forked from Minki/linux
c8db8c2628
p4d_clear_huge may be optimized for void return type and function usage. vunmap_p4d_range function saves a few steps here. Link: https://lkml.kernel.org/r/20220507150630.90399-1-kunyu@nfschina.com Signed-off-by: Li kunyu <kunyu@nfschina.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
876 lines
21 KiB
C
876 lines
21 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
#include <linux/mm.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/tlb.h>
|
|
#include <asm/fixmap.h>
|
|
#include <asm/mtrr.h>
|
|
|
|
#ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
|
|
phys_addr_t physical_mask __ro_after_init = (1ULL << __PHYSICAL_MASK_SHIFT) - 1;
|
|
EXPORT_SYMBOL(physical_mask);
|
|
#endif
|
|
|
|
#ifdef CONFIG_HIGHPTE
|
|
#define PGTABLE_HIGHMEM __GFP_HIGHMEM
|
|
#else
|
|
#define PGTABLE_HIGHMEM 0
|
|
#endif
|
|
|
|
#ifndef CONFIG_PARAVIRT
|
|
static inline
|
|
void paravirt_tlb_remove_table(struct mmu_gather *tlb, void *table)
|
|
{
|
|
tlb_remove_page(tlb, table);
|
|
}
|
|
#endif
|
|
|
|
gfp_t __userpte_alloc_gfp = GFP_PGTABLE_USER | PGTABLE_HIGHMEM;
|
|
|
|
pgtable_t pte_alloc_one(struct mm_struct *mm)
|
|
{
|
|
return __pte_alloc_one(mm, __userpte_alloc_gfp);
|
|
}
|
|
|
|
static int __init setup_userpte(char *arg)
|
|
{
|
|
if (!arg)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* "userpte=nohigh" disables allocation of user pagetables in
|
|
* high memory.
|
|
*/
|
|
if (strcmp(arg, "nohigh") == 0)
|
|
__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
|
|
else
|
|
return -EINVAL;
|
|
return 0;
|
|
}
|
|
early_param("userpte", setup_userpte);
|
|
|
|
void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
|
|
{
|
|
pgtable_pte_page_dtor(pte);
|
|
paravirt_release_pte(page_to_pfn(pte));
|
|
paravirt_tlb_remove_table(tlb, pte);
|
|
}
|
|
|
|
#if CONFIG_PGTABLE_LEVELS > 2
|
|
void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
|
|
{
|
|
struct page *page = virt_to_page(pmd);
|
|
paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
|
|
/*
|
|
* NOTE! For PAE, any changes to the top page-directory-pointer-table
|
|
* entries need a full cr3 reload to flush.
|
|
*/
|
|
#ifdef CONFIG_X86_PAE
|
|
tlb->need_flush_all = 1;
|
|
#endif
|
|
pgtable_pmd_page_dtor(page);
|
|
paravirt_tlb_remove_table(tlb, page);
|
|
}
|
|
|
|
#if CONFIG_PGTABLE_LEVELS > 3
|
|
void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
|
|
{
|
|
paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
|
|
paravirt_tlb_remove_table(tlb, virt_to_page(pud));
|
|
}
|
|
|
|
#if CONFIG_PGTABLE_LEVELS > 4
|
|
void ___p4d_free_tlb(struct mmu_gather *tlb, p4d_t *p4d)
|
|
{
|
|
paravirt_release_p4d(__pa(p4d) >> PAGE_SHIFT);
|
|
paravirt_tlb_remove_table(tlb, virt_to_page(p4d));
|
|
}
|
|
#endif /* CONFIG_PGTABLE_LEVELS > 4 */
|
|
#endif /* CONFIG_PGTABLE_LEVELS > 3 */
|
|
#endif /* CONFIG_PGTABLE_LEVELS > 2 */
|
|
|
|
static inline void pgd_list_add(pgd_t *pgd)
|
|
{
|
|
struct page *page = virt_to_page(pgd);
|
|
|
|
list_add(&page->lru, &pgd_list);
|
|
}
|
|
|
|
static inline void pgd_list_del(pgd_t *pgd)
|
|
{
|
|
struct page *page = virt_to_page(pgd);
|
|
|
|
list_del(&page->lru);
|
|
}
|
|
|
|
#define UNSHARED_PTRS_PER_PGD \
|
|
(SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
|
|
#define MAX_UNSHARED_PTRS_PER_PGD \
|
|
max_t(size_t, KERNEL_PGD_BOUNDARY, PTRS_PER_PGD)
|
|
|
|
|
|
static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm)
|
|
{
|
|
virt_to_page(pgd)->pt_mm = mm;
|
|
}
|
|
|
|
struct mm_struct *pgd_page_get_mm(struct page *page)
|
|
{
|
|
return page->pt_mm;
|
|
}
|
|
|
|
static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd)
|
|
{
|
|
/* If the pgd points to a shared pagetable level (either the
|
|
ptes in non-PAE, or shared PMD in PAE), then just copy the
|
|
references from swapper_pg_dir. */
|
|
if (CONFIG_PGTABLE_LEVELS == 2 ||
|
|
(CONFIG_PGTABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
|
|
CONFIG_PGTABLE_LEVELS >= 4) {
|
|
clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
|
|
swapper_pg_dir + KERNEL_PGD_BOUNDARY,
|
|
KERNEL_PGD_PTRS);
|
|
}
|
|
|
|
/* list required to sync kernel mapping updates */
|
|
if (!SHARED_KERNEL_PMD) {
|
|
pgd_set_mm(pgd, mm);
|
|
pgd_list_add(pgd);
|
|
}
|
|
}
|
|
|
|
static void pgd_dtor(pgd_t *pgd)
|
|
{
|
|
if (SHARED_KERNEL_PMD)
|
|
return;
|
|
|
|
spin_lock(&pgd_lock);
|
|
pgd_list_del(pgd);
|
|
spin_unlock(&pgd_lock);
|
|
}
|
|
|
|
/*
|
|
* List of all pgd's needed for non-PAE so it can invalidate entries
|
|
* in both cached and uncached pgd's; not needed for PAE since the
|
|
* kernel pmd is shared. If PAE were not to share the pmd a similar
|
|
* tactic would be needed. This is essentially codepath-based locking
|
|
* against pageattr.c; it is the unique case in which a valid change
|
|
* of kernel pagetables can't be lazily synchronized by vmalloc faults.
|
|
* vmalloc faults work because attached pagetables are never freed.
|
|
* -- nyc
|
|
*/
|
|
|
|
#ifdef CONFIG_X86_PAE
|
|
/*
|
|
* In PAE mode, we need to do a cr3 reload (=tlb flush) when
|
|
* updating the top-level pagetable entries to guarantee the
|
|
* processor notices the update. Since this is expensive, and
|
|
* all 4 top-level entries are used almost immediately in a
|
|
* new process's life, we just pre-populate them here.
|
|
*
|
|
* Also, if we're in a paravirt environment where the kernel pmd is
|
|
* not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
|
|
* and initialize the kernel pmds here.
|
|
*/
|
|
#define PREALLOCATED_PMDS UNSHARED_PTRS_PER_PGD
|
|
#define MAX_PREALLOCATED_PMDS MAX_UNSHARED_PTRS_PER_PGD
|
|
|
|
/*
|
|
* We allocate separate PMDs for the kernel part of the user page-table
|
|
* when PTI is enabled. We need them to map the per-process LDT into the
|
|
* user-space page-table.
|
|
*/
|
|
#define PREALLOCATED_USER_PMDS (boot_cpu_has(X86_FEATURE_PTI) ? \
|
|
KERNEL_PGD_PTRS : 0)
|
|
#define MAX_PREALLOCATED_USER_PMDS KERNEL_PGD_PTRS
|
|
|
|
void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
|
|
{
|
|
paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
|
|
|
|
/* Note: almost everything apart from _PAGE_PRESENT is
|
|
reserved at the pmd (PDPT) level. */
|
|
set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
|
|
|
|
/*
|
|
* According to Intel App note "TLBs, Paging-Structure Caches,
|
|
* and Their Invalidation", April 2007, document 317080-001,
|
|
* section 8.1: in PAE mode we explicitly have to flush the
|
|
* TLB via cr3 if the top-level pgd is changed...
|
|
*/
|
|
flush_tlb_mm(mm);
|
|
}
|
|
#else /* !CONFIG_X86_PAE */
|
|
|
|
/* No need to prepopulate any pagetable entries in non-PAE modes. */
|
|
#define PREALLOCATED_PMDS 0
|
|
#define MAX_PREALLOCATED_PMDS 0
|
|
#define PREALLOCATED_USER_PMDS 0
|
|
#define MAX_PREALLOCATED_USER_PMDS 0
|
|
#endif /* CONFIG_X86_PAE */
|
|
|
|
static void free_pmds(struct mm_struct *mm, pmd_t *pmds[], int count)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < count; i++)
|
|
if (pmds[i]) {
|
|
pgtable_pmd_page_dtor(virt_to_page(pmds[i]));
|
|
free_page((unsigned long)pmds[i]);
|
|
mm_dec_nr_pmds(mm);
|
|
}
|
|
}
|
|
|
|
static int preallocate_pmds(struct mm_struct *mm, pmd_t *pmds[], int count)
|
|
{
|
|
int i;
|
|
bool failed = false;
|
|
gfp_t gfp = GFP_PGTABLE_USER;
|
|
|
|
if (mm == &init_mm)
|
|
gfp &= ~__GFP_ACCOUNT;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
pmd_t *pmd = (pmd_t *)__get_free_page(gfp);
|
|
if (!pmd)
|
|
failed = true;
|
|
if (pmd && !pgtable_pmd_page_ctor(virt_to_page(pmd))) {
|
|
free_page((unsigned long)pmd);
|
|
pmd = NULL;
|
|
failed = true;
|
|
}
|
|
if (pmd)
|
|
mm_inc_nr_pmds(mm);
|
|
pmds[i] = pmd;
|
|
}
|
|
|
|
if (failed) {
|
|
free_pmds(mm, pmds, count);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Mop up any pmd pages which may still be attached to the pgd.
|
|
* Normally they will be freed by munmap/exit_mmap, but any pmd we
|
|
* preallocate which never got a corresponding vma will need to be
|
|
* freed manually.
|
|
*/
|
|
static void mop_up_one_pmd(struct mm_struct *mm, pgd_t *pgdp)
|
|
{
|
|
pgd_t pgd = *pgdp;
|
|
|
|
if (pgd_val(pgd) != 0) {
|
|
pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
|
|
|
|
pgd_clear(pgdp);
|
|
|
|
paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
|
|
pmd_free(mm, pmd);
|
|
mm_dec_nr_pmds(mm);
|
|
}
|
|
}
|
|
|
|
static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < PREALLOCATED_PMDS; i++)
|
|
mop_up_one_pmd(mm, &pgdp[i]);
|
|
|
|
#ifdef CONFIG_PAGE_TABLE_ISOLATION
|
|
|
|
if (!boot_cpu_has(X86_FEATURE_PTI))
|
|
return;
|
|
|
|
pgdp = kernel_to_user_pgdp(pgdp);
|
|
|
|
for (i = 0; i < PREALLOCATED_USER_PMDS; i++)
|
|
mop_up_one_pmd(mm, &pgdp[i + KERNEL_PGD_BOUNDARY]);
|
|
#endif
|
|
}
|
|
|
|
static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
|
|
{
|
|
p4d_t *p4d;
|
|
pud_t *pud;
|
|
int i;
|
|
|
|
if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */
|
|
return;
|
|
|
|
p4d = p4d_offset(pgd, 0);
|
|
pud = pud_offset(p4d, 0);
|
|
|
|
for (i = 0; i < PREALLOCATED_PMDS; i++, pud++) {
|
|
pmd_t *pmd = pmds[i];
|
|
|
|
if (i >= KERNEL_PGD_BOUNDARY)
|
|
memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
|
|
sizeof(pmd_t) * PTRS_PER_PMD);
|
|
|
|
pud_populate(mm, pud, pmd);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_PAGE_TABLE_ISOLATION
|
|
static void pgd_prepopulate_user_pmd(struct mm_struct *mm,
|
|
pgd_t *k_pgd, pmd_t *pmds[])
|
|
{
|
|
pgd_t *s_pgd = kernel_to_user_pgdp(swapper_pg_dir);
|
|
pgd_t *u_pgd = kernel_to_user_pgdp(k_pgd);
|
|
p4d_t *u_p4d;
|
|
pud_t *u_pud;
|
|
int i;
|
|
|
|
u_p4d = p4d_offset(u_pgd, 0);
|
|
u_pud = pud_offset(u_p4d, 0);
|
|
|
|
s_pgd += KERNEL_PGD_BOUNDARY;
|
|
u_pud += KERNEL_PGD_BOUNDARY;
|
|
|
|
for (i = 0; i < PREALLOCATED_USER_PMDS; i++, u_pud++, s_pgd++) {
|
|
pmd_t *pmd = pmds[i];
|
|
|
|
memcpy(pmd, (pmd_t *)pgd_page_vaddr(*s_pgd),
|
|
sizeof(pmd_t) * PTRS_PER_PMD);
|
|
|
|
pud_populate(mm, u_pud, pmd);
|
|
}
|
|
|
|
}
|
|
#else
|
|
static void pgd_prepopulate_user_pmd(struct mm_struct *mm,
|
|
pgd_t *k_pgd, pmd_t *pmds[])
|
|
{
|
|
}
|
|
#endif
|
|
/*
|
|
* Xen paravirt assumes pgd table should be in one page. 64 bit kernel also
|
|
* assumes that pgd should be in one page.
|
|
*
|
|
* But kernel with PAE paging that is not running as a Xen domain
|
|
* only needs to allocate 32 bytes for pgd instead of one page.
|
|
*/
|
|
#ifdef CONFIG_X86_PAE
|
|
|
|
#include <linux/slab.h>
|
|
|
|
#define PGD_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
|
|
#define PGD_ALIGN 32
|
|
|
|
static struct kmem_cache *pgd_cache;
|
|
|
|
void __init pgtable_cache_init(void)
|
|
{
|
|
/*
|
|
* When PAE kernel is running as a Xen domain, it does not use
|
|
* shared kernel pmd. And this requires a whole page for pgd.
|
|
*/
|
|
if (!SHARED_KERNEL_PMD)
|
|
return;
|
|
|
|
/*
|
|
* when PAE kernel is not running as a Xen domain, it uses
|
|
* shared kernel pmd. Shared kernel pmd does not require a whole
|
|
* page for pgd. We are able to just allocate a 32-byte for pgd.
|
|
* During boot time, we create a 32-byte slab for pgd table allocation.
|
|
*/
|
|
pgd_cache = kmem_cache_create("pgd_cache", PGD_SIZE, PGD_ALIGN,
|
|
SLAB_PANIC, NULL);
|
|
}
|
|
|
|
static inline pgd_t *_pgd_alloc(void)
|
|
{
|
|
/*
|
|
* If no SHARED_KERNEL_PMD, PAE kernel is running as a Xen domain.
|
|
* We allocate one page for pgd.
|
|
*/
|
|
if (!SHARED_KERNEL_PMD)
|
|
return (pgd_t *)__get_free_pages(GFP_PGTABLE_USER,
|
|
PGD_ALLOCATION_ORDER);
|
|
|
|
/*
|
|
* Now PAE kernel is not running as a Xen domain. We can allocate
|
|
* a 32-byte slab for pgd to save memory space.
|
|
*/
|
|
return kmem_cache_alloc(pgd_cache, GFP_PGTABLE_USER);
|
|
}
|
|
|
|
static inline void _pgd_free(pgd_t *pgd)
|
|
{
|
|
if (!SHARED_KERNEL_PMD)
|
|
free_pages((unsigned long)pgd, PGD_ALLOCATION_ORDER);
|
|
else
|
|
kmem_cache_free(pgd_cache, pgd);
|
|
}
|
|
#else
|
|
|
|
static inline pgd_t *_pgd_alloc(void)
|
|
{
|
|
return (pgd_t *)__get_free_pages(GFP_PGTABLE_USER,
|
|
PGD_ALLOCATION_ORDER);
|
|
}
|
|
|
|
static inline void _pgd_free(pgd_t *pgd)
|
|
{
|
|
free_pages((unsigned long)pgd, PGD_ALLOCATION_ORDER);
|
|
}
|
|
#endif /* CONFIG_X86_PAE */
|
|
|
|
pgd_t *pgd_alloc(struct mm_struct *mm)
|
|
{
|
|
pgd_t *pgd;
|
|
pmd_t *u_pmds[MAX_PREALLOCATED_USER_PMDS];
|
|
pmd_t *pmds[MAX_PREALLOCATED_PMDS];
|
|
|
|
pgd = _pgd_alloc();
|
|
|
|
if (pgd == NULL)
|
|
goto out;
|
|
|
|
mm->pgd = pgd;
|
|
|
|
if (preallocate_pmds(mm, pmds, PREALLOCATED_PMDS) != 0)
|
|
goto out_free_pgd;
|
|
|
|
if (preallocate_pmds(mm, u_pmds, PREALLOCATED_USER_PMDS) != 0)
|
|
goto out_free_pmds;
|
|
|
|
if (paravirt_pgd_alloc(mm) != 0)
|
|
goto out_free_user_pmds;
|
|
|
|
/*
|
|
* Make sure that pre-populating the pmds is atomic with
|
|
* respect to anything walking the pgd_list, so that they
|
|
* never see a partially populated pgd.
|
|
*/
|
|
spin_lock(&pgd_lock);
|
|
|
|
pgd_ctor(mm, pgd);
|
|
pgd_prepopulate_pmd(mm, pgd, pmds);
|
|
pgd_prepopulate_user_pmd(mm, pgd, u_pmds);
|
|
|
|
spin_unlock(&pgd_lock);
|
|
|
|
return pgd;
|
|
|
|
out_free_user_pmds:
|
|
free_pmds(mm, u_pmds, PREALLOCATED_USER_PMDS);
|
|
out_free_pmds:
|
|
free_pmds(mm, pmds, PREALLOCATED_PMDS);
|
|
out_free_pgd:
|
|
_pgd_free(pgd);
|
|
out:
|
|
return NULL;
|
|
}
|
|
|
|
void pgd_free(struct mm_struct *mm, pgd_t *pgd)
|
|
{
|
|
pgd_mop_up_pmds(mm, pgd);
|
|
pgd_dtor(pgd);
|
|
paravirt_pgd_free(mm, pgd);
|
|
_pgd_free(pgd);
|
|
}
|
|
|
|
/*
|
|
* Used to set accessed or dirty bits in the page table entries
|
|
* on other architectures. On x86, the accessed and dirty bits
|
|
* are tracked by hardware. However, do_wp_page calls this function
|
|
* to also make the pte writeable at the same time the dirty bit is
|
|
* set. In that case we do actually need to write the PTE.
|
|
*/
|
|
int ptep_set_access_flags(struct vm_area_struct *vma,
|
|
unsigned long address, pte_t *ptep,
|
|
pte_t entry, int dirty)
|
|
{
|
|
int changed = !pte_same(*ptep, entry);
|
|
|
|
if (changed && dirty)
|
|
set_pte(ptep, entry);
|
|
|
|
return changed;
|
|
}
|
|
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
int pmdp_set_access_flags(struct vm_area_struct *vma,
|
|
unsigned long address, pmd_t *pmdp,
|
|
pmd_t entry, int dirty)
|
|
{
|
|
int changed = !pmd_same(*pmdp, entry);
|
|
|
|
VM_BUG_ON(address & ~HPAGE_PMD_MASK);
|
|
|
|
if (changed && dirty) {
|
|
set_pmd(pmdp, entry);
|
|
/*
|
|
* We had a write-protection fault here and changed the pmd
|
|
* to to more permissive. No need to flush the TLB for that,
|
|
* #PF is architecturally guaranteed to do that and in the
|
|
* worst-case we'll generate a spurious fault.
|
|
*/
|
|
}
|
|
|
|
return changed;
|
|
}
|
|
|
|
int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
|
|
pud_t *pudp, pud_t entry, int dirty)
|
|
{
|
|
int changed = !pud_same(*pudp, entry);
|
|
|
|
VM_BUG_ON(address & ~HPAGE_PUD_MASK);
|
|
|
|
if (changed && dirty) {
|
|
set_pud(pudp, entry);
|
|
/*
|
|
* We had a write-protection fault here and changed the pud
|
|
* to to more permissive. No need to flush the TLB for that,
|
|
* #PF is architecturally guaranteed to do that and in the
|
|
* worst-case we'll generate a spurious fault.
|
|
*/
|
|
}
|
|
|
|
return changed;
|
|
}
|
|
#endif
|
|
|
|
int ptep_test_and_clear_young(struct vm_area_struct *vma,
|
|
unsigned long addr, pte_t *ptep)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (pte_young(*ptep))
|
|
ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
|
|
(unsigned long *) &ptep->pte);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
int pmdp_test_and_clear_young(struct vm_area_struct *vma,
|
|
unsigned long addr, pmd_t *pmdp)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (pmd_young(*pmdp))
|
|
ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
|
|
(unsigned long *)pmdp);
|
|
|
|
return ret;
|
|
}
|
|
int pudp_test_and_clear_young(struct vm_area_struct *vma,
|
|
unsigned long addr, pud_t *pudp)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (pud_young(*pudp))
|
|
ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
|
|
(unsigned long *)pudp);
|
|
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
int ptep_clear_flush_young(struct vm_area_struct *vma,
|
|
unsigned long address, pte_t *ptep)
|
|
{
|
|
/*
|
|
* On x86 CPUs, clearing the accessed bit without a TLB flush
|
|
* doesn't cause data corruption. [ It could cause incorrect
|
|
* page aging and the (mistaken) reclaim of hot pages, but the
|
|
* chance of that should be relatively low. ]
|
|
*
|
|
* So as a performance optimization don't flush the TLB when
|
|
* clearing the accessed bit, it will eventually be flushed by
|
|
* a context switch or a VM operation anyway. [ In the rare
|
|
* event of it not getting flushed for a long time the delay
|
|
* shouldn't really matter because there's no real memory
|
|
* pressure for swapout to react to. ]
|
|
*/
|
|
return ptep_test_and_clear_young(vma, address, ptep);
|
|
}
|
|
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
int pmdp_clear_flush_young(struct vm_area_struct *vma,
|
|
unsigned long address, pmd_t *pmdp)
|
|
{
|
|
int young;
|
|
|
|
VM_BUG_ON(address & ~HPAGE_PMD_MASK);
|
|
|
|
young = pmdp_test_and_clear_young(vma, address, pmdp);
|
|
if (young)
|
|
flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
|
|
|
|
return young;
|
|
}
|
|
|
|
pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma, unsigned long address,
|
|
pmd_t *pmdp)
|
|
{
|
|
/*
|
|
* No flush is necessary. Once an invalid PTE is established, the PTE's
|
|
* access and dirty bits cannot be updated.
|
|
*/
|
|
return pmdp_establish(vma, address, pmdp, pmd_mkinvalid(*pmdp));
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* reserve_top_address - reserves a hole in the top of kernel address space
|
|
* @reserve - size of hole to reserve
|
|
*
|
|
* Can be used to relocate the fixmap area and poke a hole in the top
|
|
* of kernel address space to make room for a hypervisor.
|
|
*/
|
|
void __init reserve_top_address(unsigned long reserve)
|
|
{
|
|
#ifdef CONFIG_X86_32
|
|
BUG_ON(fixmaps_set > 0);
|
|
__FIXADDR_TOP = round_down(-reserve, 1 << PMD_SHIFT) - PAGE_SIZE;
|
|
printk(KERN_INFO "Reserving virtual address space above 0x%08lx (rounded to 0x%08lx)\n",
|
|
-reserve, __FIXADDR_TOP + PAGE_SIZE);
|
|
#endif
|
|
}
|
|
|
|
int fixmaps_set;
|
|
|
|
void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
|
|
{
|
|
unsigned long address = __fix_to_virt(idx);
|
|
|
|
#ifdef CONFIG_X86_64
|
|
/*
|
|
* Ensure that the static initial page tables are covering the
|
|
* fixmap completely.
|
|
*/
|
|
BUILD_BUG_ON(__end_of_permanent_fixed_addresses >
|
|
(FIXMAP_PMD_NUM * PTRS_PER_PTE));
|
|
#endif
|
|
|
|
if (idx >= __end_of_fixed_addresses) {
|
|
BUG();
|
|
return;
|
|
}
|
|
set_pte_vaddr(address, pte);
|
|
fixmaps_set++;
|
|
}
|
|
|
|
void native_set_fixmap(unsigned /* enum fixed_addresses */ idx,
|
|
phys_addr_t phys, pgprot_t flags)
|
|
{
|
|
/* Sanitize 'prot' against any unsupported bits: */
|
|
pgprot_val(flags) &= __default_kernel_pte_mask;
|
|
|
|
__native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
|
|
}
|
|
|
|
#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
|
|
#ifdef CONFIG_X86_5LEVEL
|
|
/**
|
|
* p4d_set_huge - setup kernel P4D mapping
|
|
*
|
|
* No 512GB pages yet -- always return 0
|
|
*/
|
|
int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* p4d_clear_huge - clear kernel P4D mapping when it is set
|
|
*
|
|
* No 512GB pages yet -- always return 0
|
|
*/
|
|
void p4d_clear_huge(p4d_t *p4d)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* pud_set_huge - setup kernel PUD mapping
|
|
*
|
|
* MTRRs can override PAT memory types with 4KiB granularity. Therefore, this
|
|
* function sets up a huge page only if any of the following conditions are met:
|
|
*
|
|
* - MTRRs are disabled, or
|
|
*
|
|
* - MTRRs are enabled and the range is completely covered by a single MTRR, or
|
|
*
|
|
* - MTRRs are enabled and the corresponding MTRR memory type is WB, which
|
|
* has no effect on the requested PAT memory type.
|
|
*
|
|
* Callers should try to decrease page size (1GB -> 2MB -> 4K) if the bigger
|
|
* page mapping attempt fails.
|
|
*
|
|
* Returns 1 on success and 0 on failure.
|
|
*/
|
|
int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
|
|
{
|
|
u8 mtrr, uniform;
|
|
|
|
mtrr = mtrr_type_lookup(addr, addr + PUD_SIZE, &uniform);
|
|
if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) &&
|
|
(mtrr != MTRR_TYPE_WRBACK))
|
|
return 0;
|
|
|
|
/* Bail out if we are we on a populated non-leaf entry: */
|
|
if (pud_present(*pud) && !pud_huge(*pud))
|
|
return 0;
|
|
|
|
set_pte((pte_t *)pud, pfn_pte(
|
|
(u64)addr >> PAGE_SHIFT,
|
|
__pgprot(protval_4k_2_large(pgprot_val(prot)) | _PAGE_PSE)));
|
|
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* pmd_set_huge - setup kernel PMD mapping
|
|
*
|
|
* See text over pud_set_huge() above.
|
|
*
|
|
* Returns 1 on success and 0 on failure.
|
|
*/
|
|
int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
|
|
{
|
|
u8 mtrr, uniform;
|
|
|
|
mtrr = mtrr_type_lookup(addr, addr + PMD_SIZE, &uniform);
|
|
if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) &&
|
|
(mtrr != MTRR_TYPE_WRBACK)) {
|
|
pr_warn_once("%s: Cannot satisfy [mem %#010llx-%#010llx] with a huge-page mapping due to MTRR override.\n",
|
|
__func__, addr, addr + PMD_SIZE);
|
|
return 0;
|
|
}
|
|
|
|
/* Bail out if we are we on a populated non-leaf entry: */
|
|
if (pmd_present(*pmd) && !pmd_huge(*pmd))
|
|
return 0;
|
|
|
|
set_pte((pte_t *)pmd, pfn_pte(
|
|
(u64)addr >> PAGE_SHIFT,
|
|
__pgprot(protval_4k_2_large(pgprot_val(prot)) | _PAGE_PSE)));
|
|
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* pud_clear_huge - clear kernel PUD mapping when it is set
|
|
*
|
|
* Returns 1 on success and 0 on failure (no PUD map is found).
|
|
*/
|
|
int pud_clear_huge(pud_t *pud)
|
|
{
|
|
if (pud_large(*pud)) {
|
|
pud_clear(pud);
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* pmd_clear_huge - clear kernel PMD mapping when it is set
|
|
*
|
|
* Returns 1 on success and 0 on failure (no PMD map is found).
|
|
*/
|
|
int pmd_clear_huge(pmd_t *pmd)
|
|
{
|
|
if (pmd_large(*pmd)) {
|
|
pmd_clear(pmd);
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_X86_64
|
|
/**
|
|
* pud_free_pmd_page - Clear pud entry and free pmd page.
|
|
* @pud: Pointer to a PUD.
|
|
* @addr: Virtual address associated with pud.
|
|
*
|
|
* Context: The pud range has been unmapped and TLB purged.
|
|
* Return: 1 if clearing the entry succeeded. 0 otherwise.
|
|
*
|
|
* NOTE: Callers must allow a single page allocation.
|
|
*/
|
|
int pud_free_pmd_page(pud_t *pud, unsigned long addr)
|
|
{
|
|
pmd_t *pmd, *pmd_sv;
|
|
pte_t *pte;
|
|
int i;
|
|
|
|
pmd = pud_pgtable(*pud);
|
|
pmd_sv = (pmd_t *)__get_free_page(GFP_KERNEL);
|
|
if (!pmd_sv)
|
|
return 0;
|
|
|
|
for (i = 0; i < PTRS_PER_PMD; i++) {
|
|
pmd_sv[i] = pmd[i];
|
|
if (!pmd_none(pmd[i]))
|
|
pmd_clear(&pmd[i]);
|
|
}
|
|
|
|
pud_clear(pud);
|
|
|
|
/* INVLPG to clear all paging-structure caches */
|
|
flush_tlb_kernel_range(addr, addr + PAGE_SIZE-1);
|
|
|
|
for (i = 0; i < PTRS_PER_PMD; i++) {
|
|
if (!pmd_none(pmd_sv[i])) {
|
|
pte = (pte_t *)pmd_page_vaddr(pmd_sv[i]);
|
|
free_page((unsigned long)pte);
|
|
}
|
|
}
|
|
|
|
free_page((unsigned long)pmd_sv);
|
|
|
|
pgtable_pmd_page_dtor(virt_to_page(pmd));
|
|
free_page((unsigned long)pmd);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* pmd_free_pte_page - Clear pmd entry and free pte page.
|
|
* @pmd: Pointer to a PMD.
|
|
* @addr: Virtual address associated with pmd.
|
|
*
|
|
* Context: The pmd range has been unmapped and TLB purged.
|
|
* Return: 1 if clearing the entry succeeded. 0 otherwise.
|
|
*/
|
|
int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
|
|
{
|
|
pte_t *pte;
|
|
|
|
pte = (pte_t *)pmd_page_vaddr(*pmd);
|
|
pmd_clear(pmd);
|
|
|
|
/* INVLPG to clear all paging-structure caches */
|
|
flush_tlb_kernel_range(addr, addr + PAGE_SIZE-1);
|
|
|
|
free_page((unsigned long)pte);
|
|
|
|
return 1;
|
|
}
|
|
|
|
#else /* !CONFIG_X86_64 */
|
|
|
|
/*
|
|
* Disable free page handling on x86-PAE. This assures that ioremap()
|
|
* does not update sync'd pmd entries. See vmalloc_sync_one().
|
|
*/
|
|
int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
|
|
{
|
|
return pmd_none(*pmd);
|
|
}
|
|
|
|
#endif /* CONFIG_X86_64 */
|
|
#endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
|