forked from Minki/linux
752ade68cb
There are many code paths opencoding kvmalloc. Let's use the helper instead. The main difference to kvmalloc is that those users are usually not considering all the aspects of the memory allocator. E.g. allocation requests <= 32kB (with 4kB pages) are basically never failing and invoke OOM killer to satisfy the allocation. This sounds too disruptive for something that has a reasonable fallback - the vmalloc. On the other hand those requests might fallback to vmalloc even when the memory allocator would succeed after several more reclaim/compaction attempts previously. There is no guarantee something like that happens though. This patch converts many of those places to kv[mz]alloc* helpers because they are more conservative. Link: http://lkml.kernel.org/r/20170306103327.2766-2-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> # Xen bits Acked-by: Kees Cook <keescook@chromium.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Andreas Dilger <andreas.dilger@intel.com> # Lustre Acked-by: Christian Borntraeger <borntraeger@de.ibm.com> # KVM/s390 Acked-by: Dan Williams <dan.j.williams@intel.com> # nvdim Acked-by: David Sterba <dsterba@suse.com> # btrfs Acked-by: Ilya Dryomov <idryomov@gmail.com> # Ceph Acked-by: Tariq Toukan <tariqt@mellanox.com> # mlx4 Acked-by: Leon Romanovsky <leonro@mellanox.com> # mlx5 Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: Anton Vorontsov <anton@enomsg.org> Cc: Colin Cross <ccross@android.com> Cc: Tony Luck <tony.luck@intel.com> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Kent Overstreet <kent.overstreet@gmail.com> Cc: Santosh Raspatur <santosh@chelsio.com> Cc: Hariprasad S <hariprasad@chelsio.com> Cc: Yishai Hadas <yishaih@mellanox.com> Cc: Oleg Drokin <oleg.drokin@intel.com> Cc: "Yan, Zheng" <zyan@redhat.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: David Miller <davem@davemloft.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1470 lines
36 KiB
C
1470 lines
36 KiB
C
/*
|
|
* This file contains the procedures for the handling of select and poll
|
|
*
|
|
* Created for Linux based loosely upon Mathius Lattner's minix
|
|
* patches by Peter MacDonald. Heavily edited by Linus.
|
|
*
|
|
* 4 February 1994
|
|
* COFF/ELF binary emulation. If the process has the STICKY_TIMEOUTS
|
|
* flag set in its personality we do *not* modify the given timeout
|
|
* parameter to reflect time remaining.
|
|
*
|
|
* 24 January 2000
|
|
* Changed sys_poll()/do_poll() to use PAGE_SIZE chunk-based allocation
|
|
* of fds to overcome nfds < 16390 descriptors limit (Tigran Aivazian).
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/sched/signal.h>
|
|
#include <linux/sched/rt.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/export.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/poll.h>
|
|
#include <linux/personality.h> /* for STICKY_TIMEOUTS */
|
|
#include <linux/file.h>
|
|
#include <linux/fdtable.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/rcupdate.h>
|
|
#include <linux/hrtimer.h>
|
|
#include <linux/freezer.h>
|
|
#include <net/busy_poll.h>
|
|
#include <linux/vmalloc.h>
|
|
|
|
#include <linux/uaccess.h>
|
|
|
|
|
|
/*
|
|
* Estimate expected accuracy in ns from a timeval.
|
|
*
|
|
* After quite a bit of churning around, we've settled on
|
|
* a simple thing of taking 0.1% of the timeout as the
|
|
* slack, with a cap of 100 msec.
|
|
* "nice" tasks get a 0.5% slack instead.
|
|
*
|
|
* Consider this comment an open invitation to come up with even
|
|
* better solutions..
|
|
*/
|
|
|
|
#define MAX_SLACK (100 * NSEC_PER_MSEC)
|
|
|
|
static long __estimate_accuracy(struct timespec64 *tv)
|
|
{
|
|
long slack;
|
|
int divfactor = 1000;
|
|
|
|
if (tv->tv_sec < 0)
|
|
return 0;
|
|
|
|
if (task_nice(current) > 0)
|
|
divfactor = divfactor / 5;
|
|
|
|
if (tv->tv_sec > MAX_SLACK / (NSEC_PER_SEC/divfactor))
|
|
return MAX_SLACK;
|
|
|
|
slack = tv->tv_nsec / divfactor;
|
|
slack += tv->tv_sec * (NSEC_PER_SEC/divfactor);
|
|
|
|
if (slack > MAX_SLACK)
|
|
return MAX_SLACK;
|
|
|
|
return slack;
|
|
}
|
|
|
|
u64 select_estimate_accuracy(struct timespec64 *tv)
|
|
{
|
|
u64 ret;
|
|
struct timespec64 now;
|
|
|
|
/*
|
|
* Realtime tasks get a slack of 0 for obvious reasons.
|
|
*/
|
|
|
|
if (rt_task(current))
|
|
return 0;
|
|
|
|
ktime_get_ts64(&now);
|
|
now = timespec64_sub(*tv, now);
|
|
ret = __estimate_accuracy(&now);
|
|
if (ret < current->timer_slack_ns)
|
|
return current->timer_slack_ns;
|
|
return ret;
|
|
}
|
|
|
|
|
|
|
|
struct poll_table_page {
|
|
struct poll_table_page * next;
|
|
struct poll_table_entry * entry;
|
|
struct poll_table_entry entries[0];
|
|
};
|
|
|
|
#define POLL_TABLE_FULL(table) \
|
|
((unsigned long)((table)->entry+1) > PAGE_SIZE + (unsigned long)(table))
|
|
|
|
/*
|
|
* Ok, Peter made a complicated, but straightforward multiple_wait() function.
|
|
* I have rewritten this, taking some shortcuts: This code may not be easy to
|
|
* follow, but it should be free of race-conditions, and it's practical. If you
|
|
* understand what I'm doing here, then you understand how the linux
|
|
* sleep/wakeup mechanism works.
|
|
*
|
|
* Two very simple procedures, poll_wait() and poll_freewait() make all the
|
|
* work. poll_wait() is an inline-function defined in <linux/poll.h>,
|
|
* as all select/poll functions have to call it to add an entry to the
|
|
* poll table.
|
|
*/
|
|
static void __pollwait(struct file *filp, wait_queue_head_t *wait_address,
|
|
poll_table *p);
|
|
|
|
void poll_initwait(struct poll_wqueues *pwq)
|
|
{
|
|
init_poll_funcptr(&pwq->pt, __pollwait);
|
|
pwq->polling_task = current;
|
|
pwq->triggered = 0;
|
|
pwq->error = 0;
|
|
pwq->table = NULL;
|
|
pwq->inline_index = 0;
|
|
}
|
|
EXPORT_SYMBOL(poll_initwait);
|
|
|
|
static void free_poll_entry(struct poll_table_entry *entry)
|
|
{
|
|
remove_wait_queue(entry->wait_address, &entry->wait);
|
|
fput(entry->filp);
|
|
}
|
|
|
|
void poll_freewait(struct poll_wqueues *pwq)
|
|
{
|
|
struct poll_table_page * p = pwq->table;
|
|
int i;
|
|
for (i = 0; i < pwq->inline_index; i++)
|
|
free_poll_entry(pwq->inline_entries + i);
|
|
while (p) {
|
|
struct poll_table_entry * entry;
|
|
struct poll_table_page *old;
|
|
|
|
entry = p->entry;
|
|
do {
|
|
entry--;
|
|
free_poll_entry(entry);
|
|
} while (entry > p->entries);
|
|
old = p;
|
|
p = p->next;
|
|
free_page((unsigned long) old);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(poll_freewait);
|
|
|
|
static struct poll_table_entry *poll_get_entry(struct poll_wqueues *p)
|
|
{
|
|
struct poll_table_page *table = p->table;
|
|
|
|
if (p->inline_index < N_INLINE_POLL_ENTRIES)
|
|
return p->inline_entries + p->inline_index++;
|
|
|
|
if (!table || POLL_TABLE_FULL(table)) {
|
|
struct poll_table_page *new_table;
|
|
|
|
new_table = (struct poll_table_page *) __get_free_page(GFP_KERNEL);
|
|
if (!new_table) {
|
|
p->error = -ENOMEM;
|
|
return NULL;
|
|
}
|
|
new_table->entry = new_table->entries;
|
|
new_table->next = table;
|
|
p->table = new_table;
|
|
table = new_table;
|
|
}
|
|
|
|
return table->entry++;
|
|
}
|
|
|
|
static int __pollwake(wait_queue_t *wait, unsigned mode, int sync, void *key)
|
|
{
|
|
struct poll_wqueues *pwq = wait->private;
|
|
DECLARE_WAITQUEUE(dummy_wait, pwq->polling_task);
|
|
|
|
/*
|
|
* Although this function is called under waitqueue lock, LOCK
|
|
* doesn't imply write barrier and the users expect write
|
|
* barrier semantics on wakeup functions. The following
|
|
* smp_wmb() is equivalent to smp_wmb() in try_to_wake_up()
|
|
* and is paired with smp_store_mb() in poll_schedule_timeout.
|
|
*/
|
|
smp_wmb();
|
|
pwq->triggered = 1;
|
|
|
|
/*
|
|
* Perform the default wake up operation using a dummy
|
|
* waitqueue.
|
|
*
|
|
* TODO: This is hacky but there currently is no interface to
|
|
* pass in @sync. @sync is scheduled to be removed and once
|
|
* that happens, wake_up_process() can be used directly.
|
|
*/
|
|
return default_wake_function(&dummy_wait, mode, sync, key);
|
|
}
|
|
|
|
static int pollwake(wait_queue_t *wait, unsigned mode, int sync, void *key)
|
|
{
|
|
struct poll_table_entry *entry;
|
|
|
|
entry = container_of(wait, struct poll_table_entry, wait);
|
|
if (key && !((unsigned long)key & entry->key))
|
|
return 0;
|
|
return __pollwake(wait, mode, sync, key);
|
|
}
|
|
|
|
/* Add a new entry */
|
|
static void __pollwait(struct file *filp, wait_queue_head_t *wait_address,
|
|
poll_table *p)
|
|
{
|
|
struct poll_wqueues *pwq = container_of(p, struct poll_wqueues, pt);
|
|
struct poll_table_entry *entry = poll_get_entry(pwq);
|
|
if (!entry)
|
|
return;
|
|
entry->filp = get_file(filp);
|
|
entry->wait_address = wait_address;
|
|
entry->key = p->_key;
|
|
init_waitqueue_func_entry(&entry->wait, pollwake);
|
|
entry->wait.private = pwq;
|
|
add_wait_queue(wait_address, &entry->wait);
|
|
}
|
|
|
|
int poll_schedule_timeout(struct poll_wqueues *pwq, int state,
|
|
ktime_t *expires, unsigned long slack)
|
|
{
|
|
int rc = -EINTR;
|
|
|
|
set_current_state(state);
|
|
if (!pwq->triggered)
|
|
rc = schedule_hrtimeout_range(expires, slack, HRTIMER_MODE_ABS);
|
|
__set_current_state(TASK_RUNNING);
|
|
|
|
/*
|
|
* Prepare for the next iteration.
|
|
*
|
|
* The following smp_store_mb() serves two purposes. First, it's
|
|
* the counterpart rmb of the wmb in pollwake() such that data
|
|
* written before wake up is always visible after wake up.
|
|
* Second, the full barrier guarantees that triggered clearing
|
|
* doesn't pass event check of the next iteration. Note that
|
|
* this problem doesn't exist for the first iteration as
|
|
* add_wait_queue() has full barrier semantics.
|
|
*/
|
|
smp_store_mb(pwq->triggered, 0);
|
|
|
|
return rc;
|
|
}
|
|
EXPORT_SYMBOL(poll_schedule_timeout);
|
|
|
|
/**
|
|
* poll_select_set_timeout - helper function to setup the timeout value
|
|
* @to: pointer to timespec64 variable for the final timeout
|
|
* @sec: seconds (from user space)
|
|
* @nsec: nanoseconds (from user space)
|
|
*
|
|
* Note, we do not use a timespec for the user space value here, That
|
|
* way we can use the function for timeval and compat interfaces as well.
|
|
*
|
|
* Returns -EINVAL if sec/nsec are not normalized. Otherwise 0.
|
|
*/
|
|
int poll_select_set_timeout(struct timespec64 *to, time64_t sec, long nsec)
|
|
{
|
|
struct timespec64 ts = {.tv_sec = sec, .tv_nsec = nsec};
|
|
|
|
if (!timespec64_valid(&ts))
|
|
return -EINVAL;
|
|
|
|
/* Optimize for the zero timeout value here */
|
|
if (!sec && !nsec) {
|
|
to->tv_sec = to->tv_nsec = 0;
|
|
} else {
|
|
ktime_get_ts64(to);
|
|
*to = timespec64_add_safe(*to, ts);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int poll_select_copy_remaining(struct timespec64 *end_time,
|
|
void __user *p,
|
|
int timeval, int ret)
|
|
{
|
|
struct timespec64 rts64;
|
|
struct timespec rts;
|
|
struct timeval rtv;
|
|
|
|
if (!p)
|
|
return ret;
|
|
|
|
if (current->personality & STICKY_TIMEOUTS)
|
|
goto sticky;
|
|
|
|
/* No update for zero timeout */
|
|
if (!end_time->tv_sec && !end_time->tv_nsec)
|
|
return ret;
|
|
|
|
ktime_get_ts64(&rts64);
|
|
rts64 = timespec64_sub(*end_time, rts64);
|
|
if (rts64.tv_sec < 0)
|
|
rts64.tv_sec = rts64.tv_nsec = 0;
|
|
|
|
rts = timespec64_to_timespec(rts64);
|
|
|
|
if (timeval) {
|
|
if (sizeof(rtv) > sizeof(rtv.tv_sec) + sizeof(rtv.tv_usec))
|
|
memset(&rtv, 0, sizeof(rtv));
|
|
rtv.tv_sec = rts64.tv_sec;
|
|
rtv.tv_usec = rts64.tv_nsec / NSEC_PER_USEC;
|
|
|
|
if (!copy_to_user(p, &rtv, sizeof(rtv)))
|
|
return ret;
|
|
|
|
} else if (!copy_to_user(p, &rts, sizeof(rts)))
|
|
return ret;
|
|
|
|
/*
|
|
* If an application puts its timeval in read-only memory, we
|
|
* don't want the Linux-specific update to the timeval to
|
|
* cause a fault after the select has completed
|
|
* successfully. However, because we're not updating the
|
|
* timeval, we can't restart the system call.
|
|
*/
|
|
|
|
sticky:
|
|
if (ret == -ERESTARTNOHAND)
|
|
ret = -EINTR;
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Scalable version of the fd_set.
|
|
*/
|
|
|
|
typedef struct {
|
|
unsigned long *in, *out, *ex;
|
|
unsigned long *res_in, *res_out, *res_ex;
|
|
} fd_set_bits;
|
|
|
|
/*
|
|
* How many longwords for "nr" bits?
|
|
*/
|
|
#define FDS_BITPERLONG (8*sizeof(long))
|
|
#define FDS_LONGS(nr) (((nr)+FDS_BITPERLONG-1)/FDS_BITPERLONG)
|
|
#define FDS_BYTES(nr) (FDS_LONGS(nr)*sizeof(long))
|
|
|
|
/*
|
|
* We do a VERIFY_WRITE here even though we are only reading this time:
|
|
* we'll write to it eventually..
|
|
*
|
|
* Use "unsigned long" accesses to let user-mode fd_set's be long-aligned.
|
|
*/
|
|
static inline
|
|
int get_fd_set(unsigned long nr, void __user *ufdset, unsigned long *fdset)
|
|
{
|
|
nr = FDS_BYTES(nr);
|
|
if (ufdset)
|
|
return copy_from_user(fdset, ufdset, nr) ? -EFAULT : 0;
|
|
|
|
memset(fdset, 0, nr);
|
|
return 0;
|
|
}
|
|
|
|
static inline unsigned long __must_check
|
|
set_fd_set(unsigned long nr, void __user *ufdset, unsigned long *fdset)
|
|
{
|
|
if (ufdset)
|
|
return __copy_to_user(ufdset, fdset, FDS_BYTES(nr));
|
|
return 0;
|
|
}
|
|
|
|
static inline
|
|
void zero_fd_set(unsigned long nr, unsigned long *fdset)
|
|
{
|
|
memset(fdset, 0, FDS_BYTES(nr));
|
|
}
|
|
|
|
#define FDS_IN(fds, n) (fds->in + n)
|
|
#define FDS_OUT(fds, n) (fds->out + n)
|
|
#define FDS_EX(fds, n) (fds->ex + n)
|
|
|
|
#define BITS(fds, n) (*FDS_IN(fds, n)|*FDS_OUT(fds, n)|*FDS_EX(fds, n))
|
|
|
|
static int max_select_fd(unsigned long n, fd_set_bits *fds)
|
|
{
|
|
unsigned long *open_fds;
|
|
unsigned long set;
|
|
int max;
|
|
struct fdtable *fdt;
|
|
|
|
/* handle last in-complete long-word first */
|
|
set = ~(~0UL << (n & (BITS_PER_LONG-1)));
|
|
n /= BITS_PER_LONG;
|
|
fdt = files_fdtable(current->files);
|
|
open_fds = fdt->open_fds + n;
|
|
max = 0;
|
|
if (set) {
|
|
set &= BITS(fds, n);
|
|
if (set) {
|
|
if (!(set & ~*open_fds))
|
|
goto get_max;
|
|
return -EBADF;
|
|
}
|
|
}
|
|
while (n) {
|
|
open_fds--;
|
|
n--;
|
|
set = BITS(fds, n);
|
|
if (!set)
|
|
continue;
|
|
if (set & ~*open_fds)
|
|
return -EBADF;
|
|
if (max)
|
|
continue;
|
|
get_max:
|
|
do {
|
|
max++;
|
|
set >>= 1;
|
|
} while (set);
|
|
max += n * BITS_PER_LONG;
|
|
}
|
|
|
|
return max;
|
|
}
|
|
|
|
#define POLLIN_SET (POLLRDNORM | POLLRDBAND | POLLIN | POLLHUP | POLLERR)
|
|
#define POLLOUT_SET (POLLWRBAND | POLLWRNORM | POLLOUT | POLLERR)
|
|
#define POLLEX_SET (POLLPRI)
|
|
|
|
static inline void wait_key_set(poll_table *wait, unsigned long in,
|
|
unsigned long out, unsigned long bit,
|
|
unsigned int ll_flag)
|
|
{
|
|
wait->_key = POLLEX_SET | ll_flag;
|
|
if (in & bit)
|
|
wait->_key |= POLLIN_SET;
|
|
if (out & bit)
|
|
wait->_key |= POLLOUT_SET;
|
|
}
|
|
|
|
static int do_select(int n, fd_set_bits *fds, struct timespec64 *end_time)
|
|
{
|
|
ktime_t expire, *to = NULL;
|
|
struct poll_wqueues table;
|
|
poll_table *wait;
|
|
int retval, i, timed_out = 0;
|
|
u64 slack = 0;
|
|
unsigned int busy_flag = net_busy_loop_on() ? POLL_BUSY_LOOP : 0;
|
|
unsigned long busy_start = 0;
|
|
|
|
rcu_read_lock();
|
|
retval = max_select_fd(n, fds);
|
|
rcu_read_unlock();
|
|
|
|
if (retval < 0)
|
|
return retval;
|
|
n = retval;
|
|
|
|
poll_initwait(&table);
|
|
wait = &table.pt;
|
|
if (end_time && !end_time->tv_sec && !end_time->tv_nsec) {
|
|
wait->_qproc = NULL;
|
|
timed_out = 1;
|
|
}
|
|
|
|
if (end_time && !timed_out)
|
|
slack = select_estimate_accuracy(end_time);
|
|
|
|
retval = 0;
|
|
for (;;) {
|
|
unsigned long *rinp, *routp, *rexp, *inp, *outp, *exp;
|
|
bool can_busy_loop = false;
|
|
|
|
inp = fds->in; outp = fds->out; exp = fds->ex;
|
|
rinp = fds->res_in; routp = fds->res_out; rexp = fds->res_ex;
|
|
|
|
for (i = 0; i < n; ++rinp, ++routp, ++rexp) {
|
|
unsigned long in, out, ex, all_bits, bit = 1, mask, j;
|
|
unsigned long res_in = 0, res_out = 0, res_ex = 0;
|
|
|
|
in = *inp++; out = *outp++; ex = *exp++;
|
|
all_bits = in | out | ex;
|
|
if (all_bits == 0) {
|
|
i += BITS_PER_LONG;
|
|
continue;
|
|
}
|
|
|
|
for (j = 0; j < BITS_PER_LONG; ++j, ++i, bit <<= 1) {
|
|
struct fd f;
|
|
if (i >= n)
|
|
break;
|
|
if (!(bit & all_bits))
|
|
continue;
|
|
f = fdget(i);
|
|
if (f.file) {
|
|
const struct file_operations *f_op;
|
|
f_op = f.file->f_op;
|
|
mask = DEFAULT_POLLMASK;
|
|
if (f_op->poll) {
|
|
wait_key_set(wait, in, out,
|
|
bit, busy_flag);
|
|
mask = (*f_op->poll)(f.file, wait);
|
|
}
|
|
fdput(f);
|
|
if ((mask & POLLIN_SET) && (in & bit)) {
|
|
res_in |= bit;
|
|
retval++;
|
|
wait->_qproc = NULL;
|
|
}
|
|
if ((mask & POLLOUT_SET) && (out & bit)) {
|
|
res_out |= bit;
|
|
retval++;
|
|
wait->_qproc = NULL;
|
|
}
|
|
if ((mask & POLLEX_SET) && (ex & bit)) {
|
|
res_ex |= bit;
|
|
retval++;
|
|
wait->_qproc = NULL;
|
|
}
|
|
/* got something, stop busy polling */
|
|
if (retval) {
|
|
can_busy_loop = false;
|
|
busy_flag = 0;
|
|
|
|
/*
|
|
* only remember a returned
|
|
* POLL_BUSY_LOOP if we asked for it
|
|
*/
|
|
} else if (busy_flag & mask)
|
|
can_busy_loop = true;
|
|
|
|
}
|
|
}
|
|
if (res_in)
|
|
*rinp = res_in;
|
|
if (res_out)
|
|
*routp = res_out;
|
|
if (res_ex)
|
|
*rexp = res_ex;
|
|
cond_resched();
|
|
}
|
|
wait->_qproc = NULL;
|
|
if (retval || timed_out || signal_pending(current))
|
|
break;
|
|
if (table.error) {
|
|
retval = table.error;
|
|
break;
|
|
}
|
|
|
|
/* only if found POLL_BUSY_LOOP sockets && not out of time */
|
|
if (can_busy_loop && !need_resched()) {
|
|
if (!busy_start) {
|
|
busy_start = busy_loop_current_time();
|
|
continue;
|
|
}
|
|
if (!busy_loop_timeout(busy_start))
|
|
continue;
|
|
}
|
|
busy_flag = 0;
|
|
|
|
/*
|
|
* If this is the first loop and we have a timeout
|
|
* given, then we convert to ktime_t and set the to
|
|
* pointer to the expiry value.
|
|
*/
|
|
if (end_time && !to) {
|
|
expire = timespec64_to_ktime(*end_time);
|
|
to = &expire;
|
|
}
|
|
|
|
if (!poll_schedule_timeout(&table, TASK_INTERRUPTIBLE,
|
|
to, slack))
|
|
timed_out = 1;
|
|
}
|
|
|
|
poll_freewait(&table);
|
|
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* We can actually return ERESTARTSYS instead of EINTR, but I'd
|
|
* like to be certain this leads to no problems. So I return
|
|
* EINTR just for safety.
|
|
*
|
|
* Update: ERESTARTSYS breaks at least the xview clock binary, so
|
|
* I'm trying ERESTARTNOHAND which restart only when you want to.
|
|
*/
|
|
int core_sys_select(int n, fd_set __user *inp, fd_set __user *outp,
|
|
fd_set __user *exp, struct timespec64 *end_time)
|
|
{
|
|
fd_set_bits fds;
|
|
void *bits;
|
|
int ret, max_fds;
|
|
size_t size, alloc_size;
|
|
struct fdtable *fdt;
|
|
/* Allocate small arguments on the stack to save memory and be faster */
|
|
long stack_fds[SELECT_STACK_ALLOC/sizeof(long)];
|
|
|
|
ret = -EINVAL;
|
|
if (n < 0)
|
|
goto out_nofds;
|
|
|
|
/* max_fds can increase, so grab it once to avoid race */
|
|
rcu_read_lock();
|
|
fdt = files_fdtable(current->files);
|
|
max_fds = fdt->max_fds;
|
|
rcu_read_unlock();
|
|
if (n > max_fds)
|
|
n = max_fds;
|
|
|
|
/*
|
|
* We need 6 bitmaps (in/out/ex for both incoming and outgoing),
|
|
* since we used fdset we need to allocate memory in units of
|
|
* long-words.
|
|
*/
|
|
size = FDS_BYTES(n);
|
|
bits = stack_fds;
|
|
if (size > sizeof(stack_fds) / 6) {
|
|
/* Not enough space in on-stack array; must use kmalloc */
|
|
ret = -ENOMEM;
|
|
if (size > (SIZE_MAX / 6))
|
|
goto out_nofds;
|
|
|
|
alloc_size = 6 * size;
|
|
bits = kvmalloc(alloc_size, GFP_KERNEL);
|
|
if (!bits)
|
|
goto out_nofds;
|
|
}
|
|
fds.in = bits;
|
|
fds.out = bits + size;
|
|
fds.ex = bits + 2*size;
|
|
fds.res_in = bits + 3*size;
|
|
fds.res_out = bits + 4*size;
|
|
fds.res_ex = bits + 5*size;
|
|
|
|
if ((ret = get_fd_set(n, inp, fds.in)) ||
|
|
(ret = get_fd_set(n, outp, fds.out)) ||
|
|
(ret = get_fd_set(n, exp, fds.ex)))
|
|
goto out;
|
|
zero_fd_set(n, fds.res_in);
|
|
zero_fd_set(n, fds.res_out);
|
|
zero_fd_set(n, fds.res_ex);
|
|
|
|
ret = do_select(n, &fds, end_time);
|
|
|
|
if (ret < 0)
|
|
goto out;
|
|
if (!ret) {
|
|
ret = -ERESTARTNOHAND;
|
|
if (signal_pending(current))
|
|
goto out;
|
|
ret = 0;
|
|
}
|
|
|
|
if (set_fd_set(n, inp, fds.res_in) ||
|
|
set_fd_set(n, outp, fds.res_out) ||
|
|
set_fd_set(n, exp, fds.res_ex))
|
|
ret = -EFAULT;
|
|
|
|
out:
|
|
if (bits != stack_fds)
|
|
kvfree(bits);
|
|
out_nofds:
|
|
return ret;
|
|
}
|
|
|
|
SYSCALL_DEFINE5(select, int, n, fd_set __user *, inp, fd_set __user *, outp,
|
|
fd_set __user *, exp, struct timeval __user *, tvp)
|
|
{
|
|
struct timespec64 end_time, *to = NULL;
|
|
struct timeval tv;
|
|
int ret;
|
|
|
|
if (tvp) {
|
|
if (copy_from_user(&tv, tvp, sizeof(tv)))
|
|
return -EFAULT;
|
|
|
|
to = &end_time;
|
|
if (poll_select_set_timeout(to,
|
|
tv.tv_sec + (tv.tv_usec / USEC_PER_SEC),
|
|
(tv.tv_usec % USEC_PER_SEC) * NSEC_PER_USEC))
|
|
return -EINVAL;
|
|
}
|
|
|
|
ret = core_sys_select(n, inp, outp, exp, to);
|
|
ret = poll_select_copy_remaining(&end_time, tvp, 1, ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static long do_pselect(int n, fd_set __user *inp, fd_set __user *outp,
|
|
fd_set __user *exp, struct timespec __user *tsp,
|
|
const sigset_t __user *sigmask, size_t sigsetsize)
|
|
{
|
|
sigset_t ksigmask, sigsaved;
|
|
struct timespec ts;
|
|
struct timespec64 ts64, end_time, *to = NULL;
|
|
int ret;
|
|
|
|
if (tsp) {
|
|
if (copy_from_user(&ts, tsp, sizeof(ts)))
|
|
return -EFAULT;
|
|
ts64 = timespec_to_timespec64(ts);
|
|
|
|
to = &end_time;
|
|
if (poll_select_set_timeout(to, ts64.tv_sec, ts64.tv_nsec))
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (sigmask) {
|
|
/* XXX: Don't preclude handling different sized sigset_t's. */
|
|
if (sigsetsize != sizeof(sigset_t))
|
|
return -EINVAL;
|
|
if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask)))
|
|
return -EFAULT;
|
|
|
|
sigdelsetmask(&ksigmask, sigmask(SIGKILL)|sigmask(SIGSTOP));
|
|
sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
|
|
}
|
|
|
|
ret = core_sys_select(n, inp, outp, exp, to);
|
|
ret = poll_select_copy_remaining(&end_time, tsp, 0, ret);
|
|
|
|
if (ret == -ERESTARTNOHAND) {
|
|
/*
|
|
* Don't restore the signal mask yet. Let do_signal() deliver
|
|
* the signal on the way back to userspace, before the signal
|
|
* mask is restored.
|
|
*/
|
|
if (sigmask) {
|
|
memcpy(¤t->saved_sigmask, &sigsaved,
|
|
sizeof(sigsaved));
|
|
set_restore_sigmask();
|
|
}
|
|
} else if (sigmask)
|
|
sigprocmask(SIG_SETMASK, &sigsaved, NULL);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Most architectures can't handle 7-argument syscalls. So we provide a
|
|
* 6-argument version where the sixth argument is a pointer to a structure
|
|
* which has a pointer to the sigset_t itself followed by a size_t containing
|
|
* the sigset size.
|
|
*/
|
|
SYSCALL_DEFINE6(pselect6, int, n, fd_set __user *, inp, fd_set __user *, outp,
|
|
fd_set __user *, exp, struct timespec __user *, tsp,
|
|
void __user *, sig)
|
|
{
|
|
size_t sigsetsize = 0;
|
|
sigset_t __user *up = NULL;
|
|
|
|
if (sig) {
|
|
if (!access_ok(VERIFY_READ, sig, sizeof(void *)+sizeof(size_t))
|
|
|| __get_user(up, (sigset_t __user * __user *)sig)
|
|
|| __get_user(sigsetsize,
|
|
(size_t __user *)(sig+sizeof(void *))))
|
|
return -EFAULT;
|
|
}
|
|
|
|
return do_pselect(n, inp, outp, exp, tsp, up, sigsetsize);
|
|
}
|
|
|
|
#ifdef __ARCH_WANT_SYS_OLD_SELECT
|
|
struct sel_arg_struct {
|
|
unsigned long n;
|
|
fd_set __user *inp, *outp, *exp;
|
|
struct timeval __user *tvp;
|
|
};
|
|
|
|
SYSCALL_DEFINE1(old_select, struct sel_arg_struct __user *, arg)
|
|
{
|
|
struct sel_arg_struct a;
|
|
|
|
if (copy_from_user(&a, arg, sizeof(a)))
|
|
return -EFAULT;
|
|
return sys_select(a.n, a.inp, a.outp, a.exp, a.tvp);
|
|
}
|
|
#endif
|
|
|
|
struct poll_list {
|
|
struct poll_list *next;
|
|
int len;
|
|
struct pollfd entries[0];
|
|
};
|
|
|
|
#define POLLFD_PER_PAGE ((PAGE_SIZE-sizeof(struct poll_list)) / sizeof(struct pollfd))
|
|
|
|
/*
|
|
* Fish for pollable events on the pollfd->fd file descriptor. We're only
|
|
* interested in events matching the pollfd->events mask, and the result
|
|
* matching that mask is both recorded in pollfd->revents and returned. The
|
|
* pwait poll_table will be used by the fd-provided poll handler for waiting,
|
|
* if pwait->_qproc is non-NULL.
|
|
*/
|
|
static inline unsigned int do_pollfd(struct pollfd *pollfd, poll_table *pwait,
|
|
bool *can_busy_poll,
|
|
unsigned int busy_flag)
|
|
{
|
|
unsigned int mask;
|
|
int fd;
|
|
|
|
mask = 0;
|
|
fd = pollfd->fd;
|
|
if (fd >= 0) {
|
|
struct fd f = fdget(fd);
|
|
mask = POLLNVAL;
|
|
if (f.file) {
|
|
mask = DEFAULT_POLLMASK;
|
|
if (f.file->f_op->poll) {
|
|
pwait->_key = pollfd->events|POLLERR|POLLHUP;
|
|
pwait->_key |= busy_flag;
|
|
mask = f.file->f_op->poll(f.file, pwait);
|
|
if (mask & busy_flag)
|
|
*can_busy_poll = true;
|
|
}
|
|
/* Mask out unneeded events. */
|
|
mask &= pollfd->events | POLLERR | POLLHUP;
|
|
fdput(f);
|
|
}
|
|
}
|
|
pollfd->revents = mask;
|
|
|
|
return mask;
|
|
}
|
|
|
|
static int do_poll(struct poll_list *list, struct poll_wqueues *wait,
|
|
struct timespec64 *end_time)
|
|
{
|
|
poll_table* pt = &wait->pt;
|
|
ktime_t expire, *to = NULL;
|
|
int timed_out = 0, count = 0;
|
|
u64 slack = 0;
|
|
unsigned int busy_flag = net_busy_loop_on() ? POLL_BUSY_LOOP : 0;
|
|
unsigned long busy_start = 0;
|
|
|
|
/* Optimise the no-wait case */
|
|
if (end_time && !end_time->tv_sec && !end_time->tv_nsec) {
|
|
pt->_qproc = NULL;
|
|
timed_out = 1;
|
|
}
|
|
|
|
if (end_time && !timed_out)
|
|
slack = select_estimate_accuracy(end_time);
|
|
|
|
for (;;) {
|
|
struct poll_list *walk;
|
|
bool can_busy_loop = false;
|
|
|
|
for (walk = list; walk != NULL; walk = walk->next) {
|
|
struct pollfd * pfd, * pfd_end;
|
|
|
|
pfd = walk->entries;
|
|
pfd_end = pfd + walk->len;
|
|
for (; pfd != pfd_end; pfd++) {
|
|
/*
|
|
* Fish for events. If we found one, record it
|
|
* and kill poll_table->_qproc, so we don't
|
|
* needlessly register any other waiters after
|
|
* this. They'll get immediately deregistered
|
|
* when we break out and return.
|
|
*/
|
|
if (do_pollfd(pfd, pt, &can_busy_loop,
|
|
busy_flag)) {
|
|
count++;
|
|
pt->_qproc = NULL;
|
|
/* found something, stop busy polling */
|
|
busy_flag = 0;
|
|
can_busy_loop = false;
|
|
}
|
|
}
|
|
}
|
|
/*
|
|
* All waiters have already been registered, so don't provide
|
|
* a poll_table->_qproc to them on the next loop iteration.
|
|
*/
|
|
pt->_qproc = NULL;
|
|
if (!count) {
|
|
count = wait->error;
|
|
if (signal_pending(current))
|
|
count = -EINTR;
|
|
}
|
|
if (count || timed_out)
|
|
break;
|
|
|
|
/* only if found POLL_BUSY_LOOP sockets && not out of time */
|
|
if (can_busy_loop && !need_resched()) {
|
|
if (!busy_start) {
|
|
busy_start = busy_loop_current_time();
|
|
continue;
|
|
}
|
|
if (!busy_loop_timeout(busy_start))
|
|
continue;
|
|
}
|
|
busy_flag = 0;
|
|
|
|
/*
|
|
* If this is the first loop and we have a timeout
|
|
* given, then we convert to ktime_t and set the to
|
|
* pointer to the expiry value.
|
|
*/
|
|
if (end_time && !to) {
|
|
expire = timespec64_to_ktime(*end_time);
|
|
to = &expire;
|
|
}
|
|
|
|
if (!poll_schedule_timeout(wait, TASK_INTERRUPTIBLE, to, slack))
|
|
timed_out = 1;
|
|
}
|
|
return count;
|
|
}
|
|
|
|
#define N_STACK_PPS ((sizeof(stack_pps) - sizeof(struct poll_list)) / \
|
|
sizeof(struct pollfd))
|
|
|
|
static int do_sys_poll(struct pollfd __user *ufds, unsigned int nfds,
|
|
struct timespec64 *end_time)
|
|
{
|
|
struct poll_wqueues table;
|
|
int err = -EFAULT, fdcount, len, size;
|
|
/* Allocate small arguments on the stack to save memory and be
|
|
faster - use long to make sure the buffer is aligned properly
|
|
on 64 bit archs to avoid unaligned access */
|
|
long stack_pps[POLL_STACK_ALLOC/sizeof(long)];
|
|
struct poll_list *const head = (struct poll_list *)stack_pps;
|
|
struct poll_list *walk = head;
|
|
unsigned long todo = nfds;
|
|
|
|
if (nfds > rlimit(RLIMIT_NOFILE))
|
|
return -EINVAL;
|
|
|
|
len = min_t(unsigned int, nfds, N_STACK_PPS);
|
|
for (;;) {
|
|
walk->next = NULL;
|
|
walk->len = len;
|
|
if (!len)
|
|
break;
|
|
|
|
if (copy_from_user(walk->entries, ufds + nfds-todo,
|
|
sizeof(struct pollfd) * walk->len))
|
|
goto out_fds;
|
|
|
|
todo -= walk->len;
|
|
if (!todo)
|
|
break;
|
|
|
|
len = min(todo, POLLFD_PER_PAGE);
|
|
size = sizeof(struct poll_list) + sizeof(struct pollfd) * len;
|
|
walk = walk->next = kmalloc(size, GFP_KERNEL);
|
|
if (!walk) {
|
|
err = -ENOMEM;
|
|
goto out_fds;
|
|
}
|
|
}
|
|
|
|
poll_initwait(&table);
|
|
fdcount = do_poll(head, &table, end_time);
|
|
poll_freewait(&table);
|
|
|
|
for (walk = head; walk; walk = walk->next) {
|
|
struct pollfd *fds = walk->entries;
|
|
int j;
|
|
|
|
for (j = 0; j < walk->len; j++, ufds++)
|
|
if (__put_user(fds[j].revents, &ufds->revents))
|
|
goto out_fds;
|
|
}
|
|
|
|
err = fdcount;
|
|
out_fds:
|
|
walk = head->next;
|
|
while (walk) {
|
|
struct poll_list *pos = walk;
|
|
walk = walk->next;
|
|
kfree(pos);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static long do_restart_poll(struct restart_block *restart_block)
|
|
{
|
|
struct pollfd __user *ufds = restart_block->poll.ufds;
|
|
int nfds = restart_block->poll.nfds;
|
|
struct timespec64 *to = NULL, end_time;
|
|
int ret;
|
|
|
|
if (restart_block->poll.has_timeout) {
|
|
end_time.tv_sec = restart_block->poll.tv_sec;
|
|
end_time.tv_nsec = restart_block->poll.tv_nsec;
|
|
to = &end_time;
|
|
}
|
|
|
|
ret = do_sys_poll(ufds, nfds, to);
|
|
|
|
if (ret == -EINTR) {
|
|
restart_block->fn = do_restart_poll;
|
|
ret = -ERESTART_RESTARTBLOCK;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
SYSCALL_DEFINE3(poll, struct pollfd __user *, ufds, unsigned int, nfds,
|
|
int, timeout_msecs)
|
|
{
|
|
struct timespec64 end_time, *to = NULL;
|
|
int ret;
|
|
|
|
if (timeout_msecs >= 0) {
|
|
to = &end_time;
|
|
poll_select_set_timeout(to, timeout_msecs / MSEC_PER_SEC,
|
|
NSEC_PER_MSEC * (timeout_msecs % MSEC_PER_SEC));
|
|
}
|
|
|
|
ret = do_sys_poll(ufds, nfds, to);
|
|
|
|
if (ret == -EINTR) {
|
|
struct restart_block *restart_block;
|
|
|
|
restart_block = ¤t->restart_block;
|
|
restart_block->fn = do_restart_poll;
|
|
restart_block->poll.ufds = ufds;
|
|
restart_block->poll.nfds = nfds;
|
|
|
|
if (timeout_msecs >= 0) {
|
|
restart_block->poll.tv_sec = end_time.tv_sec;
|
|
restart_block->poll.tv_nsec = end_time.tv_nsec;
|
|
restart_block->poll.has_timeout = 1;
|
|
} else
|
|
restart_block->poll.has_timeout = 0;
|
|
|
|
ret = -ERESTART_RESTARTBLOCK;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
SYSCALL_DEFINE5(ppoll, struct pollfd __user *, ufds, unsigned int, nfds,
|
|
struct timespec __user *, tsp, const sigset_t __user *, sigmask,
|
|
size_t, sigsetsize)
|
|
{
|
|
sigset_t ksigmask, sigsaved;
|
|
struct timespec ts;
|
|
struct timespec64 end_time, *to = NULL;
|
|
int ret;
|
|
|
|
if (tsp) {
|
|
if (copy_from_user(&ts, tsp, sizeof(ts)))
|
|
return -EFAULT;
|
|
|
|
to = &end_time;
|
|
if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (sigmask) {
|
|
/* XXX: Don't preclude handling different sized sigset_t's. */
|
|
if (sigsetsize != sizeof(sigset_t))
|
|
return -EINVAL;
|
|
if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask)))
|
|
return -EFAULT;
|
|
|
|
sigdelsetmask(&ksigmask, sigmask(SIGKILL)|sigmask(SIGSTOP));
|
|
sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
|
|
}
|
|
|
|
ret = do_sys_poll(ufds, nfds, to);
|
|
|
|
/* We can restart this syscall, usually */
|
|
if (ret == -EINTR) {
|
|
/*
|
|
* Don't restore the signal mask yet. Let do_signal() deliver
|
|
* the signal on the way back to userspace, before the signal
|
|
* mask is restored.
|
|
*/
|
|
if (sigmask) {
|
|
memcpy(¤t->saved_sigmask, &sigsaved,
|
|
sizeof(sigsaved));
|
|
set_restore_sigmask();
|
|
}
|
|
ret = -ERESTARTNOHAND;
|
|
} else if (sigmask)
|
|
sigprocmask(SIG_SETMASK, &sigsaved, NULL);
|
|
|
|
ret = poll_select_copy_remaining(&end_time, tsp, 0, ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
#define __COMPAT_NFDBITS (8 * sizeof(compat_ulong_t))
|
|
|
|
static
|
|
int compat_poll_select_copy_remaining(struct timespec *end_time, void __user *p,
|
|
int timeval, int ret)
|
|
{
|
|
struct timespec ts;
|
|
|
|
if (!p)
|
|
return ret;
|
|
|
|
if (current->personality & STICKY_TIMEOUTS)
|
|
goto sticky;
|
|
|
|
/* No update for zero timeout */
|
|
if (!end_time->tv_sec && !end_time->tv_nsec)
|
|
return ret;
|
|
|
|
ktime_get_ts(&ts);
|
|
ts = timespec_sub(*end_time, ts);
|
|
if (ts.tv_sec < 0)
|
|
ts.tv_sec = ts.tv_nsec = 0;
|
|
|
|
if (timeval) {
|
|
struct compat_timeval rtv;
|
|
|
|
rtv.tv_sec = ts.tv_sec;
|
|
rtv.tv_usec = ts.tv_nsec / NSEC_PER_USEC;
|
|
|
|
if (!copy_to_user(p, &rtv, sizeof(rtv)))
|
|
return ret;
|
|
} else {
|
|
struct compat_timespec rts;
|
|
|
|
rts.tv_sec = ts.tv_sec;
|
|
rts.tv_nsec = ts.tv_nsec;
|
|
|
|
if (!copy_to_user(p, &rts, sizeof(rts)))
|
|
return ret;
|
|
}
|
|
/*
|
|
* If an application puts its timeval in read-only memory, we
|
|
* don't want the Linux-specific update to the timeval to
|
|
* cause a fault after the select has completed
|
|
* successfully. However, because we're not updating the
|
|
* timeval, we can't restart the system call.
|
|
*/
|
|
|
|
sticky:
|
|
if (ret == -ERESTARTNOHAND)
|
|
ret = -EINTR;
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Ooo, nasty. We need here to frob 32-bit unsigned longs to
|
|
* 64-bit unsigned longs.
|
|
*/
|
|
static
|
|
int compat_get_fd_set(unsigned long nr, compat_ulong_t __user *ufdset,
|
|
unsigned long *fdset)
|
|
{
|
|
nr = DIV_ROUND_UP(nr, __COMPAT_NFDBITS);
|
|
if (ufdset) {
|
|
unsigned long odd;
|
|
|
|
if (!access_ok(VERIFY_WRITE, ufdset, nr*sizeof(compat_ulong_t)))
|
|
return -EFAULT;
|
|
|
|
odd = nr & 1UL;
|
|
nr &= ~1UL;
|
|
while (nr) {
|
|
unsigned long h, l;
|
|
if (__get_user(l, ufdset) || __get_user(h, ufdset+1))
|
|
return -EFAULT;
|
|
ufdset += 2;
|
|
*fdset++ = h << 32 | l;
|
|
nr -= 2;
|
|
}
|
|
if (odd && __get_user(*fdset, ufdset))
|
|
return -EFAULT;
|
|
} else {
|
|
/* Tricky, must clear full unsigned long in the
|
|
* kernel fdset at the end, this makes sure that
|
|
* actually happens.
|
|
*/
|
|
memset(fdset, 0, ((nr + 1) & ~1)*sizeof(compat_ulong_t));
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static
|
|
int compat_set_fd_set(unsigned long nr, compat_ulong_t __user *ufdset,
|
|
unsigned long *fdset)
|
|
{
|
|
unsigned long odd;
|
|
nr = DIV_ROUND_UP(nr, __COMPAT_NFDBITS);
|
|
|
|
if (!ufdset)
|
|
return 0;
|
|
|
|
odd = nr & 1UL;
|
|
nr &= ~1UL;
|
|
while (nr) {
|
|
unsigned long h, l;
|
|
l = *fdset++;
|
|
h = l >> 32;
|
|
if (__put_user(l, ufdset) || __put_user(h, ufdset+1))
|
|
return -EFAULT;
|
|
ufdset += 2;
|
|
nr -= 2;
|
|
}
|
|
if (odd && __put_user(*fdset, ufdset))
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* This is a virtual copy of sys_select from fs/select.c and probably
|
|
* should be compared to it from time to time
|
|
*/
|
|
|
|
/*
|
|
* We can actually return ERESTARTSYS instead of EINTR, but I'd
|
|
* like to be certain this leads to no problems. So I return
|
|
* EINTR just for safety.
|
|
*
|
|
* Update: ERESTARTSYS breaks at least the xview clock binary, so
|
|
* I'm trying ERESTARTNOHAND which restart only when you want to.
|
|
*/
|
|
static int compat_core_sys_select(int n, compat_ulong_t __user *inp,
|
|
compat_ulong_t __user *outp, compat_ulong_t __user *exp,
|
|
struct timespec *end_time)
|
|
{
|
|
fd_set_bits fds;
|
|
void *bits;
|
|
int size, max_fds, ret = -EINVAL;
|
|
struct fdtable *fdt;
|
|
long stack_fds[SELECT_STACK_ALLOC/sizeof(long)];
|
|
|
|
if (n < 0)
|
|
goto out_nofds;
|
|
|
|
/* max_fds can increase, so grab it once to avoid race */
|
|
rcu_read_lock();
|
|
fdt = files_fdtable(current->files);
|
|
max_fds = fdt->max_fds;
|
|
rcu_read_unlock();
|
|
if (n > max_fds)
|
|
n = max_fds;
|
|
|
|
/*
|
|
* We need 6 bitmaps (in/out/ex for both incoming and outgoing),
|
|
* since we used fdset we need to allocate memory in units of
|
|
* long-words.
|
|
*/
|
|
size = FDS_BYTES(n);
|
|
bits = stack_fds;
|
|
if (size > sizeof(stack_fds) / 6) {
|
|
bits = kmalloc(6 * size, GFP_KERNEL);
|
|
ret = -ENOMEM;
|
|
if (!bits)
|
|
goto out_nofds;
|
|
}
|
|
fds.in = (unsigned long *) bits;
|
|
fds.out = (unsigned long *) (bits + size);
|
|
fds.ex = (unsigned long *) (bits + 2*size);
|
|
fds.res_in = (unsigned long *) (bits + 3*size);
|
|
fds.res_out = (unsigned long *) (bits + 4*size);
|
|
fds.res_ex = (unsigned long *) (bits + 5*size);
|
|
|
|
if ((ret = compat_get_fd_set(n, inp, fds.in)) ||
|
|
(ret = compat_get_fd_set(n, outp, fds.out)) ||
|
|
(ret = compat_get_fd_set(n, exp, fds.ex)))
|
|
goto out;
|
|
zero_fd_set(n, fds.res_in);
|
|
zero_fd_set(n, fds.res_out);
|
|
zero_fd_set(n, fds.res_ex);
|
|
|
|
ret = do_select(n, &fds, end_time);
|
|
|
|
if (ret < 0)
|
|
goto out;
|
|
if (!ret) {
|
|
ret = -ERESTARTNOHAND;
|
|
if (signal_pending(current))
|
|
goto out;
|
|
ret = 0;
|
|
}
|
|
|
|
if (compat_set_fd_set(n, inp, fds.res_in) ||
|
|
compat_set_fd_set(n, outp, fds.res_out) ||
|
|
compat_set_fd_set(n, exp, fds.res_ex))
|
|
ret = -EFAULT;
|
|
out:
|
|
if (bits != stack_fds)
|
|
kfree(bits);
|
|
out_nofds:
|
|
return ret;
|
|
}
|
|
|
|
COMPAT_SYSCALL_DEFINE5(select, int, n, compat_ulong_t __user *, inp,
|
|
compat_ulong_t __user *, outp, compat_ulong_t __user *, exp,
|
|
struct compat_timeval __user *, tvp)
|
|
{
|
|
struct timespec end_time, *to = NULL;
|
|
struct compat_timeval tv;
|
|
int ret;
|
|
|
|
if (tvp) {
|
|
if (copy_from_user(&tv, tvp, sizeof(tv)))
|
|
return -EFAULT;
|
|
|
|
to = &end_time;
|
|
if (poll_select_set_timeout(to,
|
|
tv.tv_sec + (tv.tv_usec / USEC_PER_SEC),
|
|
(tv.tv_usec % USEC_PER_SEC) * NSEC_PER_USEC))
|
|
return -EINVAL;
|
|
}
|
|
|
|
ret = compat_core_sys_select(n, inp, outp, exp, to);
|
|
ret = compat_poll_select_copy_remaining(&end_time, tvp, 1, ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
struct compat_sel_arg_struct {
|
|
compat_ulong_t n;
|
|
compat_uptr_t inp;
|
|
compat_uptr_t outp;
|
|
compat_uptr_t exp;
|
|
compat_uptr_t tvp;
|
|
};
|
|
|
|
COMPAT_SYSCALL_DEFINE1(old_select, struct compat_sel_arg_struct __user *, arg)
|
|
{
|
|
struct compat_sel_arg_struct a;
|
|
|
|
if (copy_from_user(&a, arg, sizeof(a)))
|
|
return -EFAULT;
|
|
return compat_sys_select(a.n, compat_ptr(a.inp), compat_ptr(a.outp),
|
|
compat_ptr(a.exp), compat_ptr(a.tvp));
|
|
}
|
|
|
|
static long do_compat_pselect(int n, compat_ulong_t __user *inp,
|
|
compat_ulong_t __user *outp, compat_ulong_t __user *exp,
|
|
struct compat_timespec __user *tsp, compat_sigset_t __user *sigmask,
|
|
compat_size_t sigsetsize)
|
|
{
|
|
compat_sigset_t ss32;
|
|
sigset_t ksigmask, sigsaved;
|
|
struct compat_timespec ts;
|
|
struct timespec end_time, *to = NULL;
|
|
int ret;
|
|
|
|
if (tsp) {
|
|
if (copy_from_user(&ts, tsp, sizeof(ts)))
|
|
return -EFAULT;
|
|
|
|
to = &end_time;
|
|
if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (sigmask) {
|
|
if (sigsetsize != sizeof(compat_sigset_t))
|
|
return -EINVAL;
|
|
if (copy_from_user(&ss32, sigmask, sizeof(ss32)))
|
|
return -EFAULT;
|
|
sigset_from_compat(&ksigmask, &ss32);
|
|
|
|
sigdelsetmask(&ksigmask, sigmask(SIGKILL)|sigmask(SIGSTOP));
|
|
sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
|
|
}
|
|
|
|
ret = compat_core_sys_select(n, inp, outp, exp, to);
|
|
ret = compat_poll_select_copy_remaining(&end_time, tsp, 0, ret);
|
|
|
|
if (ret == -ERESTARTNOHAND) {
|
|
/*
|
|
* Don't restore the signal mask yet. Let do_signal() deliver
|
|
* the signal on the way back to userspace, before the signal
|
|
* mask is restored.
|
|
*/
|
|
if (sigmask) {
|
|
memcpy(¤t->saved_sigmask, &sigsaved,
|
|
sizeof(sigsaved));
|
|
set_restore_sigmask();
|
|
}
|
|
} else if (sigmask)
|
|
sigprocmask(SIG_SETMASK, &sigsaved, NULL);
|
|
|
|
return ret;
|
|
}
|
|
|
|
COMPAT_SYSCALL_DEFINE6(pselect6, int, n, compat_ulong_t __user *, inp,
|
|
compat_ulong_t __user *, outp, compat_ulong_t __user *, exp,
|
|
struct compat_timespec __user *, tsp, void __user *, sig)
|
|
{
|
|
compat_size_t sigsetsize = 0;
|
|
compat_uptr_t up = 0;
|
|
|
|
if (sig) {
|
|
if (!access_ok(VERIFY_READ, sig,
|
|
sizeof(compat_uptr_t)+sizeof(compat_size_t)) ||
|
|
__get_user(up, (compat_uptr_t __user *)sig) ||
|
|
__get_user(sigsetsize,
|
|
(compat_size_t __user *)(sig+sizeof(up))))
|
|
return -EFAULT;
|
|
}
|
|
return do_compat_pselect(n, inp, outp, exp, tsp, compat_ptr(up),
|
|
sigsetsize);
|
|
}
|
|
|
|
COMPAT_SYSCALL_DEFINE5(ppoll, struct pollfd __user *, ufds,
|
|
unsigned int, nfds, struct compat_timespec __user *, tsp,
|
|
const compat_sigset_t __user *, sigmask, compat_size_t, sigsetsize)
|
|
{
|
|
compat_sigset_t ss32;
|
|
sigset_t ksigmask, sigsaved;
|
|
struct compat_timespec ts;
|
|
struct timespec end_time, *to = NULL;
|
|
int ret;
|
|
|
|
if (tsp) {
|
|
if (copy_from_user(&ts, tsp, sizeof(ts)))
|
|
return -EFAULT;
|
|
|
|
to = &end_time;
|
|
if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (sigmask) {
|
|
if (sigsetsize != sizeof(compat_sigset_t))
|
|
return -EINVAL;
|
|
if (copy_from_user(&ss32, sigmask, sizeof(ss32)))
|
|
return -EFAULT;
|
|
sigset_from_compat(&ksigmask, &ss32);
|
|
|
|
sigdelsetmask(&ksigmask, sigmask(SIGKILL)|sigmask(SIGSTOP));
|
|
sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
|
|
}
|
|
|
|
ret = do_sys_poll(ufds, nfds, to);
|
|
|
|
/* We can restart this syscall, usually */
|
|
if (ret == -EINTR) {
|
|
/*
|
|
* Don't restore the signal mask yet. Let do_signal() deliver
|
|
* the signal on the way back to userspace, before the signal
|
|
* mask is restored.
|
|
*/
|
|
if (sigmask) {
|
|
memcpy(¤t->saved_sigmask, &sigsaved,
|
|
sizeof(sigsaved));
|
|
set_restore_sigmask();
|
|
}
|
|
ret = -ERESTARTNOHAND;
|
|
} else if (sigmask)
|
|
sigprocmask(SIG_SETMASK, &sigsaved, NULL);
|
|
|
|
ret = compat_poll_select_copy_remaining(&end_time, tsp, 0, ret);
|
|
|
|
return ret;
|
|
}
|
|
#endif
|