linux/drivers/bcma
Linus Torvalds ea584595fc This is the bulk of GPIO changes for the v3.18 development
cycle:
 
 - Increase the default ARCH_NR_GPIO from 256 to 512. This
   was done to avoid having a custom <asm/gpio.h> header for
   the x86 architecture - GPIO is custom and complicated
   enough as it is already! We want to move to a radix to
   store the descriptors going forward, and finally get rid
   of this fixed array size altogether.
 
 - Endgame patching of the gpio_remove() semantics initiated
   by Abdoulaye Berthe. It is not accepted by the system that
   the removal of a GPIO chip fails during e.g. reboot or
   shutdown, and therefore the return value has now painfully
   been refactored away. For special cases like GPIO expanders
   on a hot-pluggable bus like USB, we may later add some
   gpiochip_try_remove() call, but for the cases we have now,
   return values are moot.
 
 - Some incremental refactoring of the gpiolib core and ACPI
   GPIO library for more descriptor usage.
 
 - Refactor the chained IRQ handler set-up method to handle
   also threaded, nested interrupts and set up the parent IRQ
   correctly. Switch STMPE and TC3589x drivers to use this
   registration method.
 
 - Add a .irq_not_threaded flag to the struct gpio_chip, so
   that also GPIO expanders that block but are still not
   using threaded IRQ handlers.
 
 - New drivers for the ARM64 X-Gene SoC GPIO controller.
 
 - The syscon GPIO driver has been improved to handle the
   "DSP GPIO" found on the TI Keystone 2 SoC:s.
 
 - ADNP driver switched to use gpiolib irqchip helpers.
 
 - Refactor the DWAPB driver to support being instantiated
   from and MFD cell (platform device).
 
 - Incremental feature improvement in the Zynq, MCP23S08,
   DWAPB, OMAP, Xilinx and Crystalcove drivers.
 
 - Various minor fixes.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQIcBAABAgAGBQJUNOr0AAoJEEEQszewGV1z9toP/2ISXRnsi3+jlqVmEGm/y6EA
 PPwJOiYnOhZR2/fTCHIF0PNbIi9pw7xKnzxttYCu4uCz7geHX+FfTwUZ2/KWMfqi
 ZJ9kEoOVVKzKjmL/m2a2tO4IRSBHqJ8dF3yvaNjS3AL7EDfG6F5STErQurdLEynK
 SeJZ2OwM/vRFCac6F7oDlqAUTu3xYGbVD8+zI0H0V/ReocosFlEwcbl2S8ctDWUd
 h98M+gY+A8rxkvVMnmQ/k7rUTme/glDQ3z5xVx+uHbS2/a5M1jSM/71cXE6YnSrR
 it0CK7CHomq2RzHsKf7oH7GD4kFkukMwFKeMoqz75JWz3352VZPTF53chCIqRSgO
 hrgGwZ7WF6pUUUhsn1ZdZsnBPA2Fou2uwslyLSAiE+OYEH2/NSVIOUcorjQcWqU/
 0Kix5yb8X1ZzRMhR+TVrTD5V0jguqp2buXq+0P2XlU6MoO2vy7iNf2eXvPg8sF8C
 anjTCKgmkzy7eyT2uzfDaNZAyfSBKb1TiKiR9zA0SRChJkCi1ErJEXDGeHiptvSA
 +D2k68Ils2LqsvdrnEd2XvVFMllh0iq7b+16o7D+Els0WRbnHpfYCaqfOuF5F4U0
 SmeyI0ruawNDc5e9EBKXstt0/R9AMOetyTcTu29U2ZVo90zGaT1ofT8+R1jJ0kGa
 bPARJZrgecgv1E9Qnnnd
 =8InA
 -----END PGP SIGNATURE-----

Merge tag 'gpio-v3.18-1' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw/linux-gpio

Pull GPIO changes from Linus Walleij:
 "This is the bulk of GPIO changes for the v3.18 development cycle:

   - Increase the default ARCH_NR_GPIO from 256 to 512.  This was done
     to avoid having a custom <asm/gpio.h> header for the x86
     architecture - GPIO is custom and complicated enough as it is
     already! We want to move to a radix to store the descriptors going
     forward, and finally get rid of this fixed array size altogether.

   - Endgame patching of the gpio_remove() semantics initiated by
     Abdoulaye Berthe.  It is not accepted by the system that the
     removal of a GPIO chip fails during eg reboot or shutdown, and
     therefore the return value has now painfully been refactored away.
     For special cases like GPIO expanders on a hot-pluggable bus like
     USB, we may later add some gpiochip_try_remove() call, but for the
     cases we have now, return values are moot.

   - Some incremental refactoring of the gpiolib core and ACPI GPIO
     library for more descriptor usage.

   - Refactor the chained IRQ handler set-up method to handle also
     threaded, nested interrupts and set up the parent IRQ correctly.
     Switch STMPE and TC3589x drivers to use this registration method.

   - Add a .irq_not_threaded flag to the struct gpio_chip, so that also
     GPIO expanders that block but are still not using threaded IRQ
     handlers.

   - New drivers for the ARM64 X-Gene SoC GPIO controller.

   - The syscon GPIO driver has been improved to handle the "DSP GPIO"
     found on the TI Keystone 2 SoC:s.

   - ADNP driver switched to use gpiolib irqchip helpers.

   - Refactor the DWAPB driver to support being instantiated from and
     MFD cell (platform device).

   - Incremental feature improvement in the Zynq, MCP23S08, DWAPB, OMAP,
     Xilinx and Crystalcove drivers.

   - Various minor fixes"

* tag 'gpio-v3.18-1' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw/linux-gpio: (52 commits)
  gpio: pch: Build context save/restore only for PM
  pinctrl: abx500: get rid of unused variable
  gpio: ks8695: fix 'else should follow close brace '}''
  gpio: stmpe: add verbose debug code
  gpio: stmpe: fix up interrupt enable logic
  gpio: staticize xway_stp_init()
  gpio: handle also nested irqchips in the chained handler set-up
  gpio: set parent irq on chained handlers
  gpiolib: irqchip: use irq_find_mapping while removing irqchip
  gpio: crystalcove: support virtual GPIO
  pinctrl: bcm281xx: make Kconfig dependency more strict
  gpio: kona: enable only on BCM_MOBILE or for compile testing
  gpio, bcm-kona, LLVMLinux: Remove use of __initconst
  gpio: Fix ngpio in gpio-xilinx driver
  gpio: dwapb: fix pointer to integer cast
  gpio: xgene: Remove unneeded #ifdef CONFIG_OF guard
  gpio: xgene: Remove unneeded forward declation for struct xgene_gpio
  gpio: xgene: Fix missing spin_lock_init()
  gpio: ks8695: fix switch case indentation
  gpiolib: add irq_not_threaded flag to gpio_chip
  ...
2014-10-09 14:58:15 -04:00
..
bcma_private.h bcma: register bcma as device tree driver 2014-09-30 13:17:14 -04:00
core.c
driver_chipcommon_b.c bcma: add support for chipcommon B core 2014-09-09 15:33:05 -04:00
driver_chipcommon_nflash.c
driver_chipcommon_pmu.c bcma: add support for BCM43131 that was found in Tenda W311E 2014-07-29 10:32:57 -04:00
driver_chipcommon_sflash.c bcma: fix sparse warnings in driver_chipcommon_sflash.c 2014-01-03 15:37:01 -05:00
driver_chipcommon.c bcma: add support for BCM43142 2013-06-27 13:42:16 -04:00
driver_gmac_cmn.c
driver_gpio.c This is the bulk of GPIO changes for the v3.18 development 2014-10-09 14:58:15 -04:00
driver_mips.c bcma: get info about flash type SoC booted from 2014-09-04 13:50:11 -04:00
driver_pci_host.c bcma: change max PCI read request size to 128 2013-08-26 14:09:02 -04:00
driver_pci.c bcma: make bcma_core_pci_{up,down}() callable from atomic context 2013-09-26 14:02:33 -04:00
driver_pcie2.c bcma: add driver for PCIe Gen 2 core 2014-07-07 16:32:16 -04:00
host_pci.c bcma: move bus struct setup into early part of host specific code 2014-09-09 15:27:18 -04:00
host_soc.c bcma: register bcma as device tree driver 2014-09-30 13:17:14 -04:00
Kconfig bcma: gpio: add own IRQ domain 2014-01-23 13:02:37 +01:00
main.c bcma: register bcma as device tree driver 2014-09-30 13:17:14 -04:00
Makefile bcma: add support for chipcommon B core 2014-09-09 15:33:05 -04:00
README
scan.c bcma: print chip ID in a more user-friendly form 2014-09-26 17:06:50 -04:00
scan.h
sprom.c bcma: add support for BCM43131 that was found in Tenda W311E 2014-07-29 10:32:57 -04:00
TODO

Broadcom introduced new bus as replacement for older SSB. It is based on AMBA,
however from programming point of view there is nothing AMBA specific we use.

Standard AMBA drivers are platform specific, have hardcoded addresses and use
AMBA standard fields like CID and PID.

In case of Broadcom's cards every device consists of:
1) Broadcom specific AMBA device. It is put on AMBA bus, but can not be treated
   as standard AMBA device. Reading it's CID or PID can cause machine lockup.
2) AMBA standard devices called ports or wrappers. They have CIDs (AMBA_CID)
   and PIDs (0x103BB369), but we do not use that info for anything. One of that
   devices is used for managing Broadcom specific core.

Addresses of AMBA devices are not hardcoded in driver and have to be read from
EPROM.

In this situation we decided to introduce separated bus. It can contain up to
16 devices identified by Broadcom specific fields: manufacturer, id, revision
and class.