linux/drivers/md/dm-cache-target.c
Joe Thornber 651f5fa2a3 dm cache: defer whole cells
Currently individual bios are deferred to the worker thread if they
cannot be processed immediately (eg, a block is in the process of
being moved to the fast device).

This patch passes whole cells across to the worker.  This saves
reaquiring the cell, and also collects bios destined for the same block
together, which allows them to be mapped with a single look up to the
policy.  This reduces the overhead of using dm-cache.

Signed-off-by: Joe Thornber <ejt@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
2015-05-29 14:19:06 -04:00

3693 lines
89 KiB
C

/*
* Copyright (C) 2012 Red Hat. All rights reserved.
*
* This file is released under the GPL.
*/
#include "dm.h"
#include "dm-bio-prison.h"
#include "dm-bio-record.h"
#include "dm-cache-metadata.h"
#include <linux/dm-io.h>
#include <linux/dm-kcopyd.h>
#include <linux/jiffies.h>
#include <linux/init.h>
#include <linux/mempool.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#define DM_MSG_PREFIX "cache"
DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
"A percentage of time allocated for copying to and/or from cache");
/*----------------------------------------------------------------*/
#define IOT_RESOLUTION 4
struct io_tracker {
spinlock_t lock;
/*
* Sectors of in-flight IO.
*/
sector_t in_flight;
/*
* The time, in jiffies, when this device became idle (if it is
* indeed idle).
*/
unsigned long idle_time;
unsigned long last_update_time;
};
static void iot_init(struct io_tracker *iot)
{
spin_lock_init(&iot->lock);
iot->in_flight = 0ul;
iot->idle_time = 0ul;
iot->last_update_time = jiffies;
}
static bool __iot_idle_for(struct io_tracker *iot, unsigned long jifs)
{
if (iot->in_flight)
return false;
return time_after(jiffies, iot->idle_time + jifs);
}
static bool iot_idle_for(struct io_tracker *iot, unsigned long jifs)
{
bool r;
unsigned long flags;
spin_lock_irqsave(&iot->lock, flags);
r = __iot_idle_for(iot, jifs);
spin_unlock_irqrestore(&iot->lock, flags);
return r;
}
static void iot_io_begin(struct io_tracker *iot, sector_t len)
{
unsigned long flags;
spin_lock_irqsave(&iot->lock, flags);
iot->in_flight += len;
spin_unlock_irqrestore(&iot->lock, flags);
}
static void __iot_io_end(struct io_tracker *iot, sector_t len)
{
iot->in_flight -= len;
if (!iot->in_flight)
iot->idle_time = jiffies;
}
static void iot_io_end(struct io_tracker *iot, sector_t len)
{
unsigned long flags;
spin_lock_irqsave(&iot->lock, flags);
__iot_io_end(iot, len);
spin_unlock_irqrestore(&iot->lock, flags);
}
/*----------------------------------------------------------------*/
/*
* Glossary:
*
* oblock: index of an origin block
* cblock: index of a cache block
* promotion: movement of a block from origin to cache
* demotion: movement of a block from cache to origin
* migration: movement of a block between the origin and cache device,
* either direction
*/
/*----------------------------------------------------------------*/
/*
* There are a couple of places where we let a bio run, but want to do some
* work before calling its endio function. We do this by temporarily
* changing the endio fn.
*/
struct dm_hook_info {
bio_end_io_t *bi_end_io;
void *bi_private;
};
static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
bio_end_io_t *bi_end_io, void *bi_private)
{
h->bi_end_io = bio->bi_end_io;
h->bi_private = bio->bi_private;
bio->bi_end_io = bi_end_io;
bio->bi_private = bi_private;
}
static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
{
bio->bi_end_io = h->bi_end_io;
bio->bi_private = h->bi_private;
}
/*----------------------------------------------------------------*/
#define MIGRATION_POOL_SIZE 128
#define COMMIT_PERIOD HZ
#define MIGRATION_COUNT_WINDOW 10
/*
* The block size of the device holding cache data must be
* between 32KB and 1GB.
*/
#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
/*
* FIXME: the cache is read/write for the time being.
*/
enum cache_metadata_mode {
CM_WRITE, /* metadata may be changed */
CM_READ_ONLY, /* metadata may not be changed */
};
enum cache_io_mode {
/*
* Data is written to cached blocks only. These blocks are marked
* dirty. If you lose the cache device you will lose data.
* Potential performance increase for both reads and writes.
*/
CM_IO_WRITEBACK,
/*
* Data is written to both cache and origin. Blocks are never
* dirty. Potential performance benfit for reads only.
*/
CM_IO_WRITETHROUGH,
/*
* A degraded mode useful for various cache coherency situations
* (eg, rolling back snapshots). Reads and writes always go to the
* origin. If a write goes to a cached oblock, then the cache
* block is invalidated.
*/
CM_IO_PASSTHROUGH
};
struct cache_features {
enum cache_metadata_mode mode;
enum cache_io_mode io_mode;
};
struct cache_stats {
atomic_t read_hit;
atomic_t read_miss;
atomic_t write_hit;
atomic_t write_miss;
atomic_t demotion;
atomic_t promotion;
atomic_t copies_avoided;
atomic_t cache_cell_clash;
atomic_t commit_count;
atomic_t discard_count;
};
/*
* Defines a range of cblocks, begin to (end - 1) are in the range. end is
* the one-past-the-end value.
*/
struct cblock_range {
dm_cblock_t begin;
dm_cblock_t end;
};
struct invalidation_request {
struct list_head list;
struct cblock_range *cblocks;
atomic_t complete;
int err;
wait_queue_head_t result_wait;
};
struct cache {
struct dm_target *ti;
struct dm_target_callbacks callbacks;
struct dm_cache_metadata *cmd;
/*
* Metadata is written to this device.
*/
struct dm_dev *metadata_dev;
/*
* The slower of the two data devices. Typically a spindle.
*/
struct dm_dev *origin_dev;
/*
* The faster of the two data devices. Typically an SSD.
*/
struct dm_dev *cache_dev;
/*
* Size of the origin device in _complete_ blocks and native sectors.
*/
dm_oblock_t origin_blocks;
sector_t origin_sectors;
/*
* Size of the cache device in blocks.
*/
dm_cblock_t cache_size;
/*
* Fields for converting from sectors to blocks.
*/
uint32_t sectors_per_block;
int sectors_per_block_shift;
spinlock_t lock;
struct list_head deferred_cells;
struct bio_list deferred_bios;
struct bio_list deferred_flush_bios;
struct bio_list deferred_writethrough_bios;
struct list_head quiesced_migrations;
struct list_head completed_migrations;
struct list_head need_commit_migrations;
sector_t migration_threshold;
wait_queue_head_t migration_wait;
atomic_t nr_allocated_migrations;
/*
* The number of in flight migrations that are performing
* background io. eg, promotion, writeback.
*/
atomic_t nr_io_migrations;
wait_queue_head_t quiescing_wait;
atomic_t quiescing;
atomic_t quiescing_ack;
/*
* cache_size entries, dirty if set
*/
atomic_t nr_dirty;
unsigned long *dirty_bitset;
/*
* origin_blocks entries, discarded if set.
*/
dm_dblock_t discard_nr_blocks;
unsigned long *discard_bitset;
uint32_t discard_block_size; /* a power of 2 times sectors per block */
/*
* Rather than reconstructing the table line for the status we just
* save it and regurgitate.
*/
unsigned nr_ctr_args;
const char **ctr_args;
struct dm_kcopyd_client *copier;
struct workqueue_struct *wq;
struct work_struct worker;
struct delayed_work waker;
unsigned long last_commit_jiffies;
struct dm_bio_prison *prison;
struct dm_deferred_set *all_io_ds;
mempool_t *migration_pool;
struct dm_cache_policy *policy;
unsigned policy_nr_args;
bool need_tick_bio:1;
bool sized:1;
bool invalidate:1;
bool commit_requested:1;
bool loaded_mappings:1;
bool loaded_discards:1;
/*
* Cache features such as write-through.
*/
struct cache_features features;
struct cache_stats stats;
/*
* Invalidation fields.
*/
spinlock_t invalidation_lock;
struct list_head invalidation_requests;
struct io_tracker origin_tracker;
};
struct per_bio_data {
bool tick:1;
unsigned req_nr:2;
struct dm_deferred_entry *all_io_entry;
struct dm_hook_info hook_info;
sector_t len;
/*
* writethrough fields. These MUST remain at the end of this
* structure and the 'cache' member must be the first as it
* is used to determine the offset of the writethrough fields.
*/
struct cache *cache;
dm_cblock_t cblock;
struct dm_bio_details bio_details;
};
struct dm_cache_migration {
struct list_head list;
struct cache *cache;
unsigned long start_jiffies;
dm_oblock_t old_oblock;
dm_oblock_t new_oblock;
dm_cblock_t cblock;
bool err:1;
bool discard:1;
bool writeback:1;
bool demote:1;
bool promote:1;
bool requeue_holder:1;
bool invalidate:1;
struct dm_bio_prison_cell *old_ocell;
struct dm_bio_prison_cell *new_ocell;
};
/*
* Processing a bio in the worker thread may require these memory
* allocations. We prealloc to avoid deadlocks (the same worker thread
* frees them back to the mempool).
*/
struct prealloc {
struct dm_cache_migration *mg;
struct dm_bio_prison_cell *cell1;
struct dm_bio_prison_cell *cell2;
};
static void wake_worker(struct cache *cache)
{
queue_work(cache->wq, &cache->worker);
}
/*----------------------------------------------------------------*/
static struct dm_bio_prison_cell *alloc_prison_cell(struct cache *cache)
{
/* FIXME: change to use a local slab. */
return dm_bio_prison_alloc_cell(cache->prison, GFP_NOWAIT);
}
static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell *cell)
{
dm_bio_prison_free_cell(cache->prison, cell);
}
static struct dm_cache_migration *alloc_migration(struct cache *cache)
{
struct dm_cache_migration *mg;
mg = mempool_alloc(cache->migration_pool, GFP_NOWAIT);
if (mg) {
mg->cache = cache;
atomic_inc(&mg->cache->nr_allocated_migrations);
}
return mg;
}
static void free_migration(struct dm_cache_migration *mg)
{
if (atomic_dec_and_test(&mg->cache->nr_allocated_migrations))
wake_up(&mg->cache->migration_wait);
mempool_free(mg, mg->cache->migration_pool);
}
static int prealloc_data_structs(struct cache *cache, struct prealloc *p)
{
if (!p->mg) {
p->mg = alloc_migration(cache);
if (!p->mg)
return -ENOMEM;
}
if (!p->cell1) {
p->cell1 = alloc_prison_cell(cache);
if (!p->cell1)
return -ENOMEM;
}
if (!p->cell2) {
p->cell2 = alloc_prison_cell(cache);
if (!p->cell2)
return -ENOMEM;
}
return 0;
}
static void prealloc_free_structs(struct cache *cache, struct prealloc *p)
{
if (p->cell2)
free_prison_cell(cache, p->cell2);
if (p->cell1)
free_prison_cell(cache, p->cell1);
if (p->mg)
free_migration(p->mg);
}
static struct dm_cache_migration *prealloc_get_migration(struct prealloc *p)
{
struct dm_cache_migration *mg = p->mg;
BUG_ON(!mg);
p->mg = NULL;
return mg;
}
/*
* You must have a cell within the prealloc struct to return. If not this
* function will BUG() rather than returning NULL.
*/
static struct dm_bio_prison_cell *prealloc_get_cell(struct prealloc *p)
{
struct dm_bio_prison_cell *r = NULL;
if (p->cell1) {
r = p->cell1;
p->cell1 = NULL;
} else if (p->cell2) {
r = p->cell2;
p->cell2 = NULL;
} else
BUG();
return r;
}
/*
* You can't have more than two cells in a prealloc struct. BUG() will be
* called if you try and overfill.
*/
static void prealloc_put_cell(struct prealloc *p, struct dm_bio_prison_cell *cell)
{
if (!p->cell2)
p->cell2 = cell;
else if (!p->cell1)
p->cell1 = cell;
else
BUG();
}
/*----------------------------------------------------------------*/
static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key *key)
{
key->virtual = 0;
key->dev = 0;
key->block_begin = from_oblock(begin);
key->block_end = from_oblock(end);
}
/*
* The caller hands in a preallocated cell, and a free function for it.
* The cell will be freed if there's an error, or if it wasn't used because
* a cell with that key already exists.
*/
typedef void (*cell_free_fn)(void *context, struct dm_bio_prison_cell *cell);
static int bio_detain_range(struct cache *cache, dm_oblock_t oblock_begin, dm_oblock_t oblock_end,
struct bio *bio, struct dm_bio_prison_cell *cell_prealloc,
cell_free_fn free_fn, void *free_context,
struct dm_bio_prison_cell **cell_result)
{
int r;
struct dm_cell_key key;
build_key(oblock_begin, oblock_end, &key);
r = dm_bio_detain(cache->prison, &key, bio, cell_prealloc, cell_result);
if (r)
free_fn(free_context, cell_prealloc);
return r;
}
static int bio_detain(struct cache *cache, dm_oblock_t oblock,
struct bio *bio, struct dm_bio_prison_cell *cell_prealloc,
cell_free_fn free_fn, void *free_context,
struct dm_bio_prison_cell **cell_result)
{
dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL);
return bio_detain_range(cache, oblock, end, bio,
cell_prealloc, free_fn, free_context, cell_result);
}
static int get_cell(struct cache *cache,
dm_oblock_t oblock,
struct prealloc *structs,
struct dm_bio_prison_cell **cell_result)
{
int r;
struct dm_cell_key key;
struct dm_bio_prison_cell *cell_prealloc;
cell_prealloc = prealloc_get_cell(structs);
build_key(oblock, to_oblock(from_oblock(oblock) + 1ULL), &key);
r = dm_get_cell(cache->prison, &key, cell_prealloc, cell_result);
if (r)
prealloc_put_cell(structs, cell_prealloc);
return r;
}
/*----------------------------------------------------------------*/
static bool is_dirty(struct cache *cache, dm_cblock_t b)
{
return test_bit(from_cblock(b), cache->dirty_bitset);
}
static void set_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock)
{
if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
atomic_inc(&cache->nr_dirty);
policy_set_dirty(cache->policy, oblock);
}
}
static void clear_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock)
{
if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
policy_clear_dirty(cache->policy, oblock);
if (atomic_dec_return(&cache->nr_dirty) == 0)
dm_table_event(cache->ti->table);
}
}
/*----------------------------------------------------------------*/
static bool block_size_is_power_of_two(struct cache *cache)
{
return cache->sectors_per_block_shift >= 0;
}
/* gcc on ARM generates spurious references to __udivdi3 and __umoddi3 */
#if defined(CONFIG_ARM) && __GNUC__ == 4 && __GNUC_MINOR__ <= 6
__always_inline
#endif
static dm_block_t block_div(dm_block_t b, uint32_t n)
{
do_div(b, n);
return b;
}
static dm_block_t oblocks_per_dblock(struct cache *cache)
{
dm_block_t oblocks = cache->discard_block_size;
if (block_size_is_power_of_two(cache))
oblocks >>= cache->sectors_per_block_shift;
else
oblocks = block_div(oblocks, cache->sectors_per_block);
return oblocks;
}
static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
{
return to_dblock(block_div(from_oblock(oblock),
oblocks_per_dblock(cache)));
}
static dm_oblock_t dblock_to_oblock(struct cache *cache, dm_dblock_t dblock)
{
return to_oblock(from_dblock(dblock) * oblocks_per_dblock(cache));
}
static void set_discard(struct cache *cache, dm_dblock_t b)
{
unsigned long flags;
BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks));
atomic_inc(&cache->stats.discard_count);
spin_lock_irqsave(&cache->lock, flags);
set_bit(from_dblock(b), cache->discard_bitset);
spin_unlock_irqrestore(&cache->lock, flags);
}
static void clear_discard(struct cache *cache, dm_dblock_t b)
{
unsigned long flags;
spin_lock_irqsave(&cache->lock, flags);
clear_bit(from_dblock(b), cache->discard_bitset);
spin_unlock_irqrestore(&cache->lock, flags);
}
static bool is_discarded(struct cache *cache, dm_dblock_t b)
{
int r;
unsigned long flags;
spin_lock_irqsave(&cache->lock, flags);
r = test_bit(from_dblock(b), cache->discard_bitset);
spin_unlock_irqrestore(&cache->lock, flags);
return r;
}
static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
{
int r;
unsigned long flags;
spin_lock_irqsave(&cache->lock, flags);
r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
cache->discard_bitset);
spin_unlock_irqrestore(&cache->lock, flags);
return r;
}
/*----------------------------------------------------------------*/
static void load_stats(struct cache *cache)
{
struct dm_cache_statistics stats;
dm_cache_metadata_get_stats(cache->cmd, &stats);
atomic_set(&cache->stats.read_hit, stats.read_hits);
atomic_set(&cache->stats.read_miss, stats.read_misses);
atomic_set(&cache->stats.write_hit, stats.write_hits);
atomic_set(&cache->stats.write_miss, stats.write_misses);
}
static void save_stats(struct cache *cache)
{
struct dm_cache_statistics stats;
stats.read_hits = atomic_read(&cache->stats.read_hit);
stats.read_misses = atomic_read(&cache->stats.read_miss);
stats.write_hits = atomic_read(&cache->stats.write_hit);
stats.write_misses = atomic_read(&cache->stats.write_miss);
dm_cache_metadata_set_stats(cache->cmd, &stats);
}
/*----------------------------------------------------------------
* Per bio data
*--------------------------------------------------------------*/
/*
* If using writeback, leave out struct per_bio_data's writethrough fields.
*/
#define PB_DATA_SIZE_WB (offsetof(struct per_bio_data, cache))
#define PB_DATA_SIZE_WT (sizeof(struct per_bio_data))
static bool writethrough_mode(struct cache_features *f)
{
return f->io_mode == CM_IO_WRITETHROUGH;
}
static bool writeback_mode(struct cache_features *f)
{
return f->io_mode == CM_IO_WRITEBACK;
}
static bool passthrough_mode(struct cache_features *f)
{
return f->io_mode == CM_IO_PASSTHROUGH;
}
static size_t get_per_bio_data_size(struct cache *cache)
{
return writethrough_mode(&cache->features) ? PB_DATA_SIZE_WT : PB_DATA_SIZE_WB;
}
static struct per_bio_data *get_per_bio_data(struct bio *bio, size_t data_size)
{
struct per_bio_data *pb = dm_per_bio_data(bio, data_size);
BUG_ON(!pb);
return pb;
}
static struct per_bio_data *init_per_bio_data(struct bio *bio, size_t data_size)
{
struct per_bio_data *pb = get_per_bio_data(bio, data_size);
pb->tick = false;
pb->req_nr = dm_bio_get_target_bio_nr(bio);
pb->all_io_entry = NULL;
pb->len = 0;
return pb;
}
/*----------------------------------------------------------------
* Remapping
*--------------------------------------------------------------*/
static void remap_to_origin(struct cache *cache, struct bio *bio)
{
bio->bi_bdev = cache->origin_dev->bdev;
}
static void remap_to_cache(struct cache *cache, struct bio *bio,
dm_cblock_t cblock)
{
sector_t bi_sector = bio->bi_iter.bi_sector;
sector_t block = from_cblock(cblock);
bio->bi_bdev = cache->cache_dev->bdev;
if (!block_size_is_power_of_two(cache))
bio->bi_iter.bi_sector =
(block * cache->sectors_per_block) +
sector_div(bi_sector, cache->sectors_per_block);
else
bio->bi_iter.bi_sector =
(block << cache->sectors_per_block_shift) |
(bi_sector & (cache->sectors_per_block - 1));
}
static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
{
unsigned long flags;
size_t pb_data_size = get_per_bio_data_size(cache);
struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
spin_lock_irqsave(&cache->lock, flags);
if (cache->need_tick_bio &&
!(bio->bi_rw & (REQ_FUA | REQ_FLUSH | REQ_DISCARD))) {
pb->tick = true;
cache->need_tick_bio = false;
}
spin_unlock_irqrestore(&cache->lock, flags);
}
static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
dm_oblock_t oblock)
{
check_if_tick_bio_needed(cache, bio);
remap_to_origin(cache, bio);
if (bio_data_dir(bio) == WRITE)
clear_discard(cache, oblock_to_dblock(cache, oblock));
}
static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
dm_oblock_t oblock, dm_cblock_t cblock)
{
check_if_tick_bio_needed(cache, bio);
remap_to_cache(cache, bio, cblock);
if (bio_data_dir(bio) == WRITE) {
set_dirty(cache, oblock, cblock);
clear_discard(cache, oblock_to_dblock(cache, oblock));
}
}
static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
{
sector_t block_nr = bio->bi_iter.bi_sector;
if (!block_size_is_power_of_two(cache))
(void) sector_div(block_nr, cache->sectors_per_block);
else
block_nr >>= cache->sectors_per_block_shift;
return to_oblock(block_nr);
}
static int bio_triggers_commit(struct cache *cache, struct bio *bio)
{
return bio->bi_rw & (REQ_FLUSH | REQ_FUA);
}
/*
* You must increment the deferred set whilst the prison cell is held. To
* encourage this, we ask for 'cell' to be passed in.
*/
static void inc_ds(struct cache *cache, struct bio *bio,
struct dm_bio_prison_cell *cell)
{
size_t pb_data_size = get_per_bio_data_size(cache);
struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
BUG_ON(!cell);
BUG_ON(pb->all_io_entry);
pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
}
static bool accountable_bio(struct cache *cache, struct bio *bio)
{
return ((bio->bi_bdev == cache->origin_dev->bdev) &&
!(bio->bi_rw & REQ_DISCARD));
}
static void accounted_begin(struct cache *cache, struct bio *bio)
{
size_t pb_data_size = get_per_bio_data_size(cache);
struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
if (accountable_bio(cache, bio)) {
pb->len = bio_sectors(bio);
iot_io_begin(&cache->origin_tracker, pb->len);
}
}
static void accounted_complete(struct cache *cache, struct bio *bio)
{
size_t pb_data_size = get_per_bio_data_size(cache);
struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
iot_io_end(&cache->origin_tracker, pb->len);
}
static void accounted_request(struct cache *cache, struct bio *bio)
{
accounted_begin(cache, bio);
generic_make_request(bio);
}
static void issue(struct cache *cache, struct bio *bio)
{
unsigned long flags;
if (!bio_triggers_commit(cache, bio)) {
accounted_request(cache, bio);
return;
}
/*
* Batch together any bios that trigger commits and then issue a
* single commit for them in do_worker().
*/
spin_lock_irqsave(&cache->lock, flags);
cache->commit_requested = true;
bio_list_add(&cache->deferred_flush_bios, bio);
spin_unlock_irqrestore(&cache->lock, flags);
}
static void inc_and_issue(struct cache *cache, struct bio *bio, struct dm_bio_prison_cell *cell)
{
inc_ds(cache, bio, cell);
issue(cache, bio);
}
static void defer_writethrough_bio(struct cache *cache, struct bio *bio)
{
unsigned long flags;
spin_lock_irqsave(&cache->lock, flags);
bio_list_add(&cache->deferred_writethrough_bios, bio);
spin_unlock_irqrestore(&cache->lock, flags);
wake_worker(cache);
}
static void writethrough_endio(struct bio *bio, int err)
{
struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
dm_unhook_bio(&pb->hook_info, bio);
if (err) {
bio_endio(bio, err);
return;
}
dm_bio_restore(&pb->bio_details, bio);
remap_to_cache(pb->cache, bio, pb->cblock);
/*
* We can't issue this bio directly, since we're in interrupt
* context. So it gets put on a bio list for processing by the
* worker thread.
*/
defer_writethrough_bio(pb->cache, bio);
}
/*
* When running in writethrough mode we need to send writes to clean blocks
* to both the cache and origin devices. In future we'd like to clone the
* bio and send them in parallel, but for now we're doing them in
* series as this is easier.
*/
static void remap_to_origin_then_cache(struct cache *cache, struct bio *bio,
dm_oblock_t oblock, dm_cblock_t cblock)
{
struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
pb->cache = cache;
pb->cblock = cblock;
dm_hook_bio(&pb->hook_info, bio, writethrough_endio, NULL);
dm_bio_record(&pb->bio_details, bio);
remap_to_origin_clear_discard(pb->cache, bio, oblock);
}
/*----------------------------------------------------------------
* Migration processing
*
* Migration covers moving data from the origin device to the cache, or
* vice versa.
*--------------------------------------------------------------*/
static void inc_io_migrations(struct cache *cache)
{
atomic_inc(&cache->nr_io_migrations);
}
static void dec_io_migrations(struct cache *cache)
{
atomic_dec(&cache->nr_io_migrations);
}
static void __cell_release(struct cache *cache, struct dm_bio_prison_cell *cell,
bool holder, struct bio_list *bios)
{
(holder ? dm_cell_release : dm_cell_release_no_holder)
(cache->prison, cell, bios);
free_prison_cell(cache, cell);
}
static bool discard_or_flush(struct bio *bio)
{
return bio->bi_rw & (REQ_FLUSH | REQ_FUA | REQ_DISCARD);
}
static void __cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell)
{
if (discard_or_flush(cell->holder))
/*
* We have to handle these bios
* individually.
*/
__cell_release(cache, cell, true, &cache->deferred_bios);
else
list_add_tail(&cell->user_list, &cache->deferred_cells);
}
static void cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell, bool holder)
{
unsigned long flags;
if (!holder && dm_cell_promote_or_release(cache->prison, cell)) {
/*
* There was no prisoner to promote to holder, the
* cell has been released.
*/
free_prison_cell(cache, cell);
return;
}
spin_lock_irqsave(&cache->lock, flags);
__cell_defer(cache, cell);
spin_unlock_irqrestore(&cache->lock, flags);
wake_worker(cache);
}
static void cell_error_with_code(struct cache *cache, struct dm_bio_prison_cell *cell, int err)
{
dm_cell_error(cache->prison, cell, err);
dm_bio_prison_free_cell(cache->prison, cell);
}
static void cell_requeue(struct cache *cache, struct dm_bio_prison_cell *cell)
{
cell_error_with_code(cache, cell, DM_ENDIO_REQUEUE);
}
static void free_io_migration(struct dm_cache_migration *mg)
{
dec_io_migrations(mg->cache);
free_migration(mg);
}
static void migration_failure(struct dm_cache_migration *mg)
{
struct cache *cache = mg->cache;
if (mg->writeback) {
DMWARN_LIMIT("writeback failed; couldn't copy block");
set_dirty(cache, mg->old_oblock, mg->cblock);
cell_defer(cache, mg->old_ocell, false);
} else if (mg->demote) {
DMWARN_LIMIT("demotion failed; couldn't copy block");
policy_force_mapping(cache->policy, mg->new_oblock, mg->old_oblock);
cell_defer(cache, mg->old_ocell, mg->promote ? false : true);
if (mg->promote)
cell_defer(cache, mg->new_ocell, true);
} else {
DMWARN_LIMIT("promotion failed; couldn't copy block");
policy_remove_mapping(cache->policy, mg->new_oblock);
cell_defer(cache, mg->new_ocell, true);
}
free_io_migration(mg);
}
static void migration_success_pre_commit(struct dm_cache_migration *mg)
{
unsigned long flags;
struct cache *cache = mg->cache;
if (mg->writeback) {
clear_dirty(cache, mg->old_oblock, mg->cblock);
cell_defer(cache, mg->old_ocell, false);
free_io_migration(mg);
return;
} else if (mg->demote) {
if (dm_cache_remove_mapping(cache->cmd, mg->cblock)) {
DMWARN_LIMIT("demotion failed; couldn't update on disk metadata");
policy_force_mapping(cache->policy, mg->new_oblock,
mg->old_oblock);
if (mg->promote)
cell_defer(cache, mg->new_ocell, true);
free_io_migration(mg);
return;
}
} else {
if (dm_cache_insert_mapping(cache->cmd, mg->cblock, mg->new_oblock)) {
DMWARN_LIMIT("promotion failed; couldn't update on disk metadata");
policy_remove_mapping(cache->policy, mg->new_oblock);
free_io_migration(mg);
return;
}
}
spin_lock_irqsave(&cache->lock, flags);
list_add_tail(&mg->list, &cache->need_commit_migrations);
cache->commit_requested = true;
spin_unlock_irqrestore(&cache->lock, flags);
}
static void migration_success_post_commit(struct dm_cache_migration *mg)
{
unsigned long flags;
struct cache *cache = mg->cache;
if (mg->writeback) {
DMWARN("writeback unexpectedly triggered commit");
return;
} else if (mg->demote) {
cell_defer(cache, mg->old_ocell, mg->promote ? false : true);
if (mg->promote) {
mg->demote = false;
spin_lock_irqsave(&cache->lock, flags);
list_add_tail(&mg->list, &cache->quiesced_migrations);
spin_unlock_irqrestore(&cache->lock, flags);
} else {
if (mg->invalidate)
policy_remove_mapping(cache->policy, mg->old_oblock);
free_io_migration(mg);
}
} else {
if (mg->requeue_holder) {
clear_dirty(cache, mg->new_oblock, mg->cblock);
cell_defer(cache, mg->new_ocell, true);
} else {
/*
* The block was promoted via an overwrite, so it's dirty.
*/
set_dirty(cache, mg->new_oblock, mg->cblock);
bio_endio(mg->new_ocell->holder, 0);
cell_defer(cache, mg->new_ocell, false);
}
free_io_migration(mg);
}
}
static void copy_complete(int read_err, unsigned long write_err, void *context)
{
unsigned long flags;
struct dm_cache_migration *mg = (struct dm_cache_migration *) context;
struct cache *cache = mg->cache;
if (read_err || write_err)
mg->err = true;
spin_lock_irqsave(&cache->lock, flags);
list_add_tail(&mg->list, &cache->completed_migrations);
spin_unlock_irqrestore(&cache->lock, flags);
wake_worker(cache);
}
static void issue_copy(struct dm_cache_migration *mg)
{
int r;
struct dm_io_region o_region, c_region;
struct cache *cache = mg->cache;
sector_t cblock = from_cblock(mg->cblock);
o_region.bdev = cache->origin_dev->bdev;
o_region.count = cache->sectors_per_block;
c_region.bdev = cache->cache_dev->bdev;
c_region.sector = cblock * cache->sectors_per_block;
c_region.count = cache->sectors_per_block;
if (mg->writeback || mg->demote) {
/* demote */
o_region.sector = from_oblock(mg->old_oblock) * cache->sectors_per_block;
r = dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, mg);
} else {
/* promote */
o_region.sector = from_oblock(mg->new_oblock) * cache->sectors_per_block;
r = dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, mg);
}
if (r < 0) {
DMERR_LIMIT("issuing migration failed");
migration_failure(mg);
}
}
static void overwrite_endio(struct bio *bio, int err)
{
struct dm_cache_migration *mg = bio->bi_private;
struct cache *cache = mg->cache;
size_t pb_data_size = get_per_bio_data_size(cache);
struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
unsigned long flags;
dm_unhook_bio(&pb->hook_info, bio);
if (err)
mg->err = true;
mg->requeue_holder = false;
spin_lock_irqsave(&cache->lock, flags);
list_add_tail(&mg->list, &cache->completed_migrations);
spin_unlock_irqrestore(&cache->lock, flags);
wake_worker(cache);
}
static void issue_overwrite(struct dm_cache_migration *mg, struct bio *bio)
{
size_t pb_data_size = get_per_bio_data_size(mg->cache);
struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
remap_to_cache_dirty(mg->cache, bio, mg->new_oblock, mg->cblock);
/*
* No need to inc_ds() here, since the cell will be held for the
* duration of the io.
*/
accounted_request(mg->cache, bio);
}
static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
{
return (bio_data_dir(bio) == WRITE) &&
(bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
}
static void avoid_copy(struct dm_cache_migration *mg)
{
atomic_inc(&mg->cache->stats.copies_avoided);
migration_success_pre_commit(mg);
}
static void calc_discard_block_range(struct cache *cache, struct bio *bio,
dm_dblock_t *b, dm_dblock_t *e)
{
sector_t sb = bio->bi_iter.bi_sector;
sector_t se = bio_end_sector(bio);
*b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size));
if (se - sb < cache->discard_block_size)
*e = *b;
else
*e = to_dblock(block_div(se, cache->discard_block_size));
}
static void issue_discard(struct dm_cache_migration *mg)
{
dm_dblock_t b, e;
struct bio *bio = mg->new_ocell->holder;
calc_discard_block_range(mg->cache, bio, &b, &e);
while (b != e) {
set_discard(mg->cache, b);
b = to_dblock(from_dblock(b) + 1);
}
bio_endio(bio, 0);
cell_defer(mg->cache, mg->new_ocell, false);
free_migration(mg);
}
static void issue_copy_or_discard(struct dm_cache_migration *mg)
{
bool avoid;
struct cache *cache = mg->cache;
if (mg->discard) {
issue_discard(mg);
return;
}
if (mg->writeback || mg->demote)
avoid = !is_dirty(cache, mg->cblock) ||
is_discarded_oblock(cache, mg->old_oblock);
else {
struct bio *bio = mg->new_ocell->holder;
avoid = is_discarded_oblock(cache, mg->new_oblock);
if (writeback_mode(&cache->features) &&
!avoid && bio_writes_complete_block(cache, bio)) {
issue_overwrite(mg, bio);
return;
}
}
avoid ? avoid_copy(mg) : issue_copy(mg);
}
static void complete_migration(struct dm_cache_migration *mg)
{
if (mg->err)
migration_failure(mg);
else
migration_success_pre_commit(mg);
}
static void process_migrations(struct cache *cache, struct list_head *head,
void (*fn)(struct dm_cache_migration *))
{
unsigned long flags;
struct list_head list;
struct dm_cache_migration *mg, *tmp;
INIT_LIST_HEAD(&list);
spin_lock_irqsave(&cache->lock, flags);
list_splice_init(head, &list);
spin_unlock_irqrestore(&cache->lock, flags);
list_for_each_entry_safe(mg, tmp, &list, list)
fn(mg);
}
static void __queue_quiesced_migration(struct dm_cache_migration *mg)
{
list_add_tail(&mg->list, &mg->cache->quiesced_migrations);
}
static void queue_quiesced_migration(struct dm_cache_migration *mg)
{
unsigned long flags;
struct cache *cache = mg->cache;
spin_lock_irqsave(&cache->lock, flags);
__queue_quiesced_migration(mg);
spin_unlock_irqrestore(&cache->lock, flags);
wake_worker(cache);
}
static void queue_quiesced_migrations(struct cache *cache, struct list_head *work)
{
unsigned long flags;
struct dm_cache_migration *mg, *tmp;
spin_lock_irqsave(&cache->lock, flags);
list_for_each_entry_safe(mg, tmp, work, list)
__queue_quiesced_migration(mg);
spin_unlock_irqrestore(&cache->lock, flags);
wake_worker(cache);
}
static void check_for_quiesced_migrations(struct cache *cache,
struct per_bio_data *pb)
{
struct list_head work;
if (!pb->all_io_entry)
return;
INIT_LIST_HEAD(&work);
dm_deferred_entry_dec(pb->all_io_entry, &work);
if (!list_empty(&work))
queue_quiesced_migrations(cache, &work);
}
static void quiesce_migration(struct dm_cache_migration *mg)
{
if (!dm_deferred_set_add_work(mg->cache->all_io_ds, &mg->list))
queue_quiesced_migration(mg);
}
static void promote(struct cache *cache, struct prealloc *structs,
dm_oblock_t oblock, dm_cblock_t cblock,
struct dm_bio_prison_cell *cell)
{
struct dm_cache_migration *mg = prealloc_get_migration(structs);
mg->err = false;
mg->discard = false;
mg->writeback = false;
mg->demote = false;
mg->promote = true;
mg->requeue_holder = true;
mg->invalidate = false;
mg->cache = cache;
mg->new_oblock = oblock;
mg->cblock = cblock;
mg->old_ocell = NULL;
mg->new_ocell = cell;
mg->start_jiffies = jiffies;
inc_io_migrations(cache);
quiesce_migration(mg);
}
static void writeback(struct cache *cache, struct prealloc *structs,
dm_oblock_t oblock, dm_cblock_t cblock,
struct dm_bio_prison_cell *cell)
{
struct dm_cache_migration *mg = prealloc_get_migration(structs);
mg->err = false;
mg->discard = false;
mg->writeback = true;
mg->demote = false;
mg->promote = false;
mg->requeue_holder = true;
mg->invalidate = false;
mg->cache = cache;
mg->old_oblock = oblock;
mg->cblock = cblock;
mg->old_ocell = cell;
mg->new_ocell = NULL;
mg->start_jiffies = jiffies;
inc_io_migrations(cache);
quiesce_migration(mg);
}
static void demote_then_promote(struct cache *cache, struct prealloc *structs,
dm_oblock_t old_oblock, dm_oblock_t new_oblock,
dm_cblock_t cblock,
struct dm_bio_prison_cell *old_ocell,
struct dm_bio_prison_cell *new_ocell)
{
struct dm_cache_migration *mg = prealloc_get_migration(structs);
mg->err = false;
mg->discard = false;
mg->writeback = false;
mg->demote = true;
mg->promote = true;
mg->requeue_holder = true;
mg->invalidate = false;
mg->cache = cache;
mg->old_oblock = old_oblock;
mg->new_oblock = new_oblock;
mg->cblock = cblock;
mg->old_ocell = old_ocell;
mg->new_ocell = new_ocell;
mg->start_jiffies = jiffies;
inc_io_migrations(cache);
quiesce_migration(mg);
}
/*
* Invalidate a cache entry. No writeback occurs; any changes in the cache
* block are thrown away.
*/
static void invalidate(struct cache *cache, struct prealloc *structs,
dm_oblock_t oblock, dm_cblock_t cblock,
struct dm_bio_prison_cell *cell)
{
struct dm_cache_migration *mg = prealloc_get_migration(structs);
mg->err = false;
mg->discard = false;
mg->writeback = false;
mg->demote = true;
mg->promote = false;
mg->requeue_holder = true;
mg->invalidate = true;
mg->cache = cache;
mg->old_oblock = oblock;
mg->cblock = cblock;
mg->old_ocell = cell;
mg->new_ocell = NULL;
mg->start_jiffies = jiffies;
inc_io_migrations(cache);
quiesce_migration(mg);
}
static void discard(struct cache *cache, struct prealloc *structs,
struct dm_bio_prison_cell *cell)
{
struct dm_cache_migration *mg = prealloc_get_migration(structs);
mg->err = false;
mg->discard = true;
mg->writeback = false;
mg->demote = false;
mg->promote = false;
mg->requeue_holder = false;
mg->invalidate = false;
mg->cache = cache;
mg->old_ocell = NULL;
mg->new_ocell = cell;
mg->start_jiffies = jiffies;
quiesce_migration(mg);
}
/*----------------------------------------------------------------
* bio processing
*--------------------------------------------------------------*/
static void defer_bio(struct cache *cache, struct bio *bio)
{
unsigned long flags;
spin_lock_irqsave(&cache->lock, flags);
bio_list_add(&cache->deferred_bios, bio);
spin_unlock_irqrestore(&cache->lock, flags);
wake_worker(cache);
}
static void process_flush_bio(struct cache *cache, struct bio *bio)
{
size_t pb_data_size = get_per_bio_data_size(cache);
struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
BUG_ON(bio->bi_iter.bi_size);
if (!pb->req_nr)
remap_to_origin(cache, bio);
else
remap_to_cache(cache, bio, 0);
/*
* REQ_FLUSH is not directed at any particular block so we don't
* need to inc_ds(). REQ_FUA's are split into a write + REQ_FLUSH
* by dm-core.
*/
issue(cache, bio);
}
static void process_discard_bio(struct cache *cache, struct prealloc *structs,
struct bio *bio)
{
int r;
dm_dblock_t b, e;
struct dm_bio_prison_cell *cell_prealloc, *new_ocell;
calc_discard_block_range(cache, bio, &b, &e);
if (b == e) {
bio_endio(bio, 0);
return;
}
cell_prealloc = prealloc_get_cell(structs);
r = bio_detain_range(cache, dblock_to_oblock(cache, b), dblock_to_oblock(cache, e), bio, cell_prealloc,
(cell_free_fn) prealloc_put_cell,
structs, &new_ocell);
if (r > 0)
return;
discard(cache, structs, new_ocell);
}
static bool spare_migration_bandwidth(struct cache *cache)
{
sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) *
cache->sectors_per_block;
return current_volume < cache->migration_threshold;
}
static void inc_hit_counter(struct cache *cache, struct bio *bio)
{
atomic_inc(bio_data_dir(bio) == READ ?
&cache->stats.read_hit : &cache->stats.write_hit);
}
static void inc_miss_counter(struct cache *cache, struct bio *bio)
{
atomic_inc(bio_data_dir(bio) == READ ?
&cache->stats.read_miss : &cache->stats.write_miss);
}
/*----------------------------------------------------------------*/
struct inc_detail {
struct cache *cache;
struct bio_list bios_for_issue;
struct bio_list unhandled_bios;
bool any_writes;
};
static void inc_fn(void *context, struct dm_bio_prison_cell *cell)
{
struct bio *bio;
struct inc_detail *detail = context;
struct cache *cache = detail->cache;
inc_ds(cache, cell->holder, cell);
if (bio_data_dir(cell->holder) == WRITE)
detail->any_writes = true;
while ((bio = bio_list_pop(&cell->bios))) {
if (discard_or_flush(bio)) {
bio_list_add(&detail->unhandled_bios, bio);
continue;
}
if (bio_data_dir(bio) == WRITE)
detail->any_writes = true;
bio_list_add(&detail->bios_for_issue, bio);
inc_ds(cache, bio, cell);
}
}
// FIXME: refactor these two
static void remap_cell_to_origin_clear_discard(struct cache *cache,
struct dm_bio_prison_cell *cell,
dm_oblock_t oblock, bool issue_holder)
{
struct bio *bio;
unsigned long flags;
struct inc_detail detail;
detail.cache = cache;
bio_list_init(&detail.bios_for_issue);
bio_list_init(&detail.unhandled_bios);
detail.any_writes = false;
spin_lock_irqsave(&cache->lock, flags);
dm_cell_visit_release(cache->prison, inc_fn, &detail, cell);
bio_list_merge(&cache->deferred_bios, &detail.unhandled_bios);
spin_unlock_irqrestore(&cache->lock, flags);
remap_to_origin(cache, cell->holder);
if (issue_holder)
issue(cache, cell->holder);
else
accounted_begin(cache, cell->holder);
if (detail.any_writes)
clear_discard(cache, oblock_to_dblock(cache, oblock));
while ((bio = bio_list_pop(&detail.bios_for_issue))) {
remap_to_origin(cache, bio);
issue(cache, bio);
}
}
static void remap_cell_to_cache_dirty(struct cache *cache, struct dm_bio_prison_cell *cell,
dm_oblock_t oblock, dm_cblock_t cblock, bool issue_holder)
{
struct bio *bio;
unsigned long flags;
struct inc_detail detail;
detail.cache = cache;
bio_list_init(&detail.bios_for_issue);
bio_list_init(&detail.unhandled_bios);
detail.any_writes = false;
spin_lock_irqsave(&cache->lock, flags);
dm_cell_visit_release(cache->prison, inc_fn, &detail, cell);
bio_list_merge(&cache->deferred_bios, &detail.unhandled_bios);
spin_unlock_irqrestore(&cache->lock, flags);
remap_to_cache(cache, cell->holder, cblock);
if (issue_holder)
issue(cache, cell->holder);
else
accounted_begin(cache, cell->holder);
if (detail.any_writes) {
set_dirty(cache, oblock, cblock);
clear_discard(cache, oblock_to_dblock(cache, oblock));
}
while ((bio = bio_list_pop(&detail.bios_for_issue))) {
remap_to_cache(cache, bio, cblock);
issue(cache, bio);
}
}
/*----------------------------------------------------------------*/
struct old_oblock_lock {
struct policy_locker locker;
struct cache *cache;
struct prealloc *structs;
struct dm_bio_prison_cell *cell;
};
static int null_locker(struct policy_locker *locker, dm_oblock_t b)
{
/* This should never be called */
BUG();
return 0;
}
static int cell_locker(struct policy_locker *locker, dm_oblock_t b)
{
struct old_oblock_lock *l = container_of(locker, struct old_oblock_lock, locker);
struct dm_bio_prison_cell *cell_prealloc = prealloc_get_cell(l->structs);
return bio_detain(l->cache, b, NULL, cell_prealloc,
(cell_free_fn) prealloc_put_cell,
l->structs, &l->cell);
}
static void process_cell(struct cache *cache, struct prealloc *structs,
struct dm_bio_prison_cell *new_ocell)
{
int r;
bool release_cell = true;
struct bio *bio = new_ocell->holder;
dm_oblock_t block = get_bio_block(cache, bio);
struct policy_result lookup_result;
bool passthrough = passthrough_mode(&cache->features);
bool discarded_block, can_migrate;
struct old_oblock_lock ool;
discarded_block = is_discarded_oblock(cache, block);
can_migrate = !passthrough && (discarded_block || spare_migration_bandwidth(cache));
ool.locker.fn = cell_locker;
ool.cache = cache;
ool.structs = structs;
ool.cell = NULL;
r = policy_map(cache->policy, block, true, can_migrate, discarded_block,
bio, &ool.locker, &lookup_result);
if (r == -EWOULDBLOCK)
/* migration has been denied */
lookup_result.op = POLICY_MISS;
switch (lookup_result.op) {
case POLICY_HIT:
if (passthrough) {
inc_miss_counter(cache, bio);
/*
* Passthrough always maps to the origin,
* invalidating any cache blocks that are written
* to.
*/
if (bio_data_dir(bio) == WRITE) {
atomic_inc(&cache->stats.demotion);
invalidate(cache, structs, block, lookup_result.cblock, new_ocell);
release_cell = false;
} else {
/* FIXME: factor out issue_origin() */
remap_to_origin_clear_discard(cache, bio, block);
inc_and_issue(cache, bio, new_ocell);
}
} else {
inc_hit_counter(cache, bio);
if (bio_data_dir(bio) == WRITE &&
writethrough_mode(&cache->features) &&
!is_dirty(cache, lookup_result.cblock)) {
remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock);
inc_and_issue(cache, bio, new_ocell);
} else {
remap_cell_to_cache_dirty(cache, new_ocell, block, lookup_result.cblock, true);
release_cell = false;
}
}
break;
case POLICY_MISS:
inc_miss_counter(cache, bio);
remap_cell_to_origin_clear_discard(cache, new_ocell, block, true);
release_cell = false;
break;
case POLICY_NEW:
atomic_inc(&cache->stats.promotion);
promote(cache, structs, block, lookup_result.cblock, new_ocell);
release_cell = false;
break;
case POLICY_REPLACE:
atomic_inc(&cache->stats.demotion);
atomic_inc(&cache->stats.promotion);
demote_then_promote(cache, structs, lookup_result.old_oblock,
block, lookup_result.cblock,
ool.cell, new_ocell);
release_cell = false;
break;
default:
DMERR_LIMIT("%s: erroring bio, unknown policy op: %u", __func__,
(unsigned) lookup_result.op);
bio_io_error(bio);
}
if (release_cell)
cell_defer(cache, new_ocell, false);
}
static void process_bio(struct cache *cache, struct prealloc *structs,
struct bio *bio)
{
int r;
dm_oblock_t block = get_bio_block(cache, bio);
struct dm_bio_prison_cell *cell_prealloc, *new_ocell;
/*
* Check to see if that block is currently migrating.
*/
cell_prealloc = prealloc_get_cell(structs);
r = bio_detain(cache, block, bio, cell_prealloc,
(cell_free_fn) prealloc_put_cell,
structs, &new_ocell);
if (r > 0)
return;
process_cell(cache, structs, new_ocell);
}
static int need_commit_due_to_time(struct cache *cache)
{
return jiffies < cache->last_commit_jiffies ||
jiffies > cache->last_commit_jiffies + COMMIT_PERIOD;
}
static int commit_if_needed(struct cache *cache)
{
int r = 0;
if ((cache->commit_requested || need_commit_due_to_time(cache)) &&
dm_cache_changed_this_transaction(cache->cmd)) {
atomic_inc(&cache->stats.commit_count);
cache->commit_requested = false;
r = dm_cache_commit(cache->cmd, false);
cache->last_commit_jiffies = jiffies;
}
return r;
}
static void process_deferred_bios(struct cache *cache)
{
unsigned long flags;
struct bio_list bios;
struct bio *bio;
struct prealloc structs;
memset(&structs, 0, sizeof(structs));
bio_list_init(&bios);
spin_lock_irqsave(&cache->lock, flags);
bio_list_merge(&bios, &cache->deferred_bios);
bio_list_init(&cache->deferred_bios);
spin_unlock_irqrestore(&cache->lock, flags);
while (!bio_list_empty(&bios)) {
/*
* If we've got no free migration structs, and processing
* this bio might require one, we pause until there are some
* prepared mappings to process.
*/
if (prealloc_data_structs(cache, &structs)) {
spin_lock_irqsave(&cache->lock, flags);
bio_list_merge(&cache->deferred_bios, &bios);
spin_unlock_irqrestore(&cache->lock, flags);
break;
}
bio = bio_list_pop(&bios);
if (bio->bi_rw & REQ_FLUSH)
process_flush_bio(cache, bio);
else if (bio->bi_rw & REQ_DISCARD)
process_discard_bio(cache, &structs, bio);
else
process_bio(cache, &structs, bio);
}
prealloc_free_structs(cache, &structs);
}
static void process_deferred_cells(struct cache *cache)
{
unsigned long flags;
struct dm_bio_prison_cell *cell, *tmp;
struct list_head cells;
struct prealloc structs;
memset(&structs, 0, sizeof(structs));
INIT_LIST_HEAD(&cells);
spin_lock_irqsave(&cache->lock, flags);
list_splice_init(&cache->deferred_cells, &cells);
spin_unlock_irqrestore(&cache->lock, flags);
list_for_each_entry_safe(cell, tmp, &cells, user_list) {
/*
* If we've got no free migration structs, and processing
* this bio might require one, we pause until there are some
* prepared mappings to process.
*/
if (prealloc_data_structs(cache, &structs)) {
spin_lock_irqsave(&cache->lock, flags);
list_splice(&cells, &cache->deferred_cells);
spin_unlock_irqrestore(&cache->lock, flags);
break;
}
process_cell(cache, &structs, cell);
}
prealloc_free_structs(cache, &structs);
}
static void process_deferred_flush_bios(struct cache *cache, bool submit_bios)
{
unsigned long flags;
struct bio_list bios;
struct bio *bio;
bio_list_init(&bios);
spin_lock_irqsave(&cache->lock, flags);
bio_list_merge(&bios, &cache->deferred_flush_bios);
bio_list_init(&cache->deferred_flush_bios);
spin_unlock_irqrestore(&cache->lock, flags);
/*
* These bios have already been through inc_ds()
*/
while ((bio = bio_list_pop(&bios)))
submit_bios ? accounted_request(cache, bio) : bio_io_error(bio);
}
static void process_deferred_writethrough_bios(struct cache *cache)
{
unsigned long flags;
struct bio_list bios;
struct bio *bio;
bio_list_init(&bios);
spin_lock_irqsave(&cache->lock, flags);
bio_list_merge(&bios, &cache->deferred_writethrough_bios);
bio_list_init(&cache->deferred_writethrough_bios);
spin_unlock_irqrestore(&cache->lock, flags);
/*
* These bios have already been through inc_ds()
*/
while ((bio = bio_list_pop(&bios)))
accounted_request(cache, bio);
}
static void writeback_some_dirty_blocks(struct cache *cache)
{
int r = 0;
dm_oblock_t oblock;
dm_cblock_t cblock;
struct prealloc structs;
struct dm_bio_prison_cell *old_ocell;
bool busy = !iot_idle_for(&cache->origin_tracker, HZ);
memset(&structs, 0, sizeof(structs));
while (spare_migration_bandwidth(cache)) {
if (prealloc_data_structs(cache, &structs))
break;
r = policy_writeback_work(cache->policy, &oblock, &cblock, busy);
if (r)
break;
r = get_cell(cache, oblock, &structs, &old_ocell);
if (r) {
policy_set_dirty(cache->policy, oblock);
break;
}
writeback(cache, &structs, oblock, cblock, old_ocell);
}
prealloc_free_structs(cache, &structs);
}
/*----------------------------------------------------------------
* Invalidations.
* Dropping something from the cache *without* writing back.
*--------------------------------------------------------------*/
static void process_invalidation_request(struct cache *cache, struct invalidation_request *req)
{
int r = 0;
uint64_t begin = from_cblock(req->cblocks->begin);
uint64_t end = from_cblock(req->cblocks->end);
while (begin != end) {
r = policy_remove_cblock(cache->policy, to_cblock(begin));
if (!r) {
r = dm_cache_remove_mapping(cache->cmd, to_cblock(begin));
if (r)
break;
} else if (r == -ENODATA) {
/* harmless, already unmapped */
r = 0;
} else {
DMERR("policy_remove_cblock failed");
break;
}
begin++;
}
cache->commit_requested = true;
req->err = r;
atomic_set(&req->complete, 1);
wake_up(&req->result_wait);
}
static void process_invalidation_requests(struct cache *cache)
{
struct list_head list;
struct invalidation_request *req, *tmp;
INIT_LIST_HEAD(&list);
spin_lock(&cache->invalidation_lock);
list_splice_init(&cache->invalidation_requests, &list);
spin_unlock(&cache->invalidation_lock);
list_for_each_entry_safe (req, tmp, &list, list)
process_invalidation_request(cache, req);
}
/*----------------------------------------------------------------
* Main worker loop
*--------------------------------------------------------------*/
static bool is_quiescing(struct cache *cache)
{
return atomic_read(&cache->quiescing);
}
static void ack_quiescing(struct cache *cache)
{
if (is_quiescing(cache)) {
atomic_inc(&cache->quiescing_ack);
wake_up(&cache->quiescing_wait);
}
}
static void wait_for_quiescing_ack(struct cache *cache)
{
wait_event(cache->quiescing_wait, atomic_read(&cache->quiescing_ack));
}
static void start_quiescing(struct cache *cache)
{
atomic_inc(&cache->quiescing);
wait_for_quiescing_ack(cache);
}
static void stop_quiescing(struct cache *cache)
{
atomic_set(&cache->quiescing, 0);
atomic_set(&cache->quiescing_ack, 0);
}
static void wait_for_migrations(struct cache *cache)
{
wait_event(cache->migration_wait, !atomic_read(&cache->nr_allocated_migrations));
}
static void stop_worker(struct cache *cache)
{
cancel_delayed_work(&cache->waker);
flush_workqueue(cache->wq);
}
static void requeue_deferred_cells(struct cache *cache)
{
unsigned long flags;
struct list_head cells;
struct dm_bio_prison_cell *cell, *tmp;
INIT_LIST_HEAD(&cells);
spin_lock_irqsave(&cache->lock, flags);
list_splice_init(&cache->deferred_cells, &cells);
spin_unlock_irqrestore(&cache->lock, flags);
list_for_each_entry_safe(cell, tmp, &cells, user_list)
cell_requeue(cache, cell);
}
static void requeue_deferred_bios(struct cache *cache)
{
struct bio *bio;
struct bio_list bios;
bio_list_init(&bios);
bio_list_merge(&bios, &cache->deferred_bios);
bio_list_init(&cache->deferred_bios);
while ((bio = bio_list_pop(&bios)))
bio_endio(bio, DM_ENDIO_REQUEUE);
}
static int more_work(struct cache *cache)
{
if (is_quiescing(cache))
return !list_empty(&cache->quiesced_migrations) ||
!list_empty(&cache->completed_migrations) ||
!list_empty(&cache->need_commit_migrations);
else
return !bio_list_empty(&cache->deferred_bios) ||
!list_empty(&cache->deferred_cells) ||
!bio_list_empty(&cache->deferred_flush_bios) ||
!bio_list_empty(&cache->deferred_writethrough_bios) ||
!list_empty(&cache->quiesced_migrations) ||
!list_empty(&cache->completed_migrations) ||
!list_empty(&cache->need_commit_migrations) ||
cache->invalidate;
}
static void do_worker(struct work_struct *ws)
{
struct cache *cache = container_of(ws, struct cache, worker);
do {
if (!is_quiescing(cache)) {
writeback_some_dirty_blocks(cache);
process_deferred_writethrough_bios(cache);
process_deferred_bios(cache);
process_deferred_cells(cache);
process_invalidation_requests(cache);
}
process_migrations(cache, &cache->quiesced_migrations, issue_copy_or_discard);
process_migrations(cache, &cache->completed_migrations, complete_migration);
if (commit_if_needed(cache)) {
process_deferred_flush_bios(cache, false);
process_migrations(cache, &cache->need_commit_migrations, migration_failure);
/*
* FIXME: rollback metadata or just go into a
* failure mode and error everything
*/
} else {
process_deferred_flush_bios(cache, true);
process_migrations(cache, &cache->need_commit_migrations,
migration_success_post_commit);
}
ack_quiescing(cache);
} while (more_work(cache));
}
/*
* We want to commit periodically so that not too much
* unwritten metadata builds up.
*/
static void do_waker(struct work_struct *ws)
{
struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
policy_tick(cache->policy);
wake_worker(cache);
queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
}
/*----------------------------------------------------------------*/
static int is_congested(struct dm_dev *dev, int bdi_bits)
{
struct request_queue *q = bdev_get_queue(dev->bdev);
return bdi_congested(&q->backing_dev_info, bdi_bits);
}
static int cache_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
{
struct cache *cache = container_of(cb, struct cache, callbacks);
return is_congested(cache->origin_dev, bdi_bits) ||
is_congested(cache->cache_dev, bdi_bits);
}
/*----------------------------------------------------------------
* Target methods
*--------------------------------------------------------------*/
/*
* This function gets called on the error paths of the constructor, so we
* have to cope with a partially initialised struct.
*/
static void destroy(struct cache *cache)
{
unsigned i;
if (cache->migration_pool)
mempool_destroy(cache->migration_pool);
if (cache->all_io_ds)
dm_deferred_set_destroy(cache->all_io_ds);
if (cache->prison)
dm_bio_prison_destroy(cache->prison);
if (cache->wq)
destroy_workqueue(cache->wq);
if (cache->dirty_bitset)
free_bitset(cache->dirty_bitset);
if (cache->discard_bitset)
free_bitset(cache->discard_bitset);
if (cache->copier)
dm_kcopyd_client_destroy(cache->copier);
if (cache->cmd)
dm_cache_metadata_close(cache->cmd);
if (cache->metadata_dev)
dm_put_device(cache->ti, cache->metadata_dev);
if (cache->origin_dev)
dm_put_device(cache->ti, cache->origin_dev);
if (cache->cache_dev)
dm_put_device(cache->ti, cache->cache_dev);
if (cache->policy)
dm_cache_policy_destroy(cache->policy);
for (i = 0; i < cache->nr_ctr_args ; i++)
kfree(cache->ctr_args[i]);
kfree(cache->ctr_args);
kfree(cache);
}
static void cache_dtr(struct dm_target *ti)
{
struct cache *cache = ti->private;
destroy(cache);
}
static sector_t get_dev_size(struct dm_dev *dev)
{
return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
}
/*----------------------------------------------------------------*/
/*
* Construct a cache device mapping.
*
* cache <metadata dev> <cache dev> <origin dev> <block size>
* <#feature args> [<feature arg>]*
* <policy> <#policy args> [<policy arg>]*
*
* metadata dev : fast device holding the persistent metadata
* cache dev : fast device holding cached data blocks
* origin dev : slow device holding original data blocks
* block size : cache unit size in sectors
*
* #feature args : number of feature arguments passed
* feature args : writethrough. (The default is writeback.)
*
* policy : the replacement policy to use
* #policy args : an even number of policy arguments corresponding
* to key/value pairs passed to the policy
* policy args : key/value pairs passed to the policy
* E.g. 'sequential_threshold 1024'
* See cache-policies.txt for details.
*
* Optional feature arguments are:
* writethrough : write through caching that prohibits cache block
* content from being different from origin block content.
* Without this argument, the default behaviour is to write
* back cache block contents later for performance reasons,
* so they may differ from the corresponding origin blocks.
*/
struct cache_args {
struct dm_target *ti;
struct dm_dev *metadata_dev;
struct dm_dev *cache_dev;
sector_t cache_sectors;
struct dm_dev *origin_dev;
sector_t origin_sectors;
uint32_t block_size;
const char *policy_name;
int policy_argc;
const char **policy_argv;
struct cache_features features;
};
static void destroy_cache_args(struct cache_args *ca)
{
if (ca->metadata_dev)
dm_put_device(ca->ti, ca->metadata_dev);
if (ca->cache_dev)
dm_put_device(ca->ti, ca->cache_dev);
if (ca->origin_dev)
dm_put_device(ca->ti, ca->origin_dev);
kfree(ca);
}
static bool at_least_one_arg(struct dm_arg_set *as, char **error)
{
if (!as->argc) {
*error = "Insufficient args";
return false;
}
return true;
}
static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
char **error)
{
int r;
sector_t metadata_dev_size;
char b[BDEVNAME_SIZE];
if (!at_least_one_arg(as, error))
return -EINVAL;
r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
&ca->metadata_dev);
if (r) {
*error = "Error opening metadata device";
return r;
}
metadata_dev_size = get_dev_size(ca->metadata_dev);
if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
return 0;
}
static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
char **error)
{
int r;
if (!at_least_one_arg(as, error))
return -EINVAL;
r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
&ca->cache_dev);
if (r) {
*error = "Error opening cache device";
return r;
}
ca->cache_sectors = get_dev_size(ca->cache_dev);
return 0;
}
static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
char **error)
{
int r;
if (!at_least_one_arg(as, error))
return -EINVAL;
r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
&ca->origin_dev);
if (r) {
*error = "Error opening origin device";
return r;
}
ca->origin_sectors = get_dev_size(ca->origin_dev);
if (ca->ti->len > ca->origin_sectors) {
*error = "Device size larger than cached device";
return -EINVAL;
}
return 0;
}
static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
char **error)
{
unsigned long block_size;
if (!at_least_one_arg(as, error))
return -EINVAL;
if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
*error = "Invalid data block size";
return -EINVAL;
}
if (block_size > ca->cache_sectors) {
*error = "Data block size is larger than the cache device";
return -EINVAL;
}
ca->block_size = block_size;
return 0;
}
static void init_features(struct cache_features *cf)
{
cf->mode = CM_WRITE;
cf->io_mode = CM_IO_WRITEBACK;
}
static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
char **error)
{
static struct dm_arg _args[] = {
{0, 1, "Invalid number of cache feature arguments"},
};
int r;
unsigned argc;
const char *arg;
struct cache_features *cf = &ca->features;
init_features(cf);
r = dm_read_arg_group(_args, as, &argc, error);
if (r)
return -EINVAL;
while (argc--) {
arg = dm_shift_arg(as);
if (!strcasecmp(arg, "writeback"))
cf->io_mode = CM_IO_WRITEBACK;
else if (!strcasecmp(arg, "writethrough"))
cf->io_mode = CM_IO_WRITETHROUGH;
else if (!strcasecmp(arg, "passthrough"))
cf->io_mode = CM_IO_PASSTHROUGH;
else {
*error = "Unrecognised cache feature requested";
return -EINVAL;
}
}
return 0;
}
static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
char **error)
{
static struct dm_arg _args[] = {
{0, 1024, "Invalid number of policy arguments"},
};
int r;
if (!at_least_one_arg(as, error))
return -EINVAL;
ca->policy_name = dm_shift_arg(as);
r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
if (r)
return -EINVAL;
ca->policy_argv = (const char **)as->argv;
dm_consume_args(as, ca->policy_argc);
return 0;
}
static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
char **error)
{
int r;
struct dm_arg_set as;
as.argc = argc;
as.argv = argv;
r = parse_metadata_dev(ca, &as, error);
if (r)
return r;
r = parse_cache_dev(ca, &as, error);
if (r)
return r;
r = parse_origin_dev(ca, &as, error);
if (r)
return r;
r = parse_block_size(ca, &as, error);
if (r)
return r;
r = parse_features(ca, &as, error);
if (r)
return r;
r = parse_policy(ca, &as, error);
if (r)
return r;
return 0;
}
/*----------------------------------------------------------------*/
static struct kmem_cache *migration_cache;
#define NOT_CORE_OPTION 1
static int process_config_option(struct cache *cache, const char *key, const char *value)
{
unsigned long tmp;
if (!strcasecmp(key, "migration_threshold")) {
if (kstrtoul(value, 10, &tmp))
return -EINVAL;
cache->migration_threshold = tmp;
return 0;
}
return NOT_CORE_OPTION;
}
static int set_config_value(struct cache *cache, const char *key, const char *value)
{
int r = process_config_option(cache, key, value);
if (r == NOT_CORE_OPTION)
r = policy_set_config_value(cache->policy, key, value);
if (r)
DMWARN("bad config value for %s: %s", key, value);
return r;
}
static int set_config_values(struct cache *cache, int argc, const char **argv)
{
int r = 0;
if (argc & 1) {
DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
return -EINVAL;
}
while (argc) {
r = set_config_value(cache, argv[0], argv[1]);
if (r)
break;
argc -= 2;
argv += 2;
}
return r;
}
static int create_cache_policy(struct cache *cache, struct cache_args *ca,
char **error)
{
struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
cache->cache_size,
cache->origin_sectors,
cache->sectors_per_block);
if (IS_ERR(p)) {
*error = "Error creating cache's policy";
return PTR_ERR(p);
}
cache->policy = p;
return 0;
}
/*
* We want the discard block size to be at least the size of the cache
* block size and have no more than 2^14 discard blocks across the origin.
*/
#define MAX_DISCARD_BLOCKS (1 << 14)
static bool too_many_discard_blocks(sector_t discard_block_size,
sector_t origin_size)
{
(void) sector_div(origin_size, discard_block_size);
return origin_size > MAX_DISCARD_BLOCKS;
}
static sector_t calculate_discard_block_size(sector_t cache_block_size,
sector_t origin_size)
{
sector_t discard_block_size = cache_block_size;
if (origin_size)
while (too_many_discard_blocks(discard_block_size, origin_size))
discard_block_size *= 2;
return discard_block_size;
}
static void set_cache_size(struct cache *cache, dm_cblock_t size)
{
dm_block_t nr_blocks = from_cblock(size);
if (nr_blocks > (1 << 20) && cache->cache_size != size)
DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n"
"All these mappings can consume a lot of kernel memory, and take some time to read/write.\n"
"Please consider increasing the cache block size to reduce the overall cache block count.",
(unsigned long long) nr_blocks);
cache->cache_size = size;
}
#define DEFAULT_MIGRATION_THRESHOLD 2048
static int cache_create(struct cache_args *ca, struct cache **result)
{
int r = 0;
char **error = &ca->ti->error;
struct cache *cache;
struct dm_target *ti = ca->ti;
dm_block_t origin_blocks;
struct dm_cache_metadata *cmd;
bool may_format = ca->features.mode == CM_WRITE;
cache = kzalloc(sizeof(*cache), GFP_KERNEL);
if (!cache)
return -ENOMEM;
cache->ti = ca->ti;
ti->private = cache;
ti->num_flush_bios = 2;
ti->flush_supported = true;
ti->num_discard_bios = 1;
ti->discards_supported = true;
ti->discard_zeroes_data_unsupported = true;
ti->split_discard_bios = false;
cache->features = ca->features;
ti->per_bio_data_size = get_per_bio_data_size(cache);
cache->callbacks.congested_fn = cache_is_congested;
dm_table_add_target_callbacks(ti->table, &cache->callbacks);
cache->metadata_dev = ca->metadata_dev;
cache->origin_dev = ca->origin_dev;
cache->cache_dev = ca->cache_dev;
ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
/* FIXME: factor out this whole section */
origin_blocks = cache->origin_sectors = ca->origin_sectors;
origin_blocks = block_div(origin_blocks, ca->block_size);
cache->origin_blocks = to_oblock(origin_blocks);
cache->sectors_per_block = ca->block_size;
if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
r = -EINVAL;
goto bad;
}
if (ca->block_size & (ca->block_size - 1)) {
dm_block_t cache_size = ca->cache_sectors;
cache->sectors_per_block_shift = -1;
cache_size = block_div(cache_size, ca->block_size);
set_cache_size(cache, to_cblock(cache_size));
} else {
cache->sectors_per_block_shift = __ffs(ca->block_size);
set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift));
}
r = create_cache_policy(cache, ca, error);
if (r)
goto bad;
cache->policy_nr_args = ca->policy_argc;
cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
if (r) {
*error = "Error setting cache policy's config values";
goto bad;
}
cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
ca->block_size, may_format,
dm_cache_policy_get_hint_size(cache->policy));
if (IS_ERR(cmd)) {
*error = "Error creating metadata object";
r = PTR_ERR(cmd);
goto bad;
}
cache->cmd = cmd;
if (passthrough_mode(&cache->features)) {
bool all_clean;
r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
if (r) {
*error = "dm_cache_metadata_all_clean() failed";
goto bad;
}
if (!all_clean) {
*error = "Cannot enter passthrough mode unless all blocks are clean";
r = -EINVAL;
goto bad;
}
}
spin_lock_init(&cache->lock);
INIT_LIST_HEAD(&cache->deferred_cells);
bio_list_init(&cache->deferred_bios);
bio_list_init(&cache->deferred_flush_bios);
bio_list_init(&cache->deferred_writethrough_bios);
INIT_LIST_HEAD(&cache->quiesced_migrations);
INIT_LIST_HEAD(&cache->completed_migrations);
INIT_LIST_HEAD(&cache->need_commit_migrations);
atomic_set(&cache->nr_allocated_migrations, 0);
atomic_set(&cache->nr_io_migrations, 0);
init_waitqueue_head(&cache->migration_wait);
init_waitqueue_head(&cache->quiescing_wait);
atomic_set(&cache->quiescing, 0);
atomic_set(&cache->quiescing_ack, 0);
r = -ENOMEM;
atomic_set(&cache->nr_dirty, 0);
cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
if (!cache->dirty_bitset) {
*error = "could not allocate dirty bitset";
goto bad;
}
clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
cache->discard_block_size =
calculate_discard_block_size(cache->sectors_per_block,
cache->origin_sectors);
cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors,
cache->discard_block_size));
cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
if (!cache->discard_bitset) {
*error = "could not allocate discard bitset";
goto bad;
}
clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
if (IS_ERR(cache->copier)) {
*error = "could not create kcopyd client";
r = PTR_ERR(cache->copier);
goto bad;
}
cache->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
if (!cache->wq) {
*error = "could not create workqueue for metadata object";
goto bad;
}
INIT_WORK(&cache->worker, do_worker);
INIT_DELAYED_WORK(&cache->waker, do_waker);
cache->last_commit_jiffies = jiffies;
cache->prison = dm_bio_prison_create();
if (!cache->prison) {
*error = "could not create bio prison";
goto bad;
}
cache->all_io_ds = dm_deferred_set_create();
if (!cache->all_io_ds) {
*error = "could not create all_io deferred set";
goto bad;
}
cache->migration_pool = mempool_create_slab_pool(MIGRATION_POOL_SIZE,
migration_cache);
if (!cache->migration_pool) {
*error = "Error creating cache's migration mempool";
goto bad;
}
cache->need_tick_bio = true;
cache->sized = false;
cache->invalidate = false;
cache->commit_requested = false;
cache->loaded_mappings = false;
cache->loaded_discards = false;
load_stats(cache);
atomic_set(&cache->stats.demotion, 0);
atomic_set(&cache->stats.promotion, 0);
atomic_set(&cache->stats.copies_avoided, 0);
atomic_set(&cache->stats.cache_cell_clash, 0);
atomic_set(&cache->stats.commit_count, 0);
atomic_set(&cache->stats.discard_count, 0);
spin_lock_init(&cache->invalidation_lock);
INIT_LIST_HEAD(&cache->invalidation_requests);
iot_init(&cache->origin_tracker);
*result = cache;
return 0;
bad:
destroy(cache);
return r;
}
static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
{
unsigned i;
const char **copy;
copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
if (!copy)
return -ENOMEM;
for (i = 0; i < argc; i++) {
copy[i] = kstrdup(argv[i], GFP_KERNEL);
if (!copy[i]) {
while (i--)
kfree(copy[i]);
kfree(copy);
return -ENOMEM;
}
}
cache->nr_ctr_args = argc;
cache->ctr_args = copy;
return 0;
}
static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv)
{
int r = -EINVAL;
struct cache_args *ca;
struct cache *cache = NULL;
ca = kzalloc(sizeof(*ca), GFP_KERNEL);
if (!ca) {
ti->error = "Error allocating memory for cache";
return -ENOMEM;
}
ca->ti = ti;
r = parse_cache_args(ca, argc, argv, &ti->error);
if (r)
goto out;
r = cache_create(ca, &cache);
if (r)
goto out;
r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
if (r) {
destroy(cache);
goto out;
}
ti->private = cache;
out:
destroy_cache_args(ca);
return r;
}
/*----------------------------------------------------------------*/
static int cache_map(struct dm_target *ti, struct bio *bio)
{
struct cache *cache = ti->private;
int r;
struct dm_bio_prison_cell *cell = NULL;
dm_oblock_t block = get_bio_block(cache, bio);
size_t pb_data_size = get_per_bio_data_size(cache);
bool can_migrate = false;
bool discarded_block;
struct policy_result lookup_result;
struct per_bio_data *pb = init_per_bio_data(bio, pb_data_size);
struct old_oblock_lock ool;
ool.locker.fn = null_locker;
if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
/*
* This can only occur if the io goes to a partial block at
* the end of the origin device. We don't cache these.
* Just remap to the origin and carry on.
*/
remap_to_origin(cache, bio);
accounted_begin(cache, bio);
return DM_MAPIO_REMAPPED;
}
if (discard_or_flush(bio)) {
defer_bio(cache, bio);
return DM_MAPIO_SUBMITTED;
}
/*
* Check to see if that block is currently migrating.
*/
cell = alloc_prison_cell(cache);
if (!cell) {
defer_bio(cache, bio);
return DM_MAPIO_SUBMITTED;
}
r = bio_detain(cache, block, bio, cell,
(cell_free_fn) free_prison_cell,
cache, &cell);
if (r) {
if (r < 0)
defer_bio(cache, bio);
return DM_MAPIO_SUBMITTED;
}
discarded_block = is_discarded_oblock(cache, block);
r = policy_map(cache->policy, block, false, can_migrate, discarded_block,
bio, &ool.locker, &lookup_result);
if (r == -EWOULDBLOCK) {
cell_defer(cache, cell, true);
return DM_MAPIO_SUBMITTED;
} else if (r) {
DMERR_LIMIT("Unexpected return from cache replacement policy: %d", r);
cell_defer(cache, cell, false);
bio_io_error(bio);
return DM_MAPIO_SUBMITTED;
}
r = DM_MAPIO_REMAPPED;
switch (lookup_result.op) {
case POLICY_HIT:
if (passthrough_mode(&cache->features)) {
if (bio_data_dir(bio) == WRITE) {
/*
* We need to invalidate this block, so
* defer for the worker thread.
*/
cell_defer(cache, cell, true);
r = DM_MAPIO_SUBMITTED;
} else {
inc_miss_counter(cache, bio);
remap_to_origin_clear_discard(cache, bio, block);
accounted_begin(cache, bio);
inc_ds(cache, bio, cell);
// FIXME: we want to remap hits or misses straight
// away rather than passing over to the worker.
cell_defer(cache, cell, false);
}
} else {
inc_hit_counter(cache, bio);
if (bio_data_dir(bio) == WRITE && writethrough_mode(&cache->features) &&
!is_dirty(cache, lookup_result.cblock)) {
remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock);
accounted_begin(cache, bio);
inc_ds(cache, bio, cell);
cell_defer(cache, cell, false);
} else
remap_cell_to_cache_dirty(cache, cell, block, lookup_result.cblock, false);
}
break;
case POLICY_MISS:
inc_miss_counter(cache, bio);
if (pb->req_nr != 0) {
/*
* This is a duplicate writethrough io that is no
* longer needed because the block has been demoted.
*/
bio_endio(bio, 0);
// FIXME: remap everything as a miss
cell_defer(cache, cell, false);
r = DM_MAPIO_SUBMITTED;
} else
remap_cell_to_origin_clear_discard(cache, cell, block, false);
break;
default:
DMERR_LIMIT("%s: erroring bio: unknown policy op: %u", __func__,
(unsigned) lookup_result.op);
cell_defer(cache, cell, false);
bio_io_error(bio);
r = DM_MAPIO_SUBMITTED;
}
return r;
}
static int cache_end_io(struct dm_target *ti, struct bio *bio, int error)
{
struct cache *cache = ti->private;
unsigned long flags;
size_t pb_data_size = get_per_bio_data_size(cache);
struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
if (pb->tick) {
policy_tick(cache->policy);
spin_lock_irqsave(&cache->lock, flags);
cache->need_tick_bio = true;
spin_unlock_irqrestore(&cache->lock, flags);
}
check_for_quiesced_migrations(cache, pb);
accounted_complete(cache, bio);
return 0;
}
static int write_dirty_bitset(struct cache *cache)
{
unsigned i, r;
for (i = 0; i < from_cblock(cache->cache_size); i++) {
r = dm_cache_set_dirty(cache->cmd, to_cblock(i),
is_dirty(cache, to_cblock(i)));
if (r)
return r;
}
return 0;
}
static int write_discard_bitset(struct cache *cache)
{
unsigned i, r;
r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
cache->discard_nr_blocks);
if (r) {
DMERR("could not resize on-disk discard bitset");
return r;
}
for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
r = dm_cache_set_discard(cache->cmd, to_dblock(i),
is_discarded(cache, to_dblock(i)));
if (r)
return r;
}
return 0;
}
/*
* returns true on success
*/
static bool sync_metadata(struct cache *cache)
{
int r1, r2, r3, r4;
r1 = write_dirty_bitset(cache);
if (r1)
DMERR("could not write dirty bitset");
r2 = write_discard_bitset(cache);
if (r2)
DMERR("could not write discard bitset");
save_stats(cache);
r3 = dm_cache_write_hints(cache->cmd, cache->policy);
if (r3)
DMERR("could not write hints");
/*
* If writing the above metadata failed, we still commit, but don't
* set the clean shutdown flag. This will effectively force every
* dirty bit to be set on reload.
*/
r4 = dm_cache_commit(cache->cmd, !r1 && !r2 && !r3);
if (r4)
DMERR("could not write cache metadata. Data loss may occur.");
return !r1 && !r2 && !r3 && !r4;
}
static void cache_postsuspend(struct dm_target *ti)
{
struct cache *cache = ti->private;
start_quiescing(cache);
wait_for_migrations(cache);
stop_worker(cache);
requeue_deferred_bios(cache);
requeue_deferred_cells(cache);
stop_quiescing(cache);
(void) sync_metadata(cache);
}
static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
bool dirty, uint32_t hint, bool hint_valid)
{
int r;
struct cache *cache = context;
r = policy_load_mapping(cache->policy, oblock, cblock, hint, hint_valid);
if (r)
return r;
if (dirty)
set_dirty(cache, oblock, cblock);
else
clear_dirty(cache, oblock, cblock);
return 0;
}
/*
* The discard block size in the on disk metadata is not
* neccessarily the same as we're currently using. So we have to
* be careful to only set the discarded attribute if we know it
* covers a complete block of the new size.
*/
struct discard_load_info {
struct cache *cache;
/*
* These blocks are sized using the on disk dblock size, rather
* than the current one.
*/
dm_block_t block_size;
dm_block_t discard_begin, discard_end;
};
static void discard_load_info_init(struct cache *cache,
struct discard_load_info *li)
{
li->cache = cache;
li->discard_begin = li->discard_end = 0;
}
static void set_discard_range(struct discard_load_info *li)
{
sector_t b, e;
if (li->discard_begin == li->discard_end)
return;
/*
* Convert to sectors.
*/
b = li->discard_begin * li->block_size;
e = li->discard_end * li->block_size;
/*
* Then convert back to the current dblock size.
*/
b = dm_sector_div_up(b, li->cache->discard_block_size);
sector_div(e, li->cache->discard_block_size);
/*
* The origin may have shrunk, so we need to check we're still in
* bounds.
*/
if (e > from_dblock(li->cache->discard_nr_blocks))
e = from_dblock(li->cache->discard_nr_blocks);
for (; b < e; b++)
set_discard(li->cache, to_dblock(b));
}
static int load_discard(void *context, sector_t discard_block_size,
dm_dblock_t dblock, bool discard)
{
struct discard_load_info *li = context;
li->block_size = discard_block_size;
if (discard) {
if (from_dblock(dblock) == li->discard_end)
/*
* We're already in a discard range, just extend it.
*/
li->discard_end = li->discard_end + 1ULL;
else {
/*
* Emit the old range and start a new one.
*/
set_discard_range(li);
li->discard_begin = from_dblock(dblock);
li->discard_end = li->discard_begin + 1ULL;
}
} else {
set_discard_range(li);
li->discard_begin = li->discard_end = 0;
}
return 0;
}
static dm_cblock_t get_cache_dev_size(struct cache *cache)
{
sector_t size = get_dev_size(cache->cache_dev);
(void) sector_div(size, cache->sectors_per_block);
return to_cblock(size);
}
static bool can_resize(struct cache *cache, dm_cblock_t new_size)
{
if (from_cblock(new_size) > from_cblock(cache->cache_size))
return true;
/*
* We can't drop a dirty block when shrinking the cache.
*/
while (from_cblock(new_size) < from_cblock(cache->cache_size)) {
new_size = to_cblock(from_cblock(new_size) + 1);
if (is_dirty(cache, new_size)) {
DMERR("unable to shrink cache; cache block %llu is dirty",
(unsigned long long) from_cblock(new_size));
return false;
}
}
return true;
}
static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
{
int r;
r = dm_cache_resize(cache->cmd, new_size);
if (r) {
DMERR("could not resize cache metadata");
return r;
}
set_cache_size(cache, new_size);
return 0;
}
static int cache_preresume(struct dm_target *ti)
{
int r = 0;
struct cache *cache = ti->private;
dm_cblock_t csize = get_cache_dev_size(cache);
/*
* Check to see if the cache has resized.
*/
if (!cache->sized) {
r = resize_cache_dev(cache, csize);
if (r)
return r;
cache->sized = true;
} else if (csize != cache->cache_size) {
if (!can_resize(cache, csize))
return -EINVAL;
r = resize_cache_dev(cache, csize);
if (r)
return r;
}
if (!cache->loaded_mappings) {
r = dm_cache_load_mappings(cache->cmd, cache->policy,
load_mapping, cache);
if (r) {
DMERR("could not load cache mappings");
return r;
}
cache->loaded_mappings = true;
}
if (!cache->loaded_discards) {
struct discard_load_info li;
/*
* The discard bitset could have been resized, or the
* discard block size changed. To be safe we start by
* setting every dblock to not discarded.
*/
clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
discard_load_info_init(cache, &li);
r = dm_cache_load_discards(cache->cmd, load_discard, &li);
if (r) {
DMERR("could not load origin discards");
return r;
}
set_discard_range(&li);
cache->loaded_discards = true;
}
return r;
}
static void cache_resume(struct dm_target *ti)
{
struct cache *cache = ti->private;
cache->need_tick_bio = true;
do_waker(&cache->waker.work);
}
/*
* Status format:
*
* <metadata block size> <#used metadata blocks>/<#total metadata blocks>
* <cache block size> <#used cache blocks>/<#total cache blocks>
* <#read hits> <#read misses> <#write hits> <#write misses>
* <#demotions> <#promotions> <#dirty>
* <#features> <features>*
* <#core args> <core args>
* <policy name> <#policy args> <policy args>*
*/
static void cache_status(struct dm_target *ti, status_type_t type,
unsigned status_flags, char *result, unsigned maxlen)
{
int r = 0;
unsigned i;
ssize_t sz = 0;
dm_block_t nr_free_blocks_metadata = 0;
dm_block_t nr_blocks_metadata = 0;
char buf[BDEVNAME_SIZE];
struct cache *cache = ti->private;
dm_cblock_t residency;
switch (type) {
case STATUSTYPE_INFO:
/* Commit to ensure statistics aren't out-of-date */
if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti)) {
r = dm_cache_commit(cache->cmd, false);
if (r)
DMERR("could not commit metadata for accurate status");
}
r = dm_cache_get_free_metadata_block_count(cache->cmd,
&nr_free_blocks_metadata);
if (r) {
DMERR("could not get metadata free block count");
goto err;
}
r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
if (r) {
DMERR("could not get metadata device size");
goto err;
}
residency = policy_residency(cache->policy);
DMEMIT("%u %llu/%llu %u %llu/%llu %u %u %u %u %u %u %lu ",
(unsigned)DM_CACHE_METADATA_BLOCK_SIZE,
(unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
(unsigned long long)nr_blocks_metadata,
cache->sectors_per_block,
(unsigned long long) from_cblock(residency),
(unsigned long long) from_cblock(cache->cache_size),
(unsigned) atomic_read(&cache->stats.read_hit),
(unsigned) atomic_read(&cache->stats.read_miss),
(unsigned) atomic_read(&cache->stats.write_hit),
(unsigned) atomic_read(&cache->stats.write_miss),
(unsigned) atomic_read(&cache->stats.demotion),
(unsigned) atomic_read(&cache->stats.promotion),
(unsigned long) atomic_read(&cache->nr_dirty));
if (writethrough_mode(&cache->features))
DMEMIT("1 writethrough ");
else if (passthrough_mode(&cache->features))
DMEMIT("1 passthrough ");
else if (writeback_mode(&cache->features))
DMEMIT("1 writeback ");
else {
DMERR("internal error: unknown io mode: %d", (int) cache->features.io_mode);
goto err;
}
DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
if (sz < maxlen) {
r = policy_emit_config_values(cache->policy, result + sz, maxlen - sz);
if (r)
DMERR("policy_emit_config_values returned %d", r);
}
break;
case STATUSTYPE_TABLE:
format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
DMEMIT("%s ", buf);
format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
DMEMIT("%s ", buf);
format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
DMEMIT("%s", buf);
for (i = 0; i < cache->nr_ctr_args - 1; i++)
DMEMIT(" %s", cache->ctr_args[i]);
if (cache->nr_ctr_args)
DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
}
return;
err:
DMEMIT("Error");
}
/*
* A cache block range can take two forms:
*
* i) A single cblock, eg. '3456'
* ii) A begin and end cblock with dots between, eg. 123-234
*/
static int parse_cblock_range(struct cache *cache, const char *str,
struct cblock_range *result)
{
char dummy;
uint64_t b, e;
int r;
/*
* Try and parse form (ii) first.
*/
r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
if (r < 0)
return r;
if (r == 2) {
result->begin = to_cblock(b);
result->end = to_cblock(e);
return 0;
}
/*
* That didn't work, try form (i).
*/
r = sscanf(str, "%llu%c", &b, &dummy);
if (r < 0)
return r;
if (r == 1) {
result->begin = to_cblock(b);
result->end = to_cblock(from_cblock(result->begin) + 1u);
return 0;
}
DMERR("invalid cblock range '%s'", str);
return -EINVAL;
}
static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
{
uint64_t b = from_cblock(range->begin);
uint64_t e = from_cblock(range->end);
uint64_t n = from_cblock(cache->cache_size);
if (b >= n) {
DMERR("begin cblock out of range: %llu >= %llu", b, n);
return -EINVAL;
}
if (e > n) {
DMERR("end cblock out of range: %llu > %llu", e, n);
return -EINVAL;
}
if (b >= e) {
DMERR("invalid cblock range: %llu >= %llu", b, e);
return -EINVAL;
}
return 0;
}
static int request_invalidation(struct cache *cache, struct cblock_range *range)
{
struct invalidation_request req;
INIT_LIST_HEAD(&req.list);
req.cblocks = range;
atomic_set(&req.complete, 0);
req.err = 0;
init_waitqueue_head(&req.result_wait);
spin_lock(&cache->invalidation_lock);
list_add(&req.list, &cache->invalidation_requests);
spin_unlock(&cache->invalidation_lock);
wake_worker(cache);
wait_event(req.result_wait, atomic_read(&req.complete));
return req.err;
}
static int process_invalidate_cblocks_message(struct cache *cache, unsigned count,
const char **cblock_ranges)
{
int r = 0;
unsigned i;
struct cblock_range range;
if (!passthrough_mode(&cache->features)) {
DMERR("cache has to be in passthrough mode for invalidation");
return -EPERM;
}
for (i = 0; i < count; i++) {
r = parse_cblock_range(cache, cblock_ranges[i], &range);
if (r)
break;
r = validate_cblock_range(cache, &range);
if (r)
break;
/*
* Pass begin and end origin blocks to the worker and wake it.
*/
r = request_invalidation(cache, &range);
if (r)
break;
}
return r;
}
/*
* Supports
* "<key> <value>"
* and
* "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
*
* The key migration_threshold is supported by the cache target core.
*/
static int cache_message(struct dm_target *ti, unsigned argc, char **argv)
{
struct cache *cache = ti->private;
if (!argc)
return -EINVAL;
if (!strcasecmp(argv[0], "invalidate_cblocks"))
return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
if (argc != 2)
return -EINVAL;
return set_config_value(cache, argv[0], argv[1]);
}
static int cache_iterate_devices(struct dm_target *ti,
iterate_devices_callout_fn fn, void *data)
{
int r = 0;
struct cache *cache = ti->private;
r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
if (!r)
r = fn(ti, cache->origin_dev, 0, ti->len, data);
return r;
}
/*
* We assume I/O is going to the origin (which is the volume
* more likely to have restrictions e.g. by being striped).
* (Looking up the exact location of the data would be expensive
* and could always be out of date by the time the bio is submitted.)
*/
static int cache_bvec_merge(struct dm_target *ti,
struct bvec_merge_data *bvm,
struct bio_vec *biovec, int max_size)
{
struct cache *cache = ti->private;
struct request_queue *q = bdev_get_queue(cache->origin_dev->bdev);
if (!q->merge_bvec_fn)
return max_size;
bvm->bi_bdev = cache->origin_dev->bdev;
return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
}
static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
{
/*
* FIXME: these limits may be incompatible with the cache device
*/
limits->max_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024,
cache->origin_sectors);
limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
}
static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
{
struct cache *cache = ti->private;
uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
/*
* If the system-determined stacked limits are compatible with the
* cache's blocksize (io_opt is a factor) do not override them.
*/
if (io_opt_sectors < cache->sectors_per_block ||
do_div(io_opt_sectors, cache->sectors_per_block)) {
blk_limits_io_min(limits, cache->sectors_per_block << SECTOR_SHIFT);
blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
}
set_discard_limits(cache, limits);
}
/*----------------------------------------------------------------*/
static struct target_type cache_target = {
.name = "cache",
.version = {1, 6, 0},
.module = THIS_MODULE,
.ctr = cache_ctr,
.dtr = cache_dtr,
.map = cache_map,
.end_io = cache_end_io,
.postsuspend = cache_postsuspend,
.preresume = cache_preresume,
.resume = cache_resume,
.status = cache_status,
.message = cache_message,
.iterate_devices = cache_iterate_devices,
.merge = cache_bvec_merge,
.io_hints = cache_io_hints,
};
static int __init dm_cache_init(void)
{
int r;
r = dm_register_target(&cache_target);
if (r) {
DMERR("cache target registration failed: %d", r);
return r;
}
migration_cache = KMEM_CACHE(dm_cache_migration, 0);
if (!migration_cache) {
dm_unregister_target(&cache_target);
return -ENOMEM;
}
return 0;
}
static void __exit dm_cache_exit(void)
{
dm_unregister_target(&cache_target);
kmem_cache_destroy(migration_cache);
}
module_init(dm_cache_init);
module_exit(dm_cache_exit);
MODULE_DESCRIPTION(DM_NAME " cache target");
MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
MODULE_LICENSE("GPL");