forked from Minki/linux
5a0e3ad6af
percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
301 lines
6.9 KiB
C
301 lines
6.9 KiB
C
/*
|
|
* ACPI PATA driver
|
|
*
|
|
* (c) 2007 Red Hat
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/init.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/device.h>
|
|
#include <linux/gfp.h>
|
|
#include <scsi/scsi_host.h>
|
|
#include <acpi/acpi_bus.h>
|
|
|
|
#include <linux/libata.h>
|
|
#include <linux/ata.h>
|
|
|
|
#define DRV_NAME "pata_acpi"
|
|
#define DRV_VERSION "0.2.3"
|
|
|
|
struct pata_acpi {
|
|
struct ata_acpi_gtm gtm;
|
|
void *last;
|
|
unsigned long mask[2];
|
|
};
|
|
|
|
/**
|
|
* pacpi_pre_reset - check for 40/80 pin
|
|
* @ap: Port
|
|
* @deadline: deadline jiffies for the operation
|
|
*
|
|
* Perform the PATA port setup we need.
|
|
*/
|
|
|
|
static int pacpi_pre_reset(struct ata_link *link, unsigned long deadline)
|
|
{
|
|
struct ata_port *ap = link->ap;
|
|
struct pata_acpi *acpi = ap->private_data;
|
|
if (ap->acpi_handle == NULL || ata_acpi_gtm(ap, &acpi->gtm) < 0)
|
|
return -ENODEV;
|
|
|
|
return ata_sff_prereset(link, deadline);
|
|
}
|
|
|
|
/**
|
|
* pacpi_cable_detect - cable type detection
|
|
* @ap: port to detect
|
|
*
|
|
* Perform device specific cable detection
|
|
*/
|
|
|
|
static int pacpi_cable_detect(struct ata_port *ap)
|
|
{
|
|
struct pata_acpi *acpi = ap->private_data;
|
|
|
|
if ((acpi->mask[0] | acpi->mask[1]) & (0xF8 << ATA_SHIFT_UDMA))
|
|
return ATA_CBL_PATA80;
|
|
else
|
|
return ATA_CBL_PATA40;
|
|
}
|
|
|
|
/**
|
|
* pacpi_discover_modes - filter non ACPI modes
|
|
* @adev: ATA device
|
|
* @mask: proposed modes
|
|
*
|
|
* Try the modes available and see which ones the ACPI method will
|
|
* set up sensibly. From this we get a mask of ACPI modes we can use
|
|
*/
|
|
|
|
static unsigned long pacpi_discover_modes(struct ata_port *ap, struct ata_device *adev)
|
|
{
|
|
struct pata_acpi *acpi = ap->private_data;
|
|
struct ata_acpi_gtm probe;
|
|
unsigned int xfer_mask;
|
|
|
|
probe = acpi->gtm;
|
|
|
|
ata_acpi_gtm(ap, &probe);
|
|
|
|
xfer_mask = ata_acpi_gtm_xfermask(adev, &probe);
|
|
|
|
if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
|
|
ap->cbl = ATA_CBL_PATA80;
|
|
|
|
return xfer_mask;
|
|
}
|
|
|
|
/**
|
|
* pacpi_mode_filter - mode filter for ACPI
|
|
* @adev: device
|
|
* @mask: mask of valid modes
|
|
*
|
|
* Filter the valid mode list according to our own specific rules, in
|
|
* this case the list of discovered valid modes obtained by ACPI probing
|
|
*/
|
|
|
|
static unsigned long pacpi_mode_filter(struct ata_device *adev, unsigned long mask)
|
|
{
|
|
struct pata_acpi *acpi = adev->link->ap->private_data;
|
|
return ata_bmdma_mode_filter(adev, mask & acpi->mask[adev->devno]);
|
|
}
|
|
|
|
/**
|
|
* pacpi_set_piomode - set initial PIO mode data
|
|
* @ap: ATA interface
|
|
* @adev: ATA device
|
|
*/
|
|
|
|
static void pacpi_set_piomode(struct ata_port *ap, struct ata_device *adev)
|
|
{
|
|
int unit = adev->devno;
|
|
struct pata_acpi *acpi = ap->private_data;
|
|
const struct ata_timing *t;
|
|
|
|
if (!(acpi->gtm.flags & 0x10))
|
|
unit = 0;
|
|
|
|
/* Now stuff the nS values into the structure */
|
|
t = ata_timing_find_mode(adev->pio_mode);
|
|
acpi->gtm.drive[unit].pio = t->cycle;
|
|
ata_acpi_stm(ap, &acpi->gtm);
|
|
/* See what mode we actually got */
|
|
ata_acpi_gtm(ap, &acpi->gtm);
|
|
}
|
|
|
|
/**
|
|
* pacpi_set_dmamode - set initial DMA mode data
|
|
* @ap: ATA interface
|
|
* @adev: ATA device
|
|
*/
|
|
|
|
static void pacpi_set_dmamode(struct ata_port *ap, struct ata_device *adev)
|
|
{
|
|
int unit = adev->devno;
|
|
struct pata_acpi *acpi = ap->private_data;
|
|
const struct ata_timing *t;
|
|
|
|
if (!(acpi->gtm.flags & 0x10))
|
|
unit = 0;
|
|
|
|
/* Now stuff the nS values into the structure */
|
|
t = ata_timing_find_mode(adev->dma_mode);
|
|
if (adev->dma_mode >= XFER_UDMA_0) {
|
|
acpi->gtm.drive[unit].dma = t->udma;
|
|
acpi->gtm.flags |= (1 << (2 * unit));
|
|
} else {
|
|
acpi->gtm.drive[unit].dma = t->cycle;
|
|
acpi->gtm.flags &= ~(1 << (2 * unit));
|
|
}
|
|
ata_acpi_stm(ap, &acpi->gtm);
|
|
/* See what mode we actually got */
|
|
ata_acpi_gtm(ap, &acpi->gtm);
|
|
}
|
|
|
|
/**
|
|
* pacpi_qc_issue - command issue
|
|
* @qc: command pending
|
|
*
|
|
* Called when the libata layer is about to issue a command. We wrap
|
|
* this interface so that we can load the correct ATA timings if
|
|
* necessary.
|
|
*/
|
|
|
|
static unsigned int pacpi_qc_issue(struct ata_queued_cmd *qc)
|
|
{
|
|
struct ata_port *ap = qc->ap;
|
|
struct ata_device *adev = qc->dev;
|
|
struct pata_acpi *acpi = ap->private_data;
|
|
|
|
if (acpi->gtm.flags & 0x10)
|
|
return ata_sff_qc_issue(qc);
|
|
|
|
if (adev != acpi->last) {
|
|
pacpi_set_piomode(ap, adev);
|
|
if (ata_dma_enabled(adev))
|
|
pacpi_set_dmamode(ap, adev);
|
|
acpi->last = adev;
|
|
}
|
|
return ata_sff_qc_issue(qc);
|
|
}
|
|
|
|
/**
|
|
* pacpi_port_start - port setup
|
|
* @ap: ATA port being set up
|
|
*
|
|
* Use the port_start hook to maintain private control structures
|
|
*/
|
|
|
|
static int pacpi_port_start(struct ata_port *ap)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(ap->host->dev);
|
|
struct pata_acpi *acpi;
|
|
|
|
int ret;
|
|
|
|
if (ap->acpi_handle == NULL)
|
|
return -ENODEV;
|
|
|
|
acpi = ap->private_data = devm_kzalloc(&pdev->dev, sizeof(struct pata_acpi), GFP_KERNEL);
|
|
if (ap->private_data == NULL)
|
|
return -ENOMEM;
|
|
acpi->mask[0] = pacpi_discover_modes(ap, &ap->link.device[0]);
|
|
acpi->mask[1] = pacpi_discover_modes(ap, &ap->link.device[1]);
|
|
ret = ata_sff_port_start(ap);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static struct scsi_host_template pacpi_sht = {
|
|
ATA_BMDMA_SHT(DRV_NAME),
|
|
};
|
|
|
|
static struct ata_port_operations pacpi_ops = {
|
|
.inherits = &ata_bmdma_port_ops,
|
|
.qc_issue = pacpi_qc_issue,
|
|
.cable_detect = pacpi_cable_detect,
|
|
.mode_filter = pacpi_mode_filter,
|
|
.set_piomode = pacpi_set_piomode,
|
|
.set_dmamode = pacpi_set_dmamode,
|
|
.prereset = pacpi_pre_reset,
|
|
.port_start = pacpi_port_start,
|
|
};
|
|
|
|
|
|
/**
|
|
* pacpi_init_one - Register ACPI ATA PCI device with kernel services
|
|
* @pdev: PCI device to register
|
|
* @ent: Entry in pacpi_pci_tbl matching with @pdev
|
|
*
|
|
* Called from kernel PCI layer.
|
|
*
|
|
* LOCKING:
|
|
* Inherited from PCI layer (may sleep).
|
|
*
|
|
* RETURNS:
|
|
* Zero on success, or -ERRNO value.
|
|
*/
|
|
|
|
static int pacpi_init_one (struct pci_dev *pdev, const struct pci_device_id *id)
|
|
{
|
|
static const struct ata_port_info info = {
|
|
.flags = ATA_FLAG_SLAVE_POSS | ATA_FLAG_SRST,
|
|
|
|
.pio_mask = ATA_PIO4,
|
|
.mwdma_mask = ATA_MWDMA2,
|
|
.udma_mask = ATA_UDMA6,
|
|
|
|
.port_ops = &pacpi_ops,
|
|
};
|
|
const struct ata_port_info *ppi[] = { &info, NULL };
|
|
if (pdev->vendor == PCI_VENDOR_ID_ATI) {
|
|
int rc = pcim_enable_device(pdev);
|
|
if (rc < 0)
|
|
return rc;
|
|
pcim_pin_device(pdev);
|
|
}
|
|
return ata_pci_sff_init_one(pdev, ppi, &pacpi_sht, NULL, 0);
|
|
}
|
|
|
|
static const struct pci_device_id pacpi_pci_tbl[] = {
|
|
{ PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_STORAGE_IDE << 8, 0xFFFFFF00UL, 1},
|
|
{ } /* terminate list */
|
|
};
|
|
|
|
static struct pci_driver pacpi_pci_driver = {
|
|
.name = DRV_NAME,
|
|
.id_table = pacpi_pci_tbl,
|
|
.probe = pacpi_init_one,
|
|
.remove = ata_pci_remove_one,
|
|
#ifdef CONFIG_PM
|
|
.suspend = ata_pci_device_suspend,
|
|
.resume = ata_pci_device_resume,
|
|
#endif
|
|
};
|
|
|
|
static int __init pacpi_init(void)
|
|
{
|
|
return pci_register_driver(&pacpi_pci_driver);
|
|
}
|
|
|
|
static void __exit pacpi_exit(void)
|
|
{
|
|
pci_unregister_driver(&pacpi_pci_driver);
|
|
}
|
|
|
|
module_init(pacpi_init);
|
|
module_exit(pacpi_exit);
|
|
|
|
MODULE_AUTHOR("Alan Cox");
|
|
MODULE_DESCRIPTION("SCSI low-level driver for ATA in ACPI mode");
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_DEVICE_TABLE(pci, pacpi_pci_tbl);
|
|
MODULE_VERSION(DRV_VERSION);
|
|
|