The kmalloc() function has a 2-factor argument form, kmalloc_array(). This
patch replaces cases of:
        kmalloc(a * b, gfp)
with:
        kmalloc_array(a * b, gfp)
as well as handling cases of:
        kmalloc(a * b * c, gfp)
with:
        kmalloc(array3_size(a, b, c), gfp)
as it's slightly less ugly than:
        kmalloc_array(array_size(a, b), c, gfp)
This does, however, attempt to ignore constant size factors like:
        kmalloc(4 * 1024, gfp)
though any constants defined via macros get caught up in the conversion.
Any factors with a sizeof() of "unsigned char", "char", and "u8" were
dropped, since they're redundant.
The tools/ directory was manually excluded, since it has its own
implementation of kmalloc().
The Coccinelle script used for this was:
// Fix redundant parens around sizeof().
@@
type TYPE;
expression THING, E;
@@
(
  kmalloc(
-	(sizeof(TYPE)) * E
+	sizeof(TYPE) * E
  , ...)
|
  kmalloc(
-	(sizeof(THING)) * E
+	sizeof(THING) * E
  , ...)
)
// Drop single-byte sizes and redundant parens.
@@
expression COUNT;
typedef u8;
typedef __u8;
@@
(
  kmalloc(
-	sizeof(u8) * (COUNT)
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(__u8) * (COUNT)
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(char) * (COUNT)
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(unsigned char) * (COUNT)
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(u8) * COUNT
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(__u8) * COUNT
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(char) * COUNT
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(unsigned char) * COUNT
+	COUNT
  , ...)
)
// 2-factor product with sizeof(type/expression) and identifier or constant.
@@
type TYPE;
expression THING;
identifier COUNT_ID;
constant COUNT_CONST;
@@
(
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * (COUNT_ID)
+	COUNT_ID, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * COUNT_ID
+	COUNT_ID, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * (COUNT_CONST)
+	COUNT_CONST, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * COUNT_CONST
+	COUNT_CONST, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * (COUNT_ID)
+	COUNT_ID, sizeof(THING)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * COUNT_ID
+	COUNT_ID, sizeof(THING)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * (COUNT_CONST)
+	COUNT_CONST, sizeof(THING)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * COUNT_CONST
+	COUNT_CONST, sizeof(THING)
  , ...)
)
// 2-factor product, only identifiers.
@@
identifier SIZE, COUNT;
@@
- kmalloc
+ kmalloc_array
  (
-	SIZE * COUNT
+	COUNT, SIZE
  , ...)
// 3-factor product with 1 sizeof(type) or sizeof(expression), with
// redundant parens removed.
@@
expression THING;
identifier STRIDE, COUNT;
type TYPE;
@@
(
  kmalloc(
-	sizeof(TYPE) * (COUNT) * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kmalloc(
-	sizeof(TYPE) * (COUNT) * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kmalloc(
-	sizeof(TYPE) * COUNT * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kmalloc(
-	sizeof(TYPE) * COUNT * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kmalloc(
-	sizeof(THING) * (COUNT) * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  kmalloc(
-	sizeof(THING) * (COUNT) * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  kmalloc(
-	sizeof(THING) * COUNT * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  kmalloc(
-	sizeof(THING) * COUNT * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
)
// 3-factor product with 2 sizeof(variable), with redundant parens removed.
@@
expression THING1, THING2;
identifier COUNT;
type TYPE1, TYPE2;
@@
(
  kmalloc(
-	sizeof(TYPE1) * sizeof(TYPE2) * COUNT
+	array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
  , ...)
|
  kmalloc(
-	sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
  , ...)
|
  kmalloc(
-	sizeof(THING1) * sizeof(THING2) * COUNT
+	array3_size(COUNT, sizeof(THING1), sizeof(THING2))
  , ...)
|
  kmalloc(
-	sizeof(THING1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(THING1), sizeof(THING2))
  , ...)
|
  kmalloc(
-	sizeof(TYPE1) * sizeof(THING2) * COUNT
+	array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
  , ...)
|
  kmalloc(
-	sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
  , ...)
)
// 3-factor product, only identifiers, with redundant parens removed.
@@
identifier STRIDE, SIZE, COUNT;
@@
(
  kmalloc(
-	(COUNT) * STRIDE * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	COUNT * (STRIDE) * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	COUNT * STRIDE * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	(COUNT) * (STRIDE) * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	COUNT * (STRIDE) * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	(COUNT) * STRIDE * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	(COUNT) * (STRIDE) * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	COUNT * STRIDE * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
)
// Any remaining multi-factor products, first at least 3-factor products,
// when they're not all constants...
@@
expression E1, E2, E3;
constant C1, C2, C3;
@@
(
  kmalloc(C1 * C2 * C3, ...)
|
  kmalloc(
-	(E1) * E2 * E3
+	array3_size(E1, E2, E3)
  , ...)
|
  kmalloc(
-	(E1) * (E2) * E3
+	array3_size(E1, E2, E3)
  , ...)
|
  kmalloc(
-	(E1) * (E2) * (E3)
+	array3_size(E1, E2, E3)
  , ...)
|
  kmalloc(
-	E1 * E2 * E3
+	array3_size(E1, E2, E3)
  , ...)
)
// And then all remaining 2 factors products when they're not all constants,
// keeping sizeof() as the second factor argument.
@@
expression THING, E1, E2;
type TYPE;
constant C1, C2, C3;
@@
(
  kmalloc(sizeof(THING) * C2, ...)
|
  kmalloc(sizeof(TYPE) * C2, ...)
|
  kmalloc(C1 * C2 * C3, ...)
|
  kmalloc(C1 * C2, ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * (E2)
+	E2, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * E2
+	E2, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * (E2)
+	E2, sizeof(THING)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * E2
+	E2, sizeof(THING)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	(E1) * E2
+	E1, E2
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	(E1) * (E2)
+	E1, E2
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	E1 * E2
+	E1, E2
  , ...)
)
Signed-off-by: Kees Cook <keescook@chromium.org>
		
	
			
		
			
				
	
	
		
			1929 lines
		
	
	
		
			48 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1929 lines
		
	
	
		
			48 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0
 | 
						|
/*
 | 
						|
 * Scheduler topology setup/handling methods
 | 
						|
 */
 | 
						|
#include "sched.h"
 | 
						|
 | 
						|
DEFINE_MUTEX(sched_domains_mutex);
 | 
						|
 | 
						|
/* Protected by sched_domains_mutex: */
 | 
						|
cpumask_var_t sched_domains_tmpmask;
 | 
						|
cpumask_var_t sched_domains_tmpmask2;
 | 
						|
 | 
						|
#ifdef CONFIG_SCHED_DEBUG
 | 
						|
 | 
						|
static int __init sched_debug_setup(char *str)
 | 
						|
{
 | 
						|
	sched_debug_enabled = true;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
early_param("sched_debug", sched_debug_setup);
 | 
						|
 | 
						|
static inline bool sched_debug(void)
 | 
						|
{
 | 
						|
	return sched_debug_enabled;
 | 
						|
}
 | 
						|
 | 
						|
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
 | 
						|
				  struct cpumask *groupmask)
 | 
						|
{
 | 
						|
	struct sched_group *group = sd->groups;
 | 
						|
 | 
						|
	cpumask_clear(groupmask);
 | 
						|
 | 
						|
	printk(KERN_DEBUG "%*s domain-%d: ", level, "", level);
 | 
						|
 | 
						|
	if (!(sd->flags & SD_LOAD_BALANCE)) {
 | 
						|
		printk("does not load-balance\n");
 | 
						|
		if (sd->parent)
 | 
						|
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
 | 
						|
	printk(KERN_CONT "span=%*pbl level=%s\n",
 | 
						|
	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
 | 
						|
 | 
						|
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
 | 
						|
		printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
 | 
						|
	}
 | 
						|
	if (!cpumask_test_cpu(cpu, sched_group_span(group))) {
 | 
						|
		printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
 | 
						|
	}
 | 
						|
 | 
						|
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
 | 
						|
	do {
 | 
						|
		if (!group) {
 | 
						|
			printk("\n");
 | 
						|
			printk(KERN_ERR "ERROR: group is NULL\n");
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		if (!cpumask_weight(sched_group_span(group))) {
 | 
						|
			printk(KERN_CONT "\n");
 | 
						|
			printk(KERN_ERR "ERROR: empty group\n");
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		if (!(sd->flags & SD_OVERLAP) &&
 | 
						|
		    cpumask_intersects(groupmask, sched_group_span(group))) {
 | 
						|
			printk(KERN_CONT "\n");
 | 
						|
			printk(KERN_ERR "ERROR: repeated CPUs\n");
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		cpumask_or(groupmask, groupmask, sched_group_span(group));
 | 
						|
 | 
						|
		printk(KERN_CONT " %d:{ span=%*pbl",
 | 
						|
				group->sgc->id,
 | 
						|
				cpumask_pr_args(sched_group_span(group)));
 | 
						|
 | 
						|
		if ((sd->flags & SD_OVERLAP) &&
 | 
						|
		    !cpumask_equal(group_balance_mask(group), sched_group_span(group))) {
 | 
						|
			printk(KERN_CONT " mask=%*pbl",
 | 
						|
				cpumask_pr_args(group_balance_mask(group)));
 | 
						|
		}
 | 
						|
 | 
						|
		if (group->sgc->capacity != SCHED_CAPACITY_SCALE)
 | 
						|
			printk(KERN_CONT " cap=%lu", group->sgc->capacity);
 | 
						|
 | 
						|
		if (group == sd->groups && sd->child &&
 | 
						|
		    !cpumask_equal(sched_domain_span(sd->child),
 | 
						|
				   sched_group_span(group))) {
 | 
						|
			printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n");
 | 
						|
		}
 | 
						|
 | 
						|
		printk(KERN_CONT " }");
 | 
						|
 | 
						|
		group = group->next;
 | 
						|
 | 
						|
		if (group != sd->groups)
 | 
						|
			printk(KERN_CONT ",");
 | 
						|
 | 
						|
	} while (group != sd->groups);
 | 
						|
	printk(KERN_CONT "\n");
 | 
						|
 | 
						|
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
 | 
						|
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
 | 
						|
 | 
						|
	if (sd->parent &&
 | 
						|
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
 | 
						|
		printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void sched_domain_debug(struct sched_domain *sd, int cpu)
 | 
						|
{
 | 
						|
	int level = 0;
 | 
						|
 | 
						|
	if (!sched_debug_enabled)
 | 
						|
		return;
 | 
						|
 | 
						|
	if (!sd) {
 | 
						|
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu);
 | 
						|
 | 
						|
	for (;;) {
 | 
						|
		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
 | 
						|
			break;
 | 
						|
		level++;
 | 
						|
		sd = sd->parent;
 | 
						|
		if (!sd)
 | 
						|
			break;
 | 
						|
	}
 | 
						|
}
 | 
						|
#else /* !CONFIG_SCHED_DEBUG */
 | 
						|
 | 
						|
# define sched_debug_enabled 0
 | 
						|
# define sched_domain_debug(sd, cpu) do { } while (0)
 | 
						|
static inline bool sched_debug(void)
 | 
						|
{
 | 
						|
	return false;
 | 
						|
}
 | 
						|
#endif /* CONFIG_SCHED_DEBUG */
 | 
						|
 | 
						|
static int sd_degenerate(struct sched_domain *sd)
 | 
						|
{
 | 
						|
	if (cpumask_weight(sched_domain_span(sd)) == 1)
 | 
						|
		return 1;
 | 
						|
 | 
						|
	/* Following flags need at least 2 groups */
 | 
						|
	if (sd->flags & (SD_LOAD_BALANCE |
 | 
						|
			 SD_BALANCE_NEWIDLE |
 | 
						|
			 SD_BALANCE_FORK |
 | 
						|
			 SD_BALANCE_EXEC |
 | 
						|
			 SD_SHARE_CPUCAPACITY |
 | 
						|
			 SD_ASYM_CPUCAPACITY |
 | 
						|
			 SD_SHARE_PKG_RESOURCES |
 | 
						|
			 SD_SHARE_POWERDOMAIN)) {
 | 
						|
		if (sd->groups != sd->groups->next)
 | 
						|
			return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Following flags don't use groups */
 | 
						|
	if (sd->flags & (SD_WAKE_AFFINE))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
 | 
						|
{
 | 
						|
	unsigned long cflags = sd->flags, pflags = parent->flags;
 | 
						|
 | 
						|
	if (sd_degenerate(parent))
 | 
						|
		return 1;
 | 
						|
 | 
						|
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	/* Flags needing groups don't count if only 1 group in parent */
 | 
						|
	if (parent->groups == parent->groups->next) {
 | 
						|
		pflags &= ~(SD_LOAD_BALANCE |
 | 
						|
				SD_BALANCE_NEWIDLE |
 | 
						|
				SD_BALANCE_FORK |
 | 
						|
				SD_BALANCE_EXEC |
 | 
						|
				SD_ASYM_CPUCAPACITY |
 | 
						|
				SD_SHARE_CPUCAPACITY |
 | 
						|
				SD_SHARE_PKG_RESOURCES |
 | 
						|
				SD_PREFER_SIBLING |
 | 
						|
				SD_SHARE_POWERDOMAIN);
 | 
						|
		if (nr_node_ids == 1)
 | 
						|
			pflags &= ~SD_SERIALIZE;
 | 
						|
	}
 | 
						|
	if (~cflags & pflags)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
static void free_rootdomain(struct rcu_head *rcu)
 | 
						|
{
 | 
						|
	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
 | 
						|
 | 
						|
	cpupri_cleanup(&rd->cpupri);
 | 
						|
	cpudl_cleanup(&rd->cpudl);
 | 
						|
	free_cpumask_var(rd->dlo_mask);
 | 
						|
	free_cpumask_var(rd->rto_mask);
 | 
						|
	free_cpumask_var(rd->online);
 | 
						|
	free_cpumask_var(rd->span);
 | 
						|
	kfree(rd);
 | 
						|
}
 | 
						|
 | 
						|
void rq_attach_root(struct rq *rq, struct root_domain *rd)
 | 
						|
{
 | 
						|
	struct root_domain *old_rd = NULL;
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	raw_spin_lock_irqsave(&rq->lock, flags);
 | 
						|
 | 
						|
	if (rq->rd) {
 | 
						|
		old_rd = rq->rd;
 | 
						|
 | 
						|
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
 | 
						|
			set_rq_offline(rq);
 | 
						|
 | 
						|
		cpumask_clear_cpu(rq->cpu, old_rd->span);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If we dont want to free the old_rd yet then
 | 
						|
		 * set old_rd to NULL to skip the freeing later
 | 
						|
		 * in this function:
 | 
						|
		 */
 | 
						|
		if (!atomic_dec_and_test(&old_rd->refcount))
 | 
						|
			old_rd = NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	atomic_inc(&rd->refcount);
 | 
						|
	rq->rd = rd;
 | 
						|
 | 
						|
	cpumask_set_cpu(rq->cpu, rd->span);
 | 
						|
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
 | 
						|
		set_rq_online(rq);
 | 
						|
 | 
						|
	raw_spin_unlock_irqrestore(&rq->lock, flags);
 | 
						|
 | 
						|
	if (old_rd)
 | 
						|
		call_rcu_sched(&old_rd->rcu, free_rootdomain);
 | 
						|
}
 | 
						|
 | 
						|
void sched_get_rd(struct root_domain *rd)
 | 
						|
{
 | 
						|
	atomic_inc(&rd->refcount);
 | 
						|
}
 | 
						|
 | 
						|
void sched_put_rd(struct root_domain *rd)
 | 
						|
{
 | 
						|
	if (!atomic_dec_and_test(&rd->refcount))
 | 
						|
		return;
 | 
						|
 | 
						|
	call_rcu_sched(&rd->rcu, free_rootdomain);
 | 
						|
}
 | 
						|
 | 
						|
static int init_rootdomain(struct root_domain *rd)
 | 
						|
{
 | 
						|
	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
 | 
						|
		goto out;
 | 
						|
	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
 | 
						|
		goto free_span;
 | 
						|
	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
 | 
						|
		goto free_online;
 | 
						|
	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
 | 
						|
		goto free_dlo_mask;
 | 
						|
 | 
						|
#ifdef HAVE_RT_PUSH_IPI
 | 
						|
	rd->rto_cpu = -1;
 | 
						|
	raw_spin_lock_init(&rd->rto_lock);
 | 
						|
	init_irq_work(&rd->rto_push_work, rto_push_irq_work_func);
 | 
						|
#endif
 | 
						|
 | 
						|
	init_dl_bw(&rd->dl_bw);
 | 
						|
	if (cpudl_init(&rd->cpudl) != 0)
 | 
						|
		goto free_rto_mask;
 | 
						|
 | 
						|
	if (cpupri_init(&rd->cpupri) != 0)
 | 
						|
		goto free_cpudl;
 | 
						|
	return 0;
 | 
						|
 | 
						|
free_cpudl:
 | 
						|
	cpudl_cleanup(&rd->cpudl);
 | 
						|
free_rto_mask:
 | 
						|
	free_cpumask_var(rd->rto_mask);
 | 
						|
free_dlo_mask:
 | 
						|
	free_cpumask_var(rd->dlo_mask);
 | 
						|
free_online:
 | 
						|
	free_cpumask_var(rd->online);
 | 
						|
free_span:
 | 
						|
	free_cpumask_var(rd->span);
 | 
						|
out:
 | 
						|
	return -ENOMEM;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * By default the system creates a single root-domain with all CPUs as
 | 
						|
 * members (mimicking the global state we have today).
 | 
						|
 */
 | 
						|
struct root_domain def_root_domain;
 | 
						|
 | 
						|
void init_defrootdomain(void)
 | 
						|
{
 | 
						|
	init_rootdomain(&def_root_domain);
 | 
						|
 | 
						|
	atomic_set(&def_root_domain.refcount, 1);
 | 
						|
}
 | 
						|
 | 
						|
static struct root_domain *alloc_rootdomain(void)
 | 
						|
{
 | 
						|
	struct root_domain *rd;
 | 
						|
 | 
						|
	rd = kzalloc(sizeof(*rd), GFP_KERNEL);
 | 
						|
	if (!rd)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	if (init_rootdomain(rd) != 0) {
 | 
						|
		kfree(rd);
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	return rd;
 | 
						|
}
 | 
						|
 | 
						|
static void free_sched_groups(struct sched_group *sg, int free_sgc)
 | 
						|
{
 | 
						|
	struct sched_group *tmp, *first;
 | 
						|
 | 
						|
	if (!sg)
 | 
						|
		return;
 | 
						|
 | 
						|
	first = sg;
 | 
						|
	do {
 | 
						|
		tmp = sg->next;
 | 
						|
 | 
						|
		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
 | 
						|
			kfree(sg->sgc);
 | 
						|
 | 
						|
		if (atomic_dec_and_test(&sg->ref))
 | 
						|
			kfree(sg);
 | 
						|
		sg = tmp;
 | 
						|
	} while (sg != first);
 | 
						|
}
 | 
						|
 | 
						|
static void destroy_sched_domain(struct sched_domain *sd)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * A normal sched domain may have multiple group references, an
 | 
						|
	 * overlapping domain, having private groups, only one.  Iterate,
 | 
						|
	 * dropping group/capacity references, freeing where none remain.
 | 
						|
	 */
 | 
						|
	free_sched_groups(sd->groups, 1);
 | 
						|
 | 
						|
	if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
 | 
						|
		kfree(sd->shared);
 | 
						|
	kfree(sd);
 | 
						|
}
 | 
						|
 | 
						|
static void destroy_sched_domains_rcu(struct rcu_head *rcu)
 | 
						|
{
 | 
						|
	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
 | 
						|
 | 
						|
	while (sd) {
 | 
						|
		struct sched_domain *parent = sd->parent;
 | 
						|
		destroy_sched_domain(sd);
 | 
						|
		sd = parent;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void destroy_sched_domains(struct sched_domain *sd)
 | 
						|
{
 | 
						|
	if (sd)
 | 
						|
		call_rcu(&sd->rcu, destroy_sched_domains_rcu);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Keep a special pointer to the highest sched_domain that has
 | 
						|
 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
 | 
						|
 * allows us to avoid some pointer chasing select_idle_sibling().
 | 
						|
 *
 | 
						|
 * Also keep a unique ID per domain (we use the first CPU number in
 | 
						|
 * the cpumask of the domain), this allows us to quickly tell if
 | 
						|
 * two CPUs are in the same cache domain, see cpus_share_cache().
 | 
						|
 */
 | 
						|
DEFINE_PER_CPU(struct sched_domain *, sd_llc);
 | 
						|
DEFINE_PER_CPU(int, sd_llc_size);
 | 
						|
DEFINE_PER_CPU(int, sd_llc_id);
 | 
						|
DEFINE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
 | 
						|
DEFINE_PER_CPU(struct sched_domain *, sd_numa);
 | 
						|
DEFINE_PER_CPU(struct sched_domain *, sd_asym);
 | 
						|
 | 
						|
static void update_top_cache_domain(int cpu)
 | 
						|
{
 | 
						|
	struct sched_domain_shared *sds = NULL;
 | 
						|
	struct sched_domain *sd;
 | 
						|
	int id = cpu;
 | 
						|
	int size = 1;
 | 
						|
 | 
						|
	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
 | 
						|
	if (sd) {
 | 
						|
		id = cpumask_first(sched_domain_span(sd));
 | 
						|
		size = cpumask_weight(sched_domain_span(sd));
 | 
						|
		sds = sd->shared;
 | 
						|
	}
 | 
						|
 | 
						|
	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
 | 
						|
	per_cpu(sd_llc_size, cpu) = size;
 | 
						|
	per_cpu(sd_llc_id, cpu) = id;
 | 
						|
	rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
 | 
						|
 | 
						|
	sd = lowest_flag_domain(cpu, SD_NUMA);
 | 
						|
	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
 | 
						|
 | 
						|
	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
 | 
						|
	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
 | 
						|
 * hold the hotplug lock.
 | 
						|
 */
 | 
						|
static void
 | 
						|
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
 | 
						|
{
 | 
						|
	struct rq *rq = cpu_rq(cpu);
 | 
						|
	struct sched_domain *tmp;
 | 
						|
 | 
						|
	/* Remove the sched domains which do not contribute to scheduling. */
 | 
						|
	for (tmp = sd; tmp; ) {
 | 
						|
		struct sched_domain *parent = tmp->parent;
 | 
						|
		if (!parent)
 | 
						|
			break;
 | 
						|
 | 
						|
		if (sd_parent_degenerate(tmp, parent)) {
 | 
						|
			tmp->parent = parent->parent;
 | 
						|
			if (parent->parent)
 | 
						|
				parent->parent->child = tmp;
 | 
						|
			/*
 | 
						|
			 * Transfer SD_PREFER_SIBLING down in case of a
 | 
						|
			 * degenerate parent; the spans match for this
 | 
						|
			 * so the property transfers.
 | 
						|
			 */
 | 
						|
			if (parent->flags & SD_PREFER_SIBLING)
 | 
						|
				tmp->flags |= SD_PREFER_SIBLING;
 | 
						|
			destroy_sched_domain(parent);
 | 
						|
		} else
 | 
						|
			tmp = tmp->parent;
 | 
						|
	}
 | 
						|
 | 
						|
	if (sd && sd_degenerate(sd)) {
 | 
						|
		tmp = sd;
 | 
						|
		sd = sd->parent;
 | 
						|
		destroy_sched_domain(tmp);
 | 
						|
		if (sd)
 | 
						|
			sd->child = NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	sched_domain_debug(sd, cpu);
 | 
						|
 | 
						|
	rq_attach_root(rq, rd);
 | 
						|
	tmp = rq->sd;
 | 
						|
	rcu_assign_pointer(rq->sd, sd);
 | 
						|
	dirty_sched_domain_sysctl(cpu);
 | 
						|
	destroy_sched_domains(tmp);
 | 
						|
 | 
						|
	update_top_cache_domain(cpu);
 | 
						|
}
 | 
						|
 | 
						|
struct s_data {
 | 
						|
	struct sched_domain ** __percpu sd;
 | 
						|
	struct root_domain	*rd;
 | 
						|
};
 | 
						|
 | 
						|
enum s_alloc {
 | 
						|
	sa_rootdomain,
 | 
						|
	sa_sd,
 | 
						|
	sa_sd_storage,
 | 
						|
	sa_none,
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * Return the canonical balance CPU for this group, this is the first CPU
 | 
						|
 * of this group that's also in the balance mask.
 | 
						|
 *
 | 
						|
 * The balance mask are all those CPUs that could actually end up at this
 | 
						|
 * group. See build_balance_mask().
 | 
						|
 *
 | 
						|
 * Also see should_we_balance().
 | 
						|
 */
 | 
						|
int group_balance_cpu(struct sched_group *sg)
 | 
						|
{
 | 
						|
	return cpumask_first(group_balance_mask(sg));
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * NUMA topology (first read the regular topology blurb below)
 | 
						|
 *
 | 
						|
 * Given a node-distance table, for example:
 | 
						|
 *
 | 
						|
 *   node   0   1   2   3
 | 
						|
 *     0:  10  20  30  20
 | 
						|
 *     1:  20  10  20  30
 | 
						|
 *     2:  30  20  10  20
 | 
						|
 *     3:  20  30  20  10
 | 
						|
 *
 | 
						|
 * which represents a 4 node ring topology like:
 | 
						|
 *
 | 
						|
 *   0 ----- 1
 | 
						|
 *   |       |
 | 
						|
 *   |       |
 | 
						|
 *   |       |
 | 
						|
 *   3 ----- 2
 | 
						|
 *
 | 
						|
 * We want to construct domains and groups to represent this. The way we go
 | 
						|
 * about doing this is to build the domains on 'hops'. For each NUMA level we
 | 
						|
 * construct the mask of all nodes reachable in @level hops.
 | 
						|
 *
 | 
						|
 * For the above NUMA topology that gives 3 levels:
 | 
						|
 *
 | 
						|
 * NUMA-2	0-3		0-3		0-3		0-3
 | 
						|
 *  groups:	{0-1,3},{1-3}	{0-2},{0,2-3}	{1-3},{0-1,3}	{0,2-3},{0-2}
 | 
						|
 *
 | 
						|
 * NUMA-1	0-1,3		0-2		1-3		0,2-3
 | 
						|
 *  groups:	{0},{1},{3}	{0},{1},{2}	{1},{2},{3}	{0},{2},{3}
 | 
						|
 *
 | 
						|
 * NUMA-0	0		1		2		3
 | 
						|
 *
 | 
						|
 *
 | 
						|
 * As can be seen; things don't nicely line up as with the regular topology.
 | 
						|
 * When we iterate a domain in child domain chunks some nodes can be
 | 
						|
 * represented multiple times -- hence the "overlap" naming for this part of
 | 
						|
 * the topology.
 | 
						|
 *
 | 
						|
 * In order to minimize this overlap, we only build enough groups to cover the
 | 
						|
 * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
 | 
						|
 *
 | 
						|
 * Because:
 | 
						|
 *
 | 
						|
 *  - the first group of each domain is its child domain; this
 | 
						|
 *    gets us the first 0-1,3
 | 
						|
 *  - the only uncovered node is 2, who's child domain is 1-3.
 | 
						|
 *
 | 
						|
 * However, because of the overlap, computing a unique CPU for each group is
 | 
						|
 * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
 | 
						|
 * groups include the CPUs of Node-0, while those CPUs would not in fact ever
 | 
						|
 * end up at those groups (they would end up in group: 0-1,3).
 | 
						|
 *
 | 
						|
 * To correct this we have to introduce the group balance mask. This mask
 | 
						|
 * will contain those CPUs in the group that can reach this group given the
 | 
						|
 * (child) domain tree.
 | 
						|
 *
 | 
						|
 * With this we can once again compute balance_cpu and sched_group_capacity
 | 
						|
 * relations.
 | 
						|
 *
 | 
						|
 * XXX include words on how balance_cpu is unique and therefore can be
 | 
						|
 * used for sched_group_capacity links.
 | 
						|
 *
 | 
						|
 *
 | 
						|
 * Another 'interesting' topology is:
 | 
						|
 *
 | 
						|
 *   node   0   1   2   3
 | 
						|
 *     0:  10  20  20  30
 | 
						|
 *     1:  20  10  20  20
 | 
						|
 *     2:  20  20  10  20
 | 
						|
 *     3:  30  20  20  10
 | 
						|
 *
 | 
						|
 * Which looks a little like:
 | 
						|
 *
 | 
						|
 *   0 ----- 1
 | 
						|
 *   |     / |
 | 
						|
 *   |   /   |
 | 
						|
 *   | /     |
 | 
						|
 *   2 ----- 3
 | 
						|
 *
 | 
						|
 * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
 | 
						|
 * are not.
 | 
						|
 *
 | 
						|
 * This leads to a few particularly weird cases where the sched_domain's are
 | 
						|
 * not of the same number for each CPU. Consider:
 | 
						|
 *
 | 
						|
 * NUMA-2	0-3						0-3
 | 
						|
 *  groups:	{0-2},{1-3}					{1-3},{0-2}
 | 
						|
 *
 | 
						|
 * NUMA-1	0-2		0-3		0-3		1-3
 | 
						|
 *
 | 
						|
 * NUMA-0	0		1		2		3
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * Build the balance mask; it contains only those CPUs that can arrive at this
 | 
						|
 * group and should be considered to continue balancing.
 | 
						|
 *
 | 
						|
 * We do this during the group creation pass, therefore the group information
 | 
						|
 * isn't complete yet, however since each group represents a (child) domain we
 | 
						|
 * can fully construct this using the sched_domain bits (which are already
 | 
						|
 * complete).
 | 
						|
 */
 | 
						|
static void
 | 
						|
build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask)
 | 
						|
{
 | 
						|
	const struct cpumask *sg_span = sched_group_span(sg);
 | 
						|
	struct sd_data *sdd = sd->private;
 | 
						|
	struct sched_domain *sibling;
 | 
						|
	int i;
 | 
						|
 | 
						|
	cpumask_clear(mask);
 | 
						|
 | 
						|
	for_each_cpu(i, sg_span) {
 | 
						|
		sibling = *per_cpu_ptr(sdd->sd, i);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Can happen in the asymmetric case, where these siblings are
 | 
						|
		 * unused. The mask will not be empty because those CPUs that
 | 
						|
		 * do have the top domain _should_ span the domain.
 | 
						|
		 */
 | 
						|
		if (!sibling->child)
 | 
						|
			continue;
 | 
						|
 | 
						|
		/* If we would not end up here, we can't continue from here */
 | 
						|
		if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
 | 
						|
			continue;
 | 
						|
 | 
						|
		cpumask_set_cpu(i, mask);
 | 
						|
	}
 | 
						|
 | 
						|
	/* We must not have empty masks here */
 | 
						|
	WARN_ON_ONCE(cpumask_empty(mask));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * XXX: This creates per-node group entries; since the load-balancer will
 | 
						|
 * immediately access remote memory to construct this group's load-balance
 | 
						|
 * statistics having the groups node local is of dubious benefit.
 | 
						|
 */
 | 
						|
static struct sched_group *
 | 
						|
build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)
 | 
						|
{
 | 
						|
	struct sched_group *sg;
 | 
						|
	struct cpumask *sg_span;
 | 
						|
 | 
						|
	sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
 | 
						|
			GFP_KERNEL, cpu_to_node(cpu));
 | 
						|
 | 
						|
	if (!sg)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	sg_span = sched_group_span(sg);
 | 
						|
	if (sd->child)
 | 
						|
		cpumask_copy(sg_span, sched_domain_span(sd->child));
 | 
						|
	else
 | 
						|
		cpumask_copy(sg_span, sched_domain_span(sd));
 | 
						|
 | 
						|
	atomic_inc(&sg->ref);
 | 
						|
	return sg;
 | 
						|
}
 | 
						|
 | 
						|
static void init_overlap_sched_group(struct sched_domain *sd,
 | 
						|
				     struct sched_group *sg)
 | 
						|
{
 | 
						|
	struct cpumask *mask = sched_domains_tmpmask2;
 | 
						|
	struct sd_data *sdd = sd->private;
 | 
						|
	struct cpumask *sg_span;
 | 
						|
	int cpu;
 | 
						|
 | 
						|
	build_balance_mask(sd, sg, mask);
 | 
						|
	cpu = cpumask_first_and(sched_group_span(sg), mask);
 | 
						|
 | 
						|
	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
 | 
						|
	if (atomic_inc_return(&sg->sgc->ref) == 1)
 | 
						|
		cpumask_copy(group_balance_mask(sg), mask);
 | 
						|
	else
 | 
						|
		WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask));
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Initialize sgc->capacity such that even if we mess up the
 | 
						|
	 * domains and no possible iteration will get us here, we won't
 | 
						|
	 * die on a /0 trap.
 | 
						|
	 */
 | 
						|
	sg_span = sched_group_span(sg);
 | 
						|
	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
 | 
						|
	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
build_overlap_sched_groups(struct sched_domain *sd, int cpu)
 | 
						|
{
 | 
						|
	struct sched_group *first = NULL, *last = NULL, *sg;
 | 
						|
	const struct cpumask *span = sched_domain_span(sd);
 | 
						|
	struct cpumask *covered = sched_domains_tmpmask;
 | 
						|
	struct sd_data *sdd = sd->private;
 | 
						|
	struct sched_domain *sibling;
 | 
						|
	int i;
 | 
						|
 | 
						|
	cpumask_clear(covered);
 | 
						|
 | 
						|
	for_each_cpu_wrap(i, span, cpu) {
 | 
						|
		struct cpumask *sg_span;
 | 
						|
 | 
						|
		if (cpumask_test_cpu(i, covered))
 | 
						|
			continue;
 | 
						|
 | 
						|
		sibling = *per_cpu_ptr(sdd->sd, i);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Asymmetric node setups can result in situations where the
 | 
						|
		 * domain tree is of unequal depth, make sure to skip domains
 | 
						|
		 * that already cover the entire range.
 | 
						|
		 *
 | 
						|
		 * In that case build_sched_domains() will have terminated the
 | 
						|
		 * iteration early and our sibling sd spans will be empty.
 | 
						|
		 * Domains should always include the CPU they're built on, so
 | 
						|
		 * check that.
 | 
						|
		 */
 | 
						|
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
 | 
						|
			continue;
 | 
						|
 | 
						|
		sg = build_group_from_child_sched_domain(sibling, cpu);
 | 
						|
		if (!sg)
 | 
						|
			goto fail;
 | 
						|
 | 
						|
		sg_span = sched_group_span(sg);
 | 
						|
		cpumask_or(covered, covered, sg_span);
 | 
						|
 | 
						|
		init_overlap_sched_group(sd, sg);
 | 
						|
 | 
						|
		if (!first)
 | 
						|
			first = sg;
 | 
						|
		if (last)
 | 
						|
			last->next = sg;
 | 
						|
		last = sg;
 | 
						|
		last->next = first;
 | 
						|
	}
 | 
						|
	sd->groups = first;
 | 
						|
 | 
						|
	return 0;
 | 
						|
 | 
						|
fail:
 | 
						|
	free_sched_groups(first, 0);
 | 
						|
 | 
						|
	return -ENOMEM;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * Package topology (also see the load-balance blurb in fair.c)
 | 
						|
 *
 | 
						|
 * The scheduler builds a tree structure to represent a number of important
 | 
						|
 * topology features. By default (default_topology[]) these include:
 | 
						|
 *
 | 
						|
 *  - Simultaneous multithreading (SMT)
 | 
						|
 *  - Multi-Core Cache (MC)
 | 
						|
 *  - Package (DIE)
 | 
						|
 *
 | 
						|
 * Where the last one more or less denotes everything up to a NUMA node.
 | 
						|
 *
 | 
						|
 * The tree consists of 3 primary data structures:
 | 
						|
 *
 | 
						|
 *	sched_domain -> sched_group -> sched_group_capacity
 | 
						|
 *	    ^ ^             ^ ^
 | 
						|
 *          `-'             `-'
 | 
						|
 *
 | 
						|
 * The sched_domains are per-CPU and have a two way link (parent & child) and
 | 
						|
 * denote the ever growing mask of CPUs belonging to that level of topology.
 | 
						|
 *
 | 
						|
 * Each sched_domain has a circular (double) linked list of sched_group's, each
 | 
						|
 * denoting the domains of the level below (or individual CPUs in case of the
 | 
						|
 * first domain level). The sched_group linked by a sched_domain includes the
 | 
						|
 * CPU of that sched_domain [*].
 | 
						|
 *
 | 
						|
 * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
 | 
						|
 *
 | 
						|
 * CPU   0   1   2   3   4   5   6   7
 | 
						|
 *
 | 
						|
 * DIE  [                             ]
 | 
						|
 * MC   [             ] [             ]
 | 
						|
 * SMT  [     ] [     ] [     ] [     ]
 | 
						|
 *
 | 
						|
 *  - or -
 | 
						|
 *
 | 
						|
 * DIE  0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
 | 
						|
 * MC	0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
 | 
						|
 * SMT  0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
 | 
						|
 *
 | 
						|
 * CPU   0   1   2   3   4   5   6   7
 | 
						|
 *
 | 
						|
 * One way to think about it is: sched_domain moves you up and down among these
 | 
						|
 * topology levels, while sched_group moves you sideways through it, at child
 | 
						|
 * domain granularity.
 | 
						|
 *
 | 
						|
 * sched_group_capacity ensures each unique sched_group has shared storage.
 | 
						|
 *
 | 
						|
 * There are two related construction problems, both require a CPU that
 | 
						|
 * uniquely identify each group (for a given domain):
 | 
						|
 *
 | 
						|
 *  - The first is the balance_cpu (see should_we_balance() and the
 | 
						|
 *    load-balance blub in fair.c); for each group we only want 1 CPU to
 | 
						|
 *    continue balancing at a higher domain.
 | 
						|
 *
 | 
						|
 *  - The second is the sched_group_capacity; we want all identical groups
 | 
						|
 *    to share a single sched_group_capacity.
 | 
						|
 *
 | 
						|
 * Since these topologies are exclusive by construction. That is, its
 | 
						|
 * impossible for an SMT thread to belong to multiple cores, and cores to
 | 
						|
 * be part of multiple caches. There is a very clear and unique location
 | 
						|
 * for each CPU in the hierarchy.
 | 
						|
 *
 | 
						|
 * Therefore computing a unique CPU for each group is trivial (the iteration
 | 
						|
 * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
 | 
						|
 * group), we can simply pick the first CPU in each group.
 | 
						|
 *
 | 
						|
 *
 | 
						|
 * [*] in other words, the first group of each domain is its child domain.
 | 
						|
 */
 | 
						|
 | 
						|
static struct sched_group *get_group(int cpu, struct sd_data *sdd)
 | 
						|
{
 | 
						|
	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
 | 
						|
	struct sched_domain *child = sd->child;
 | 
						|
	struct sched_group *sg;
 | 
						|
 | 
						|
	if (child)
 | 
						|
		cpu = cpumask_first(sched_domain_span(child));
 | 
						|
 | 
						|
	sg = *per_cpu_ptr(sdd->sg, cpu);
 | 
						|
	sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
 | 
						|
 | 
						|
	/* For claim_allocations: */
 | 
						|
	atomic_inc(&sg->ref);
 | 
						|
	atomic_inc(&sg->sgc->ref);
 | 
						|
 | 
						|
	if (child) {
 | 
						|
		cpumask_copy(sched_group_span(sg), sched_domain_span(child));
 | 
						|
		cpumask_copy(group_balance_mask(sg), sched_group_span(sg));
 | 
						|
	} else {
 | 
						|
		cpumask_set_cpu(cpu, sched_group_span(sg));
 | 
						|
		cpumask_set_cpu(cpu, group_balance_mask(sg));
 | 
						|
	}
 | 
						|
 | 
						|
	sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg));
 | 
						|
	sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
 | 
						|
 | 
						|
	return sg;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * build_sched_groups will build a circular linked list of the groups
 | 
						|
 * covered by the given span, and will set each group's ->cpumask correctly,
 | 
						|
 * and ->cpu_capacity to 0.
 | 
						|
 *
 | 
						|
 * Assumes the sched_domain tree is fully constructed
 | 
						|
 */
 | 
						|
static int
 | 
						|
build_sched_groups(struct sched_domain *sd, int cpu)
 | 
						|
{
 | 
						|
	struct sched_group *first = NULL, *last = NULL;
 | 
						|
	struct sd_data *sdd = sd->private;
 | 
						|
	const struct cpumask *span = sched_domain_span(sd);
 | 
						|
	struct cpumask *covered;
 | 
						|
	int i;
 | 
						|
 | 
						|
	lockdep_assert_held(&sched_domains_mutex);
 | 
						|
	covered = sched_domains_tmpmask;
 | 
						|
 | 
						|
	cpumask_clear(covered);
 | 
						|
 | 
						|
	for_each_cpu_wrap(i, span, cpu) {
 | 
						|
		struct sched_group *sg;
 | 
						|
 | 
						|
		if (cpumask_test_cpu(i, covered))
 | 
						|
			continue;
 | 
						|
 | 
						|
		sg = get_group(i, sdd);
 | 
						|
 | 
						|
		cpumask_or(covered, covered, sched_group_span(sg));
 | 
						|
 | 
						|
		if (!first)
 | 
						|
			first = sg;
 | 
						|
		if (last)
 | 
						|
			last->next = sg;
 | 
						|
		last = sg;
 | 
						|
	}
 | 
						|
	last->next = first;
 | 
						|
	sd->groups = first;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Initialize sched groups cpu_capacity.
 | 
						|
 *
 | 
						|
 * cpu_capacity indicates the capacity of sched group, which is used while
 | 
						|
 * distributing the load between different sched groups in a sched domain.
 | 
						|
 * Typically cpu_capacity for all the groups in a sched domain will be same
 | 
						|
 * unless there are asymmetries in the topology. If there are asymmetries,
 | 
						|
 * group having more cpu_capacity will pickup more load compared to the
 | 
						|
 * group having less cpu_capacity.
 | 
						|
 */
 | 
						|
static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
 | 
						|
{
 | 
						|
	struct sched_group *sg = sd->groups;
 | 
						|
 | 
						|
	WARN_ON(!sg);
 | 
						|
 | 
						|
	do {
 | 
						|
		int cpu, max_cpu = -1;
 | 
						|
 | 
						|
		sg->group_weight = cpumask_weight(sched_group_span(sg));
 | 
						|
 | 
						|
		if (!(sd->flags & SD_ASYM_PACKING))
 | 
						|
			goto next;
 | 
						|
 | 
						|
		for_each_cpu(cpu, sched_group_span(sg)) {
 | 
						|
			if (max_cpu < 0)
 | 
						|
				max_cpu = cpu;
 | 
						|
			else if (sched_asym_prefer(cpu, max_cpu))
 | 
						|
				max_cpu = cpu;
 | 
						|
		}
 | 
						|
		sg->asym_prefer_cpu = max_cpu;
 | 
						|
 | 
						|
next:
 | 
						|
		sg = sg->next;
 | 
						|
	} while (sg != sd->groups);
 | 
						|
 | 
						|
	if (cpu != group_balance_cpu(sg))
 | 
						|
		return;
 | 
						|
 | 
						|
	update_group_capacity(sd, cpu);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Initializers for schedule domains
 | 
						|
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 | 
						|
 */
 | 
						|
 | 
						|
static int default_relax_domain_level = -1;
 | 
						|
int sched_domain_level_max;
 | 
						|
 | 
						|
static int __init setup_relax_domain_level(char *str)
 | 
						|
{
 | 
						|
	if (kstrtoint(str, 0, &default_relax_domain_level))
 | 
						|
		pr_warn("Unable to set relax_domain_level\n");
 | 
						|
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
__setup("relax_domain_level=", setup_relax_domain_level);
 | 
						|
 | 
						|
static void set_domain_attribute(struct sched_domain *sd,
 | 
						|
				 struct sched_domain_attr *attr)
 | 
						|
{
 | 
						|
	int request;
 | 
						|
 | 
						|
	if (!attr || attr->relax_domain_level < 0) {
 | 
						|
		if (default_relax_domain_level < 0)
 | 
						|
			return;
 | 
						|
		else
 | 
						|
			request = default_relax_domain_level;
 | 
						|
	} else
 | 
						|
		request = attr->relax_domain_level;
 | 
						|
	if (request < sd->level) {
 | 
						|
		/* Turn off idle balance on this domain: */
 | 
						|
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
 | 
						|
	} else {
 | 
						|
		/* Turn on idle balance on this domain: */
 | 
						|
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void __sdt_free(const struct cpumask *cpu_map);
 | 
						|
static int __sdt_alloc(const struct cpumask *cpu_map);
 | 
						|
 | 
						|
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
 | 
						|
				 const struct cpumask *cpu_map)
 | 
						|
{
 | 
						|
	switch (what) {
 | 
						|
	case sa_rootdomain:
 | 
						|
		if (!atomic_read(&d->rd->refcount))
 | 
						|
			free_rootdomain(&d->rd->rcu);
 | 
						|
		/* Fall through */
 | 
						|
	case sa_sd:
 | 
						|
		free_percpu(d->sd);
 | 
						|
		/* Fall through */
 | 
						|
	case sa_sd_storage:
 | 
						|
		__sdt_free(cpu_map);
 | 
						|
		/* Fall through */
 | 
						|
	case sa_none:
 | 
						|
		break;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static enum s_alloc
 | 
						|
__visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
 | 
						|
{
 | 
						|
	memset(d, 0, sizeof(*d));
 | 
						|
 | 
						|
	if (__sdt_alloc(cpu_map))
 | 
						|
		return sa_sd_storage;
 | 
						|
	d->sd = alloc_percpu(struct sched_domain *);
 | 
						|
	if (!d->sd)
 | 
						|
		return sa_sd_storage;
 | 
						|
	d->rd = alloc_rootdomain();
 | 
						|
	if (!d->rd)
 | 
						|
		return sa_sd;
 | 
						|
 | 
						|
	return sa_rootdomain;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * NULL the sd_data elements we've used to build the sched_domain and
 | 
						|
 * sched_group structure so that the subsequent __free_domain_allocs()
 | 
						|
 * will not free the data we're using.
 | 
						|
 */
 | 
						|
static void claim_allocations(int cpu, struct sched_domain *sd)
 | 
						|
{
 | 
						|
	struct sd_data *sdd = sd->private;
 | 
						|
 | 
						|
	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
 | 
						|
	*per_cpu_ptr(sdd->sd, cpu) = NULL;
 | 
						|
 | 
						|
	if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
 | 
						|
		*per_cpu_ptr(sdd->sds, cpu) = NULL;
 | 
						|
 | 
						|
	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
 | 
						|
		*per_cpu_ptr(sdd->sg, cpu) = NULL;
 | 
						|
 | 
						|
	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
 | 
						|
		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_NUMA
 | 
						|
enum numa_topology_type sched_numa_topology_type;
 | 
						|
 | 
						|
static int			sched_domains_numa_levels;
 | 
						|
static int			sched_domains_curr_level;
 | 
						|
 | 
						|
int				sched_max_numa_distance;
 | 
						|
static int			*sched_domains_numa_distance;
 | 
						|
static struct cpumask		***sched_domains_numa_masks;
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * SD_flags allowed in topology descriptions.
 | 
						|
 *
 | 
						|
 * These flags are purely descriptive of the topology and do not prescribe
 | 
						|
 * behaviour. Behaviour is artificial and mapped in the below sd_init()
 | 
						|
 * function:
 | 
						|
 *
 | 
						|
 *   SD_SHARE_CPUCAPACITY   - describes SMT topologies
 | 
						|
 *   SD_SHARE_PKG_RESOURCES - describes shared caches
 | 
						|
 *   SD_NUMA                - describes NUMA topologies
 | 
						|
 *   SD_SHARE_POWERDOMAIN   - describes shared power domain
 | 
						|
 *   SD_ASYM_CPUCAPACITY    - describes mixed capacity topologies
 | 
						|
 *
 | 
						|
 * Odd one out, which beside describing the topology has a quirk also
 | 
						|
 * prescribes the desired behaviour that goes along with it:
 | 
						|
 *
 | 
						|
 *   SD_ASYM_PACKING        - describes SMT quirks
 | 
						|
 */
 | 
						|
#define TOPOLOGY_SD_FLAGS		\
 | 
						|
	(SD_SHARE_CPUCAPACITY	|	\
 | 
						|
	 SD_SHARE_PKG_RESOURCES |	\
 | 
						|
	 SD_NUMA		|	\
 | 
						|
	 SD_ASYM_PACKING	|	\
 | 
						|
	 SD_ASYM_CPUCAPACITY	|	\
 | 
						|
	 SD_SHARE_POWERDOMAIN)
 | 
						|
 | 
						|
static struct sched_domain *
 | 
						|
sd_init(struct sched_domain_topology_level *tl,
 | 
						|
	const struct cpumask *cpu_map,
 | 
						|
	struct sched_domain *child, int cpu)
 | 
						|
{
 | 
						|
	struct sd_data *sdd = &tl->data;
 | 
						|
	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
 | 
						|
	int sd_id, sd_weight, sd_flags = 0;
 | 
						|
 | 
						|
#ifdef CONFIG_NUMA
 | 
						|
	/*
 | 
						|
	 * Ugly hack to pass state to sd_numa_mask()...
 | 
						|
	 */
 | 
						|
	sched_domains_curr_level = tl->numa_level;
 | 
						|
#endif
 | 
						|
 | 
						|
	sd_weight = cpumask_weight(tl->mask(cpu));
 | 
						|
 | 
						|
	if (tl->sd_flags)
 | 
						|
		sd_flags = (*tl->sd_flags)();
 | 
						|
	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
 | 
						|
			"wrong sd_flags in topology description\n"))
 | 
						|
		sd_flags &= ~TOPOLOGY_SD_FLAGS;
 | 
						|
 | 
						|
	*sd = (struct sched_domain){
 | 
						|
		.min_interval		= sd_weight,
 | 
						|
		.max_interval		= 2*sd_weight,
 | 
						|
		.busy_factor		= 32,
 | 
						|
		.imbalance_pct		= 125,
 | 
						|
 | 
						|
		.cache_nice_tries	= 0,
 | 
						|
		.busy_idx		= 0,
 | 
						|
		.idle_idx		= 0,
 | 
						|
		.newidle_idx		= 0,
 | 
						|
		.wake_idx		= 0,
 | 
						|
		.forkexec_idx		= 0,
 | 
						|
 | 
						|
		.flags			= 1*SD_LOAD_BALANCE
 | 
						|
					| 1*SD_BALANCE_NEWIDLE
 | 
						|
					| 1*SD_BALANCE_EXEC
 | 
						|
					| 1*SD_BALANCE_FORK
 | 
						|
					| 0*SD_BALANCE_WAKE
 | 
						|
					| 1*SD_WAKE_AFFINE
 | 
						|
					| 0*SD_SHARE_CPUCAPACITY
 | 
						|
					| 0*SD_SHARE_PKG_RESOURCES
 | 
						|
					| 0*SD_SERIALIZE
 | 
						|
					| 0*SD_PREFER_SIBLING
 | 
						|
					| 0*SD_NUMA
 | 
						|
					| sd_flags
 | 
						|
					,
 | 
						|
 | 
						|
		.last_balance		= jiffies,
 | 
						|
		.balance_interval	= sd_weight,
 | 
						|
		.smt_gain		= 0,
 | 
						|
		.max_newidle_lb_cost	= 0,
 | 
						|
		.next_decay_max_lb_cost	= jiffies,
 | 
						|
		.child			= child,
 | 
						|
#ifdef CONFIG_SCHED_DEBUG
 | 
						|
		.name			= tl->name,
 | 
						|
#endif
 | 
						|
	};
 | 
						|
 | 
						|
	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
 | 
						|
	sd_id = cpumask_first(sched_domain_span(sd));
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Convert topological properties into behaviour.
 | 
						|
	 */
 | 
						|
 | 
						|
	if (sd->flags & SD_ASYM_CPUCAPACITY) {
 | 
						|
		struct sched_domain *t = sd;
 | 
						|
 | 
						|
		for_each_lower_domain(t)
 | 
						|
			t->flags |= SD_BALANCE_WAKE;
 | 
						|
	}
 | 
						|
 | 
						|
	if (sd->flags & SD_SHARE_CPUCAPACITY) {
 | 
						|
		sd->flags |= SD_PREFER_SIBLING;
 | 
						|
		sd->imbalance_pct = 110;
 | 
						|
		sd->smt_gain = 1178; /* ~15% */
 | 
						|
 | 
						|
	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
 | 
						|
		sd->flags |= SD_PREFER_SIBLING;
 | 
						|
		sd->imbalance_pct = 117;
 | 
						|
		sd->cache_nice_tries = 1;
 | 
						|
		sd->busy_idx = 2;
 | 
						|
 | 
						|
#ifdef CONFIG_NUMA
 | 
						|
	} else if (sd->flags & SD_NUMA) {
 | 
						|
		sd->cache_nice_tries = 2;
 | 
						|
		sd->busy_idx = 3;
 | 
						|
		sd->idle_idx = 2;
 | 
						|
 | 
						|
		sd->flags |= SD_SERIALIZE;
 | 
						|
		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
 | 
						|
			sd->flags &= ~(SD_BALANCE_EXEC |
 | 
						|
				       SD_BALANCE_FORK |
 | 
						|
				       SD_WAKE_AFFINE);
 | 
						|
		}
 | 
						|
 | 
						|
#endif
 | 
						|
	} else {
 | 
						|
		sd->flags |= SD_PREFER_SIBLING;
 | 
						|
		sd->cache_nice_tries = 1;
 | 
						|
		sd->busy_idx = 2;
 | 
						|
		sd->idle_idx = 1;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * For all levels sharing cache; connect a sched_domain_shared
 | 
						|
	 * instance.
 | 
						|
	 */
 | 
						|
	if (sd->flags & SD_SHARE_PKG_RESOURCES) {
 | 
						|
		sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
 | 
						|
		atomic_inc(&sd->shared->ref);
 | 
						|
		atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
 | 
						|
	}
 | 
						|
 | 
						|
	sd->private = sdd;
 | 
						|
 | 
						|
	return sd;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Topology list, bottom-up.
 | 
						|
 */
 | 
						|
static struct sched_domain_topology_level default_topology[] = {
 | 
						|
#ifdef CONFIG_SCHED_SMT
 | 
						|
	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
 | 
						|
#endif
 | 
						|
#ifdef CONFIG_SCHED_MC
 | 
						|
	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
 | 
						|
#endif
 | 
						|
	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
 | 
						|
	{ NULL, },
 | 
						|
};
 | 
						|
 | 
						|
static struct sched_domain_topology_level *sched_domain_topology =
 | 
						|
	default_topology;
 | 
						|
 | 
						|
#define for_each_sd_topology(tl)			\
 | 
						|
	for (tl = sched_domain_topology; tl->mask; tl++)
 | 
						|
 | 
						|
void set_sched_topology(struct sched_domain_topology_level *tl)
 | 
						|
{
 | 
						|
	if (WARN_ON_ONCE(sched_smp_initialized))
 | 
						|
		return;
 | 
						|
 | 
						|
	sched_domain_topology = tl;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_NUMA
 | 
						|
 | 
						|
static const struct cpumask *sd_numa_mask(int cpu)
 | 
						|
{
 | 
						|
	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
 | 
						|
}
 | 
						|
 | 
						|
static void sched_numa_warn(const char *str)
 | 
						|
{
 | 
						|
	static int done = false;
 | 
						|
	int i,j;
 | 
						|
 | 
						|
	if (done)
 | 
						|
		return;
 | 
						|
 | 
						|
	done = true;
 | 
						|
 | 
						|
	printk(KERN_WARNING "ERROR: %s\n\n", str);
 | 
						|
 | 
						|
	for (i = 0; i < nr_node_ids; i++) {
 | 
						|
		printk(KERN_WARNING "  ");
 | 
						|
		for (j = 0; j < nr_node_ids; j++)
 | 
						|
			printk(KERN_CONT "%02d ", node_distance(i,j));
 | 
						|
		printk(KERN_CONT "\n");
 | 
						|
	}
 | 
						|
	printk(KERN_WARNING "\n");
 | 
						|
}
 | 
						|
 | 
						|
bool find_numa_distance(int distance)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	if (distance == node_distance(0, 0))
 | 
						|
		return true;
 | 
						|
 | 
						|
	for (i = 0; i < sched_domains_numa_levels; i++) {
 | 
						|
		if (sched_domains_numa_distance[i] == distance)
 | 
						|
			return true;
 | 
						|
	}
 | 
						|
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * A system can have three types of NUMA topology:
 | 
						|
 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
 | 
						|
 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
 | 
						|
 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
 | 
						|
 *
 | 
						|
 * The difference between a glueless mesh topology and a backplane
 | 
						|
 * topology lies in whether communication between not directly
 | 
						|
 * connected nodes goes through intermediary nodes (where programs
 | 
						|
 * could run), or through backplane controllers. This affects
 | 
						|
 * placement of programs.
 | 
						|
 *
 | 
						|
 * The type of topology can be discerned with the following tests:
 | 
						|
 * - If the maximum distance between any nodes is 1 hop, the system
 | 
						|
 *   is directly connected.
 | 
						|
 * - If for two nodes A and B, located N > 1 hops away from each other,
 | 
						|
 *   there is an intermediary node C, which is < N hops away from both
 | 
						|
 *   nodes A and B, the system is a glueless mesh.
 | 
						|
 */
 | 
						|
static void init_numa_topology_type(void)
 | 
						|
{
 | 
						|
	int a, b, c, n;
 | 
						|
 | 
						|
	n = sched_max_numa_distance;
 | 
						|
 | 
						|
	if (sched_domains_numa_levels <= 1) {
 | 
						|
		sched_numa_topology_type = NUMA_DIRECT;
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	for_each_online_node(a) {
 | 
						|
		for_each_online_node(b) {
 | 
						|
			/* Find two nodes furthest removed from each other. */
 | 
						|
			if (node_distance(a, b) < n)
 | 
						|
				continue;
 | 
						|
 | 
						|
			/* Is there an intermediary node between a and b? */
 | 
						|
			for_each_online_node(c) {
 | 
						|
				if (node_distance(a, c) < n &&
 | 
						|
				    node_distance(b, c) < n) {
 | 
						|
					sched_numa_topology_type =
 | 
						|
							NUMA_GLUELESS_MESH;
 | 
						|
					return;
 | 
						|
				}
 | 
						|
			}
 | 
						|
 | 
						|
			sched_numa_topology_type = NUMA_BACKPLANE;
 | 
						|
			return;
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void sched_init_numa(void)
 | 
						|
{
 | 
						|
	int next_distance, curr_distance = node_distance(0, 0);
 | 
						|
	struct sched_domain_topology_level *tl;
 | 
						|
	int level = 0;
 | 
						|
	int i, j, k;
 | 
						|
 | 
						|
	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
 | 
						|
	if (!sched_domains_numa_distance)
 | 
						|
		return;
 | 
						|
 | 
						|
	/* Includes NUMA identity node at level 0. */
 | 
						|
	sched_domains_numa_distance[level++] = curr_distance;
 | 
						|
	sched_domains_numa_levels = level;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
 | 
						|
	 * unique distances in the node_distance() table.
 | 
						|
	 *
 | 
						|
	 * Assumes node_distance(0,j) includes all distances in
 | 
						|
	 * node_distance(i,j) in order to avoid cubic time.
 | 
						|
	 */
 | 
						|
	next_distance = curr_distance;
 | 
						|
	for (i = 0; i < nr_node_ids; i++) {
 | 
						|
		for (j = 0; j < nr_node_ids; j++) {
 | 
						|
			for (k = 0; k < nr_node_ids; k++) {
 | 
						|
				int distance = node_distance(i, k);
 | 
						|
 | 
						|
				if (distance > curr_distance &&
 | 
						|
				    (distance < next_distance ||
 | 
						|
				     next_distance == curr_distance))
 | 
						|
					next_distance = distance;
 | 
						|
 | 
						|
				/*
 | 
						|
				 * While not a strong assumption it would be nice to know
 | 
						|
				 * about cases where if node A is connected to B, B is not
 | 
						|
				 * equally connected to A.
 | 
						|
				 */
 | 
						|
				if (sched_debug() && node_distance(k, i) != distance)
 | 
						|
					sched_numa_warn("Node-distance not symmetric");
 | 
						|
 | 
						|
				if (sched_debug() && i && !find_numa_distance(distance))
 | 
						|
					sched_numa_warn("Node-0 not representative");
 | 
						|
			}
 | 
						|
			if (next_distance != curr_distance) {
 | 
						|
				sched_domains_numa_distance[level++] = next_distance;
 | 
						|
				sched_domains_numa_levels = level;
 | 
						|
				curr_distance = next_distance;
 | 
						|
			} else break;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * In case of sched_debug() we verify the above assumption.
 | 
						|
		 */
 | 
						|
		if (!sched_debug())
 | 
						|
			break;
 | 
						|
	}
 | 
						|
 | 
						|
	if (!level)
 | 
						|
		return;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * 'level' contains the number of unique distances
 | 
						|
	 *
 | 
						|
	 * The sched_domains_numa_distance[] array includes the actual distance
 | 
						|
	 * numbers.
 | 
						|
	 */
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
 | 
						|
	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
 | 
						|
	 * the array will contain less then 'level' members. This could be
 | 
						|
	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
 | 
						|
	 * in other functions.
 | 
						|
	 *
 | 
						|
	 * We reset it to 'level' at the end of this function.
 | 
						|
	 */
 | 
						|
	sched_domains_numa_levels = 0;
 | 
						|
 | 
						|
	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
 | 
						|
	if (!sched_domains_numa_masks)
 | 
						|
		return;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Now for each level, construct a mask per node which contains all
 | 
						|
	 * CPUs of nodes that are that many hops away from us.
 | 
						|
	 */
 | 
						|
	for (i = 0; i < level; i++) {
 | 
						|
		sched_domains_numa_masks[i] =
 | 
						|
			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
 | 
						|
		if (!sched_domains_numa_masks[i])
 | 
						|
			return;
 | 
						|
 | 
						|
		for (j = 0; j < nr_node_ids; j++) {
 | 
						|
			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
 | 
						|
			if (!mask)
 | 
						|
				return;
 | 
						|
 | 
						|
			sched_domains_numa_masks[i][j] = mask;
 | 
						|
 | 
						|
			for_each_node(k) {
 | 
						|
				if (node_distance(j, k) > sched_domains_numa_distance[i])
 | 
						|
					continue;
 | 
						|
 | 
						|
				cpumask_or(mask, mask, cpumask_of_node(k));
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* Compute default topology size */
 | 
						|
	for (i = 0; sched_domain_topology[i].mask; i++);
 | 
						|
 | 
						|
	tl = kzalloc((i + level + 1) *
 | 
						|
			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
 | 
						|
	if (!tl)
 | 
						|
		return;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Copy the default topology bits..
 | 
						|
	 */
 | 
						|
	for (i = 0; sched_domain_topology[i].mask; i++)
 | 
						|
		tl[i] = sched_domain_topology[i];
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Add the NUMA identity distance, aka single NODE.
 | 
						|
	 */
 | 
						|
	tl[i++] = (struct sched_domain_topology_level){
 | 
						|
		.mask = sd_numa_mask,
 | 
						|
		.numa_level = 0,
 | 
						|
		SD_INIT_NAME(NODE)
 | 
						|
	};
 | 
						|
 | 
						|
	/*
 | 
						|
	 * .. and append 'j' levels of NUMA goodness.
 | 
						|
	 */
 | 
						|
	for (j = 1; j < level; i++, j++) {
 | 
						|
		tl[i] = (struct sched_domain_topology_level){
 | 
						|
			.mask = sd_numa_mask,
 | 
						|
			.sd_flags = cpu_numa_flags,
 | 
						|
			.flags = SDTL_OVERLAP,
 | 
						|
			.numa_level = j,
 | 
						|
			SD_INIT_NAME(NUMA)
 | 
						|
		};
 | 
						|
	}
 | 
						|
 | 
						|
	sched_domain_topology = tl;
 | 
						|
 | 
						|
	sched_domains_numa_levels = level;
 | 
						|
	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
 | 
						|
 | 
						|
	init_numa_topology_type();
 | 
						|
}
 | 
						|
 | 
						|
void sched_domains_numa_masks_set(unsigned int cpu)
 | 
						|
{
 | 
						|
	int node = cpu_to_node(cpu);
 | 
						|
	int i, j;
 | 
						|
 | 
						|
	for (i = 0; i < sched_domains_numa_levels; i++) {
 | 
						|
		for (j = 0; j < nr_node_ids; j++) {
 | 
						|
			if (node_distance(j, node) <= sched_domains_numa_distance[i])
 | 
						|
				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void sched_domains_numa_masks_clear(unsigned int cpu)
 | 
						|
{
 | 
						|
	int i, j;
 | 
						|
 | 
						|
	for (i = 0; i < sched_domains_numa_levels; i++) {
 | 
						|
		for (j = 0; j < nr_node_ids; j++)
 | 
						|
			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
#endif /* CONFIG_NUMA */
 | 
						|
 | 
						|
static int __sdt_alloc(const struct cpumask *cpu_map)
 | 
						|
{
 | 
						|
	struct sched_domain_topology_level *tl;
 | 
						|
	int j;
 | 
						|
 | 
						|
	for_each_sd_topology(tl) {
 | 
						|
		struct sd_data *sdd = &tl->data;
 | 
						|
 | 
						|
		sdd->sd = alloc_percpu(struct sched_domain *);
 | 
						|
		if (!sdd->sd)
 | 
						|
			return -ENOMEM;
 | 
						|
 | 
						|
		sdd->sds = alloc_percpu(struct sched_domain_shared *);
 | 
						|
		if (!sdd->sds)
 | 
						|
			return -ENOMEM;
 | 
						|
 | 
						|
		sdd->sg = alloc_percpu(struct sched_group *);
 | 
						|
		if (!sdd->sg)
 | 
						|
			return -ENOMEM;
 | 
						|
 | 
						|
		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
 | 
						|
		if (!sdd->sgc)
 | 
						|
			return -ENOMEM;
 | 
						|
 | 
						|
		for_each_cpu(j, cpu_map) {
 | 
						|
			struct sched_domain *sd;
 | 
						|
			struct sched_domain_shared *sds;
 | 
						|
			struct sched_group *sg;
 | 
						|
			struct sched_group_capacity *sgc;
 | 
						|
 | 
						|
			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
 | 
						|
					GFP_KERNEL, cpu_to_node(j));
 | 
						|
			if (!sd)
 | 
						|
				return -ENOMEM;
 | 
						|
 | 
						|
			*per_cpu_ptr(sdd->sd, j) = sd;
 | 
						|
 | 
						|
			sds = kzalloc_node(sizeof(struct sched_domain_shared),
 | 
						|
					GFP_KERNEL, cpu_to_node(j));
 | 
						|
			if (!sds)
 | 
						|
				return -ENOMEM;
 | 
						|
 | 
						|
			*per_cpu_ptr(sdd->sds, j) = sds;
 | 
						|
 | 
						|
			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
 | 
						|
					GFP_KERNEL, cpu_to_node(j));
 | 
						|
			if (!sg)
 | 
						|
				return -ENOMEM;
 | 
						|
 | 
						|
			sg->next = sg;
 | 
						|
 | 
						|
			*per_cpu_ptr(sdd->sg, j) = sg;
 | 
						|
 | 
						|
			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
 | 
						|
					GFP_KERNEL, cpu_to_node(j));
 | 
						|
			if (!sgc)
 | 
						|
				return -ENOMEM;
 | 
						|
 | 
						|
#ifdef CONFIG_SCHED_DEBUG
 | 
						|
			sgc->id = j;
 | 
						|
#endif
 | 
						|
 | 
						|
			*per_cpu_ptr(sdd->sgc, j) = sgc;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void __sdt_free(const struct cpumask *cpu_map)
 | 
						|
{
 | 
						|
	struct sched_domain_topology_level *tl;
 | 
						|
	int j;
 | 
						|
 | 
						|
	for_each_sd_topology(tl) {
 | 
						|
		struct sd_data *sdd = &tl->data;
 | 
						|
 | 
						|
		for_each_cpu(j, cpu_map) {
 | 
						|
			struct sched_domain *sd;
 | 
						|
 | 
						|
			if (sdd->sd) {
 | 
						|
				sd = *per_cpu_ptr(sdd->sd, j);
 | 
						|
				if (sd && (sd->flags & SD_OVERLAP))
 | 
						|
					free_sched_groups(sd->groups, 0);
 | 
						|
				kfree(*per_cpu_ptr(sdd->sd, j));
 | 
						|
			}
 | 
						|
 | 
						|
			if (sdd->sds)
 | 
						|
				kfree(*per_cpu_ptr(sdd->sds, j));
 | 
						|
			if (sdd->sg)
 | 
						|
				kfree(*per_cpu_ptr(sdd->sg, j));
 | 
						|
			if (sdd->sgc)
 | 
						|
				kfree(*per_cpu_ptr(sdd->sgc, j));
 | 
						|
		}
 | 
						|
		free_percpu(sdd->sd);
 | 
						|
		sdd->sd = NULL;
 | 
						|
		free_percpu(sdd->sds);
 | 
						|
		sdd->sds = NULL;
 | 
						|
		free_percpu(sdd->sg);
 | 
						|
		sdd->sg = NULL;
 | 
						|
		free_percpu(sdd->sgc);
 | 
						|
		sdd->sgc = NULL;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
 | 
						|
		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
 | 
						|
		struct sched_domain *child, int cpu)
 | 
						|
{
 | 
						|
	struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu);
 | 
						|
 | 
						|
	if (child) {
 | 
						|
		sd->level = child->level + 1;
 | 
						|
		sched_domain_level_max = max(sched_domain_level_max, sd->level);
 | 
						|
		child->parent = sd;
 | 
						|
 | 
						|
		if (!cpumask_subset(sched_domain_span(child),
 | 
						|
				    sched_domain_span(sd))) {
 | 
						|
			pr_err("BUG: arch topology borken\n");
 | 
						|
#ifdef CONFIG_SCHED_DEBUG
 | 
						|
			pr_err("     the %s domain not a subset of the %s domain\n",
 | 
						|
					child->name, sd->name);
 | 
						|
#endif
 | 
						|
			/* Fixup, ensure @sd has at least @child CPUs. */
 | 
						|
			cpumask_or(sched_domain_span(sd),
 | 
						|
				   sched_domain_span(sd),
 | 
						|
				   sched_domain_span(child));
 | 
						|
		}
 | 
						|
 | 
						|
	}
 | 
						|
	set_domain_attribute(sd, attr);
 | 
						|
 | 
						|
	return sd;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Build sched domains for a given set of CPUs and attach the sched domains
 | 
						|
 * to the individual CPUs
 | 
						|
 */
 | 
						|
static int
 | 
						|
build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
 | 
						|
{
 | 
						|
	enum s_alloc alloc_state;
 | 
						|
	struct sched_domain *sd;
 | 
						|
	struct s_data d;
 | 
						|
	struct rq *rq = NULL;
 | 
						|
	int i, ret = -ENOMEM;
 | 
						|
 | 
						|
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
 | 
						|
	if (alloc_state != sa_rootdomain)
 | 
						|
		goto error;
 | 
						|
 | 
						|
	/* Set up domains for CPUs specified by the cpu_map: */
 | 
						|
	for_each_cpu(i, cpu_map) {
 | 
						|
		struct sched_domain_topology_level *tl;
 | 
						|
 | 
						|
		sd = NULL;
 | 
						|
		for_each_sd_topology(tl) {
 | 
						|
			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
 | 
						|
			if (tl == sched_domain_topology)
 | 
						|
				*per_cpu_ptr(d.sd, i) = sd;
 | 
						|
			if (tl->flags & SDTL_OVERLAP)
 | 
						|
				sd->flags |= SD_OVERLAP;
 | 
						|
			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
 | 
						|
				break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* Build the groups for the domains */
 | 
						|
	for_each_cpu(i, cpu_map) {
 | 
						|
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
 | 
						|
			sd->span_weight = cpumask_weight(sched_domain_span(sd));
 | 
						|
			if (sd->flags & SD_OVERLAP) {
 | 
						|
				if (build_overlap_sched_groups(sd, i))
 | 
						|
					goto error;
 | 
						|
			} else {
 | 
						|
				if (build_sched_groups(sd, i))
 | 
						|
					goto error;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* Calculate CPU capacity for physical packages and nodes */
 | 
						|
	for (i = nr_cpumask_bits-1; i >= 0; i--) {
 | 
						|
		if (!cpumask_test_cpu(i, cpu_map))
 | 
						|
			continue;
 | 
						|
 | 
						|
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
 | 
						|
			claim_allocations(i, sd);
 | 
						|
			init_sched_groups_capacity(i, sd);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* Attach the domains */
 | 
						|
	rcu_read_lock();
 | 
						|
	for_each_cpu(i, cpu_map) {
 | 
						|
		rq = cpu_rq(i);
 | 
						|
		sd = *per_cpu_ptr(d.sd, i);
 | 
						|
 | 
						|
		/* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
 | 
						|
		if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
 | 
						|
			WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
 | 
						|
 | 
						|
		cpu_attach_domain(sd, d.rd, i);
 | 
						|
	}
 | 
						|
	rcu_read_unlock();
 | 
						|
 | 
						|
	if (rq && sched_debug_enabled) {
 | 
						|
		pr_info("root domain span: %*pbl (max cpu_capacity = %lu)\n",
 | 
						|
			cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
 | 
						|
	}
 | 
						|
 | 
						|
	ret = 0;
 | 
						|
error:
 | 
						|
	__free_domain_allocs(&d, alloc_state, cpu_map);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/* Current sched domains: */
 | 
						|
static cpumask_var_t			*doms_cur;
 | 
						|
 | 
						|
/* Number of sched domains in 'doms_cur': */
 | 
						|
static int				ndoms_cur;
 | 
						|
 | 
						|
/* Attribues of custom domains in 'doms_cur' */
 | 
						|
static struct sched_domain_attr		*dattr_cur;
 | 
						|
 | 
						|
/*
 | 
						|
 * Special case: If a kmalloc() of a doms_cur partition (array of
 | 
						|
 * cpumask) fails, then fallback to a single sched domain,
 | 
						|
 * as determined by the single cpumask fallback_doms.
 | 
						|
 */
 | 
						|
static cpumask_var_t			fallback_doms;
 | 
						|
 | 
						|
/*
 | 
						|
 * arch_update_cpu_topology lets virtualized architectures update the
 | 
						|
 * CPU core maps. It is supposed to return 1 if the topology changed
 | 
						|
 * or 0 if it stayed the same.
 | 
						|
 */
 | 
						|
int __weak arch_update_cpu_topology(void)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	cpumask_var_t *doms;
 | 
						|
 | 
						|
	doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL);
 | 
						|
	if (!doms)
 | 
						|
		return NULL;
 | 
						|
	for (i = 0; i < ndoms; i++) {
 | 
						|
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
 | 
						|
			free_sched_domains(doms, i);
 | 
						|
			return NULL;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return doms;
 | 
						|
}
 | 
						|
 | 
						|
void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
 | 
						|
{
 | 
						|
	unsigned int i;
 | 
						|
	for (i = 0; i < ndoms; i++)
 | 
						|
		free_cpumask_var(doms[i]);
 | 
						|
	kfree(doms);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
 | 
						|
 * For now this just excludes isolated CPUs, but could be used to
 | 
						|
 * exclude other special cases in the future.
 | 
						|
 */
 | 
						|
int sched_init_domains(const struct cpumask *cpu_map)
 | 
						|
{
 | 
						|
	int err;
 | 
						|
 | 
						|
	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL);
 | 
						|
	zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL);
 | 
						|
	zalloc_cpumask_var(&fallback_doms, GFP_KERNEL);
 | 
						|
 | 
						|
	arch_update_cpu_topology();
 | 
						|
	ndoms_cur = 1;
 | 
						|
	doms_cur = alloc_sched_domains(ndoms_cur);
 | 
						|
	if (!doms_cur)
 | 
						|
		doms_cur = &fallback_doms;
 | 
						|
	cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_FLAG_DOMAIN));
 | 
						|
	err = build_sched_domains(doms_cur[0], NULL);
 | 
						|
	register_sched_domain_sysctl();
 | 
						|
 | 
						|
	return err;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Detach sched domains from a group of CPUs specified in cpu_map
 | 
						|
 * These CPUs will now be attached to the NULL domain
 | 
						|
 */
 | 
						|
static void detach_destroy_domains(const struct cpumask *cpu_map)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	rcu_read_lock();
 | 
						|
	for_each_cpu(i, cpu_map)
 | 
						|
		cpu_attach_domain(NULL, &def_root_domain, i);
 | 
						|
	rcu_read_unlock();
 | 
						|
}
 | 
						|
 | 
						|
/* handle null as "default" */
 | 
						|
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
 | 
						|
			struct sched_domain_attr *new, int idx_new)
 | 
						|
{
 | 
						|
	struct sched_domain_attr tmp;
 | 
						|
 | 
						|
	/* Fast path: */
 | 
						|
	if (!new && !cur)
 | 
						|
		return 1;
 | 
						|
 | 
						|
	tmp = SD_ATTR_INIT;
 | 
						|
 | 
						|
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
 | 
						|
			new ? (new + idx_new) : &tmp,
 | 
						|
			sizeof(struct sched_domain_attr));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Partition sched domains as specified by the 'ndoms_new'
 | 
						|
 * cpumasks in the array doms_new[] of cpumasks. This compares
 | 
						|
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 | 
						|
 * It destroys each deleted domain and builds each new domain.
 | 
						|
 *
 | 
						|
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
 | 
						|
 * The masks don't intersect (don't overlap.) We should setup one
 | 
						|
 * sched domain for each mask. CPUs not in any of the cpumasks will
 | 
						|
 * not be load balanced. If the same cpumask appears both in the
 | 
						|
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 | 
						|
 * it as it is.
 | 
						|
 *
 | 
						|
 * The passed in 'doms_new' should be allocated using
 | 
						|
 * alloc_sched_domains.  This routine takes ownership of it and will
 | 
						|
 * free_sched_domains it when done with it. If the caller failed the
 | 
						|
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 | 
						|
 * and partition_sched_domains() will fallback to the single partition
 | 
						|
 * 'fallback_doms', it also forces the domains to be rebuilt.
 | 
						|
 *
 | 
						|
 * If doms_new == NULL it will be replaced with cpu_online_mask.
 | 
						|
 * ndoms_new == 0 is a special case for destroying existing domains,
 | 
						|
 * and it will not create the default domain.
 | 
						|
 *
 | 
						|
 * Call with hotplug lock held
 | 
						|
 */
 | 
						|
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
 | 
						|
			     struct sched_domain_attr *dattr_new)
 | 
						|
{
 | 
						|
	int i, j, n;
 | 
						|
	int new_topology;
 | 
						|
 | 
						|
	mutex_lock(&sched_domains_mutex);
 | 
						|
 | 
						|
	/* Always unregister in case we don't destroy any domains: */
 | 
						|
	unregister_sched_domain_sysctl();
 | 
						|
 | 
						|
	/* Let the architecture update CPU core mappings: */
 | 
						|
	new_topology = arch_update_cpu_topology();
 | 
						|
 | 
						|
	if (!doms_new) {
 | 
						|
		WARN_ON_ONCE(dattr_new);
 | 
						|
		n = 0;
 | 
						|
		doms_new = alloc_sched_domains(1);
 | 
						|
		if (doms_new) {
 | 
						|
			n = 1;
 | 
						|
			cpumask_and(doms_new[0], cpu_active_mask,
 | 
						|
				    housekeeping_cpumask(HK_FLAG_DOMAIN));
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		n = ndoms_new;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Destroy deleted domains: */
 | 
						|
	for (i = 0; i < ndoms_cur; i++) {
 | 
						|
		for (j = 0; j < n && !new_topology; j++) {
 | 
						|
			if (cpumask_equal(doms_cur[i], doms_new[j])
 | 
						|
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
 | 
						|
				goto match1;
 | 
						|
		}
 | 
						|
		/* No match - a current sched domain not in new doms_new[] */
 | 
						|
		detach_destroy_domains(doms_cur[i]);
 | 
						|
match1:
 | 
						|
		;
 | 
						|
	}
 | 
						|
 | 
						|
	n = ndoms_cur;
 | 
						|
	if (!doms_new) {
 | 
						|
		n = 0;
 | 
						|
		doms_new = &fallback_doms;
 | 
						|
		cpumask_and(doms_new[0], cpu_active_mask,
 | 
						|
			    housekeeping_cpumask(HK_FLAG_DOMAIN));
 | 
						|
	}
 | 
						|
 | 
						|
	/* Build new domains: */
 | 
						|
	for (i = 0; i < ndoms_new; i++) {
 | 
						|
		for (j = 0; j < n && !new_topology; j++) {
 | 
						|
			if (cpumask_equal(doms_new[i], doms_cur[j])
 | 
						|
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
 | 
						|
				goto match2;
 | 
						|
		}
 | 
						|
		/* No match - add a new doms_new */
 | 
						|
		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
 | 
						|
match2:
 | 
						|
		;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Remember the new sched domains: */
 | 
						|
	if (doms_cur != &fallback_doms)
 | 
						|
		free_sched_domains(doms_cur, ndoms_cur);
 | 
						|
 | 
						|
	kfree(dattr_cur);
 | 
						|
	doms_cur = doms_new;
 | 
						|
	dattr_cur = dattr_new;
 | 
						|
	ndoms_cur = ndoms_new;
 | 
						|
 | 
						|
	register_sched_domain_sysctl();
 | 
						|
 | 
						|
	mutex_unlock(&sched_domains_mutex);
 | 
						|
}
 |