_codec *codec, int idx)
{
struct hda_spdif_out *spdif;
mutex_lock(&codec->spdif_mutex);
spdif = snd_array_elem(&codec->spdif_out, idx);
spdif->nid = (u16)-1;
mutex_unlock(&codec->spdif_mutex);
}
EXPORT_SYMBOL_GPL(snd_hda_spdif_ctls_unassign);
/**
* snd_hda_spdif_ctls_assign - Assign the SPDIF controls to the given NID
* @codec: the HDA codec
* @idx: the SPDIF ctl idx
* @nid: widget NID
*
* Assign the widget to the SPDIF control with the given index.
*/
void snd_hda_spdif_ctls_assign(struct hda_codec *codec, int idx, hda_nid_t nid)
{
struct hda_spdif_out *spdif;
unsigned short val;
mutex_lock(&codec->spdif_mutex);
spdif = snd_array_elem(&codec->spdif_out, idx);
if (spdif->nid != nid) {
spdif->nid = nid;
val = spdif->ctls;
set_spdif_ctls(codec, nid, val & 0xff, (val >> 8) & 0xff);
}
mutex_unlock(&codec->spdif_mutex);
}
EXPORT_SYMBOL_GPL(snd_hda_spdif_ctls_assign);
/*
* SPDIF sharing with analog output
*/
static int spdif_share_sw_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct hda_multi_out *mout = snd_kcontrol_chip(kcontrol);
ucontrol->value.integer.value[0] = mout->share_spdif;
return 0;
}
static int spdif_share_sw_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct hda_multi_out *mout = snd_kcontrol_chip(kcontrol);
mout->share_spdif = !!ucontrol->value.integer.value[0];
return 0;
}
static struct snd_kcontrol_new spdif_share_sw = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "IEC958 Default PCM Playback Switch",
.info = snd_ctl_boolean_mono_info,
.get = spdif_share_sw_get,
.put = spdif_share_sw_put,
};
/**
* snd_hda_create_spdif_share_sw - create Default PCM switch
* @codec: the HDA codec
* @mout: multi-out instance
*/
int snd_hda_create_spdif_share_sw(struct hda_codec *codec,
struct hda_multi_out *mout)
{
struct snd_kcontrol *kctl;
if (!mout->dig_out_nid)
return 0;
kctl = snd_ctl_new1(&spdif_share_sw, mout);
if (!kctl)
return -ENOMEM;
/* ATTENTION: here mout is passed as private_data, instead of codec */
return snd_hda_ctl_add(codec, mout->dig_out_nid, kctl);
}
EXPORT_SYMBOL_GPL(snd_hda_create_spdif_share_sw);
/*
* SPDIF input
*/
#define snd_hda_spdif_in_switch_info snd_hda_spdif_out_switch_info
static int snd_hda_spdif_in_switch_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
ucontrol->value.integer.value[0] = codec->spdif_in_enable;
return 0;
}
static int snd_hda_spdif_in_switch_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
hda_nid_t nid = kcontrol->private_value;
unsigned int val = !!ucontrol->value.integer.value[0];
int change;
mutex_lock(&codec->spdif_mutex);
change = codec->spdif_in_enable != val;
if (change) {
codec->spdif_in_enable = val;
snd_hda_codec_write_cache(codec, nid, 0,
AC_VERB_SET_DIGI_CONVERT_1, val);
}
mutex_unlock(&codec->spdif_mutex);
return change;
}
static int snd_hda_spdif_in_status_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
hda_nid_t nid = kcontrol->private_value;
unsigned short val;
unsigned int sbits;
val = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT_1, 0);
sbits = convert_to_spdif_status(val);
ucontrol->value.iec958.status[0] = sbits;
ucontrol->value.iec958.status[1] = sbits >> 8;
ucontrol->value.iec958.status[2] = sbits >> 16;
ucontrol->value.iec958.status[3] = sbits >> 24;
return 0;
}
static struct snd_kcontrol_new dig_in_ctls[] = {
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = SNDRV_CTL_NAME_IEC958("", CAPTURE, SWITCH),
.info = snd_hda_spdif_in_switch_info,
.get = snd_hda_spdif_in_switch_get,
.put = snd_hda_spdif_in_switch_put,
},
{
.access = SNDRV_CTL_ELEM_ACCESS_READ,
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = SNDRV_CTL_NAME_IEC958("", CAPTURE, DEFAULT),
.info = snd_hda_spdif_mask_info,
.get = snd_hda_spdif_in_status_get,
},
{ } /* end */
};
/**
* snd_hda_create_spdif_in_ctls - create Input SPDIF-related controls
* @codec: the HDA codec
* @nid: audio in widget NID
*
* Creates controls related with the SPDIF input.
* Called from each patch supporting the SPDIF in.
*
* Returns 0 if successful, or a negative error code.
*/
int snd_hda_create_spdif_in_ctls(struct hda_codec *codec, hda_nid_t nid)
{
int err;
struct snd_kcontrol *kctl;
struct snd_kcontrol_new *dig_mix;
int idx;
idx = find_empty_mixer_ctl_idx(codec, "IEC958 Capture Switch", 0);
if (idx < 0) {
codec_err(codec, "too many IEC958 inputs\n");
return -EBUSY;
}
for (dig_mix = dig_in_ctls; dig_mix->name; dig_mix++) {
kctl = snd_ctl_new1(dig_mix, codec);
if (!kctl)
return -ENOMEM;
kctl->private_value = nid;
err = snd_hda_ctl_add(codec, nid, kctl);
if (err < 0)
return err;
}
codec->spdif_in_enable =
snd_hda_codec_read(codec, nid, 0,
AC_VERB_GET_DIGI_CONVERT_1, 0) &
AC_DIG1_ENABLE;
return 0;
}
EXPORT_SYMBOL_GPL(snd_hda_create_spdif_in_ctls);
/*
* command cache
*/
/* build a 31bit cache key with the widget id and the command parameter */
#define build_cmd_cache_key(nid, verb) ((verb << 8) | nid)
#define get_cmd_cache_nid(key) ((key) & 0xff)
#define get_cmd_cache_cmd(key) (((key) >> 8) & 0xffff)
/**
* snd_hda_codec_write_cache - send a single command with caching
* @codec: the HDA codec
* @nid: NID to send the command
* @flags: optional bit flags
* @verb: the verb to send
* @parm: the parameter for the verb
*
* Send a single command without waiting for response.
*
* Returns 0 if successful, or a negative error code.
*/
int snd_hda_codec_write_cache(struct hda_codec *codec, hda_nid_t nid,
int flags, unsigned int verb, unsigned int parm)
{
int err;
struct hda_cache_head *c;
u32 key;
unsigned int cache_only;
cache_only = codec->cached_write;
if (!cache_only) {
err = snd_hda_codec_write(codec, nid, flags, verb, parm);
if (err < 0)
return err;
}
/* parm may contain the verb stuff for get/set amp */
verb = verb | (parm >> 8);
parm &= 0xff;
key = build_cmd_cache_key(nid, verb);
mutex_lock(&codec->bus->core.cmd_mutex);
c = get_alloc_hash(&codec->cmd_cache, key);
if (c) {
c->val = parm;
c->dirty = cache_only;
}
mutex_unlock(&codec->bus->core.cmd_mutex);
return 0;
}
EXPORT_SYMBOL_GPL(snd_hda_codec_write_cache);
/**
* snd_hda_codec_update_cache - check cache and write the cmd only when needed
* @codec: the HDA codec
* @nid: NID to send the command
* @flags: optional bit flags
* @verb: the verb to send
* @parm: the parameter for the verb
*
* This function works like snd_hda_codec_write_cache(), but it doesn't send
* command if the parameter is already identical with the cached value.
* If not, it sends the command and refreshes the cache.
*
* Returns 0 if successful, or a negative error code.
*/
int snd_hda_codec_update_cache(struct hda_codec *codec, hda_nid_t nid,
int flags, unsigned int verb, unsigned int parm)
{
struct hda_cache_head *c;
u32 key;
/* parm may contain the verb stuff for get/set amp */
verb = verb | (parm >> 8);
parm &= 0xff;
key = build_cmd_cache_key(nid, verb);
mutex_lock(&codec->bus->core.cmd_mutex);
c = get_hash(&codec->cmd_cache, key);
if (c && c->val == parm) {
mutex_unlock(&codec->bus->core.cmd_mutex);
return 0;
}
mutex_unlock(&codec->bus->core.cmd_mutex);
return snd_hda_codec_write_cache(codec, nid, flags, verb, parm);
}
EXPORT_SYMBOL_GPL(snd_hda_codec_update_cache);
/**
* snd_hda_codec_resume_cache - Resume the all commands from the cache
* @codec: HD-audio codec
*
* Execute all verbs recorded in the command caches to resume.
*/
void snd_hda_codec_resume_cache(struct hda_codec *codec)
{
int i;
mutex_lock(&codec->hash_mutex);
codec->cached_write = 0;
for (i = 0; i < codec->cmd_cache.buf.used; i++) {
struct hda_cache_head *buffer;
u32 key;
buffer = snd_array_elem(&codec->cmd_cache.buf, i);
key = buffer->key;
if (!key)
continue;
if (!buffer->dirty)
continue;
buffer->dirty = 0;
mutex_unlock(&codec->hash_mutex);
snd_hda_codec_write(codec, get_cmd_cache_nid(key), 0,
get_cmd_cache_cmd(key), buffer->val);
mutex_lock(&codec->hash_mutex);
}
mutex_unlock(&codec->hash_mutex);
}
EXPORT_SYMBOL_GPL(snd_hda_codec_resume_cache);
/**
* snd_hda_sequence_write_cache - sequence writes with caching
* @codec: the HDA codec
* @seq: VERB array to send
*
* Send the commands sequentially from the given array.
* Thte commands are recorded on cache for power-save and resume.
* The array must be terminated with NID=0.
*/
void snd_hda_sequence_write_cache(struct hda_codec *codec,
const struct hda_verb *seq)
{
for (; seq->nid; seq++)
snd_hda_codec_write_cache(codec, seq->nid, 0, seq->verb,
seq->param);
}
EXPORT_SYMBOL_GPL(snd_hda_sequence_write_cache);
/**
* snd_hda_codec_flush_cache - Execute all pending (cached) amps / verbs
* @codec: HD-audio codec
*/
void snd_hda_codec_flush_cache(struct hda_codec *codec)
{
snd_hda_codec_resume_amp(codec);
snd_hda_codec_resume_cache(codec);
}
EXPORT_SYMBOL_GPL(snd_hda_codec_flush_cache);
/**
* snd_hda_codec_set_power_to_all - Set the power state to all widgets
* @codec: the HDA codec
* @fg: function group (not used now)
* @power_state: the power state to set (AC_PWRST_*)
*
* Set the given power state to all widgets that have the power control.
* If the codec has power_filter set, it evaluates the power state and
* filter out if it's unchanged as D3.
*/
void snd_hda_codec_set_power_to_all(struct hda_codec *codec, hda_nid_t fg,
unsigned int power_state)
{
hda_nid_t nid;
for_each_hda_codec_node(nid, codec) {
unsigned int wcaps = get_wcaps(codec, nid);
unsigned int state = power_state;
if (!(wcaps & AC_WCAP_POWER))
continue;
if (codec->power_filter) {
state = codec->power_filter(codec, nid, power_state);
if (state != power_state && power_state == AC_PWRST_D3)
continue;
}
snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_POWER_STATE,
state);
}
}
EXPORT_SYMBOL_GPL(snd_hda_codec_set_power_to_all);
/*
* wait until the state is reached, returns the current state
*/
static unsigned int hda_sync_power_state(struct hda_codec *codec,
hda_nid_t fg,
unsigned int power_state)
{
unsigned long end_time = jiffies + msecs_to_jiffies(500);
unsigned int state, actual_state;
for (;;) {
state = snd_hda_codec_read(codec, fg, 0,
AC_VERB_GET_POWER_STATE, 0);
if (state & AC_PWRST_ERROR)
break;
actual_state = (state >> 4) & 0x0f;
if (actual_state == power_state)
break;
if (time_after_eq(jiffies, end_time))
break;
/* wait until the codec reachs to the target state */
msleep(1);
}
return state;
}
/**
* snd_hda_codec_eapd_power_filter - A power filter callback for EAPD
* @codec: the HDA codec
* @nid: widget NID
* @power_state: power state to evalue
*
* Don't power down the widget if it controls eapd and EAPD_BTLENABLE is set.
* This can be used a codec power_filter callback.
*/
unsigned int snd_hda_codec_eapd_power_filter(struct hda_codec *codec,
hda_nid_t nid,
unsigned int power_state)
{
if (nid == codec->core.afg || nid == codec->core.mfg)
return power_state;
if (power_state == AC_PWRST_D3 &&
get_wcaps_type(get_wcaps(codec, nid)) == AC_WID_PIN &&
(snd_hda_query_pin_caps(codec, nid) & AC_PINCAP_EAPD)) {
int eapd = snd_hda_codec_read(codec, nid, 0,
AC_VERB_GET_EAPD_BTLENABLE, 0);
if (eapd & 0x02)
return AC_PWRST_D0;
}
return power_state;
}
EXPORT_SYMBOL_GPL(snd_hda_codec_eapd_power_filter);
/*
* set power state of the codec, and return the power state
*/
static unsigned int hda_set_power_state(struct hda_codec *codec,
unsigned int power_state)
{
hda_nid_t fg = codec->core.afg ? codec->core.afg : codec->core.mfg;
int count;
unsigned int state;
int flags = 0;
/* this delay seems necessary to avoid click noise at power-down */
if (power_state == AC_PWRST_D3) {
if (codec->depop_delay < 0)
msleep(codec_has_epss(codec) ? 10 : 100);
else if (codec->depop_delay > 0)
msleep(codec->depop_delay);
flags = HDA_RW_NO_RESPONSE_FALLBACK;
}
/* repeat power states setting at most 10 times*/
for (count = 0; count < 10; count++) {
if (codec->patch_ops.set_power_state)
codec->patch_ops.set_power_state(codec, fg,
power_state);
else {
state = power_state;
if (codec->power_filter)
state = codec->power_filter(codec, fg, state);
if (state == power_state || power_state != AC_PWRST_D3)
snd_hda_codec_read(codec, fg, flags,
AC_VERB_SET_POWER_STATE,
state);
snd_hda_codec_set_power_to_all(codec, fg, power_state);
}
state = hda_sync_power_state(codec, fg, power_state);
if (!(state & AC_PWRST_ERROR))
break;
}
return state;
}
/* sync power states of all widgets;
* this is called at the end of codec parsing
*/
static void sync_power_up_states(struct hda_codec *codec)
{
hda_nid_t nid;
/* don't care if no filter is used */
if (!codec->power_filter)
return;
for_each_hda_codec_node(nid, codec) {
unsigned int wcaps = get_wcaps(codec, nid);
unsigned int target;
if (!(wcaps & AC_WCAP_POWER))
continue;
target = codec->power_filter(codec, nid, AC_PWRST_D0);
if (target == AC_PWRST_D0)
continue;
if (!snd_hda_check_power_state(codec, nid, target))
snd_hda_codec_write(codec, nid, 0,
AC_VERB_SET_POWER_STATE, target);
}
}
#ifdef CONFIG_SND_HDA_RECONFIG
/* execute additional init verbs */
static void hda_exec_init_verbs(struct hda_codec *codec)
{
if (codec->init_verbs.list)
snd_hda_sequence_write(codec, codec->init_verbs.list);
}
#else
static inline void hda_exec_init_verbs(struct hda_codec *codec) {}
#endif
#ifdef CONFIG_PM
/* update the power on/off account with the current jiffies */
static void update_power_acct(struct hda_codec *codec, bool on)
{
unsigned long delta = jiffies - codec->power_jiffies;
if (on)
codec->power_on_acct += delta;
else
codec->power_off_acct += delta;
codec->power_jiffies += delta;
}
void snd_hda_update_power_acct(struct hda_codec *codec)
{
update_power_acct(codec, hda_codec_is_power_on(codec));
}
/*
* call suspend and power-down; used both from PM and power-save
* this function returns the power state in the end
*/
static unsigned int hda_call_codec_suspend(struct hda_codec *codec)
{
unsigned int state;
atomic_inc(&codec->core.in_pm);
if (codec->patch_ops.suspend)
codec->patch_ops.suspend(codec);
hda_cleanup_all_streams(codec);
state = hda_set_power_state(codec, AC_PWRST_D3);
update_power_acct(codec, true);
atomic_dec(&codec->core.in_pm);
return state;
}
/* mark all entries of cmd and amp caches dirty */
static void hda_mark_cmd_cache_dirty(struct hda_codec *codec)
{
int i;
for (i = 0; i < codec->cmd_cache.buf.used; i++) {
struct hda_cache_head *cmd;
cmd = snd_array_elem(&codec->cmd_cache.buf, i);
cmd->dirty = 1;
}
for (i = 0; i < codec->amp_cache.buf.used; i++) {
struct hda_amp_info *amp;
amp = snd_array_elem(&codec->amp_cache.buf, i);
amp->head.dirty = 1;
}
}
/*
* kick up codec; used both from PM and power-save
*/
static void hda_call_codec_resume(struct hda_codec *codec)
{
atomic_inc(&codec->core.in_pm);
hda_mark_cmd_cache_dirty(codec);
codec->power_jiffies = jiffies;
hda_set_power_state(codec, AC_PWRST_D0);
restore_shutup_pins(codec);
hda_exec_init_verbs(codec);
snd_hda_jack_set_dirty_all(codec);
if (codec->patch_ops.resume)
codec->patch_ops.resume(codec);
else {
if (codec->patch_ops.init)
codec->patch_ops.init(codec);
snd_hda_codec_resume_amp(codec);
snd_hda_codec_resume_cache(codec);
}
if (codec->jackpoll_interval)
hda_jackpoll_work(&codec->jackpoll_work.work);
else
snd_hda_jack_report_sync(codec);
atomic_dec(&codec->core.in_pm);
}
static int hda_codec_runtime_suspend(struct device *dev)
{
struct hda_codec *codec = dev_to_hda_codec(dev);
struct hda_pcm *pcm;
unsigned int state;
cancel_delayed_work_sync(&codec->jackpoll_work);
list_for_each_entry(pcm, &codec->pcm_list_head, list)
snd_pcm_suspend_all(pcm->pcm);
state = hda_call_codec_suspend(codec);
if (codec_has_clkstop(codec) && codec_has_epss(codec) &&
(state & AC_PWRST_CLK_STOP_OK))
snd_hdac_codec_link_down(&codec->core);
return 0;
}
static int hda_codec_runtime_resume(struct device *dev)
{
struct hda_codec *codec = dev_to_hda_codec(dev);
snd_hdac_codec_link_up(&codec->core);
hda_call_codec_resume(codec);
pm_runtime_mark_last_busy(dev);
return 0;
}
#endif /* CONFIG_PM */
/* referred in hda_bind.c */
const struct dev_pm_ops hda_codec_driver_pm = {
SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
pm_runtime_force_resume)
SET_RUNTIME_PM_OPS(hda_codec_runtime_suspend, hda_codec_runtime_resume,
NULL)
};
/*
* add standard channel maps if not specified
*/
static int add_std_chmaps(struct hda_codec *codec)
{
struct hda_pcm *pcm;
int str, err;
list_for_each_entry(pcm, &codec->pcm_list_head, list) {
for (str = 0; str < 2; str++) {
struct hda_pcm_stream *hinfo = &pcm->stream[str];
struct snd_pcm_chmap *chmap;
const struct snd_pcm_chmap_elem *elem;
if (pcm->own_chmap)
continue;
if (!pcm || !hinfo->substreams)
continue;
elem = hinfo->chmap ? hinfo->chmap : snd_pcm_std_chmaps;
err = snd_pcm_add_chmap_ctls(pcm->pcm, str, elem,
hinfo->channels_max,
0, &chmap);
if (err < 0)
return err;
chmap->channel_mask = SND_PCM_CHMAP_MASK_2468;
}
}
return 0;
}
/* default channel maps for 2.1 speakers;
* since HD-audio supports only stereo, odd number channels are omitted
*/
const struct snd_pcm_chmap_elem snd_pcm_2_1_chmaps[] = {
{ .channels = 2,
.map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
{ .channels = 4,
.map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
SNDRV_CHMAP_LFE, SNDRV_CHMAP_LFE } },
{ }
};
EXPORT_SYMBOL_GPL(snd_pcm_2_1_chmaps);
int snd_hda_codec_build_controls(struct hda_codec *codec)
{
int err = 0;
hda_exec_init_verbs(codec);
/* continue to initialize... */
if (codec->patch_ops.init)
err = codec->patch_ops.init(codec);
if (!err && codec->patch_ops.build_controls)
err = codec->patch_ops.build_controls(codec);
if (err < 0)
return err;
/* we create chmaps here instead of build_pcms */
err = add_std_chmaps(codec);
if (err < 0)
return err;
if (codec->jackpoll_interval)
hda_jackpoll_work(&codec->jackpoll_work.work);
else
snd_hda_jack_report_sync(codec); /* call at the last init point */
sync_power_up_states(codec);
return 0;
}
/*
* stream formats
*/
struct hda_rate_tbl {
unsigned int hz;
unsigned int alsa_bits;
unsigned int hda_fmt;
};
/* rate = base * mult / div */
#define HDA_RATE(base, mult, div) \
(AC_FMT_BASE_##base##K | (((mult) - 1) << AC_FMT_MULT_SHIFT) | \
(((div) - 1) << AC_FMT_DIV_SHIFT))
static struct hda_rate_tbl rate_bits[] = {
/* rate in Hz, ALSA rate bitmask, HDA format value */
/* autodetected value used in snd_hda_query_supported_pcm */
{ 8000, SNDRV_PCM_RATE_8000, HDA_RATE(48, 1, 6) },
{ 11025, SNDRV_PCM_RATE_11025, HDA_RATE(44, 1, 4) },
{ 16000, SNDRV_PCM_RATE_16000, HDA_RATE(48, 1, 3) },
{ 22050, SNDRV_PCM_RATE_22050, HDA_RATE(44, 1, 2) },
{ 32000, SNDRV_PCM_RATE_32000, HDA_RATE(48, 2, 3) },
{ 44100, SNDRV_PCM_RATE_44100, HDA_RATE(44, 1, 1) },
{ 48000, SNDRV_PCM_RATE_48000, HDA_RATE(48, 1, 1) },
{ 88200, SNDRV_PCM_RATE_88200, HDA_RATE(44, 2, 1) },
{ 96000, SNDRV_PCM_RATE_96000, HDA_RATE(48, 2, 1) },
{ 176400, SNDRV_PCM_RATE_176400, HDA_RATE(44, 4, 1) },
{ 192000, SNDRV_PCM_RATE_192000, HDA_RATE(48, 4, 1) },
#define AC_PAR_PCM_RATE_BITS 11
/* up to bits 10, 384kHZ isn't supported properly */
/* not autodetected value */
{ 9600, SNDRV_PCM_RATE_KNOT, HDA_RATE(48, 1, 5) },
{ 0 } /* terminator */
};
/**
* snd_hda_calc_stream_format - calculate format bitset
* @codec: HD-audio codec
* @rate: the sample rate
* @channels: the number of channels
* @format: the PCM format (SNDRV_PCM_FORMAT_XXX)
* @maxbps: the max. bps
* @spdif_ctls: HD-audio SPDIF status bits (0 if irrelevant)
*
* Calculate the format bitset from the given rate, channels and th PCM format.
*
* Return zero if invalid.
*/
unsigned int snd_hda_calc_stream_format(struct hda_codec *codec,
unsigned int rate,
unsigned int channels,
unsigned int format,
unsigned int maxbps,
unsigned short spdif_ctls)
{
int i;
unsigned int val = 0;
for (i = 0; rate_bits[i].hz; i++)
if (rate_bits[i].hz == rate) {
val = rate_bits[i].hda_fmt;
break;
}
if (!rate_bits[i].hz) {
codec_dbg(codec, "invalid rate %d\n", rate);
return 0;
}
if (channels == 0 || channels > 8) {
codec_dbg(codec, "invalid channels %d\n", channels);
return 0;
}
val |= channels - 1;
switch (snd_pcm_format_width(format)) {
case 8:
val |= AC_FMT_BITS_8;
break;
case 16:
val |= AC_FMT_BITS_16;
break;
case 20:
case 24:
case 32:
if (maxbps >= 32 || format == SNDRV_PCM_FORMAT_FLOAT_LE)
val |= AC_FMT_BITS_32;
else if (maxbps >= 24)
val |= AC_FMT_BITS_24;
else
val |= AC_FMT_BITS_20;
break;
default:
codec_dbg(codec, "invalid format width %d\n",
snd_pcm_format_width(format));
return 0;
}
if (spdif_ctls & AC_DIG1_NONAUDIO)
val |= AC_FMT_TYPE_NON_PCM;
return val;
}
EXPORT_SYMBOL_GPL(snd_hda_calc_stream_format);
static unsigned int get_pcm_param(struct hda_codec *codec, hda_nid_t nid,
int dir)
{
unsigned int val = 0;
if (nid != codec->core.afg &&
(get_wcaps(codec, nid) & AC_WCAP_FORMAT_OVRD))
val = snd_hda_param_read(codec, nid, AC_PAR_PCM);
if (!val || val == -1)
val = snd_hda_param_read(codec, codec->core.afg, AC_PAR_PCM);
if (!val || val == -1)
return 0;
return val;
}
static unsigned int query_pcm_param(struct hda_codec *codec, hda_nid_t nid)
{
return query_caps_hash(codec, nid, 0, HDA_HASH_PARPCM_KEY(nid),
get_pcm_param);
}
static unsigned int get_stream_param(struct hda_codec *codec, hda_nid_t nid,
int dir)
{
unsigned int streams = snd_hda_param_read(codec, nid, AC_PAR_STREAM);
if (!streams || streams == -1)
streams = snd_hda_param_read(codec, codec->core.afg, AC_PAR_STREAM);
if (!streams || streams == -1)
return 0;
return streams;
}
static unsigned int query_stream_param(struct hda_codec *codec, hda_nid_t nid)
{
return query_caps_hash(codec, nid, 0, HDA_HASH_PARSTR_KEY(nid),
get_stream_param);
}
/**
* snd_hda_query_supported_pcm - query the supported PCM rates and formats
* @codec: the HDA codec
* @nid: NID to query
* @ratesp: the pointer to store the detected rate bitflags
* @formatsp: the pointer to store the detected formats
* @bpsp: the pointer to store the detected format widths
*
* Queries the supported PCM rates and formats. The NULL @ratesp, @formatsp
* or @bsps argument is ignored.
*
* Returns 0 if successful, otherwise a negative error code.
*/
int snd_hda_query_supported_pcm(struct hda_codec *codec, hda_nid_t nid,
u32 *ratesp, u64 *formatsp, unsigned int *bpsp)
{
unsigned int i, val, wcaps;
wcaps = get_wcaps(codec, nid);
val = query_pcm_param(codec, nid);
if (ratesp) {
u32 rates = 0;
for (i = 0; i < AC_PAR_PCM_RATE_BITS; i++) {
if (val & (1 << i))
rates |= rate_bits[i].alsa_bits;
}
if (rates == 0) {
codec_err(codec,
"rates == 0 (nid=0x%x, val=0x%x, ovrd=%i)\n",
nid, val,
(wcaps & AC_WCAP_FORMAT_OVRD) ? 1 : 0);
return -EIO;
}
*ratesp = rates;
}
if (formatsp || bpsp) {
u64 formats = 0;
unsigned int streams, bps;
streams = query_stream_param(codec, nid);
if (!streams)
return -EIO;
bps = 0;
if (streams & AC_SUPFMT_PCM) {
if (val & AC_SUPPCM_BITS_8) {
formats |= SNDRV_PCM_FMTBIT_U8;
bps = 8;
}
if (val & AC_SUPPCM_BITS_16) {
formats |= SNDRV_PCM_FMTBIT_S16_LE;
bps = 16;
}
if (wcaps & AC_WCAP_DIGITAL) {
if (val & AC_SUPPCM_BITS_32)
formats |= SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE;
if (val & (AC_SUPPCM_BITS_20|AC_SUPPCM_BITS_24))
formats |= SNDRV_PCM_FMTBIT_S32_LE;
if (val & AC_SUPPCM_BITS_24)
bps = 24;
else if (val & AC_SUPPCM_BITS_20)
bps = 20;
} else if (val & (AC_SUPPCM_BITS_20|AC_SUPPCM_BITS_24|
AC_SUPPCM_BITS_32)) {
formats |= SNDRV_PCM_FMTBIT_S32_LE;
if (val & AC_SUPPCM_BITS_32)
bps = 32;
else if (val & AC_SUPPCM_BITS_24)
bps = 24;
else if (val & AC_SUPPCM_BITS_20)
bps = 20;
}
}
#if 0 /* FIXME: CS4206 doesn't work, which is the only codec supporting float */
if (streams & AC_SUPFMT_FLOAT32) {
formats |= SNDRV_PCM_FMTBIT_FLOAT_LE;
if (!bps)
bps = 32;
}
#endif
if (streams == AC_SUPFMT_AC3) {
/* should be exclusive */
/* temporary hack: we have still no proper support
* for the direct AC3 stream...
*/
formats |= SNDRV_PCM_FMTBIT_U8;
bps = 8;
}
if (formats == 0) {
codec_err(codec,
"formats == 0 (nid=0x%x, val=0x%x, ovrd=%i, streams=0x%x)\n",
nid, val,
(wcaps & AC_WCAP_FORMAT_OVRD) ? 1 : 0,
streams);
return -EIO;
}
if (formatsp)
*formatsp = formats;
if (bpsp)
*bpsp = bps;
}
return 0;
}
EXPORT_SYMBOL_GPL(snd_hda_query_supported_pcm);
/**
* snd_hda_is_supported_format - Check the validity of the format
* @codec: HD-audio codec
* @nid: NID to check
* @format: the HD-audio format value to check
*
* Check whether the given node supports the format value.
*
* Returns 1 if supported, 0 if not.
*/
int snd_hda_is_supported_format(struct hda_codec *codec, hda_nid_t nid,
unsigned int format)
{
int i;
unsigned int val = 0, rate, stream;
val = query_pcm_param(codec, nid);
if (!val)
return 0;
rate = format & 0xff00;
for (i = 0; i < AC_PAR_PCM_RATE_BITS; i++)
if (rate_bits[i].hda_fmt == rate) {
if (val & (1 << i))
break;
return 0;
}
if (i >= AC_PAR_PCM_RATE_BITS)
return 0;
stream = query_stream_param(codec, nid);
if (!stream)
return 0;
if (stream & AC_SUPFMT_PCM) {
switch (format & 0xf0) {
case 0x00:
if (!(val & AC_SUPPCM_BITS_8))
return 0;
break;
case 0x10:
if (!(val & AC_SUPPCM_BITS_16))
return 0;
break;
case 0x20:
if (!(val & AC_SUPPCM_BITS_20))
return 0;
break;
case 0x30:
if (!(val & AC_SUPPCM_BITS_24))
return 0;
break;
case 0x40:
if (!(val & AC_SUPPCM_BITS_32))
return 0;
break;
default:
return 0;
}
} else {
/* FIXME: check for float32 and AC3? */
}
return 1;
}
EXPORT_SYMBOL_GPL(snd_hda_is_supported_format);
/*
* PCM stuff
*/
static int hda_pcm_default_open_close(struct hda_pcm_stream *hinfo,
struct hda_codec *codec,
struct snd_pcm_substream *substream)
{
return 0;
}
static int hda_pcm_default_prepare(struct hda_pcm_stream *hinfo,
struct hda_codec *codec,
unsigned int stream_tag,
unsigned int format,
struct snd_pcm_substream *substream)
{
snd_hda_codec_setup_stream(codec, hinfo->nid, stream_tag, 0, format);
return 0;
}
static int hda_pcm_default_cleanup(struct hda_pcm_stream *hinfo,
struct hda_codec *codec,
struct snd_pcm_substream *substream)
{
snd_hda_codec_cleanup_stream(codec, hinfo->nid);
return 0;
}
static int set_pcm_default_values(struct hda_codec *codec,
struct hda_pcm_stream *info)
{
int err;
/* query support PCM information from the given NID */
if (info->nid && (!info->rates || !info->formats)) {
err = snd_hda_query_supported_pcm(codec, info->nid,
info->rates ? NULL : &info->rates,
info->formats ? NULL : &info->formats,
info->maxbps ? NULL : &info->maxbps);
if (err < 0)
return err;
}
if (info->ops.open == NULL)
info->ops.open = hda_pcm_default_open_close;
if (info->ops.close == NULL)
info->ops.close = hda_pcm_default_open_close;
if (info->ops.prepare == NULL) {
if (snd_BUG_ON(!info->nid))
return -EINVAL;
info->ops.prepare = hda_pcm_default_prepare;
}
if (info->ops.cleanup == NULL) {
if (snd_BUG_ON(!info->nid))
return -EINVAL;
info->ops.cleanup = hda_pcm_default_cleanup;
}
return 0;
}
/*
* codec prepare/cleanup entries
*/
/**
* snd_hda_codec_prepare - Prepare a stream
* @codec: the HDA codec
* @hinfo: PCM information
* @stream: stream tag to assign
* @format: format id to assign
* @substream: PCM substream to assign
*
* Calls the prepare callback set by the codec with the given arguments.
* Clean up the inactive streams when successful.
*/
int snd_hda_codec_prepare(struct hda_codec *codec,
struct hda_pcm_stream *hinfo,
unsigned int stream,
unsigned int format,
struct snd_pcm_substream *substream)
{
int ret;
mutex_lock(&codec->bus->prepare_mutex);
if (hinfo->ops.prepare)
ret = hinfo->ops.prepare(hinfo, codec, stream, format,
substream);
else
ret = -ENODEV;
if (ret >= 0)
purify_inactive_streams(codec);
mutex_unlock(&codec->bus->prepare_mutex);
return ret;
}
EXPORT_SYMBOL_GPL(snd_hda_codec_prepare);
/**
* snd_hda_codec_cleanup - Prepare a stream
* @codec: the HDA codec
* @hinfo: PCM information
* @substream: PCM substream
*
* Calls the cleanup callback set by the codec with the given arguments.
*/
void snd_hda_codec_cleanup(struct hda_codec *codec,
struct hda_pcm_stream *hinfo,
struct snd_pcm_substream *substream)
{
mutex_lock(&codec->bus->prepare_mutex);
if (hinfo->ops.cleanup)
hinfo->ops.cleanup(hinfo, codec, substream);
mutex_unlock(&codec->bus->prepare_mutex);
}
EXPORT_SYMBOL_GPL(snd_hda_codec_cleanup);
/* global */
const char *snd_hda_pcm_type_name[HDA_PCM_NTYPES] = {
"Audio", "SPDIF", "HDMI", "Modem"
};
/*
* get the empty PCM device number to assign
*/
static int get_empty_pcm_device(struct hda_bus *bus, unsigned int type)
{
/* audio device indices; not linear to keep compatibility */
/* assigned to static slots up to dev#10; if more needed, assign
* the later slot dynamically (when CONFIG_SND_DYNAMIC_MINORS=y)
*/
static int audio_idx[HDA_PCM_NTYPES][5] = {
[HDA_PCM_TYPE_AUDIO] = { 0, 2, 4, 5, -1 },
[HDA_PCM_TYPE_SPDIF] = { 1, -1 },
[HDA_PCM_TYPE_HDMI] = { 3, 7, 8, 9, -1 },
[HDA_PCM_TYPE_MODEM] = { 6, -1 },
};
int i;
if (type >= HDA_PCM_NTYPES) {
dev_err(bus->card->dev, "Invalid PCM type %d\n", type);
return -EINVAL;
}
for (i = 0; audio_idx[type][i] >= 0; i++) {
#ifndef CONFIG_SND_DYNAMIC_MINORS
if (audio_idx[type][i] >= 8)
break;
#endif
if (!test_and_set_bit(audio_idx[type][i], bus->pcm_dev_bits))
return audio_idx[type][i];
}
#ifdef CONFIG_SND_DYNAMIC_MINORS
/* non-fixed slots starting from 10 */
for (i = 10; i < 32; i++) {
if (!test_and_set_bit(i, bus->pcm_dev_bits))
return i;
}
#endif
dev_warn(bus->card->dev, "Too many %s devices\n",
snd_hda_pcm_type_name[type]);
#ifndef CONFIG_SND_DYNAMIC_MINORS
dev_warn(bus->card->dev,
"Consider building the kernel with CONFIG_SND_DYNAMIC_MINORS=y\n");
#endif
return -EAGAIN;
}
/* call build_pcms ops of the given codec and set up the default parameters */
int snd_hda_codec_parse_pcms(struct hda_codec *codec)
{
struct hda_pcm *cpcm;
int err;
if (!list_empty(&codec->pcm_list_head))
return 0; /* already parsed */
if (!codec->patch_ops.build_pcms)
return 0;
err = codec->patch_ops.build_pcms(codec);
if (err < 0) {
codec_err(codec, "cannot build PCMs for #%d (error %d)\n",
codec->core.addr, err);
return err;
}
list_for_each_entry(cpcm, &codec->pcm_list_head, list) {
int stream;
for (stream = 0; stream < 2; stream++) {
struct hda_pcm_stream *info = &cpcm->stream[stream];
if (!info->substreams)
continue;
err = set_pcm_default_values(codec, info);
if (err < 0) {
codec_warn(codec,
"fail to setup default for PCM %s\n",
cpcm->name);
return err;
}
}
}
return 0;
}
/* assign all PCMs of the given codec */
int snd_hda_codec_build_pcms(struct hda_codec *codec)
{
struct hda_bus *bus = codec->bus;
struct hda_pcm *cpcm;
int dev, err;
if (snd_BUG_ON(!bus->ops.attach_pcm))
return -EINVAL;
err = snd_hda_codec_parse_pcms(codec);
if (err < 0) {
snd_hda_codec_reset(codec);
return err;
}
/* attach a new PCM streams */
list_for_each_entry(cpcm, &codec->pcm_list_head, list) {
if (cpcm->pcm)
continue; /* already attached */
if (!cpcm->stream[0].substreams && !cpcm->stream[1].substreams)
continue; /* no substreams assigned */
dev = get_empty_pcm_device(bus, cpcm->pcm_type);
if (dev < 0)
continue; /* no fatal error */
cpcm->device = dev;
err = bus->ops.attach_pcm(bus, codec, cpcm);
if (err < 0) {
codec_err(codec,
"cannot attach PCM stream %d for codec #%d\n",
dev, codec->core.addr);
continue; /* no fatal error */
}
}
return 0;
}
/**
* snd_hda_add_new_ctls - create controls from the array
* @codec: the HDA codec
* @knew: the array of struct snd_kcontrol_new
*
* This helper function creates and add new controls in the given array.
* The array must be terminated with an empty entry as terminator.
*
* Returns 0 if successful, or a negative error code.
*/
int snd_hda_add_new_ctls(struct hda_codec *codec,
const struct snd_kcontrol_new *knew)
{
int err;
for (; knew->name; knew++) {
struct snd_kcontrol *kctl;
int addr = 0, idx = 0;
if (knew->iface == -1) /* skip this codec private value */
continue;
for (;;) {
kctl = snd_ctl_new1(knew, codec);
if (!kctl)
return -ENOMEM;
if (addr > 0)
kctl->id.device = addr;
if (idx > 0)
kctl->id.index = idx;
err = snd_hda_ctl_add(codec, 0, kctl);
if (!err)
break;
/* try first with another device index corresponding to
* the codec addr; if it still fails (or it's the
* primary codec), then try another control index
*/
if (!addr && codec->core.addr)
addr = codec->core.addr;
else if (!idx && !knew->index) {
idx = find_empty_mixer_ctl_idx(codec,
knew->name, 0);
if (idx <= 0)
return err;
} else
return err;
}
}
return 0;
}
EXPORT_SYMBOL_GPL(snd_hda_add_new_ctls);
#ifdef CONFIG_PM
static void codec_set_power_save(struct hda_codec *codec, int delay)
{
struct device *dev = hda_codec_dev(codec);
if (delay > 0) {
pm_runtime_set_autosuspend_delay(dev, delay);
pm_runtime_use_autosuspend(dev);
pm_runtime_allow(dev);
if (!pm_runtime_suspended(dev))
pm_runtime_mark_last_busy(dev);
} else {
pm_runtime_dont_use_autosuspend(dev);
pm_runtime_forbid(dev);
}
}
/**
* snd_hda_set_power_save - reprogram autosuspend for the given delay
* @bus: HD-audio bus
* @delay: autosuspend delay in msec, 0 = off
*
* Synchronize the runtime PM autosuspend state from the power_save option.
*/
void snd_hda_set_power_save(struct hda_bus *bus, int delay)
{
struct hda_codec *c;
list_for_each_codec(c, bus)
codec_set_power_save(c, delay);
}
EXPORT_SYMBOL_GPL(snd_hda_set_power_save);
/**
* snd_hda_check_amp_list_power - Check the amp list and update the power
* @codec: HD-audio codec
* @check: the object containing an AMP list and the status
* @nid: NID to check / update
*
* Check whether the given NID is in the amp list. If it's in the list,
* check the current AMP status, and update the the power-status according
* to the mute status.
*
* This function is supposed to be set or called from the check_power_status
* patch ops.
*/
int snd_hda_check_amp_list_power(struct hda_codec *codec,
struct hda_loopback_check *check,
hda_nid_t nid)
{
const struct hda_amp_list *p;
int ch, v;
if (!check->amplist)
return 0;
for (p = check->amplist; p->nid; p++) {
if (p->nid == nid)
break;
}
if (!p->nid)
return 0; /* nothing changed */
for (p = check->amplist; p->nid; p++) {
for (ch = 0; ch < 2; ch++) {
v = snd_hda_codec_amp_read(codec, p->nid, ch, p->dir,
p->idx);
if (!(v & HDA_AMP_MUTE) && v > 0) {
if (!check->power_on) {
check->power_on = 1;
snd_hda_power_up(codec);
}
return 1;
}
}
}
if (check->power_on) {
check->power_on = 0;
snd_hda_power_down(codec);
}
return 0;
}
EXPORT_SYMBOL_GPL(snd_hda_check_amp_list_power);
#endif
/*
* input MUX helper
*/
/**
* snd_hda_input_mux_info_info - Info callback helper for the input-mux enum
* @imux: imux helper object
* @uinfo: pointer to get/store the data
*/
int snd_hda_input_mux_info(const struct hda_input_mux *imux,
struct snd_ctl_elem_info *uinfo)
{
unsigned int index;
uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
uinfo->count = 1;
uinfo->value.enumerated.items = imux->num_items;
if (!imux->num_items)
return 0;
index = uinfo->value.enumerated.item;
if (index >= imux->num_items)
index = imux->num_items - 1;
strcpy(uinfo->value.enumerated.name, imux->items[index].label);
return 0;
}
EXPORT_SYMBOL_GPL(snd_hda_input_mux_info);
/**
* snd_hda_input_mux_info_put - Put callback helper for the input-mux enum
* @codec: the HDA codec
* @imux: imux helper object
* @ucontrol: pointer to get/store the data
* @nid: input mux NID
* @cur_val: pointer to get/store the current imux value
*/
int snd_hda_input_mux_put(struct hda_codec *codec,
const struct hda_input_mux *imux,
struct snd_ctl_elem_value *ucontrol,
hda_nid_t nid,
unsigned int *cur_val)
{
unsigned int idx;
if (!imux->num_items)
return 0;
idx = ucontrol->value.enumerated.item[0];
if (idx >= imux->num_items)
idx = imux->num_items - 1;
if (*cur_val == idx)
return 0;
snd_hda_codec_write_cache(codec, nid, 0, AC_VERB_SET_CONNECT_SEL,
imux->items[idx].index);
*cur_val = idx;
return 1;
}
EXPORT_SYMBOL_GPL(snd_hda_input_mux_put);
/**
* snd_hda_enum_helper_info - Helper for simple enum ctls
* @kcontrol: ctl element
* @uinfo: pointer to get/store the data
* @num_items: number of enum items
* @texts: enum item string array
*
* process kcontrol info callback of a simple string enum array
* when @num_items is 0 or @texts is NULL, assume a boolean enum array
*/
int snd_hda_enum_helper_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo,
int num_items, const char * const *texts)
{
static const char * const texts_default[] = {
"Disabled", "Enabled"
};
if (!texts || !num_items) {
num_items = 2;
texts = texts_default;
}
return snd_ctl_enum_info(uinfo, 1, num_items, texts);
}
EXPORT_SYMBOL_GPL(snd_hda_enum_helper_info);
/*
* Multi-channel / digital-out PCM helper functions
*/
/* setup SPDIF output stream */
static void setup_dig_out_stream(struct hda_codec *codec, hda_nid_t nid,
unsigned int stream_tag, unsigned int format)
{
struct hda_spdif_out *spdif;
unsigned int curr_fmt;
bool reset;
spdif = snd_hda_spdif_out_of_nid(codec, nid);
curr_fmt = snd_hda_codec_read(codec, nid, 0,
AC_VERB_GET_STREAM_FORMAT, 0);
reset = codec->spdif_status_reset &&
(spdif->ctls & AC_DIG1_ENABLE) &&
curr_fmt != format;
/* turn off SPDIF if needed; otherwise the IEC958 bits won't be
updated */
if (reset)
set_dig_out_convert(codec, nid,
spdif->ctls & ~AC_DIG1_ENABLE & 0xff,
-1);
snd_hda_codec_setup_stream(codec, nid, stream_tag, 0, format);
if (codec->slave_dig_outs) {
const hda_nid_t *d;
for (d = codec->slave_dig_outs; *d; d++)
snd_hda_codec_setup_stream(codec, *d, stream_tag, 0,
format);
}
/* turn on again (if needed) */
if (reset)
set_dig_out_convert(codec, nid,
spdif->ctls & 0xff, -1);
}
static void cleanup_dig_out_stream(struct hda_codec *codec, hda_nid_t nid)
{
snd_hda_codec_cleanup_stream(codec, nid);
if (codec->slave_dig_outs) {
const hda_nid_t *d;
for (d = codec->slave_dig_outs; *d; d++)
snd_hda_codec_cleanup_stream(codec, *d);
}
}
/**
* snd_hda_multi_out_dig_open - open the digital out in the exclusive mode
* @codec: the HDA codec
* @mout: hda_multi_out object
*/
int snd_hda_multi_out_dig_open(struct hda_codec *codec,
struct hda_multi_out *mout)
{
mutex_lock(&codec->spdif_mutex);
if (mout->dig_out_used == HDA_DIG_ANALOG_DUP)
/* already opened as analog dup; reset it once */
cleanup_dig_out_stream(codec, mout->dig_out_nid);
mout->dig_out_used = HDA_DIG_EXCLUSIVE;
mutex_unlock(&codec->spdif_mutex);
return 0;
}
EXPORT_SYMBOL_GPL(snd_hda_multi_out_dig_open);
/**
* snd_hda_multi_out_dig_prepare - prepare the digital out stream
* @codec: the HDA codec
* @mout: hda_multi_out object
* @stream_tag: stream tag to assign
* @format: format id to assign
* @substream: PCM substream to assign
*/
int snd_hda_multi_out_dig_prepare(struct hda_codec *codec,
struct hda_multi_out *mout,
unsigned int stream_tag,
unsigned int format,
struct snd_pcm_substream *substream)
{
mutex_lock(&codec->spdif_mutex);
setup_dig_out_stream(codec, mout->dig_out_nid, stream_tag, format);
mutex_unlock(&codec->spdif_mutex);
return 0;
}
EXPORT_SYMBOL_GPL(snd_hda_multi_out_dig_prepare);
/**
* snd_hda_multi_out_dig_cleanup - clean-up the digital out stream
* @codec: the HDA codec
* @mout: hda_multi_out object
*/
int snd_hda_multi_out_dig_cleanup(struct hda_codec *codec,
struct hda_multi_out *mout)
{
mutex_lock(&codec->spdif_mutex);
cleanup_dig_out_stream(codec, mout->dig_out_nid);
mutex_unlock(&codec->spdif_mutex);
return 0;
}
EXPORT_SYMBOL_GPL(snd_hda_multi_out_dig_cleanup);
/**
* snd_hda_multi_out_dig_close - release the digital out stream
* @codec: the HDA codec
* @mout: hda_multi_out object
*/
int snd_hda_multi_out_dig_close(struct hda_codec *codec,
struct hda_multi_out *mout)
{
mutex_lock(&codec->spdif_mutex);
mout->dig_out_used = 0;
mutex_unlock(&codec->spdif_mutex);
return 0;
}
EXPORT_SYMBOL_GPL(snd_hda_multi_out_dig_close);
/**
* snd_hda_multi_out_analog_open - open analog outputs
* @codec: the HDA codec
* @mout: hda_multi_out object
* @substream: PCM substream to assign
* @hinfo: PCM information to assign
*
* Open analog outputs and set up the hw-constraints.
* If the digital outputs can be opened as slave, open the digital
* outputs, too.
*/
int snd_hda_multi_out_analog_open(struct hda_codec *codec,
struct hda_multi_out *mout,
struct snd_pcm_substream *substream,
struct hda_pcm_stream *hinfo)
{
struct snd_pcm_runtime *runtime = substream->runtime;
runtime->hw.channels_max = mout->max_channels;
if (mout->dig_out_nid) {
if (!mout->analog_rates) {
mout->analog_rates = hinfo->rates;
mout->analog_formats = hinfo->formats;
mout->analog_maxbps = hinfo->maxbps;
} else {
runtime->hw.rates = mout->analog_rates;
runtime->hw.formats = mout->analog_formats;
hinfo->maxbps = mout->analog_maxbps;
}
if (!mout->spdif_rates) {
snd_hda_query_supported_pcm(codec, mout->dig_out_nid,
&mout->spdif_rates,
&mout->spdif_formats,
&mout->spdif_maxbps);
}
mutex_lock(&codec->spdif_mutex);
if (mout->share_spdif) {
if ((runtime->hw.rates & mout->spdif_rates) &&
(runtime->hw.formats & mout->spdif_formats)) {
runtime->hw.rates &= mout->spdif_rates;
runtime->hw.formats &= mout->spdif_formats;
if (mout->spdif_maxbps < hinfo->maxbps)
hinfo->maxbps = mout->spdif_maxbps;
} else {
mout->share_spdif = 0;
/* FIXME: need notify? */
}
}
mutex_unlock(&codec->spdif_mutex);
}
return snd_pcm_hw_constraint_step(substream->runtime, 0,
SNDRV_PCM_HW_PARAM_CHANNELS, 2);
}
EXPORT_SYMBOL_GPL(snd_hda_multi_out_analog_open);
/**
* snd_hda_multi_out_analog_prepare - Preapre the analog outputs.
* @codec: the HDA codec
* @mout: hda_multi_out object
* @stream_tag: stream tag to assign
* @format: format id to assign
* @substream: PCM substream to assign
*
* Set up the i/o for analog out.
* When the digital out is available, copy the front out to digital out, too.
*/
int snd_hda_multi_out_analog_prepare(struct hda_codec *codec,
struct hda_multi_out *mout,
unsigned int stream_tag,
unsigned int format,
struct snd_pcm_substream *substream)
{
const hda_nid_t *nids = mout->dac_nids;
int chs = substream->runtime->channels;
struct hda_spdif_out *spdif;
int i;
mutex_lock(&codec->spdif_mutex);
spdif = snd_hda_spdif_out_of_nid(codec, mout->dig_out_nid);
if (mout->dig_out_nid && mout->share_spdif &&
mout->dig_out_used != HDA_DIG_EXCLUSIVE) {
if (chs == 2 &&
snd_hda_is_supported_format(codec, mout->dig_out_nid,
format) &&
!(spdif->status & IEC958_AES0_NONAUDIO)) {
mout->dig_out_used = HDA_DIG_ANALOG_DUP;
setup_dig_out_stream(codec, mout->dig_out_nid,
stream_tag, format);
} else {
mout->dig_out_used = 0;
cleanup_dig_out_stream(codec, mout->dig_out_nid);
}
}
mutex_unlock(&codec->spdif_mutex);
/* front */
snd_hda_codec_setup_stream(codec, nids[HDA_FRONT], stream_tag,
0, format);
if (!mout->no_share_stream &&
mout->hp_nid && mout->hp_nid != nids[HDA_FRONT])
/* headphone out will just decode front left/right (stereo) */
snd_hda_codec_setup_stream(codec, mout->hp_nid, stream_tag,
0, format);
/* extra outputs copied from front */
for (i = 0; i < ARRAY_SIZE(mout->hp_out_nid); i++)
if (!mout->no_share_stream && mout->hp_out_nid[i])
snd_hda_codec_setup_stream(codec,
mout->hp_out_nid[i],
stream_tag, 0, format);
/* surrounds */
for (i = 1; i < mout->num_dacs; i++) {
if (chs >= (i + 1) * 2) /* independent out */
snd_hda_codec_setup_stream(codec, nids[i], stream_tag,
i * 2, format);
else if (!mout->no_share_stream) /* copy front */
snd_hda_codec_setup_stream(codec, nids[i], stream_tag,
0, format);
}
/* extra surrounds */
for (i = 0; i < ARRAY_SIZE(mout->extra_out_nid); i++) {
int ch = 0;
if (!mout->extra_out_nid[i])
break;
if (chs >= (i + 1) * 2)
ch = i * 2;
else if (!mout->no_share_stream)
break;
snd_hda_codec_setup_stream(codec, mout->extra_out_nid[i],
stream_tag, ch, format);
}
return 0;
}
EXPORT_SYMBOL_GPL(snd_hda_multi_out_analog_prepare);
/**
* snd_hda_multi_out_analog_cleanup - clean up the setting for analog out
* @codec: the HDA codec
* @mout: hda_multi_out object
*/
int snd_hda_multi_out_analog_cleanup(struct hda_codec *codec,
struct hda_multi_out *mout)
{
const hda_nid_t *nids = mout->dac_nids;
int i;
for (i = 0; i < mout->num_dacs; i++)
snd_hda_codec_cleanup_stream(codec, nids[i]);
if (mout->hp_nid)
snd_hda_codec_cleanup_stream(codec, mout->hp_nid);
for (i = 0; i < ARRAY_SIZE(mout->hp_out_nid); i++)
if (mout->hp_out_nid[i])
snd_hda_codec_cleanup_stream(codec,
mout->hp_out_nid[i]);
for (i = 0; i < ARRAY_SIZE(mout->extra_out_nid); i++)
if (mout->extra_out_nid[i])
snd_hda_codec_cleanup_stream(codec,
mout->extra_out_nid[i]);
mutex_lock(&codec->spdif_mutex);
if (mout->dig_out_nid && mout->dig_out_used == HDA_DIG_ANALOG_DUP) {
cleanup_dig_out_stream(codec, mout->dig_out_nid);
mout->dig_out_used = 0;
}
mutex_unlock(&codec->spdif_mutex);
return 0;
}
EXPORT_SYMBOL_GPL(snd_hda_multi_out_analog_cleanup);
/**
* snd_hda_get_default_vref - Get the default (mic) VREF pin bits
* @codec: the HDA codec
* @pin: referred pin NID
*
* Guess the suitable VREF pin bits to be set as the pin-control value.
* Note: the function doesn't set the AC_PINCTL_IN_EN bit.
*/
unsigned int snd_hda_get_default_vref(struct hda_codec *codec, hda_nid_t pin)
{
unsigned int pincap;
unsigned int oldval;
oldval = snd_hda_codec_read(codec, pin, 0,
AC_VERB_GET_PIN_WIDGET_CONTROL, 0);
pincap = snd_hda_query_pin_caps(codec, pin);
pincap = (pincap & AC_PINCAP_VREF) >> AC_PINCAP_VREF_SHIFT;
/* Exception: if the default pin setup is vref50, we give it priority */
if ((pincap & AC_PINCAP_VREF_80) && oldval != PIN_VREF50)
return AC_PINCTL_VREF_80;
else if (pincap & AC_PINCAP_VREF_50)
return AC_PINCTL_VREF_50;
else if (pincap & AC_PINCAP_VREF_100)
return AC_PINCTL_VREF_100;
else if (pincap & AC_PINCAP_VREF_GRD)
return AC_PINCTL_VREF_GRD;
return AC_PINCTL_VREF_HIZ;
}
EXPORT_SYMBOL_GPL(snd_hda_get_default_vref);
/**
* snd_hda_correct_pin_ctl - correct the pin ctl value for matching with the pin cap
* @codec: the HDA codec
* @pin: referred pin NID
* @val: pin ctl value to audit
*/
unsigned int snd_hda_correct_pin_ctl(struct hda_codec *codec,
hda_nid_t pin, unsigned int val)
{
static unsigned int cap_lists[][2] = {
{ AC_PINCTL_VREF_100, AC_PINCAP_VREF_100 },
{ AC_PINCTL_VREF_80, AC_PINCAP_VREF_80 },
{ AC_PINCTL_VREF_50, AC_PINCAP_VREF_50 },
{ AC_PINCTL_VREF_GRD, AC_PINCAP_VREF_GRD },
};
unsigned int cap;
if (!val)
return 0;
cap = snd_hda_query_pin_caps(codec, pin);
if (!cap)
return val; /* don't know what to do... */
if (val & AC_PINCTL_OUT_EN) {
if (!(cap & AC_PINCAP_OUT))
val &= ~(AC_PINCTL_OUT_EN | AC_PINCTL_HP_EN);
else if ((val & AC_PINCTL_HP_EN) && !(cap & AC_PINCAP_HP_DRV))
val &= ~AC_PINCTL_HP_EN;
}
if (val & AC_PINCTL_IN_EN) {
if (!(cap & AC_PINCAP_IN))
val &= ~(AC_PINCTL_IN_EN | AC_PINCTL_VREFEN);
else {
unsigned int vcap, vref;
int i;
vcap = (cap & AC_PINCAP_VREF) >> AC_PINCAP_VREF_SHIFT;
vref = val & AC_PINCTL_VREFEN;
for (i = 0; i < ARRAY_SIZE(cap_lists); i++) {
if (vref == cap_lists[i][0] &&
!(vcap & cap_lists[i][1])) {
if (i == ARRAY_SIZE(cap_lists) - 1)
vref = AC_PINCTL_VREF_HIZ;
else
vref = cap_lists[i + 1][0];
}
}
val &= ~AC_PINCTL_VREFEN;
val |= vref;
}
}
return val;
}
EXPORT_SYMBOL_GPL(snd_hda_correct_pin_ctl);
/**
* _snd_hda_pin_ctl - Helper to set pin ctl value
* @codec: the HDA codec
* @pin: referred pin NID
* @val: pin control value to set
* @cached: access over codec pinctl cache or direct write
*
* This function is a helper to set a pin ctl value more safely.
* It corrects the pin ctl value via snd_hda_correct_pin_ctl(), stores the
* value in pin target array via snd_hda_codec_set_pin_target(), then
* actually writes the value via either snd_hda_codec_update_cache() or
* snd_hda_codec_write() depending on @cached flag.
*/
int _snd_hda_set_pin_ctl(struct hda_codec *codec, hda_nid_t pin,
unsigned int val, bool cached)
{
val = snd_hda_correct_pin_ctl(codec, pin, val);
snd_hda_codec_set_pin_target(codec, pin, val);
if (cached)
return snd_hda_codec_update_cache(codec, pin, 0,
AC_VERB_SET_PIN_WIDGET_CONTROL, val);
else
return snd_hda_codec_write(codec, pin, 0,
AC_VERB_SET_PIN_WIDGET_CONTROL, val);
}
EXPORT_SYMBOL_GPL(_snd_hda_set_pin_ctl);
/**
* snd_hda_add_imux_item - Add an item to input_mux
* @codec: the HDA codec
* @imux: imux helper object
* @label: the name of imux item to assign
* @index: index number of imux item to assign
* @type_idx: pointer to store the resultant label index
*
* When the same label is used already in the existing items, the number
* suffix is appended to the label. This label index number is stored
* to type_idx when non-NULL pointer is given.
*/
int snd_hda_add_imux_item(struct hda_codec *codec,
struct hda_input_mux *imux, const char *label,
int index, int *type_idx)
{
int i, label_idx = 0;
if (imux->num_items >= HDA_MAX_NUM_INPUTS) {
codec_err(codec, "hda_codec: Too many imux items!\n");
return -EINVAL;
}
for (i = 0; i < imux->num_items; i++) {
if (!strncmp(label, imux->items[i].label, strlen(label)))
label_idx++;
}
if (type_idx)
*type_idx = label_idx;
if (label_idx > 0)
snprintf(imux->items[imux->num_items].label,
sizeof(imux->items[imux->num_items].label),
"%s %d", label, label_idx);
else
strlcpy(imux->items[imux->num_items].label, label,
sizeof(imux->items[imux->num_items].label));
imux->items[imux->num_items].index = index;
imux->num_items++;
return 0;
}
EXPORT_SYMBOL_GPL(snd_hda_add_imux_item);
/**
* snd_hda_bus_reset - Reset the bus
* @bus: HD-audio bus
*/
void snd_hda_bus_reset(struct hda_bus *bus)
{
struct hda_codec *codec;
list_for_each_codec(codec, bus) {
/* FIXME: maybe a better way needed for forced reset */
cancel_delayed_work_sync(&codec->jackpoll_work);
#ifdef CONFIG_PM
if (hda_codec_is_power_on(codec)) {
hda_call_codec_suspend(codec);
hda_call_codec_resume(codec);
}
#endif
}
}
EXPORT_SYMBOL_GPL(snd_hda_bus_reset);
/**
* snd_print_pcm_bits - Print the supported PCM fmt bits to the string buffer
* @pcm: PCM caps bits
* @buf: the string buffer to write
* @buflen: the max buffer length
*
* used by hda_proc.c and hda_eld.c
*/
void snd_print_pcm_bits(int pcm, char *buf, int buflen)
{
static unsigned int bits[] = { 8, 16, 20, 24, 32 };
int i, j;
for (i = 0, j = 0; i < ARRAY_SIZE(bits); i++)
if (pcm & (AC_SUPPCM_BITS_8 << i))
j += snprintf(buf + j, buflen - j, " %d", bits[i]);
buf[j] = '\0'; /* necessary when j == 0 */
}
EXPORT_SYMBOL_GPL(snd_print_pcm_bits);
MODULE_DESCRIPTION("HDA codec core");
MODULE_LICENSE("GPL");