96379f6007
uprobe_opcode_sz refers to the smallest instruction size for that architecture. UPROBES_BKPT_INSN_SIZE refers to the size of the breakpoint instruction for that architecture. For now we are assuming that both uprobe_opcode_sz and UPROBES_BKPT_INSN_SIZE are the same for all archs and hence removing uprobe_opcode_sz in favour of UPROBES_BKPT_INSN_SIZE. However if we have to support architectures where the smallest instruction size is different from the size of breakpoint instruction, we may have to re-introduce uprobe_opcode_sz. Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Cc: Anton Arapov <anton@redhat.com> Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com> Cc: Jim Keniston <jkenisto@linux.vnet.ibm.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Josh Stone <jistone@redhat.com> Link: http://lkml.kernel.org/r/20120222091549.15880.67020.sendpatchset@srdronam.in.ibm.com Signed-off-by: Ingo Molnar <mingo@elte.hu>
1012 lines
23 KiB
C
1012 lines
23 KiB
C
/*
|
|
* User-space Probes (UProbes)
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
*
|
|
* Copyright (C) IBM Corporation, 2008-2011
|
|
* Authors:
|
|
* Srikar Dronamraju
|
|
* Jim Keniston
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/pagemap.h> /* read_mapping_page */
|
|
#include <linux/slab.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/rmap.h> /* anon_vma_prepare */
|
|
#include <linux/mmu_notifier.h> /* set_pte_at_notify */
|
|
#include <linux/swap.h> /* try_to_free_swap */
|
|
|
|
#include <linux/uprobes.h>
|
|
|
|
static struct rb_root uprobes_tree = RB_ROOT;
|
|
|
|
static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */
|
|
|
|
#define UPROBES_HASH_SZ 13
|
|
|
|
/* serialize (un)register */
|
|
static struct mutex uprobes_mutex[UPROBES_HASH_SZ];
|
|
|
|
#define uprobes_hash(v) (&uprobes_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
|
|
|
|
/* serialize uprobe->pending_list */
|
|
static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
|
|
#define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
|
|
|
|
/*
|
|
* uprobe_events allows us to skip the uprobe_mmap if there are no uprobe
|
|
* events active at this time. Probably a fine grained per inode count is
|
|
* better?
|
|
*/
|
|
static atomic_t uprobe_events = ATOMIC_INIT(0);
|
|
|
|
/*
|
|
* Maintain a temporary per vma info that can be used to search if a vma
|
|
* has already been handled. This structure is introduced since extending
|
|
* vm_area_struct wasnt recommended.
|
|
*/
|
|
struct vma_info {
|
|
struct list_head probe_list;
|
|
struct mm_struct *mm;
|
|
loff_t vaddr;
|
|
};
|
|
|
|
/*
|
|
* valid_vma: Verify if the specified vma is an executable vma
|
|
* Relax restrictions while unregistering: vm_flags might have
|
|
* changed after breakpoint was inserted.
|
|
* - is_register: indicates if we are in register context.
|
|
* - Return 1 if the specified virtual address is in an
|
|
* executable vma.
|
|
*/
|
|
static bool valid_vma(struct vm_area_struct *vma, bool is_register)
|
|
{
|
|
if (!vma->vm_file)
|
|
return false;
|
|
|
|
if (!is_register)
|
|
return true;
|
|
|
|
if ((vma->vm_flags & (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)) == (VM_READ|VM_EXEC))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static loff_t vma_address(struct vm_area_struct *vma, loff_t offset)
|
|
{
|
|
loff_t vaddr;
|
|
|
|
vaddr = vma->vm_start + offset;
|
|
vaddr -= vma->vm_pgoff << PAGE_SHIFT;
|
|
|
|
return vaddr;
|
|
}
|
|
|
|
/**
|
|
* __replace_page - replace page in vma by new page.
|
|
* based on replace_page in mm/ksm.c
|
|
*
|
|
* @vma: vma that holds the pte pointing to page
|
|
* @page: the cowed page we are replacing by kpage
|
|
* @kpage: the modified page we replace page by
|
|
*
|
|
* Returns 0 on success, -EFAULT on failure.
|
|
*/
|
|
static int __replace_page(struct vm_area_struct *vma, struct page *page, struct page *kpage)
|
|
{
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
pgd_t *pgd;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pte_t *ptep;
|
|
spinlock_t *ptl;
|
|
unsigned long addr;
|
|
int err = -EFAULT;
|
|
|
|
addr = page_address_in_vma(page, vma);
|
|
if (addr == -EFAULT)
|
|
goto out;
|
|
|
|
pgd = pgd_offset(mm, addr);
|
|
if (!pgd_present(*pgd))
|
|
goto out;
|
|
|
|
pud = pud_offset(pgd, addr);
|
|
if (!pud_present(*pud))
|
|
goto out;
|
|
|
|
pmd = pmd_offset(pud, addr);
|
|
if (!pmd_present(*pmd))
|
|
goto out;
|
|
|
|
ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
|
|
if (!ptep)
|
|
goto out;
|
|
|
|
get_page(kpage);
|
|
page_add_new_anon_rmap(kpage, vma, addr);
|
|
|
|
flush_cache_page(vma, addr, pte_pfn(*ptep));
|
|
ptep_clear_flush(vma, addr, ptep);
|
|
set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
|
|
|
|
page_remove_rmap(page);
|
|
if (!page_mapped(page))
|
|
try_to_free_swap(page);
|
|
put_page(page);
|
|
pte_unmap_unlock(ptep, ptl);
|
|
err = 0;
|
|
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* is_bkpt_insn - check if instruction is breakpoint instruction.
|
|
* @insn: instruction to be checked.
|
|
* Default implementation of is_bkpt_insn
|
|
* Returns true if @insn is a breakpoint instruction.
|
|
*/
|
|
bool __weak is_bkpt_insn(uprobe_opcode_t *insn)
|
|
{
|
|
return *insn == UPROBES_BKPT_INSN;
|
|
}
|
|
|
|
/*
|
|
* NOTE:
|
|
* Expect the breakpoint instruction to be the smallest size instruction for
|
|
* the architecture. If an arch has variable length instruction and the
|
|
* breakpoint instruction is not of the smallest length instruction
|
|
* supported by that architecture then we need to modify read_opcode /
|
|
* write_opcode accordingly. This would never be a problem for archs that
|
|
* have fixed length instructions.
|
|
*/
|
|
|
|
/*
|
|
* write_opcode - write the opcode at a given virtual address.
|
|
* @mm: the probed process address space.
|
|
* @uprobe: the breakpointing information.
|
|
* @vaddr: the virtual address to store the opcode.
|
|
* @opcode: opcode to be written at @vaddr.
|
|
*
|
|
* Called with mm->mmap_sem held (for read and with a reference to
|
|
* mm).
|
|
*
|
|
* For mm @mm, write the opcode at @vaddr.
|
|
* Return 0 (success) or a negative errno.
|
|
*/
|
|
static int write_opcode(struct mm_struct *mm, struct uprobe *uprobe,
|
|
unsigned long vaddr, uprobe_opcode_t opcode)
|
|
{
|
|
struct page *old_page, *new_page;
|
|
struct address_space *mapping;
|
|
void *vaddr_old, *vaddr_new;
|
|
struct vm_area_struct *vma;
|
|
loff_t addr;
|
|
int ret;
|
|
|
|
/* Read the page with vaddr into memory */
|
|
ret = get_user_pages(NULL, mm, vaddr, 1, 0, 0, &old_page, &vma);
|
|
if (ret <= 0)
|
|
return ret;
|
|
|
|
ret = -EINVAL;
|
|
|
|
/*
|
|
* We are interested in text pages only. Our pages of interest
|
|
* should be mapped for read and execute only. We desist from
|
|
* adding probes in write mapped pages since the breakpoints
|
|
* might end up in the file copy.
|
|
*/
|
|
if (!valid_vma(vma, is_bkpt_insn(&opcode)))
|
|
goto put_out;
|
|
|
|
mapping = uprobe->inode->i_mapping;
|
|
if (mapping != vma->vm_file->f_mapping)
|
|
goto put_out;
|
|
|
|
addr = vma_address(vma, uprobe->offset);
|
|
if (vaddr != (unsigned long)addr)
|
|
goto put_out;
|
|
|
|
ret = -ENOMEM;
|
|
new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
|
|
if (!new_page)
|
|
goto put_out;
|
|
|
|
__SetPageUptodate(new_page);
|
|
|
|
/*
|
|
* lock page will serialize against do_wp_page()'s
|
|
* PageAnon() handling
|
|
*/
|
|
lock_page(old_page);
|
|
/* copy the page now that we've got it stable */
|
|
vaddr_old = kmap_atomic(old_page);
|
|
vaddr_new = kmap_atomic(new_page);
|
|
|
|
memcpy(vaddr_new, vaddr_old, PAGE_SIZE);
|
|
|
|
/* poke the new insn in, ASSUMES we don't cross page boundary */
|
|
vaddr &= ~PAGE_MASK;
|
|
BUG_ON(vaddr + UPROBES_BKPT_INSN_SIZE > PAGE_SIZE);
|
|
memcpy(vaddr_new + vaddr, &opcode, UPROBES_BKPT_INSN_SIZE);
|
|
|
|
kunmap_atomic(vaddr_new);
|
|
kunmap_atomic(vaddr_old);
|
|
|
|
ret = anon_vma_prepare(vma);
|
|
if (ret)
|
|
goto unlock_out;
|
|
|
|
lock_page(new_page);
|
|
ret = __replace_page(vma, old_page, new_page);
|
|
unlock_page(new_page);
|
|
|
|
unlock_out:
|
|
unlock_page(old_page);
|
|
page_cache_release(new_page);
|
|
|
|
put_out:
|
|
put_page(old_page);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* read_opcode - read the opcode at a given virtual address.
|
|
* @mm: the probed process address space.
|
|
* @vaddr: the virtual address to read the opcode.
|
|
* @opcode: location to store the read opcode.
|
|
*
|
|
* Called with mm->mmap_sem held (for read and with a reference to
|
|
* mm.
|
|
*
|
|
* For mm @mm, read the opcode at @vaddr and store it in @opcode.
|
|
* Return 0 (success) or a negative errno.
|
|
*/
|
|
static int read_opcode(struct mm_struct *mm, unsigned long vaddr, uprobe_opcode_t *opcode)
|
|
{
|
|
struct page *page;
|
|
void *vaddr_new;
|
|
int ret;
|
|
|
|
ret = get_user_pages(NULL, mm, vaddr, 1, 0, 0, &page, NULL);
|
|
if (ret <= 0)
|
|
return ret;
|
|
|
|
lock_page(page);
|
|
vaddr_new = kmap_atomic(page);
|
|
vaddr &= ~PAGE_MASK;
|
|
memcpy(opcode, vaddr_new + vaddr, UPROBES_BKPT_INSN_SIZE);
|
|
kunmap_atomic(vaddr_new);
|
|
unlock_page(page);
|
|
|
|
put_page(page);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int is_bkpt_at_addr(struct mm_struct *mm, unsigned long vaddr)
|
|
{
|
|
uprobe_opcode_t opcode;
|
|
int result;
|
|
|
|
result = read_opcode(mm, vaddr, &opcode);
|
|
if (result)
|
|
return result;
|
|
|
|
if (is_bkpt_insn(&opcode))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* set_bkpt - store breakpoint at a given address.
|
|
* @mm: the probed process address space.
|
|
* @uprobe: the probepoint information.
|
|
* @vaddr: the virtual address to insert the opcode.
|
|
*
|
|
* For mm @mm, store the breakpoint instruction at @vaddr.
|
|
* Return 0 (success) or a negative errno.
|
|
*/
|
|
int __weak set_bkpt(struct mm_struct *mm, struct uprobe *uprobe, unsigned long vaddr)
|
|
{
|
|
int result;
|
|
|
|
result = is_bkpt_at_addr(mm, vaddr);
|
|
if (result == 1)
|
|
return -EEXIST;
|
|
|
|
if (result)
|
|
return result;
|
|
|
|
return write_opcode(mm, uprobe, vaddr, UPROBES_BKPT_INSN);
|
|
}
|
|
|
|
/**
|
|
* set_orig_insn - Restore the original instruction.
|
|
* @mm: the probed process address space.
|
|
* @uprobe: the probepoint information.
|
|
* @vaddr: the virtual address to insert the opcode.
|
|
* @verify: if true, verify existance of breakpoint instruction.
|
|
*
|
|
* For mm @mm, restore the original opcode (opcode) at @vaddr.
|
|
* Return 0 (success) or a negative errno.
|
|
*/
|
|
int __weak
|
|
set_orig_insn(struct mm_struct *mm, struct uprobe *uprobe, unsigned long vaddr, bool verify)
|
|
{
|
|
if (verify) {
|
|
int result;
|
|
|
|
result = is_bkpt_at_addr(mm, vaddr);
|
|
if (!result)
|
|
return -EINVAL;
|
|
|
|
if (result != 1)
|
|
return result;
|
|
}
|
|
return write_opcode(mm, uprobe, vaddr, *(uprobe_opcode_t *)uprobe->insn);
|
|
}
|
|
|
|
static int match_uprobe(struct uprobe *l, struct uprobe *r)
|
|
{
|
|
if (l->inode < r->inode)
|
|
return -1;
|
|
|
|
if (l->inode > r->inode)
|
|
return 1;
|
|
|
|
if (l->offset < r->offset)
|
|
return -1;
|
|
|
|
if (l->offset > r->offset)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
|
|
{
|
|
struct uprobe u = { .inode = inode, .offset = offset };
|
|
struct rb_node *n = uprobes_tree.rb_node;
|
|
struct uprobe *uprobe;
|
|
int match;
|
|
|
|
while (n) {
|
|
uprobe = rb_entry(n, struct uprobe, rb_node);
|
|
match = match_uprobe(&u, uprobe);
|
|
if (!match) {
|
|
atomic_inc(&uprobe->ref);
|
|
return uprobe;
|
|
}
|
|
|
|
if (match < 0)
|
|
n = n->rb_left;
|
|
else
|
|
n = n->rb_right;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Find a uprobe corresponding to a given inode:offset
|
|
* Acquires uprobes_treelock
|
|
*/
|
|
static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
|
|
{
|
|
struct uprobe *uprobe;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&uprobes_treelock, flags);
|
|
uprobe = __find_uprobe(inode, offset);
|
|
spin_unlock_irqrestore(&uprobes_treelock, flags);
|
|
|
|
return uprobe;
|
|
}
|
|
|
|
static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
|
|
{
|
|
struct rb_node **p = &uprobes_tree.rb_node;
|
|
struct rb_node *parent = NULL;
|
|
struct uprobe *u;
|
|
int match;
|
|
|
|
while (*p) {
|
|
parent = *p;
|
|
u = rb_entry(parent, struct uprobe, rb_node);
|
|
match = match_uprobe(uprobe, u);
|
|
if (!match) {
|
|
atomic_inc(&u->ref);
|
|
return u;
|
|
}
|
|
|
|
if (match < 0)
|
|
p = &parent->rb_left;
|
|
else
|
|
p = &parent->rb_right;
|
|
|
|
}
|
|
|
|
u = NULL;
|
|
rb_link_node(&uprobe->rb_node, parent, p);
|
|
rb_insert_color(&uprobe->rb_node, &uprobes_tree);
|
|
/* get access + creation ref */
|
|
atomic_set(&uprobe->ref, 2);
|
|
|
|
return u;
|
|
}
|
|
|
|
/*
|
|
* Acquire uprobes_treelock.
|
|
* Matching uprobe already exists in rbtree;
|
|
* increment (access refcount) and return the matching uprobe.
|
|
*
|
|
* No matching uprobe; insert the uprobe in rb_tree;
|
|
* get a double refcount (access + creation) and return NULL.
|
|
*/
|
|
static struct uprobe *insert_uprobe(struct uprobe *uprobe)
|
|
{
|
|
unsigned long flags;
|
|
struct uprobe *u;
|
|
|
|
spin_lock_irqsave(&uprobes_treelock, flags);
|
|
u = __insert_uprobe(uprobe);
|
|
spin_unlock_irqrestore(&uprobes_treelock, flags);
|
|
|
|
return u;
|
|
}
|
|
|
|
static void put_uprobe(struct uprobe *uprobe)
|
|
{
|
|
if (atomic_dec_and_test(&uprobe->ref))
|
|
kfree(uprobe);
|
|
}
|
|
|
|
static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
|
|
{
|
|
struct uprobe *uprobe, *cur_uprobe;
|
|
|
|
uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
|
|
if (!uprobe)
|
|
return NULL;
|
|
|
|
uprobe->inode = igrab(inode);
|
|
uprobe->offset = offset;
|
|
init_rwsem(&uprobe->consumer_rwsem);
|
|
INIT_LIST_HEAD(&uprobe->pending_list);
|
|
|
|
/* add to uprobes_tree, sorted on inode:offset */
|
|
cur_uprobe = insert_uprobe(uprobe);
|
|
|
|
/* a uprobe exists for this inode:offset combination */
|
|
if (cur_uprobe) {
|
|
kfree(uprobe);
|
|
uprobe = cur_uprobe;
|
|
iput(inode);
|
|
} else {
|
|
atomic_inc(&uprobe_events);
|
|
}
|
|
|
|
return uprobe;
|
|
}
|
|
|
|
/* Returns the previous consumer */
|
|
static struct uprobe_consumer *
|
|
consumer_add(struct uprobe *uprobe, struct uprobe_consumer *consumer)
|
|
{
|
|
down_write(&uprobe->consumer_rwsem);
|
|
consumer->next = uprobe->consumers;
|
|
uprobe->consumers = consumer;
|
|
up_write(&uprobe->consumer_rwsem);
|
|
|
|
return consumer->next;
|
|
}
|
|
|
|
/*
|
|
* For uprobe @uprobe, delete the consumer @consumer.
|
|
* Return true if the @consumer is deleted successfully
|
|
* or return false.
|
|
*/
|
|
static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *consumer)
|
|
{
|
|
struct uprobe_consumer **con;
|
|
bool ret = false;
|
|
|
|
down_write(&uprobe->consumer_rwsem);
|
|
for (con = &uprobe->consumers; *con; con = &(*con)->next) {
|
|
if (*con == consumer) {
|
|
*con = consumer->next;
|
|
ret = true;
|
|
break;
|
|
}
|
|
}
|
|
up_write(&uprobe->consumer_rwsem);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int __copy_insn(struct address_space *mapping,
|
|
struct vm_area_struct *vma, char *insn,
|
|
unsigned long nbytes, unsigned long offset)
|
|
{
|
|
struct file *filp = vma->vm_file;
|
|
struct page *page;
|
|
void *vaddr;
|
|
unsigned long off1;
|
|
unsigned long idx;
|
|
|
|
if (!filp)
|
|
return -EINVAL;
|
|
|
|
idx = (unsigned long)(offset >> PAGE_CACHE_SHIFT);
|
|
off1 = offset &= ~PAGE_MASK;
|
|
|
|
/*
|
|
* Ensure that the page that has the original instruction is
|
|
* populated and in page-cache.
|
|
*/
|
|
page = read_mapping_page(mapping, idx, filp);
|
|
if (IS_ERR(page))
|
|
return PTR_ERR(page);
|
|
|
|
vaddr = kmap_atomic(page);
|
|
memcpy(insn, vaddr + off1, nbytes);
|
|
kunmap_atomic(vaddr);
|
|
page_cache_release(page);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int copy_insn(struct uprobe *uprobe, struct vm_area_struct *vma, unsigned long addr)
|
|
{
|
|
struct address_space *mapping;
|
|
unsigned long nbytes;
|
|
int bytes;
|
|
|
|
addr &= ~PAGE_MASK;
|
|
nbytes = PAGE_SIZE - addr;
|
|
mapping = uprobe->inode->i_mapping;
|
|
|
|
/* Instruction at end of binary; copy only available bytes */
|
|
if (uprobe->offset + MAX_UINSN_BYTES > uprobe->inode->i_size)
|
|
bytes = uprobe->inode->i_size - uprobe->offset;
|
|
else
|
|
bytes = MAX_UINSN_BYTES;
|
|
|
|
/* Instruction at the page-boundary; copy bytes in second page */
|
|
if (nbytes < bytes) {
|
|
if (__copy_insn(mapping, vma, uprobe->insn + nbytes,
|
|
bytes - nbytes, uprobe->offset + nbytes))
|
|
return -ENOMEM;
|
|
|
|
bytes = nbytes;
|
|
}
|
|
return __copy_insn(mapping, vma, uprobe->insn, bytes, uprobe->offset);
|
|
}
|
|
|
|
static int install_breakpoint(struct mm_struct *mm, struct uprobe *uprobe,
|
|
struct vm_area_struct *vma, loff_t vaddr)
|
|
{
|
|
unsigned long addr;
|
|
int ret;
|
|
|
|
/*
|
|
* If probe is being deleted, unregister thread could be done with
|
|
* the vma-rmap-walk through. Adding a probe now can be fatal since
|
|
* nobody will be able to cleanup. Also we could be from fork or
|
|
* mremap path, where the probe might have already been inserted.
|
|
* Hence behave as if probe already existed.
|
|
*/
|
|
if (!uprobe->consumers)
|
|
return -EEXIST;
|
|
|
|
addr = (unsigned long)vaddr;
|
|
|
|
if (!(uprobe->flags & UPROBES_COPY_INSN)) {
|
|
ret = copy_insn(uprobe, vma, addr);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (is_bkpt_insn((uprobe_opcode_t *)uprobe->insn))
|
|
return -EEXIST;
|
|
|
|
ret = arch_uprobes_analyze_insn(mm, uprobe);
|
|
if (ret)
|
|
return ret;
|
|
|
|
uprobe->flags |= UPROBES_COPY_INSN;
|
|
}
|
|
ret = set_bkpt(mm, uprobe, addr);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void remove_breakpoint(struct mm_struct *mm, struct uprobe *uprobe, loff_t vaddr)
|
|
{
|
|
set_orig_insn(mm, uprobe, (unsigned long)vaddr, true);
|
|
}
|
|
|
|
static void delete_uprobe(struct uprobe *uprobe)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&uprobes_treelock, flags);
|
|
rb_erase(&uprobe->rb_node, &uprobes_tree);
|
|
spin_unlock_irqrestore(&uprobes_treelock, flags);
|
|
iput(uprobe->inode);
|
|
put_uprobe(uprobe);
|
|
atomic_dec(&uprobe_events);
|
|
}
|
|
|
|
static struct vma_info *__find_next_vma_info(struct list_head *head,
|
|
loff_t offset, struct address_space *mapping,
|
|
struct vma_info *vi, bool is_register)
|
|
{
|
|
struct prio_tree_iter iter;
|
|
struct vm_area_struct *vma;
|
|
struct vma_info *tmpvi;
|
|
unsigned long pgoff;
|
|
int existing_vma;
|
|
loff_t vaddr;
|
|
|
|
pgoff = offset >> PAGE_SHIFT;
|
|
|
|
vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
|
|
if (!valid_vma(vma, is_register))
|
|
continue;
|
|
|
|
existing_vma = 0;
|
|
vaddr = vma_address(vma, offset);
|
|
|
|
list_for_each_entry(tmpvi, head, probe_list) {
|
|
if (tmpvi->mm == vma->vm_mm && tmpvi->vaddr == vaddr) {
|
|
existing_vma = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Another vma needs a probe to be installed. However skip
|
|
* installing the probe if the vma is about to be unlinked.
|
|
*/
|
|
if (!existing_vma && atomic_inc_not_zero(&vma->vm_mm->mm_users)) {
|
|
vi->mm = vma->vm_mm;
|
|
vi->vaddr = vaddr;
|
|
list_add(&vi->probe_list, head);
|
|
|
|
return vi;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Iterate in the rmap prio tree and find a vma where a probe has not
|
|
* yet been inserted.
|
|
*/
|
|
static struct vma_info *
|
|
find_next_vma_info(struct list_head *head, loff_t offset, struct address_space *mapping,
|
|
bool is_register)
|
|
{
|
|
struct vma_info *vi, *retvi;
|
|
|
|
vi = kzalloc(sizeof(struct vma_info), GFP_KERNEL);
|
|
if (!vi)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
mutex_lock(&mapping->i_mmap_mutex);
|
|
retvi = __find_next_vma_info(head, offset, mapping, vi, is_register);
|
|
mutex_unlock(&mapping->i_mmap_mutex);
|
|
|
|
if (!retvi)
|
|
kfree(vi);
|
|
|
|
return retvi;
|
|
}
|
|
|
|
static int register_for_each_vma(struct uprobe *uprobe, bool is_register)
|
|
{
|
|
struct list_head try_list;
|
|
struct vm_area_struct *vma;
|
|
struct address_space *mapping;
|
|
struct vma_info *vi, *tmpvi;
|
|
struct mm_struct *mm;
|
|
loff_t vaddr;
|
|
int ret;
|
|
|
|
mapping = uprobe->inode->i_mapping;
|
|
INIT_LIST_HEAD(&try_list);
|
|
|
|
ret = 0;
|
|
|
|
for (;;) {
|
|
vi = find_next_vma_info(&try_list, uprobe->offset, mapping, is_register);
|
|
if (!vi)
|
|
break;
|
|
|
|
if (IS_ERR(vi)) {
|
|
ret = PTR_ERR(vi);
|
|
break;
|
|
}
|
|
|
|
mm = vi->mm;
|
|
down_read(&mm->mmap_sem);
|
|
vma = find_vma(mm, (unsigned long)vi->vaddr);
|
|
if (!vma || !valid_vma(vma, is_register)) {
|
|
list_del(&vi->probe_list);
|
|
kfree(vi);
|
|
up_read(&mm->mmap_sem);
|
|
mmput(mm);
|
|
continue;
|
|
}
|
|
vaddr = vma_address(vma, uprobe->offset);
|
|
if (vma->vm_file->f_mapping->host != uprobe->inode ||
|
|
vaddr != vi->vaddr) {
|
|
list_del(&vi->probe_list);
|
|
kfree(vi);
|
|
up_read(&mm->mmap_sem);
|
|
mmput(mm);
|
|
continue;
|
|
}
|
|
|
|
if (is_register)
|
|
ret = install_breakpoint(mm, uprobe, vma, vi->vaddr);
|
|
else
|
|
remove_breakpoint(mm, uprobe, vi->vaddr);
|
|
|
|
up_read(&mm->mmap_sem);
|
|
mmput(mm);
|
|
if (is_register) {
|
|
if (ret && ret == -EEXIST)
|
|
ret = 0;
|
|
if (ret)
|
|
break;
|
|
}
|
|
}
|
|
|
|
list_for_each_entry_safe(vi, tmpvi, &try_list, probe_list) {
|
|
list_del(&vi->probe_list);
|
|
kfree(vi);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int __uprobe_register(struct uprobe *uprobe)
|
|
{
|
|
return register_for_each_vma(uprobe, true);
|
|
}
|
|
|
|
static void __uprobe_unregister(struct uprobe *uprobe)
|
|
{
|
|
if (!register_for_each_vma(uprobe, false))
|
|
delete_uprobe(uprobe);
|
|
|
|
/* TODO : cant unregister? schedule a worker thread */
|
|
}
|
|
|
|
/*
|
|
* uprobe_register - register a probe
|
|
* @inode: the file in which the probe has to be placed.
|
|
* @offset: offset from the start of the file.
|
|
* @consumer: information on howto handle the probe..
|
|
*
|
|
* Apart from the access refcount, uprobe_register() takes a creation
|
|
* refcount (thro alloc_uprobe) if and only if this @uprobe is getting
|
|
* inserted into the rbtree (i.e first consumer for a @inode:@offset
|
|
* tuple). Creation refcount stops uprobe_unregister from freeing the
|
|
* @uprobe even before the register operation is complete. Creation
|
|
* refcount is released when the last @consumer for the @uprobe
|
|
* unregisters.
|
|
*
|
|
* Return errno if it cannot successully install probes
|
|
* else return 0 (success)
|
|
*/
|
|
int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *consumer)
|
|
{
|
|
struct uprobe *uprobe;
|
|
int ret;
|
|
|
|
if (!inode || !consumer || consumer->next)
|
|
return -EINVAL;
|
|
|
|
if (offset > i_size_read(inode))
|
|
return -EINVAL;
|
|
|
|
ret = 0;
|
|
mutex_lock(uprobes_hash(inode));
|
|
uprobe = alloc_uprobe(inode, offset);
|
|
|
|
if (uprobe && !consumer_add(uprobe, consumer)) {
|
|
ret = __uprobe_register(uprobe);
|
|
if (ret) {
|
|
uprobe->consumers = NULL;
|
|
__uprobe_unregister(uprobe);
|
|
} else {
|
|
uprobe->flags |= UPROBES_RUN_HANDLER;
|
|
}
|
|
}
|
|
|
|
mutex_unlock(uprobes_hash(inode));
|
|
put_uprobe(uprobe);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* uprobe_unregister - unregister a already registered probe.
|
|
* @inode: the file in which the probe has to be removed.
|
|
* @offset: offset from the start of the file.
|
|
* @consumer: identify which probe if multiple probes are colocated.
|
|
*/
|
|
void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *consumer)
|
|
{
|
|
struct uprobe *uprobe;
|
|
|
|
if (!inode || !consumer)
|
|
return;
|
|
|
|
uprobe = find_uprobe(inode, offset);
|
|
if (!uprobe)
|
|
return;
|
|
|
|
mutex_lock(uprobes_hash(inode));
|
|
|
|
if (consumer_del(uprobe, consumer)) {
|
|
if (!uprobe->consumers) {
|
|
__uprobe_unregister(uprobe);
|
|
uprobe->flags &= ~UPROBES_RUN_HANDLER;
|
|
}
|
|
}
|
|
|
|
mutex_unlock(uprobes_hash(inode));
|
|
if (uprobe)
|
|
put_uprobe(uprobe);
|
|
}
|
|
|
|
/*
|
|
* Of all the nodes that correspond to the given inode, return the node
|
|
* with the least offset.
|
|
*/
|
|
static struct rb_node *find_least_offset_node(struct inode *inode)
|
|
{
|
|
struct uprobe u = { .inode = inode, .offset = 0};
|
|
struct rb_node *n = uprobes_tree.rb_node;
|
|
struct rb_node *close_node = NULL;
|
|
struct uprobe *uprobe;
|
|
int match;
|
|
|
|
while (n) {
|
|
uprobe = rb_entry(n, struct uprobe, rb_node);
|
|
match = match_uprobe(&u, uprobe);
|
|
|
|
if (uprobe->inode == inode)
|
|
close_node = n;
|
|
|
|
if (!match)
|
|
return close_node;
|
|
|
|
if (match < 0)
|
|
n = n->rb_left;
|
|
else
|
|
n = n->rb_right;
|
|
}
|
|
|
|
return close_node;
|
|
}
|
|
|
|
/*
|
|
* For a given inode, build a list of probes that need to be inserted.
|
|
*/
|
|
static void build_probe_list(struct inode *inode, struct list_head *head)
|
|
{
|
|
struct uprobe *uprobe;
|
|
unsigned long flags;
|
|
struct rb_node *n;
|
|
|
|
spin_lock_irqsave(&uprobes_treelock, flags);
|
|
|
|
n = find_least_offset_node(inode);
|
|
|
|
for (; n; n = rb_next(n)) {
|
|
uprobe = rb_entry(n, struct uprobe, rb_node);
|
|
if (uprobe->inode != inode)
|
|
break;
|
|
|
|
list_add(&uprobe->pending_list, head);
|
|
atomic_inc(&uprobe->ref);
|
|
}
|
|
|
|
spin_unlock_irqrestore(&uprobes_treelock, flags);
|
|
}
|
|
|
|
/*
|
|
* Called from mmap_region.
|
|
* called with mm->mmap_sem acquired.
|
|
*
|
|
* Return -ve no if we fail to insert probes and we cannot
|
|
* bail-out.
|
|
* Return 0 otherwise. i.e:
|
|
*
|
|
* - successful insertion of probes
|
|
* - (or) no possible probes to be inserted.
|
|
* - (or) insertion of probes failed but we can bail-out.
|
|
*/
|
|
int uprobe_mmap(struct vm_area_struct *vma)
|
|
{
|
|
struct list_head tmp_list;
|
|
struct uprobe *uprobe, *u;
|
|
struct inode *inode;
|
|
int ret;
|
|
|
|
if (!atomic_read(&uprobe_events) || !valid_vma(vma, true))
|
|
return 0;
|
|
|
|
inode = vma->vm_file->f_mapping->host;
|
|
if (!inode)
|
|
return 0;
|
|
|
|
INIT_LIST_HEAD(&tmp_list);
|
|
mutex_lock(uprobes_mmap_hash(inode));
|
|
build_probe_list(inode, &tmp_list);
|
|
|
|
ret = 0;
|
|
|
|
list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
|
|
loff_t vaddr;
|
|
|
|
list_del(&uprobe->pending_list);
|
|
if (!ret) {
|
|
vaddr = vma_address(vma, uprobe->offset);
|
|
if (vaddr >= vma->vm_start && vaddr < vma->vm_end) {
|
|
ret = install_breakpoint(vma->vm_mm, uprobe, vma, vaddr);
|
|
/* Ignore double add: */
|
|
if (ret == -EEXIST)
|
|
ret = 0;
|
|
}
|
|
}
|
|
put_uprobe(uprobe);
|
|
}
|
|
|
|
mutex_unlock(uprobes_mmap_hash(inode));
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int __init init_uprobes(void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < UPROBES_HASH_SZ; i++) {
|
|
mutex_init(&uprobes_mutex[i]);
|
|
mutex_init(&uprobes_mmap_mutex[i]);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void __exit exit_uprobes(void)
|
|
{
|
|
}
|
|
|
|
module_init(init_uprobes);
|
|
module_exit(exit_uprobes);
|