linux/arch/parisc/kernel/processor.c
Helge Deller bf7b4c1b3c parisc: Add CPU topology support
Add topology support, including multi-core scheduler support on
PA8800/PA8900 CPUs and enhanced output in /proc/cpuinfo, e.g.
lscpu now reports on a single-socket, dual-core machine:

Architecture:          parisc64
CPU(s):                2
On-line CPU(s) list:   0,1
Thread(s) per core:    1
Core(s) per socket:    2
Socket(s):             1
CPU family:            PA-RISC 2.0
Model name:            PA8800 (Mako)

Signed-off-by: Helge Deller <deller@gmx.de>
2017-11-17 15:27:22 +01:00

468 lines
13 KiB
C

/*
* Initial setup-routines for HP 9000 based hardware.
*
* Copyright (C) 1991, 1992, 1995 Linus Torvalds
* Modifications for PA-RISC (C) 1999-2008 Helge Deller <deller@gmx.de>
* Modifications copyright 1999 SuSE GmbH (Philipp Rumpf)
* Modifications copyright 2000 Martin K. Petersen <mkp@mkp.net>
* Modifications copyright 2000 Philipp Rumpf <prumpf@tux.org>
* Modifications copyright 2001 Ryan Bradetich <rbradetich@uswest.net>
*
* Initial PA-RISC Version: 04-23-1999 by Helge Deller
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
*/
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/seq_file.h>
#include <linux/random.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <asm/param.h>
#include <asm/cache.h>
#include <asm/hardware.h> /* for register_parisc_driver() stuff */
#include <asm/processor.h>
#include <asm/page.h>
#include <asm/pdc.h>
#include <asm/pdcpat.h>
#include <asm/irq.h> /* for struct irq_region */
#include <asm/parisc-device.h>
struct system_cpuinfo_parisc boot_cpu_data __read_mostly;
EXPORT_SYMBOL(boot_cpu_data);
#ifdef CONFIG_PA8X00
int _parisc_requires_coherency __read_mostly;
EXPORT_SYMBOL(_parisc_requires_coherency);
#endif
DEFINE_PER_CPU(struct cpuinfo_parisc, cpu_data);
/*
** PARISC CPU driver - claim "device" and initialize CPU data structures.
**
** Consolidate per CPU initialization into (mostly) one module.
** Monarch CPU will initialize boot_cpu_data which shouldn't
** change once the system has booted.
**
** The callback *should* do per-instance initialization of
** everything including the monarch. "Per CPU" init code in
** setup.c:start_parisc() has migrated here and start_parisc()
** will call register_parisc_driver(&cpu_driver) before calling do_inventory().
**
** The goal of consolidating CPU initialization into one place is
** to make sure all CPUs get initialized the same way.
** The code path not shared is how PDC hands control of the CPU to the OS.
** The initialization of OS data structures is the same (done below).
*/
/**
* init_cpu_profiler - enable/setup per cpu profiling hooks.
* @cpunum: The processor instance.
*
* FIXME: doesn't do much yet...
*/
static void
init_percpu_prof(unsigned long cpunum)
{
}
/**
* processor_probe - Determine if processor driver should claim this device.
* @dev: The device which has been found.
*
* Determine if processor driver should claim this chip (return 0) or not
* (return 1). If so, initialize the chip and tell other partners in crime
* they have work to do.
*/
static int __init processor_probe(struct parisc_device *dev)
{
unsigned long txn_addr;
unsigned long cpuid;
struct cpuinfo_parisc *p;
struct pdc_pat_cpu_num cpu_info = { };
#ifdef CONFIG_SMP
if (num_online_cpus() >= nr_cpu_ids) {
printk(KERN_INFO "num_online_cpus() >= nr_cpu_ids\n");
return 1;
}
#else
if (boot_cpu_data.cpu_count > 0) {
printk(KERN_INFO "CONFIG_SMP=n ignoring additional CPUs\n");
return 1;
}
#endif
/* logical CPU ID and update global counter
* May get overwritten by PAT code.
*/
cpuid = boot_cpu_data.cpu_count;
txn_addr = dev->hpa.start; /* for legacy PDC */
cpu_info.cpu_num = cpu_info.cpu_loc = cpuid;
#ifdef CONFIG_64BIT
if (is_pdc_pat()) {
ulong status;
unsigned long bytecnt;
pdc_pat_cell_mod_maddr_block_t *pa_pdc_cell;
pa_pdc_cell = kmalloc(sizeof (*pa_pdc_cell), GFP_KERNEL);
if (!pa_pdc_cell)
panic("couldn't allocate memory for PDC_PAT_CELL!");
status = pdc_pat_cell_module(&bytecnt, dev->pcell_loc,
dev->mod_index, PA_VIEW, pa_pdc_cell);
BUG_ON(PDC_OK != status);
/* verify it's the same as what do_pat_inventory() found */
BUG_ON(dev->mod_info != pa_pdc_cell->mod_info);
BUG_ON(dev->pmod_loc != pa_pdc_cell->mod_location);
txn_addr = pa_pdc_cell->mod[0]; /* id_eid for IO sapic */
kfree(pa_pdc_cell);
/* get the cpu number */
status = pdc_pat_cpu_get_number(&cpu_info, dev->hpa.start);
BUG_ON(PDC_OK != status);
pr_info("Logical CPU #%lu is physical cpu #%lu at location "
"0x%lx with hpa %pa\n",
cpuid, cpu_info.cpu_num, cpu_info.cpu_loc,
&dev->hpa.start);
#undef USE_PAT_CPUID
#ifdef USE_PAT_CPUID
/* We need contiguous numbers for cpuid. Firmware's notion
* of cpuid is for physical CPUs and we just don't care yet.
* We'll care when we need to query PAT PDC about a CPU *after*
* boot time (ie shutdown a CPU from an OS perspective).
*/
if (cpu_info.cpu_num >= NR_CPUS) {
printk(KERN_WARNING "IGNORING CPU at %pa,"
" cpu_slot_id > NR_CPUS"
" (%ld > %d)\n",
&dev->hpa.start, cpu_info.cpu_num, NR_CPUS);
/* Ignore CPU since it will only crash */
boot_cpu_data.cpu_count--;
return 1;
} else {
cpuid = cpu_info.cpu_num;
}
#endif
}
#endif
p = &per_cpu(cpu_data, cpuid);
boot_cpu_data.cpu_count++;
/* initialize counters - CPU 0 gets it_value set in time_init() */
if (cpuid)
memset(p, 0, sizeof(struct cpuinfo_parisc));
p->loops_per_jiffy = loops_per_jiffy;
p->dev = dev; /* Save IODC data in case we need it */
p->hpa = dev->hpa.start; /* save CPU hpa */
p->cpuid = cpuid; /* save CPU id */
p->txn_addr = txn_addr; /* save CPU IRQ address */
p->cpu_num = cpu_info.cpu_num;
p->cpu_loc = cpu_info.cpu_loc;
store_cpu_topology(cpuid);
#ifdef CONFIG_SMP
/*
** FIXME: review if any other initialization is clobbered
** for boot_cpu by the above memset().
*/
init_percpu_prof(cpuid);
#endif
/*
** CONFIG_SMP: init_smp_config() will attempt to get CPUs into
** OS control. RENDEZVOUS is the default state - see mem_set above.
** p->state = STATE_RENDEZVOUS;
*/
#if 0
/* CPU 0 IRQ table is statically allocated/initialized */
if (cpuid) {
struct irqaction actions[];
/*
** itimer and ipi IRQ handlers are statically initialized in
** arch/parisc/kernel/irq.c. ie Don't need to register them.
*/
actions = kmalloc(sizeof(struct irqaction)*MAX_CPU_IRQ, GFP_ATOMIC);
if (!actions) {
/* not getting it's own table, share with monarch */
actions = cpu_irq_actions[0];
}
cpu_irq_actions[cpuid] = actions;
}
#endif
/*
* Bring this CPU up now! (ignore bootstrap cpuid == 0)
*/
#ifdef CONFIG_SMP
if (cpuid) {
set_cpu_present(cpuid, true);
cpu_up(cpuid);
}
#endif
return 0;
}
/**
* collect_boot_cpu_data - Fill the boot_cpu_data structure.
*
* This function collects and stores the generic processor information
* in the boot_cpu_data structure.
*/
void __init collect_boot_cpu_data(void)
{
unsigned long cr16_seed;
memset(&boot_cpu_data, 0, sizeof(boot_cpu_data));
cr16_seed = get_cycles();
add_device_randomness(&cr16_seed, sizeof(cr16_seed));
boot_cpu_data.cpu_hz = 100 * PAGE0->mem_10msec; /* Hz of this PARISC */
/* get CPU-Model Information... */
#define p ((unsigned long *)&boot_cpu_data.pdc.model)
if (pdc_model_info(&boot_cpu_data.pdc.model) == PDC_OK) {
printk(KERN_INFO
"model %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], p[8]);
add_device_randomness(&boot_cpu_data.pdc.model,
sizeof(boot_cpu_data.pdc.model));
}
#undef p
if (pdc_model_versions(&boot_cpu_data.pdc.versions, 0) == PDC_OK) {
printk(KERN_INFO "vers %08lx\n",
boot_cpu_data.pdc.versions);
add_device_randomness(&boot_cpu_data.pdc.versions,
sizeof(boot_cpu_data.pdc.versions));
}
if (pdc_model_cpuid(&boot_cpu_data.pdc.cpuid) == PDC_OK) {
printk(KERN_INFO "CPUID vers %ld rev %ld (0x%08lx)\n",
(boot_cpu_data.pdc.cpuid >> 5) & 127,
boot_cpu_data.pdc.cpuid & 31,
boot_cpu_data.pdc.cpuid);
add_device_randomness(&boot_cpu_data.pdc.cpuid,
sizeof(boot_cpu_data.pdc.cpuid));
}
if (pdc_model_capabilities(&boot_cpu_data.pdc.capabilities) == PDC_OK)
printk(KERN_INFO "capabilities 0x%lx\n",
boot_cpu_data.pdc.capabilities);
if (pdc_model_sysmodel(boot_cpu_data.pdc.sys_model_name) == PDC_OK)
printk(KERN_INFO "model %s\n",
boot_cpu_data.pdc.sys_model_name);
boot_cpu_data.hversion = boot_cpu_data.pdc.model.hversion;
boot_cpu_data.sversion = boot_cpu_data.pdc.model.sversion;
boot_cpu_data.cpu_type = parisc_get_cpu_type(boot_cpu_data.hversion);
boot_cpu_data.cpu_name = cpu_name_version[boot_cpu_data.cpu_type][0];
boot_cpu_data.family_name = cpu_name_version[boot_cpu_data.cpu_type][1];
#ifdef CONFIG_PA8X00
_parisc_requires_coherency = (boot_cpu_data.cpu_type == mako) ||
(boot_cpu_data.cpu_type == mako2);
#endif
}
/**
* init_per_cpu - Handle individual processor initializations.
* @cpunum: logical processor number.
*
* This function handles initialization for *every* CPU
* in the system:
*
* o Set "default" CPU width for trap handlers
*
* o Enable FP coprocessor
* REVISIT: this could be done in the "code 22" trap handler.
* (frowands idea - that way we know which processes need FP
* registers saved on the interrupt stack.)
* NEWS FLASH: wide kernels need FP coprocessor enabled to handle
* formatted printing of %lx for example (double divides I think)
*
* o Enable CPU profiling hooks.
*/
int __init init_per_cpu(int cpunum)
{
int ret;
struct pdc_coproc_cfg coproc_cfg;
set_firmware_width();
ret = pdc_coproc_cfg(&coproc_cfg);
store_cpu_topology(cpunum);
if(ret >= 0 && coproc_cfg.ccr_functional) {
mtctl(coproc_cfg.ccr_functional, 10); /* 10 == Coprocessor Control Reg */
/* FWIW, FP rev/model is a more accurate way to determine
** CPU type. CPU rev/model has some ambiguous cases.
*/
per_cpu(cpu_data, cpunum).fp_rev = coproc_cfg.revision;
per_cpu(cpu_data, cpunum).fp_model = coproc_cfg.model;
if (cpunum == 0)
printk(KERN_INFO "FP[%d] enabled: Rev %ld Model %ld\n",
cpunum, coproc_cfg.revision, coproc_cfg.model);
/*
** store status register to stack (hopefully aligned)
** and clear the T-bit.
*/
asm volatile ("fstd %fr0,8(%sp)");
} else {
printk(KERN_WARNING "WARNING: No FP CoProcessor?!"
" (coproc_cfg.ccr_functional == 0x%lx, expected 0xc0)\n"
#ifdef CONFIG_64BIT
"Halting Machine - FP required\n"
#endif
, coproc_cfg.ccr_functional);
#ifdef CONFIG_64BIT
mdelay(100); /* previous chars get pushed to console */
panic("FP CoProc not reported");
#endif
}
/* FUTURE: Enable Performance Monitor : ccr bit 0x20 */
init_percpu_prof(cpunum);
return ret;
}
/*
* Display CPU info for all CPUs.
*/
int
show_cpuinfo (struct seq_file *m, void *v)
{
unsigned long cpu;
for_each_online_cpu(cpu) {
const struct cpuinfo_parisc *cpuinfo = &per_cpu(cpu_data, cpu);
#ifdef CONFIG_SMP
if (0 == cpuinfo->hpa)
continue;
#endif
seq_printf(m, "processor\t: %lu\n"
"cpu family\t: PA-RISC %s\n",
cpu, boot_cpu_data.family_name);
seq_printf(m, "cpu\t\t: %s\n", boot_cpu_data.cpu_name );
/* cpu MHz */
seq_printf(m, "cpu MHz\t\t: %d.%06d\n",
boot_cpu_data.cpu_hz / 1000000,
boot_cpu_data.cpu_hz % 1000000 );
#ifdef CONFIG_PARISC_CPU_TOPOLOGY
seq_printf(m, "physical id\t: %d\n",
topology_physical_package_id(cpu));
seq_printf(m, "siblings\t: %d\n",
cpumask_weight(topology_core_cpumask(cpu)));
seq_printf(m, "core id\t\t: %d\n", topology_core_id(cpu));
#endif
seq_printf(m, "capabilities\t:");
if (boot_cpu_data.pdc.capabilities & PDC_MODEL_OS32)
seq_puts(m, " os32");
if (boot_cpu_data.pdc.capabilities & PDC_MODEL_OS64)
seq_puts(m, " os64");
if (boot_cpu_data.pdc.capabilities & PDC_MODEL_IOPDIR_FDC)
seq_puts(m, " iopdir_fdc");
switch (boot_cpu_data.pdc.capabilities & PDC_MODEL_NVA_MASK) {
case PDC_MODEL_NVA_SUPPORTED:
seq_puts(m, " nva_supported");
break;
case PDC_MODEL_NVA_SLOW:
seq_puts(m, " nva_slow");
break;
case PDC_MODEL_NVA_UNSUPPORTED:
seq_puts(m, " needs_equivalent_aliasing");
break;
}
seq_printf(m, " (0x%02lx)\n", boot_cpu_data.pdc.capabilities);
seq_printf(m, "model\t\t: %s\n"
"model name\t: %s\n",
boot_cpu_data.pdc.sys_model_name,
cpuinfo->dev ?
cpuinfo->dev->name : "Unknown");
seq_printf(m, "hversion\t: 0x%08x\n"
"sversion\t: 0x%08x\n",
boot_cpu_data.hversion,
boot_cpu_data.sversion );
/* print cachesize info */
show_cache_info(m);
seq_printf(m, "bogomips\t: %lu.%02lu\n",
cpuinfo->loops_per_jiffy / (500000 / HZ),
(cpuinfo->loops_per_jiffy / (5000 / HZ)) % 100);
seq_printf(m, "software id\t: %ld\n\n",
boot_cpu_data.pdc.model.sw_id);
}
return 0;
}
static const struct parisc_device_id processor_tbl[] __initconst = {
{ HPHW_NPROC, HVERSION_REV_ANY_ID, HVERSION_ANY_ID, SVERSION_ANY_ID },
{ 0, }
};
static struct parisc_driver cpu_driver __refdata = {
.name = "CPU",
.id_table = processor_tbl,
.probe = processor_probe
};
/**
* processor_init - Processor initialization procedure.
*
* Register this driver.
*/
void __init processor_init(void)
{
register_parisc_driver(&cpu_driver);
}