linux/drivers/counter/stm32-lptimer-cnt.c
William Breathitt Gray d49e6ee2d6 counter: Simplify the count_read and count_write callbacks
The count_read and count_write callbacks are simplified to pass val as
unsigned long rather than as an opaque data structure. The opaque
counter_count_read_value and counter_count_write_value structures,
counter_count_value_type enum, and relevant counter_count_read_value_set
and counter_count_write_value_get functions, are removed as they are no
longer used.

Cc: Patrick Havelange <patrick.havelange@essensium.com>
Acked-by: Fabrice Gasnier <fabrice.gasnier@st.com>
Acked-by: David Lechner <david@lechnology.com>
Signed-off-by: William Breathitt Gray <vilhelm.gray@gmail.com>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2019-10-18 19:47:27 +01:00

754 lines
18 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* STM32 Low-Power Timer Encoder and Counter driver
*
* Copyright (C) STMicroelectronics 2017
*
* Author: Fabrice Gasnier <fabrice.gasnier@st.com>
*
* Inspired by 104-quad-8 and stm32-timer-trigger drivers.
*
*/
#include <linux/bitfield.h>
#include <linux/counter.h>
#include <linux/iio/iio.h>
#include <linux/mfd/stm32-lptimer.h>
#include <linux/module.h>
#include <linux/pinctrl/consumer.h>
#include <linux/platform_device.h>
struct stm32_lptim_cnt {
struct counter_device counter;
struct device *dev;
struct regmap *regmap;
struct clk *clk;
u32 ceiling;
u32 polarity;
u32 quadrature_mode;
bool enabled;
};
static int stm32_lptim_is_enabled(struct stm32_lptim_cnt *priv)
{
u32 val;
int ret;
ret = regmap_read(priv->regmap, STM32_LPTIM_CR, &val);
if (ret)
return ret;
return FIELD_GET(STM32_LPTIM_ENABLE, val);
}
static int stm32_lptim_set_enable_state(struct stm32_lptim_cnt *priv,
int enable)
{
int ret;
u32 val;
val = FIELD_PREP(STM32_LPTIM_ENABLE, enable);
ret = regmap_write(priv->regmap, STM32_LPTIM_CR, val);
if (ret)
return ret;
if (!enable) {
clk_disable(priv->clk);
priv->enabled = false;
return 0;
}
/* LP timer must be enabled before writing CMP & ARR */
ret = regmap_write(priv->regmap, STM32_LPTIM_ARR, priv->ceiling);
if (ret)
return ret;
ret = regmap_write(priv->regmap, STM32_LPTIM_CMP, 0);
if (ret)
return ret;
/* ensure CMP & ARR registers are properly written */
ret = regmap_read_poll_timeout(priv->regmap, STM32_LPTIM_ISR, val,
(val & STM32_LPTIM_CMPOK_ARROK),
100, 1000);
if (ret)
return ret;
ret = regmap_write(priv->regmap, STM32_LPTIM_ICR,
STM32_LPTIM_CMPOKCF_ARROKCF);
if (ret)
return ret;
ret = clk_enable(priv->clk);
if (ret) {
regmap_write(priv->regmap, STM32_LPTIM_CR, 0);
return ret;
}
priv->enabled = true;
/* Start LP timer in continuous mode */
return regmap_update_bits(priv->regmap, STM32_LPTIM_CR,
STM32_LPTIM_CNTSTRT, STM32_LPTIM_CNTSTRT);
}
static int stm32_lptim_setup(struct stm32_lptim_cnt *priv, int enable)
{
u32 mask = STM32_LPTIM_ENC | STM32_LPTIM_COUNTMODE |
STM32_LPTIM_CKPOL | STM32_LPTIM_PRESC;
u32 val;
/* Setup LP timer encoder/counter and polarity, without prescaler */
if (priv->quadrature_mode)
val = enable ? STM32_LPTIM_ENC : 0;
else
val = enable ? STM32_LPTIM_COUNTMODE : 0;
val |= FIELD_PREP(STM32_LPTIM_CKPOL, enable ? priv->polarity : 0);
return regmap_update_bits(priv->regmap, STM32_LPTIM_CFGR, mask, val);
}
static int stm32_lptim_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int val, int val2, long mask)
{
struct stm32_lptim_cnt *priv = iio_priv(indio_dev);
int ret;
switch (mask) {
case IIO_CHAN_INFO_ENABLE:
if (val < 0 || val > 1)
return -EINVAL;
/* Check nobody uses the timer, or already disabled/enabled */
ret = stm32_lptim_is_enabled(priv);
if ((ret < 0) || (!ret && !val))
return ret;
if (val && ret)
return -EBUSY;
ret = stm32_lptim_setup(priv, val);
if (ret)
return ret;
return stm32_lptim_set_enable_state(priv, val);
default:
return -EINVAL;
}
}
static int stm32_lptim_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val, int *val2, long mask)
{
struct stm32_lptim_cnt *priv = iio_priv(indio_dev);
u32 dat;
int ret;
switch (mask) {
case IIO_CHAN_INFO_RAW:
ret = regmap_read(priv->regmap, STM32_LPTIM_CNT, &dat);
if (ret)
return ret;
*val = dat;
return IIO_VAL_INT;
case IIO_CHAN_INFO_ENABLE:
ret = stm32_lptim_is_enabled(priv);
if (ret < 0)
return ret;
*val = ret;
return IIO_VAL_INT;
case IIO_CHAN_INFO_SCALE:
/* Non-quadrature mode: scale = 1 */
*val = 1;
*val2 = 0;
if (priv->quadrature_mode) {
/*
* Quadrature encoder mode:
* - both edges, quarter cycle, scale is 0.25
* - either rising/falling edge scale is 0.5
*/
if (priv->polarity > 1)
*val2 = 2;
else
*val2 = 1;
}
return IIO_VAL_FRACTIONAL_LOG2;
default:
return -EINVAL;
}
}
static const struct iio_info stm32_lptim_cnt_iio_info = {
.read_raw = stm32_lptim_read_raw,
.write_raw = stm32_lptim_write_raw,
};
static const char *const stm32_lptim_quadrature_modes[] = {
"non-quadrature",
"quadrature",
};
static int stm32_lptim_get_quadrature_mode(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan)
{
struct stm32_lptim_cnt *priv = iio_priv(indio_dev);
return priv->quadrature_mode;
}
static int stm32_lptim_set_quadrature_mode(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
unsigned int type)
{
struct stm32_lptim_cnt *priv = iio_priv(indio_dev);
if (stm32_lptim_is_enabled(priv))
return -EBUSY;
priv->quadrature_mode = type;
return 0;
}
static const struct iio_enum stm32_lptim_quadrature_mode_en = {
.items = stm32_lptim_quadrature_modes,
.num_items = ARRAY_SIZE(stm32_lptim_quadrature_modes),
.get = stm32_lptim_get_quadrature_mode,
.set = stm32_lptim_set_quadrature_mode,
};
static const char * const stm32_lptim_cnt_polarity[] = {
"rising-edge", "falling-edge", "both-edges",
};
static int stm32_lptim_cnt_get_polarity(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan)
{
struct stm32_lptim_cnt *priv = iio_priv(indio_dev);
return priv->polarity;
}
static int stm32_lptim_cnt_set_polarity(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
unsigned int type)
{
struct stm32_lptim_cnt *priv = iio_priv(indio_dev);
if (stm32_lptim_is_enabled(priv))
return -EBUSY;
priv->polarity = type;
return 0;
}
static const struct iio_enum stm32_lptim_cnt_polarity_en = {
.items = stm32_lptim_cnt_polarity,
.num_items = ARRAY_SIZE(stm32_lptim_cnt_polarity),
.get = stm32_lptim_cnt_get_polarity,
.set = stm32_lptim_cnt_set_polarity,
};
static ssize_t stm32_lptim_cnt_get_ceiling(struct stm32_lptim_cnt *priv,
char *buf)
{
return snprintf(buf, PAGE_SIZE, "%u\n", priv->ceiling);
}
static ssize_t stm32_lptim_cnt_set_ceiling(struct stm32_lptim_cnt *priv,
const char *buf, size_t len)
{
int ret;
if (stm32_lptim_is_enabled(priv))
return -EBUSY;
ret = kstrtouint(buf, 0, &priv->ceiling);
if (ret)
return ret;
if (priv->ceiling > STM32_LPTIM_MAX_ARR)
return -EINVAL;
return len;
}
static ssize_t stm32_lptim_cnt_get_preset_iio(struct iio_dev *indio_dev,
uintptr_t private,
const struct iio_chan_spec *chan,
char *buf)
{
struct stm32_lptim_cnt *priv = iio_priv(indio_dev);
return stm32_lptim_cnt_get_ceiling(priv, buf);
}
static ssize_t stm32_lptim_cnt_set_preset_iio(struct iio_dev *indio_dev,
uintptr_t private,
const struct iio_chan_spec *chan,
const char *buf, size_t len)
{
struct stm32_lptim_cnt *priv = iio_priv(indio_dev);
return stm32_lptim_cnt_set_ceiling(priv, buf, len);
}
/* LP timer with encoder */
static const struct iio_chan_spec_ext_info stm32_lptim_enc_ext_info[] = {
{
.name = "preset",
.shared = IIO_SEPARATE,
.read = stm32_lptim_cnt_get_preset_iio,
.write = stm32_lptim_cnt_set_preset_iio,
},
IIO_ENUM("polarity", IIO_SEPARATE, &stm32_lptim_cnt_polarity_en),
IIO_ENUM_AVAILABLE("polarity", &stm32_lptim_cnt_polarity_en),
IIO_ENUM("quadrature_mode", IIO_SEPARATE,
&stm32_lptim_quadrature_mode_en),
IIO_ENUM_AVAILABLE("quadrature_mode", &stm32_lptim_quadrature_mode_en),
{}
};
static const struct iio_chan_spec stm32_lptim_enc_channels = {
.type = IIO_COUNT,
.channel = 0,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_ENABLE) |
BIT(IIO_CHAN_INFO_SCALE),
.ext_info = stm32_lptim_enc_ext_info,
.indexed = 1,
};
/* LP timer without encoder (counter only) */
static const struct iio_chan_spec_ext_info stm32_lptim_cnt_ext_info[] = {
{
.name = "preset",
.shared = IIO_SEPARATE,
.read = stm32_lptim_cnt_get_preset_iio,
.write = stm32_lptim_cnt_set_preset_iio,
},
IIO_ENUM("polarity", IIO_SEPARATE, &stm32_lptim_cnt_polarity_en),
IIO_ENUM_AVAILABLE("polarity", &stm32_lptim_cnt_polarity_en),
{}
};
static const struct iio_chan_spec stm32_lptim_cnt_channels = {
.type = IIO_COUNT,
.channel = 0,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_ENABLE) |
BIT(IIO_CHAN_INFO_SCALE),
.ext_info = stm32_lptim_cnt_ext_info,
.indexed = 1,
};
/**
* enum stm32_lptim_cnt_function - enumerates LPTimer counter & encoder modes
* @STM32_LPTIM_COUNTER_INCREASE: up count on IN1 rising, falling or both edges
* @STM32_LPTIM_ENCODER_BOTH_EDGE: count on both edges (IN1 & IN2 quadrature)
*/
enum stm32_lptim_cnt_function {
STM32_LPTIM_COUNTER_INCREASE,
STM32_LPTIM_ENCODER_BOTH_EDGE,
};
static enum counter_count_function stm32_lptim_cnt_functions[] = {
[STM32_LPTIM_COUNTER_INCREASE] = COUNTER_COUNT_FUNCTION_INCREASE,
[STM32_LPTIM_ENCODER_BOTH_EDGE] = COUNTER_COUNT_FUNCTION_QUADRATURE_X4,
};
enum stm32_lptim_synapse_action {
STM32_LPTIM_SYNAPSE_ACTION_RISING_EDGE,
STM32_LPTIM_SYNAPSE_ACTION_FALLING_EDGE,
STM32_LPTIM_SYNAPSE_ACTION_BOTH_EDGES,
STM32_LPTIM_SYNAPSE_ACTION_NONE,
};
static enum counter_synapse_action stm32_lptim_cnt_synapse_actions[] = {
/* Index must match with stm32_lptim_cnt_polarity[] (priv->polarity) */
[STM32_LPTIM_SYNAPSE_ACTION_RISING_EDGE] = COUNTER_SYNAPSE_ACTION_RISING_EDGE,
[STM32_LPTIM_SYNAPSE_ACTION_FALLING_EDGE] = COUNTER_SYNAPSE_ACTION_FALLING_EDGE,
[STM32_LPTIM_SYNAPSE_ACTION_BOTH_EDGES] = COUNTER_SYNAPSE_ACTION_BOTH_EDGES,
[STM32_LPTIM_SYNAPSE_ACTION_NONE] = COUNTER_SYNAPSE_ACTION_NONE,
};
static int stm32_lptim_cnt_read(struct counter_device *counter,
struct counter_count *count, unsigned long *val)
{
struct stm32_lptim_cnt *const priv = counter->priv;
u32 cnt;
int ret;
ret = regmap_read(priv->regmap, STM32_LPTIM_CNT, &cnt);
if (ret)
return ret;
*val = cnt;
return 0;
}
static int stm32_lptim_cnt_function_get(struct counter_device *counter,
struct counter_count *count,
size_t *function)
{
struct stm32_lptim_cnt *const priv = counter->priv;
if (!priv->quadrature_mode) {
*function = STM32_LPTIM_COUNTER_INCREASE;
return 0;
}
if (priv->polarity == STM32_LPTIM_SYNAPSE_ACTION_BOTH_EDGES) {
*function = STM32_LPTIM_ENCODER_BOTH_EDGE;
return 0;
}
return -EINVAL;
}
static int stm32_lptim_cnt_function_set(struct counter_device *counter,
struct counter_count *count,
size_t function)
{
struct stm32_lptim_cnt *const priv = counter->priv;
if (stm32_lptim_is_enabled(priv))
return -EBUSY;
switch (function) {
case STM32_LPTIM_COUNTER_INCREASE:
priv->quadrature_mode = 0;
return 0;
case STM32_LPTIM_ENCODER_BOTH_EDGE:
priv->quadrature_mode = 1;
priv->polarity = STM32_LPTIM_SYNAPSE_ACTION_BOTH_EDGES;
return 0;
}
return -EINVAL;
}
static ssize_t stm32_lptim_cnt_enable_read(struct counter_device *counter,
struct counter_count *count,
void *private, char *buf)
{
struct stm32_lptim_cnt *const priv = counter->priv;
int ret;
ret = stm32_lptim_is_enabled(priv);
if (ret < 0)
return ret;
return scnprintf(buf, PAGE_SIZE, "%u\n", ret);
}
static ssize_t stm32_lptim_cnt_enable_write(struct counter_device *counter,
struct counter_count *count,
void *private,
const char *buf, size_t len)
{
struct stm32_lptim_cnt *const priv = counter->priv;
bool enable;
int ret;
ret = kstrtobool(buf, &enable);
if (ret)
return ret;
/* Check nobody uses the timer, or already disabled/enabled */
ret = stm32_lptim_is_enabled(priv);
if ((ret < 0) || (!ret && !enable))
return ret;
if (enable && ret)
return -EBUSY;
ret = stm32_lptim_setup(priv, enable);
if (ret)
return ret;
ret = stm32_lptim_set_enable_state(priv, enable);
if (ret)
return ret;
return len;
}
static ssize_t stm32_lptim_cnt_ceiling_read(struct counter_device *counter,
struct counter_count *count,
void *private, char *buf)
{
struct stm32_lptim_cnt *const priv = counter->priv;
return stm32_lptim_cnt_get_ceiling(priv, buf);
}
static ssize_t stm32_lptim_cnt_ceiling_write(struct counter_device *counter,
struct counter_count *count,
void *private,
const char *buf, size_t len)
{
struct stm32_lptim_cnt *const priv = counter->priv;
return stm32_lptim_cnt_set_ceiling(priv, buf, len);
}
static const struct counter_count_ext stm32_lptim_cnt_ext[] = {
{
.name = "enable",
.read = stm32_lptim_cnt_enable_read,
.write = stm32_lptim_cnt_enable_write
},
{
.name = "ceiling",
.read = stm32_lptim_cnt_ceiling_read,
.write = stm32_lptim_cnt_ceiling_write
},
};
static int stm32_lptim_cnt_action_get(struct counter_device *counter,
struct counter_count *count,
struct counter_synapse *synapse,
size_t *action)
{
struct stm32_lptim_cnt *const priv = counter->priv;
size_t function;
int err;
err = stm32_lptim_cnt_function_get(counter, count, &function);
if (err)
return err;
switch (function) {
case STM32_LPTIM_COUNTER_INCREASE:
/* LP Timer acts as up-counter on input 1 */
if (synapse->signal->id == count->synapses[0].signal->id)
*action = priv->polarity;
else
*action = STM32_LPTIM_SYNAPSE_ACTION_NONE;
return 0;
case STM32_LPTIM_ENCODER_BOTH_EDGE:
*action = priv->polarity;
return 0;
}
return -EINVAL;
}
static int stm32_lptim_cnt_action_set(struct counter_device *counter,
struct counter_count *count,
struct counter_synapse *synapse,
size_t action)
{
struct stm32_lptim_cnt *const priv = counter->priv;
size_t function;
int err;
if (stm32_lptim_is_enabled(priv))
return -EBUSY;
err = stm32_lptim_cnt_function_get(counter, count, &function);
if (err)
return err;
/* only set polarity when in counter mode (on input 1) */
if (function == STM32_LPTIM_COUNTER_INCREASE
&& synapse->signal->id == count->synapses[0].signal->id) {
switch (action) {
case STM32_LPTIM_SYNAPSE_ACTION_RISING_EDGE:
case STM32_LPTIM_SYNAPSE_ACTION_FALLING_EDGE:
case STM32_LPTIM_SYNAPSE_ACTION_BOTH_EDGES:
priv->polarity = action;
return 0;
}
}
return -EINVAL;
}
static const struct counter_ops stm32_lptim_cnt_ops = {
.count_read = stm32_lptim_cnt_read,
.function_get = stm32_lptim_cnt_function_get,
.function_set = stm32_lptim_cnt_function_set,
.action_get = stm32_lptim_cnt_action_get,
.action_set = stm32_lptim_cnt_action_set,
};
static struct counter_signal stm32_lptim_cnt_signals[] = {
{
.id = 0,
.name = "Channel 1 Quadrature A"
},
{
.id = 1,
.name = "Channel 1 Quadrature B"
}
};
static struct counter_synapse stm32_lptim_cnt_synapses[] = {
{
.actions_list = stm32_lptim_cnt_synapse_actions,
.num_actions = ARRAY_SIZE(stm32_lptim_cnt_synapse_actions),
.signal = &stm32_lptim_cnt_signals[0]
},
{
.actions_list = stm32_lptim_cnt_synapse_actions,
.num_actions = ARRAY_SIZE(stm32_lptim_cnt_synapse_actions),
.signal = &stm32_lptim_cnt_signals[1]
}
};
/* LP timer with encoder */
static struct counter_count stm32_lptim_enc_counts = {
.id = 0,
.name = "LPTimer Count",
.functions_list = stm32_lptim_cnt_functions,
.num_functions = ARRAY_SIZE(stm32_lptim_cnt_functions),
.synapses = stm32_lptim_cnt_synapses,
.num_synapses = ARRAY_SIZE(stm32_lptim_cnt_synapses),
.ext = stm32_lptim_cnt_ext,
.num_ext = ARRAY_SIZE(stm32_lptim_cnt_ext)
};
/* LP timer without encoder (counter only) */
static struct counter_count stm32_lptim_in1_counts = {
.id = 0,
.name = "LPTimer Count",
.functions_list = stm32_lptim_cnt_functions,
.num_functions = 1,
.synapses = stm32_lptim_cnt_synapses,
.num_synapses = 1,
.ext = stm32_lptim_cnt_ext,
.num_ext = ARRAY_SIZE(stm32_lptim_cnt_ext)
};
static int stm32_lptim_cnt_probe(struct platform_device *pdev)
{
struct stm32_lptimer *ddata = dev_get_drvdata(pdev->dev.parent);
struct stm32_lptim_cnt *priv;
struct iio_dev *indio_dev;
int ret;
if (IS_ERR_OR_NULL(ddata))
return -EINVAL;
indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*priv));
if (!indio_dev)
return -ENOMEM;
priv = iio_priv(indio_dev);
priv->dev = &pdev->dev;
priv->regmap = ddata->regmap;
priv->clk = ddata->clk;
priv->ceiling = STM32_LPTIM_MAX_ARR;
/* Initialize IIO device */
indio_dev->name = dev_name(&pdev->dev);
indio_dev->dev.parent = &pdev->dev;
indio_dev->dev.of_node = pdev->dev.of_node;
indio_dev->info = &stm32_lptim_cnt_iio_info;
if (ddata->has_encoder)
indio_dev->channels = &stm32_lptim_enc_channels;
else
indio_dev->channels = &stm32_lptim_cnt_channels;
indio_dev->num_channels = 1;
/* Initialize Counter device */
priv->counter.name = dev_name(&pdev->dev);
priv->counter.parent = &pdev->dev;
priv->counter.ops = &stm32_lptim_cnt_ops;
if (ddata->has_encoder) {
priv->counter.counts = &stm32_lptim_enc_counts;
priv->counter.num_signals = ARRAY_SIZE(stm32_lptim_cnt_signals);
} else {
priv->counter.counts = &stm32_lptim_in1_counts;
priv->counter.num_signals = 1;
}
priv->counter.num_counts = 1;
priv->counter.signals = stm32_lptim_cnt_signals;
priv->counter.priv = priv;
platform_set_drvdata(pdev, priv);
ret = devm_iio_device_register(&pdev->dev, indio_dev);
if (ret)
return ret;
return devm_counter_register(&pdev->dev, &priv->counter);
}
#ifdef CONFIG_PM_SLEEP
static int stm32_lptim_cnt_suspend(struct device *dev)
{
struct stm32_lptim_cnt *priv = dev_get_drvdata(dev);
int ret;
/* Only take care of enabled counter: don't disturb other MFD child */
if (priv->enabled) {
ret = stm32_lptim_setup(priv, 0);
if (ret)
return ret;
ret = stm32_lptim_set_enable_state(priv, 0);
if (ret)
return ret;
/* Force enable state for later resume */
priv->enabled = true;
}
return pinctrl_pm_select_sleep_state(dev);
}
static int stm32_lptim_cnt_resume(struct device *dev)
{
struct stm32_lptim_cnt *priv = dev_get_drvdata(dev);
int ret;
ret = pinctrl_pm_select_default_state(dev);
if (ret)
return ret;
if (priv->enabled) {
priv->enabled = false;
ret = stm32_lptim_setup(priv, 1);
if (ret)
return ret;
ret = stm32_lptim_set_enable_state(priv, 1);
if (ret)
return ret;
}
return 0;
}
#endif
static SIMPLE_DEV_PM_OPS(stm32_lptim_cnt_pm_ops, stm32_lptim_cnt_suspend,
stm32_lptim_cnt_resume);
static const struct of_device_id stm32_lptim_cnt_of_match[] = {
{ .compatible = "st,stm32-lptimer-counter", },
{},
};
MODULE_DEVICE_TABLE(of, stm32_lptim_cnt_of_match);
static struct platform_driver stm32_lptim_cnt_driver = {
.probe = stm32_lptim_cnt_probe,
.driver = {
.name = "stm32-lptimer-counter",
.of_match_table = stm32_lptim_cnt_of_match,
.pm = &stm32_lptim_cnt_pm_ops,
},
};
module_platform_driver(stm32_lptim_cnt_driver);
MODULE_AUTHOR("Fabrice Gasnier <fabrice.gasnier@st.com>");
MODULE_ALIAS("platform:stm32-lptimer-counter");
MODULE_DESCRIPTION("STMicroelectronics STM32 LPTIM counter driver");
MODULE_LICENSE("GPL v2");