forked from Minki/linux
5a86f28f95
Based on community feedback, EEE should be disabled by default until the IEEE802.3az specification has been finalized. Cc: bhutchings@solarflare.com Signed-off-by: Bruce Allan <bruce.w.allan@intel.com> Tested-by: Emil Tantilov <emil.s.tantilov@intel.com> Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
3865 lines
104 KiB
C
3865 lines
104 KiB
C
/*******************************************************************************
|
|
|
|
Intel PRO/1000 Linux driver
|
|
Copyright(c) 1999 - 2010 Intel Corporation.
|
|
|
|
This program is free software; you can redistribute it and/or modify it
|
|
under the terms and conditions of the GNU General Public License,
|
|
version 2, as published by the Free Software Foundation.
|
|
|
|
This program is distributed in the hope it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
more details.
|
|
|
|
You should have received a copy of the GNU General Public License along with
|
|
this program; if not, write to the Free Software Foundation, Inc.,
|
|
51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
|
|
|
|
The full GNU General Public License is included in this distribution in
|
|
the file called "COPYING".
|
|
|
|
Contact Information:
|
|
Linux NICS <linux.nics@intel.com>
|
|
e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
|
|
Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
|
|
|
|
*******************************************************************************/
|
|
|
|
/*
|
|
* 82562G 10/100 Network Connection
|
|
* 82562G-2 10/100 Network Connection
|
|
* 82562GT 10/100 Network Connection
|
|
* 82562GT-2 10/100 Network Connection
|
|
* 82562V 10/100 Network Connection
|
|
* 82562V-2 10/100 Network Connection
|
|
* 82566DC-2 Gigabit Network Connection
|
|
* 82566DC Gigabit Network Connection
|
|
* 82566DM-2 Gigabit Network Connection
|
|
* 82566DM Gigabit Network Connection
|
|
* 82566MC Gigabit Network Connection
|
|
* 82566MM Gigabit Network Connection
|
|
* 82567LM Gigabit Network Connection
|
|
* 82567LF Gigabit Network Connection
|
|
* 82567V Gigabit Network Connection
|
|
* 82567LM-2 Gigabit Network Connection
|
|
* 82567LF-2 Gigabit Network Connection
|
|
* 82567V-2 Gigabit Network Connection
|
|
* 82567LF-3 Gigabit Network Connection
|
|
* 82567LM-3 Gigabit Network Connection
|
|
* 82567LM-4 Gigabit Network Connection
|
|
* 82577LM Gigabit Network Connection
|
|
* 82577LC Gigabit Network Connection
|
|
* 82578DM Gigabit Network Connection
|
|
* 82578DC Gigabit Network Connection
|
|
* 82579LM Gigabit Network Connection
|
|
* 82579V Gigabit Network Connection
|
|
*/
|
|
|
|
#include "e1000.h"
|
|
|
|
#define ICH_FLASH_GFPREG 0x0000
|
|
#define ICH_FLASH_HSFSTS 0x0004
|
|
#define ICH_FLASH_HSFCTL 0x0006
|
|
#define ICH_FLASH_FADDR 0x0008
|
|
#define ICH_FLASH_FDATA0 0x0010
|
|
#define ICH_FLASH_PR0 0x0074
|
|
|
|
#define ICH_FLASH_READ_COMMAND_TIMEOUT 500
|
|
#define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500
|
|
#define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000
|
|
#define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF
|
|
#define ICH_FLASH_CYCLE_REPEAT_COUNT 10
|
|
|
|
#define ICH_CYCLE_READ 0
|
|
#define ICH_CYCLE_WRITE 2
|
|
#define ICH_CYCLE_ERASE 3
|
|
|
|
#define FLASH_GFPREG_BASE_MASK 0x1FFF
|
|
#define FLASH_SECTOR_ADDR_SHIFT 12
|
|
|
|
#define ICH_FLASH_SEG_SIZE_256 256
|
|
#define ICH_FLASH_SEG_SIZE_4K 4096
|
|
#define ICH_FLASH_SEG_SIZE_8K 8192
|
|
#define ICH_FLASH_SEG_SIZE_64K 65536
|
|
|
|
|
|
#define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
|
|
/* FW established a valid mode */
|
|
#define E1000_ICH_FWSM_FW_VALID 0x00008000
|
|
|
|
#define E1000_ICH_MNG_IAMT_MODE 0x2
|
|
|
|
#define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \
|
|
(ID_LED_DEF1_OFF2 << 8) | \
|
|
(ID_LED_DEF1_ON2 << 4) | \
|
|
(ID_LED_DEF1_DEF2))
|
|
|
|
#define E1000_ICH_NVM_SIG_WORD 0x13
|
|
#define E1000_ICH_NVM_SIG_MASK 0xC000
|
|
#define E1000_ICH_NVM_VALID_SIG_MASK 0xC0
|
|
#define E1000_ICH_NVM_SIG_VALUE 0x80
|
|
|
|
#define E1000_ICH8_LAN_INIT_TIMEOUT 1500
|
|
|
|
#define E1000_FEXTNVM_SW_CONFIG 1
|
|
#define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
|
|
|
|
#define PCIE_ICH8_SNOOP_ALL PCIE_NO_SNOOP_ALL
|
|
|
|
#define E1000_ICH_RAR_ENTRIES 7
|
|
|
|
#define PHY_PAGE_SHIFT 5
|
|
#define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
|
|
((reg) & MAX_PHY_REG_ADDRESS))
|
|
#define IGP3_KMRN_DIAG PHY_REG(770, 19) /* KMRN Diagnostic */
|
|
#define IGP3_VR_CTRL PHY_REG(776, 18) /* Voltage Regulator Control */
|
|
|
|
#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002
|
|
#define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
|
|
#define IGP3_VR_CTRL_MODE_SHUTDOWN 0x0200
|
|
|
|
#define HV_LED_CONFIG PHY_REG(768, 30) /* LED Configuration */
|
|
|
|
#define SW_FLAG_TIMEOUT 1000 /* SW Semaphore flag timeout in milliseconds */
|
|
|
|
/* SMBus Address Phy Register */
|
|
#define HV_SMB_ADDR PHY_REG(768, 26)
|
|
#define HV_SMB_ADDR_PEC_EN 0x0200
|
|
#define HV_SMB_ADDR_VALID 0x0080
|
|
|
|
/* PHY Power Management Control */
|
|
#define HV_PM_CTRL PHY_REG(770, 17)
|
|
|
|
/* PHY Low Power Idle Control */
|
|
#define I82579_LPI_CTRL PHY_REG(772, 20)
|
|
#define I82579_LPI_CTRL_ENABLE_MASK 0x6000
|
|
|
|
/* Strapping Option Register - RO */
|
|
#define E1000_STRAP 0x0000C
|
|
#define E1000_STRAP_SMBUS_ADDRESS_MASK 0x00FE0000
|
|
#define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17
|
|
|
|
/* OEM Bits Phy Register */
|
|
#define HV_OEM_BITS PHY_REG(768, 25)
|
|
#define HV_OEM_BITS_LPLU 0x0004 /* Low Power Link Up */
|
|
#define HV_OEM_BITS_GBE_DIS 0x0040 /* Gigabit Disable */
|
|
#define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */
|
|
|
|
#define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
|
|
#define E1000_NVM_K1_ENABLE 0x1 /* NVM Enable K1 bit */
|
|
|
|
/* KMRN Mode Control */
|
|
#define HV_KMRN_MODE_CTRL PHY_REG(769, 16)
|
|
#define HV_KMRN_MDIO_SLOW 0x0400
|
|
|
|
/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
|
|
/* Offset 04h HSFSTS */
|
|
union ich8_hws_flash_status {
|
|
struct ich8_hsfsts {
|
|
u16 flcdone :1; /* bit 0 Flash Cycle Done */
|
|
u16 flcerr :1; /* bit 1 Flash Cycle Error */
|
|
u16 dael :1; /* bit 2 Direct Access error Log */
|
|
u16 berasesz :2; /* bit 4:3 Sector Erase Size */
|
|
u16 flcinprog :1; /* bit 5 flash cycle in Progress */
|
|
u16 reserved1 :2; /* bit 13:6 Reserved */
|
|
u16 reserved2 :6; /* bit 13:6 Reserved */
|
|
u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
|
|
u16 flockdn :1; /* bit 15 Flash Config Lock-Down */
|
|
} hsf_status;
|
|
u16 regval;
|
|
};
|
|
|
|
/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
|
|
/* Offset 06h FLCTL */
|
|
union ich8_hws_flash_ctrl {
|
|
struct ich8_hsflctl {
|
|
u16 flcgo :1; /* 0 Flash Cycle Go */
|
|
u16 flcycle :2; /* 2:1 Flash Cycle */
|
|
u16 reserved :5; /* 7:3 Reserved */
|
|
u16 fldbcount :2; /* 9:8 Flash Data Byte Count */
|
|
u16 flockdn :6; /* 15:10 Reserved */
|
|
} hsf_ctrl;
|
|
u16 regval;
|
|
};
|
|
|
|
/* ICH Flash Region Access Permissions */
|
|
union ich8_hws_flash_regacc {
|
|
struct ich8_flracc {
|
|
u32 grra :8; /* 0:7 GbE region Read Access */
|
|
u32 grwa :8; /* 8:15 GbE region Write Access */
|
|
u32 gmrag :8; /* 23:16 GbE Master Read Access Grant */
|
|
u32 gmwag :8; /* 31:24 GbE Master Write Access Grant */
|
|
} hsf_flregacc;
|
|
u16 regval;
|
|
};
|
|
|
|
/* ICH Flash Protected Region */
|
|
union ich8_flash_protected_range {
|
|
struct ich8_pr {
|
|
u32 base:13; /* 0:12 Protected Range Base */
|
|
u32 reserved1:2; /* 13:14 Reserved */
|
|
u32 rpe:1; /* 15 Read Protection Enable */
|
|
u32 limit:13; /* 16:28 Protected Range Limit */
|
|
u32 reserved2:2; /* 29:30 Reserved */
|
|
u32 wpe:1; /* 31 Write Protection Enable */
|
|
} range;
|
|
u32 regval;
|
|
};
|
|
|
|
static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
|
|
static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
|
|
static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
|
|
static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
|
|
static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
|
|
u32 offset, u8 byte);
|
|
static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
|
|
u8 *data);
|
|
static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
|
|
u16 *data);
|
|
static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
|
|
u8 size, u16 *data);
|
|
static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
|
|
static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
|
|
static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
|
|
static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
|
|
static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
|
|
static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
|
|
static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
|
|
static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
|
|
static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
|
|
static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
|
|
static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
|
|
static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
|
|
static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
|
|
static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
|
|
static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
|
|
static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
|
|
static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
|
|
static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
|
|
|
|
static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
|
|
{
|
|
return readw(hw->flash_address + reg);
|
|
}
|
|
|
|
static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
|
|
{
|
|
return readl(hw->flash_address + reg);
|
|
}
|
|
|
|
static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
|
|
{
|
|
writew(val, hw->flash_address + reg);
|
|
}
|
|
|
|
static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
|
|
{
|
|
writel(val, hw->flash_address + reg);
|
|
}
|
|
|
|
#define er16flash(reg) __er16flash(hw, (reg))
|
|
#define er32flash(reg) __er32flash(hw, (reg))
|
|
#define ew16flash(reg,val) __ew16flash(hw, (reg), (val))
|
|
#define ew32flash(reg,val) __ew32flash(hw, (reg), (val))
|
|
|
|
/**
|
|
* e1000_init_phy_params_pchlan - Initialize PHY function pointers
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Initialize family-specific PHY parameters and function pointers.
|
|
**/
|
|
static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_phy_info *phy = &hw->phy;
|
|
u32 ctrl;
|
|
s32 ret_val = 0;
|
|
|
|
phy->addr = 1;
|
|
phy->reset_delay_us = 100;
|
|
|
|
phy->ops.read_reg = e1000_read_phy_reg_hv;
|
|
phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
|
|
phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
|
|
phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
|
|
phy->ops.write_reg = e1000_write_phy_reg_hv;
|
|
phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
|
|
phy->ops.power_up = e1000_power_up_phy_copper;
|
|
phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
|
|
phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
|
|
|
|
/*
|
|
* The MAC-PHY interconnect may still be in SMBus mode
|
|
* after Sx->S0. If the manageability engine (ME) is
|
|
* disabled, then toggle the LANPHYPC Value bit to force
|
|
* the interconnect to PCIe mode.
|
|
*/
|
|
if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
|
|
ctrl = er32(CTRL);
|
|
ctrl |= E1000_CTRL_LANPHYPC_OVERRIDE;
|
|
ctrl &= ~E1000_CTRL_LANPHYPC_VALUE;
|
|
ew32(CTRL, ctrl);
|
|
udelay(10);
|
|
ctrl &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
|
|
ew32(CTRL, ctrl);
|
|
msleep(50);
|
|
}
|
|
|
|
/*
|
|
* Reset the PHY before any acccess to it. Doing so, ensures that
|
|
* the PHY is in a known good state before we read/write PHY registers.
|
|
* The generic reset is sufficient here, because we haven't determined
|
|
* the PHY type yet.
|
|
*/
|
|
ret_val = e1000e_phy_hw_reset_generic(hw);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
phy->id = e1000_phy_unknown;
|
|
ret_val = e1000e_get_phy_id(hw);
|
|
if (ret_val)
|
|
goto out;
|
|
if ((phy->id == 0) || (phy->id == PHY_REVISION_MASK)) {
|
|
/*
|
|
* In case the PHY needs to be in mdio slow mode (eg. 82577),
|
|
* set slow mode and try to get the PHY id again.
|
|
*/
|
|
ret_val = e1000_set_mdio_slow_mode_hv(hw);
|
|
if (ret_val)
|
|
goto out;
|
|
ret_val = e1000e_get_phy_id(hw);
|
|
if (ret_val)
|
|
goto out;
|
|
}
|
|
phy->type = e1000e_get_phy_type_from_id(phy->id);
|
|
|
|
switch (phy->type) {
|
|
case e1000_phy_82577:
|
|
case e1000_phy_82579:
|
|
phy->ops.check_polarity = e1000_check_polarity_82577;
|
|
phy->ops.force_speed_duplex =
|
|
e1000_phy_force_speed_duplex_82577;
|
|
phy->ops.get_cable_length = e1000_get_cable_length_82577;
|
|
phy->ops.get_info = e1000_get_phy_info_82577;
|
|
phy->ops.commit = e1000e_phy_sw_reset;
|
|
break;
|
|
case e1000_phy_82578:
|
|
phy->ops.check_polarity = e1000_check_polarity_m88;
|
|
phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
|
|
phy->ops.get_cable_length = e1000e_get_cable_length_m88;
|
|
phy->ops.get_info = e1000e_get_phy_info_m88;
|
|
break;
|
|
default:
|
|
ret_val = -E1000_ERR_PHY;
|
|
break;
|
|
}
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_init_phy_params_ich8lan - Initialize PHY function pointers
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Initialize family-specific PHY parameters and function pointers.
|
|
**/
|
|
static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_phy_info *phy = &hw->phy;
|
|
s32 ret_val;
|
|
u16 i = 0;
|
|
|
|
phy->addr = 1;
|
|
phy->reset_delay_us = 100;
|
|
|
|
phy->ops.power_up = e1000_power_up_phy_copper;
|
|
phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
|
|
|
|
/*
|
|
* We may need to do this twice - once for IGP and if that fails,
|
|
* we'll set BM func pointers and try again
|
|
*/
|
|
ret_val = e1000e_determine_phy_address(hw);
|
|
if (ret_val) {
|
|
phy->ops.write_reg = e1000e_write_phy_reg_bm;
|
|
phy->ops.read_reg = e1000e_read_phy_reg_bm;
|
|
ret_val = e1000e_determine_phy_address(hw);
|
|
if (ret_val) {
|
|
e_dbg("Cannot determine PHY addr. Erroring out\n");
|
|
return ret_val;
|
|
}
|
|
}
|
|
|
|
phy->id = 0;
|
|
while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
|
|
(i++ < 100)) {
|
|
msleep(1);
|
|
ret_val = e1000e_get_phy_id(hw);
|
|
if (ret_val)
|
|
return ret_val;
|
|
}
|
|
|
|
/* Verify phy id */
|
|
switch (phy->id) {
|
|
case IGP03E1000_E_PHY_ID:
|
|
phy->type = e1000_phy_igp_3;
|
|
phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
|
|
phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
|
|
phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
|
|
phy->ops.get_info = e1000e_get_phy_info_igp;
|
|
phy->ops.check_polarity = e1000_check_polarity_igp;
|
|
phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
|
|
break;
|
|
case IFE_E_PHY_ID:
|
|
case IFE_PLUS_E_PHY_ID:
|
|
case IFE_C_E_PHY_ID:
|
|
phy->type = e1000_phy_ife;
|
|
phy->autoneg_mask = E1000_ALL_NOT_GIG;
|
|
phy->ops.get_info = e1000_get_phy_info_ife;
|
|
phy->ops.check_polarity = e1000_check_polarity_ife;
|
|
phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
|
|
break;
|
|
case BME1000_E_PHY_ID:
|
|
phy->type = e1000_phy_bm;
|
|
phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
|
|
phy->ops.read_reg = e1000e_read_phy_reg_bm;
|
|
phy->ops.write_reg = e1000e_write_phy_reg_bm;
|
|
phy->ops.commit = e1000e_phy_sw_reset;
|
|
phy->ops.get_info = e1000e_get_phy_info_m88;
|
|
phy->ops.check_polarity = e1000_check_polarity_m88;
|
|
phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
|
|
break;
|
|
default:
|
|
return -E1000_ERR_PHY;
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Initialize family-specific NVM parameters and function
|
|
* pointers.
|
|
**/
|
|
static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_nvm_info *nvm = &hw->nvm;
|
|
struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
|
|
u32 gfpreg, sector_base_addr, sector_end_addr;
|
|
u16 i;
|
|
|
|
/* Can't read flash registers if the register set isn't mapped. */
|
|
if (!hw->flash_address) {
|
|
e_dbg("ERROR: Flash registers not mapped\n");
|
|
return -E1000_ERR_CONFIG;
|
|
}
|
|
|
|
nvm->type = e1000_nvm_flash_sw;
|
|
|
|
gfpreg = er32flash(ICH_FLASH_GFPREG);
|
|
|
|
/*
|
|
* sector_X_addr is a "sector"-aligned address (4096 bytes)
|
|
* Add 1 to sector_end_addr since this sector is included in
|
|
* the overall size.
|
|
*/
|
|
sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
|
|
sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
|
|
|
|
/* flash_base_addr is byte-aligned */
|
|
nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
|
|
|
|
/*
|
|
* find total size of the NVM, then cut in half since the total
|
|
* size represents two separate NVM banks.
|
|
*/
|
|
nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
|
|
<< FLASH_SECTOR_ADDR_SHIFT;
|
|
nvm->flash_bank_size /= 2;
|
|
/* Adjust to word count */
|
|
nvm->flash_bank_size /= sizeof(u16);
|
|
|
|
nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
|
|
|
|
/* Clear shadow ram */
|
|
for (i = 0; i < nvm->word_size; i++) {
|
|
dev_spec->shadow_ram[i].modified = false;
|
|
dev_spec->shadow_ram[i].value = 0xFFFF;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* e1000_init_mac_params_ich8lan - Initialize MAC function pointers
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Initialize family-specific MAC parameters and function
|
|
* pointers.
|
|
**/
|
|
static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
struct e1000_mac_info *mac = &hw->mac;
|
|
|
|
/* Set media type function pointer */
|
|
hw->phy.media_type = e1000_media_type_copper;
|
|
|
|
/* Set mta register count */
|
|
mac->mta_reg_count = 32;
|
|
/* Set rar entry count */
|
|
mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
|
|
if (mac->type == e1000_ich8lan)
|
|
mac->rar_entry_count--;
|
|
/* FWSM register */
|
|
mac->has_fwsm = true;
|
|
/* ARC subsystem not supported */
|
|
mac->arc_subsystem_valid = false;
|
|
/* Adaptive IFS supported */
|
|
mac->adaptive_ifs = true;
|
|
|
|
/* LED operations */
|
|
switch (mac->type) {
|
|
case e1000_ich8lan:
|
|
case e1000_ich9lan:
|
|
case e1000_ich10lan:
|
|
/* check management mode */
|
|
mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
|
|
/* ID LED init */
|
|
mac->ops.id_led_init = e1000e_id_led_init;
|
|
/* setup LED */
|
|
mac->ops.setup_led = e1000e_setup_led_generic;
|
|
/* cleanup LED */
|
|
mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
|
|
/* turn on/off LED */
|
|
mac->ops.led_on = e1000_led_on_ich8lan;
|
|
mac->ops.led_off = e1000_led_off_ich8lan;
|
|
break;
|
|
case e1000_pchlan:
|
|
case e1000_pch2lan:
|
|
/* check management mode */
|
|
mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
|
|
/* ID LED init */
|
|
mac->ops.id_led_init = e1000_id_led_init_pchlan;
|
|
/* setup LED */
|
|
mac->ops.setup_led = e1000_setup_led_pchlan;
|
|
/* cleanup LED */
|
|
mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
|
|
/* turn on/off LED */
|
|
mac->ops.led_on = e1000_led_on_pchlan;
|
|
mac->ops.led_off = e1000_led_off_pchlan;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* Enable PCS Lock-loss workaround for ICH8 */
|
|
if (mac->type == e1000_ich8lan)
|
|
e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
|
|
|
|
/* Disable PHY configuration by hardware, config by software */
|
|
if (mac->type == e1000_pch2lan) {
|
|
u32 extcnf_ctrl = er32(EXTCNF_CTRL);
|
|
|
|
extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
|
|
ew32(EXTCNF_CTRL, extcnf_ctrl);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* e1000_set_eee_pchlan - Enable/disable EEE support
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Enable/disable EEE based on setting in dev_spec structure. The bits in
|
|
* the LPI Control register will remain set only if/when link is up.
|
|
**/
|
|
static s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
|
|
{
|
|
s32 ret_val = 0;
|
|
u16 phy_reg;
|
|
|
|
if (hw->phy.type != e1000_phy_82579)
|
|
goto out;
|
|
|
|
ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
if (hw->dev_spec.ich8lan.eee_disable)
|
|
phy_reg &= ~I82579_LPI_CTRL_ENABLE_MASK;
|
|
else
|
|
phy_reg |= I82579_LPI_CTRL_ENABLE_MASK;
|
|
|
|
ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_check_for_copper_link_ich8lan - Check for link (Copper)
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Checks to see of the link status of the hardware has changed. If a
|
|
* change in link status has been detected, then we read the PHY registers
|
|
* to get the current speed/duplex if link exists.
|
|
**/
|
|
static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_mac_info *mac = &hw->mac;
|
|
s32 ret_val;
|
|
bool link;
|
|
|
|
/*
|
|
* We only want to go out to the PHY registers to see if Auto-Neg
|
|
* has completed and/or if our link status has changed. The
|
|
* get_link_status flag is set upon receiving a Link Status
|
|
* Change or Rx Sequence Error interrupt.
|
|
*/
|
|
if (!mac->get_link_status) {
|
|
ret_val = 0;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* First we want to see if the MII Status Register reports
|
|
* link. If so, then we want to get the current speed/duplex
|
|
* of the PHY.
|
|
*/
|
|
ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
if (hw->mac.type == e1000_pchlan) {
|
|
ret_val = e1000_k1_gig_workaround_hv(hw, link);
|
|
if (ret_val)
|
|
goto out;
|
|
}
|
|
|
|
if (!link)
|
|
goto out; /* No link detected */
|
|
|
|
mac->get_link_status = false;
|
|
|
|
if (hw->phy.type == e1000_phy_82578) {
|
|
ret_val = e1000_link_stall_workaround_hv(hw);
|
|
if (ret_val)
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Check if there was DownShift, must be checked
|
|
* immediately after link-up
|
|
*/
|
|
e1000e_check_downshift(hw);
|
|
|
|
/* Enable/Disable EEE after link up */
|
|
ret_val = e1000_set_eee_pchlan(hw);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
/*
|
|
* If we are forcing speed/duplex, then we simply return since
|
|
* we have already determined whether we have link or not.
|
|
*/
|
|
if (!mac->autoneg) {
|
|
ret_val = -E1000_ERR_CONFIG;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Auto-Neg is enabled. Auto Speed Detection takes care
|
|
* of MAC speed/duplex configuration. So we only need to
|
|
* configure Collision Distance in the MAC.
|
|
*/
|
|
e1000e_config_collision_dist(hw);
|
|
|
|
/*
|
|
* Configure Flow Control now that Auto-Neg has completed.
|
|
* First, we need to restore the desired flow control
|
|
* settings because we may have had to re-autoneg with a
|
|
* different link partner.
|
|
*/
|
|
ret_val = e1000e_config_fc_after_link_up(hw);
|
|
if (ret_val)
|
|
e_dbg("Error configuring flow control\n");
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
|
|
{
|
|
struct e1000_hw *hw = &adapter->hw;
|
|
s32 rc;
|
|
|
|
rc = e1000_init_mac_params_ich8lan(adapter);
|
|
if (rc)
|
|
return rc;
|
|
|
|
rc = e1000_init_nvm_params_ich8lan(hw);
|
|
if (rc)
|
|
return rc;
|
|
|
|
switch (hw->mac.type) {
|
|
case e1000_ich8lan:
|
|
case e1000_ich9lan:
|
|
case e1000_ich10lan:
|
|
rc = e1000_init_phy_params_ich8lan(hw);
|
|
break;
|
|
case e1000_pchlan:
|
|
case e1000_pch2lan:
|
|
rc = e1000_init_phy_params_pchlan(hw);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
if (rc)
|
|
return rc;
|
|
|
|
if (adapter->hw.phy.type == e1000_phy_ife) {
|
|
adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
|
|
adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
|
|
}
|
|
|
|
if ((adapter->hw.mac.type == e1000_ich8lan) &&
|
|
(adapter->hw.phy.type == e1000_phy_igp_3))
|
|
adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
|
|
|
|
/* Disable EEE by default until IEEE802.3az spec is finalized */
|
|
if (adapter->flags2 & FLAG2_HAS_EEE)
|
|
adapter->hw.dev_spec.ich8lan.eee_disable = true;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static DEFINE_MUTEX(nvm_mutex);
|
|
|
|
/**
|
|
* e1000_acquire_nvm_ich8lan - Acquire NVM mutex
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Acquires the mutex for performing NVM operations.
|
|
**/
|
|
static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
|
|
{
|
|
mutex_lock(&nvm_mutex);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* e1000_release_nvm_ich8lan - Release NVM mutex
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Releases the mutex used while performing NVM operations.
|
|
**/
|
|
static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
|
|
{
|
|
mutex_unlock(&nvm_mutex);
|
|
}
|
|
|
|
static DEFINE_MUTEX(swflag_mutex);
|
|
|
|
/**
|
|
* e1000_acquire_swflag_ich8lan - Acquire software control flag
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Acquires the software control flag for performing PHY and select
|
|
* MAC CSR accesses.
|
|
**/
|
|
static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
|
|
{
|
|
u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
|
|
s32 ret_val = 0;
|
|
|
|
mutex_lock(&swflag_mutex);
|
|
|
|
while (timeout) {
|
|
extcnf_ctrl = er32(EXTCNF_CTRL);
|
|
if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
|
|
break;
|
|
|
|
mdelay(1);
|
|
timeout--;
|
|
}
|
|
|
|
if (!timeout) {
|
|
e_dbg("SW/FW/HW has locked the resource for too long.\n");
|
|
ret_val = -E1000_ERR_CONFIG;
|
|
goto out;
|
|
}
|
|
|
|
timeout = SW_FLAG_TIMEOUT;
|
|
|
|
extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
|
|
ew32(EXTCNF_CTRL, extcnf_ctrl);
|
|
|
|
while (timeout) {
|
|
extcnf_ctrl = er32(EXTCNF_CTRL);
|
|
if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
|
|
break;
|
|
|
|
mdelay(1);
|
|
timeout--;
|
|
}
|
|
|
|
if (!timeout) {
|
|
e_dbg("Failed to acquire the semaphore.\n");
|
|
extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
|
|
ew32(EXTCNF_CTRL, extcnf_ctrl);
|
|
ret_val = -E1000_ERR_CONFIG;
|
|
goto out;
|
|
}
|
|
|
|
out:
|
|
if (ret_val)
|
|
mutex_unlock(&swflag_mutex);
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_release_swflag_ich8lan - Release software control flag
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Releases the software control flag for performing PHY and select
|
|
* MAC CSR accesses.
|
|
**/
|
|
static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
|
|
{
|
|
u32 extcnf_ctrl;
|
|
|
|
extcnf_ctrl = er32(EXTCNF_CTRL);
|
|
extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
|
|
ew32(EXTCNF_CTRL, extcnf_ctrl);
|
|
|
|
mutex_unlock(&swflag_mutex);
|
|
}
|
|
|
|
/**
|
|
* e1000_check_mng_mode_ich8lan - Checks management mode
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* This checks if the adapter has any manageability enabled.
|
|
* This is a function pointer entry point only called by read/write
|
|
* routines for the PHY and NVM parts.
|
|
**/
|
|
static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
|
|
{
|
|
u32 fwsm;
|
|
|
|
fwsm = er32(FWSM);
|
|
return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
|
|
((fwsm & E1000_FWSM_MODE_MASK) ==
|
|
(E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
|
|
}
|
|
|
|
/**
|
|
* e1000_check_mng_mode_pchlan - Checks management mode
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* This checks if the adapter has iAMT enabled.
|
|
* This is a function pointer entry point only called by read/write
|
|
* routines for the PHY and NVM parts.
|
|
**/
|
|
static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
|
|
{
|
|
u32 fwsm;
|
|
|
|
fwsm = er32(FWSM);
|
|
return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
|
|
(fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
|
|
}
|
|
|
|
/**
|
|
* e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Checks if firmware is blocking the reset of the PHY.
|
|
* This is a function pointer entry point only called by
|
|
* reset routines.
|
|
**/
|
|
static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
|
|
{
|
|
u32 fwsm;
|
|
|
|
fwsm = er32(FWSM);
|
|
|
|
return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
|
|
}
|
|
|
|
/**
|
|
* e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* SW should configure the LCD from the NVM extended configuration region
|
|
* as a workaround for certain parts.
|
|
**/
|
|
static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_adapter *adapter = hw->adapter;
|
|
struct e1000_phy_info *phy = &hw->phy;
|
|
u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
|
|
s32 ret_val = 0;
|
|
u16 word_addr, reg_data, reg_addr, phy_page = 0;
|
|
|
|
/*
|
|
* Initialize the PHY from the NVM on ICH platforms. This
|
|
* is needed due to an issue where the NVM configuration is
|
|
* not properly autoloaded after power transitions.
|
|
* Therefore, after each PHY reset, we will load the
|
|
* configuration data out of the NVM manually.
|
|
*/
|
|
switch (hw->mac.type) {
|
|
case e1000_ich8lan:
|
|
if (phy->type != e1000_phy_igp_3)
|
|
return ret_val;
|
|
|
|
if (adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) {
|
|
sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
|
|
break;
|
|
}
|
|
/* Fall-thru */
|
|
case e1000_pchlan:
|
|
case e1000_pch2lan:
|
|
sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
|
|
break;
|
|
default:
|
|
return ret_val;
|
|
}
|
|
|
|
ret_val = hw->phy.ops.acquire(hw);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
data = er32(FEXTNVM);
|
|
if (!(data & sw_cfg_mask))
|
|
goto out;
|
|
|
|
/*
|
|
* Make sure HW does not configure LCD from PHY
|
|
* extended configuration before SW configuration
|
|
*/
|
|
data = er32(EXTCNF_CTRL);
|
|
if (!(hw->mac.type == e1000_pch2lan)) {
|
|
if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
|
|
goto out;
|
|
}
|
|
|
|
cnf_size = er32(EXTCNF_SIZE);
|
|
cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
|
|
cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
|
|
if (!cnf_size)
|
|
goto out;
|
|
|
|
cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
|
|
cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
|
|
|
|
if (!(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) &&
|
|
((hw->mac.type == e1000_pchlan) ||
|
|
(hw->mac.type == e1000_pch2lan))) {
|
|
/*
|
|
* HW configures the SMBus address and LEDs when the
|
|
* OEM and LCD Write Enable bits are set in the NVM.
|
|
* When both NVM bits are cleared, SW will configure
|
|
* them instead.
|
|
*/
|
|
data = er32(STRAP);
|
|
data &= E1000_STRAP_SMBUS_ADDRESS_MASK;
|
|
reg_data = data >> E1000_STRAP_SMBUS_ADDRESS_SHIFT;
|
|
reg_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
|
|
ret_val = e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR,
|
|
reg_data);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
data = er32(LEDCTL);
|
|
ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
|
|
(u16)data);
|
|
if (ret_val)
|
|
goto out;
|
|
}
|
|
|
|
/* Configure LCD from extended configuration region. */
|
|
|
|
/* cnf_base_addr is in DWORD */
|
|
word_addr = (u16)(cnf_base_addr << 1);
|
|
|
|
for (i = 0; i < cnf_size; i++) {
|
|
ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1,
|
|
®_data);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
|
|
1, ®_addr);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
/* Save off the PHY page for future writes. */
|
|
if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
|
|
phy_page = reg_data;
|
|
continue;
|
|
}
|
|
|
|
reg_addr &= PHY_REG_MASK;
|
|
reg_addr |= phy_page;
|
|
|
|
ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr,
|
|
reg_data);
|
|
if (ret_val)
|
|
goto out;
|
|
}
|
|
|
|
out:
|
|
hw->phy.ops.release(hw);
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_k1_gig_workaround_hv - K1 Si workaround
|
|
* @hw: pointer to the HW structure
|
|
* @link: link up bool flag
|
|
*
|
|
* If K1 is enabled for 1Gbps, the MAC might stall when transitioning
|
|
* from a lower speed. This workaround disables K1 whenever link is at 1Gig
|
|
* If link is down, the function will restore the default K1 setting located
|
|
* in the NVM.
|
|
**/
|
|
static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
|
|
{
|
|
s32 ret_val = 0;
|
|
u16 status_reg = 0;
|
|
bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
|
|
|
|
if (hw->mac.type != e1000_pchlan)
|
|
goto out;
|
|
|
|
/* Wrap the whole flow with the sw flag */
|
|
ret_val = hw->phy.ops.acquire(hw);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
|
|
if (link) {
|
|
if (hw->phy.type == e1000_phy_82578) {
|
|
ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS,
|
|
&status_reg);
|
|
if (ret_val)
|
|
goto release;
|
|
|
|
status_reg &= BM_CS_STATUS_LINK_UP |
|
|
BM_CS_STATUS_RESOLVED |
|
|
BM_CS_STATUS_SPEED_MASK;
|
|
|
|
if (status_reg == (BM_CS_STATUS_LINK_UP |
|
|
BM_CS_STATUS_RESOLVED |
|
|
BM_CS_STATUS_SPEED_1000))
|
|
k1_enable = false;
|
|
}
|
|
|
|
if (hw->phy.type == e1000_phy_82577) {
|
|
ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS,
|
|
&status_reg);
|
|
if (ret_val)
|
|
goto release;
|
|
|
|
status_reg &= HV_M_STATUS_LINK_UP |
|
|
HV_M_STATUS_AUTONEG_COMPLETE |
|
|
HV_M_STATUS_SPEED_MASK;
|
|
|
|
if (status_reg == (HV_M_STATUS_LINK_UP |
|
|
HV_M_STATUS_AUTONEG_COMPLETE |
|
|
HV_M_STATUS_SPEED_1000))
|
|
k1_enable = false;
|
|
}
|
|
|
|
/* Link stall fix for link up */
|
|
ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
|
|
0x0100);
|
|
if (ret_val)
|
|
goto release;
|
|
|
|
} else {
|
|
/* Link stall fix for link down */
|
|
ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
|
|
0x4100);
|
|
if (ret_val)
|
|
goto release;
|
|
}
|
|
|
|
ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
|
|
|
|
release:
|
|
hw->phy.ops.release(hw);
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_configure_k1_ich8lan - Configure K1 power state
|
|
* @hw: pointer to the HW structure
|
|
* @enable: K1 state to configure
|
|
*
|
|
* Configure the K1 power state based on the provided parameter.
|
|
* Assumes semaphore already acquired.
|
|
*
|
|
* Success returns 0, Failure returns -E1000_ERR_PHY (-2)
|
|
**/
|
|
s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
|
|
{
|
|
s32 ret_val = 0;
|
|
u32 ctrl_reg = 0;
|
|
u32 ctrl_ext = 0;
|
|
u32 reg = 0;
|
|
u16 kmrn_reg = 0;
|
|
|
|
ret_val = e1000e_read_kmrn_reg_locked(hw,
|
|
E1000_KMRNCTRLSTA_K1_CONFIG,
|
|
&kmrn_reg);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
if (k1_enable)
|
|
kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
|
|
else
|
|
kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
|
|
|
|
ret_val = e1000e_write_kmrn_reg_locked(hw,
|
|
E1000_KMRNCTRLSTA_K1_CONFIG,
|
|
kmrn_reg);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
udelay(20);
|
|
ctrl_ext = er32(CTRL_EXT);
|
|
ctrl_reg = er32(CTRL);
|
|
|
|
reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
|
|
reg |= E1000_CTRL_FRCSPD;
|
|
ew32(CTRL, reg);
|
|
|
|
ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
|
|
udelay(20);
|
|
ew32(CTRL, ctrl_reg);
|
|
ew32(CTRL_EXT, ctrl_ext);
|
|
udelay(20);
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
|
|
* @hw: pointer to the HW structure
|
|
* @d0_state: boolean if entering d0 or d3 device state
|
|
*
|
|
* SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
|
|
* collectively called OEM bits. The OEM Write Enable bit and SW Config bit
|
|
* in NVM determines whether HW should configure LPLU and Gbe Disable.
|
|
**/
|
|
static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
|
|
{
|
|
s32 ret_val = 0;
|
|
u32 mac_reg;
|
|
u16 oem_reg;
|
|
|
|
if ((hw->mac.type != e1000_pch2lan) && (hw->mac.type != e1000_pchlan))
|
|
return ret_val;
|
|
|
|
ret_val = hw->phy.ops.acquire(hw);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
if (!(hw->mac.type == e1000_pch2lan)) {
|
|
mac_reg = er32(EXTCNF_CTRL);
|
|
if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
|
|
goto out;
|
|
}
|
|
|
|
mac_reg = er32(FEXTNVM);
|
|
if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
|
|
goto out;
|
|
|
|
mac_reg = er32(PHY_CTRL);
|
|
|
|
ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
|
|
|
|
if (d0_state) {
|
|
if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
|
|
oem_reg |= HV_OEM_BITS_GBE_DIS;
|
|
|
|
if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
|
|
oem_reg |= HV_OEM_BITS_LPLU;
|
|
} else {
|
|
if (mac_reg & E1000_PHY_CTRL_NOND0A_GBE_DISABLE)
|
|
oem_reg |= HV_OEM_BITS_GBE_DIS;
|
|
|
|
if (mac_reg & E1000_PHY_CTRL_NOND0A_LPLU)
|
|
oem_reg |= HV_OEM_BITS_LPLU;
|
|
}
|
|
/* Restart auto-neg to activate the bits */
|
|
if (!e1000_check_reset_block(hw))
|
|
oem_reg |= HV_OEM_BITS_RESTART_AN;
|
|
ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg);
|
|
|
|
out:
|
|
hw->phy.ops.release(hw);
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
|
|
/**
|
|
* e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
|
|
* @hw: pointer to the HW structure
|
|
**/
|
|
static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
|
|
{
|
|
s32 ret_val;
|
|
u16 data;
|
|
|
|
ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
data |= HV_KMRN_MDIO_SLOW;
|
|
|
|
ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
|
|
* done after every PHY reset.
|
|
**/
|
|
static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
|
|
{
|
|
s32 ret_val = 0;
|
|
u16 phy_data;
|
|
|
|
if (hw->mac.type != e1000_pchlan)
|
|
return ret_val;
|
|
|
|
/* Set MDIO slow mode before any other MDIO access */
|
|
if (hw->phy.type == e1000_phy_82577) {
|
|
ret_val = e1000_set_mdio_slow_mode_hv(hw);
|
|
if (ret_val)
|
|
goto out;
|
|
}
|
|
|
|
if (((hw->phy.type == e1000_phy_82577) &&
|
|
((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
|
|
((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
|
|
/* Disable generation of early preamble */
|
|
ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
/* Preamble tuning for SSC */
|
|
ret_val = e1e_wphy(hw, PHY_REG(770, 16), 0xA204);
|
|
if (ret_val)
|
|
return ret_val;
|
|
}
|
|
|
|
if (hw->phy.type == e1000_phy_82578) {
|
|
/*
|
|
* Return registers to default by doing a soft reset then
|
|
* writing 0x3140 to the control register.
|
|
*/
|
|
if (hw->phy.revision < 2) {
|
|
e1000e_phy_sw_reset(hw);
|
|
ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140);
|
|
}
|
|
}
|
|
|
|
/* Select page 0 */
|
|
ret_val = hw->phy.ops.acquire(hw);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
hw->phy.addr = 1;
|
|
ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
|
|
hw->phy.ops.release(hw);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
/*
|
|
* Configure the K1 Si workaround during phy reset assuming there is
|
|
* link so that it disables K1 if link is in 1Gbps.
|
|
*/
|
|
ret_val = e1000_k1_gig_workaround_hv(hw, true);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
/* Workaround for link disconnects on a busy hub in half duplex */
|
|
ret_val = hw->phy.ops.acquire(hw);
|
|
if (ret_val)
|
|
goto out;
|
|
ret_val = hw->phy.ops.read_reg_locked(hw,
|
|
PHY_REG(BM_PORT_CTRL_PAGE, 17),
|
|
&phy_data);
|
|
if (ret_val)
|
|
goto release;
|
|
ret_val = hw->phy.ops.write_reg_locked(hw,
|
|
PHY_REG(BM_PORT_CTRL_PAGE, 17),
|
|
phy_data & 0x00FF);
|
|
release:
|
|
hw->phy.ops.release(hw);
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
|
|
* @hw: pointer to the HW structure
|
|
**/
|
|
void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
|
|
{
|
|
u32 mac_reg;
|
|
u16 i;
|
|
|
|
/* Copy both RAL/H (rar_entry_count) and SHRAL/H (+4) to PHY */
|
|
for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
|
|
mac_reg = er32(RAL(i));
|
|
e1e_wphy(hw, BM_RAR_L(i), (u16)(mac_reg & 0xFFFF));
|
|
e1e_wphy(hw, BM_RAR_M(i), (u16)((mac_reg >> 16) & 0xFFFF));
|
|
mac_reg = er32(RAH(i));
|
|
e1e_wphy(hw, BM_RAR_H(i), (u16)(mac_reg & 0xFFFF));
|
|
e1e_wphy(hw, BM_RAR_CTRL(i), (u16)((mac_reg >> 16) & 0x8000));
|
|
}
|
|
}
|
|
|
|
static u32 e1000_calc_rx_da_crc(u8 mac[])
|
|
{
|
|
u32 poly = 0xEDB88320; /* Polynomial for 802.3 CRC calculation */
|
|
u32 i, j, mask, crc;
|
|
|
|
crc = 0xffffffff;
|
|
for (i = 0; i < 6; i++) {
|
|
crc = crc ^ mac[i];
|
|
for (j = 8; j > 0; j--) {
|
|
mask = (crc & 1) * (-1);
|
|
crc = (crc >> 1) ^ (poly & mask);
|
|
}
|
|
}
|
|
return ~crc;
|
|
}
|
|
|
|
/**
|
|
* e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
|
|
* with 82579 PHY
|
|
* @hw: pointer to the HW structure
|
|
* @enable: flag to enable/disable workaround when enabling/disabling jumbos
|
|
**/
|
|
s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
|
|
{
|
|
s32 ret_val = 0;
|
|
u16 phy_reg, data;
|
|
u32 mac_reg;
|
|
u16 i;
|
|
|
|
if (hw->mac.type != e1000_pch2lan)
|
|
goto out;
|
|
|
|
/* disable Rx path while enabling/disabling workaround */
|
|
e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
|
|
ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
if (enable) {
|
|
/*
|
|
* Write Rx addresses (rar_entry_count for RAL/H, +4 for
|
|
* SHRAL/H) and initial CRC values to the MAC
|
|
*/
|
|
for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
|
|
u8 mac_addr[ETH_ALEN] = {0};
|
|
u32 addr_high, addr_low;
|
|
|
|
addr_high = er32(RAH(i));
|
|
if (!(addr_high & E1000_RAH_AV))
|
|
continue;
|
|
addr_low = er32(RAL(i));
|
|
mac_addr[0] = (addr_low & 0xFF);
|
|
mac_addr[1] = ((addr_low >> 8) & 0xFF);
|
|
mac_addr[2] = ((addr_low >> 16) & 0xFF);
|
|
mac_addr[3] = ((addr_low >> 24) & 0xFF);
|
|
mac_addr[4] = (addr_high & 0xFF);
|
|
mac_addr[5] = ((addr_high >> 8) & 0xFF);
|
|
|
|
ew32(PCH_RAICC(i),
|
|
e1000_calc_rx_da_crc(mac_addr));
|
|
}
|
|
|
|
/* Write Rx addresses to the PHY */
|
|
e1000_copy_rx_addrs_to_phy_ich8lan(hw);
|
|
|
|
/* Enable jumbo frame workaround in the MAC */
|
|
mac_reg = er32(FFLT_DBG);
|
|
mac_reg &= ~(1 << 14);
|
|
mac_reg |= (7 << 15);
|
|
ew32(FFLT_DBG, mac_reg);
|
|
|
|
mac_reg = er32(RCTL);
|
|
mac_reg |= E1000_RCTL_SECRC;
|
|
ew32(RCTL, mac_reg);
|
|
|
|
ret_val = e1000e_read_kmrn_reg(hw,
|
|
E1000_KMRNCTRLSTA_CTRL_OFFSET,
|
|
&data);
|
|
if (ret_val)
|
|
goto out;
|
|
ret_val = e1000e_write_kmrn_reg(hw,
|
|
E1000_KMRNCTRLSTA_CTRL_OFFSET,
|
|
data | (1 << 0));
|
|
if (ret_val)
|
|
goto out;
|
|
ret_val = e1000e_read_kmrn_reg(hw,
|
|
E1000_KMRNCTRLSTA_HD_CTRL,
|
|
&data);
|
|
if (ret_val)
|
|
goto out;
|
|
data &= ~(0xF << 8);
|
|
data |= (0xB << 8);
|
|
ret_val = e1000e_write_kmrn_reg(hw,
|
|
E1000_KMRNCTRLSTA_HD_CTRL,
|
|
data);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
/* Enable jumbo frame workaround in the PHY */
|
|
e1e_rphy(hw, PHY_REG(769, 20), &data);
|
|
ret_val = e1e_wphy(hw, PHY_REG(769, 20), data & ~(1 << 14));
|
|
if (ret_val)
|
|
goto out;
|
|
e1e_rphy(hw, PHY_REG(769, 23), &data);
|
|
data &= ~(0x7F << 5);
|
|
data |= (0x37 << 5);
|
|
ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
|
|
if (ret_val)
|
|
goto out;
|
|
e1e_rphy(hw, PHY_REG(769, 16), &data);
|
|
data &= ~(1 << 13);
|
|
data |= (1 << 12);
|
|
ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
|
|
if (ret_val)
|
|
goto out;
|
|
e1e_rphy(hw, PHY_REG(776, 20), &data);
|
|
data &= ~(0x3FF << 2);
|
|
data |= (0x1A << 2);
|
|
ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
|
|
if (ret_val)
|
|
goto out;
|
|
ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xFE00);
|
|
if (ret_val)
|
|
goto out;
|
|
e1e_rphy(hw, HV_PM_CTRL, &data);
|
|
ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10));
|
|
if (ret_val)
|
|
goto out;
|
|
} else {
|
|
/* Write MAC register values back to h/w defaults */
|
|
mac_reg = er32(FFLT_DBG);
|
|
mac_reg &= ~(0xF << 14);
|
|
ew32(FFLT_DBG, mac_reg);
|
|
|
|
mac_reg = er32(RCTL);
|
|
mac_reg &= ~E1000_RCTL_SECRC;
|
|
ew32(FFLT_DBG, mac_reg);
|
|
|
|
ret_val = e1000e_read_kmrn_reg(hw,
|
|
E1000_KMRNCTRLSTA_CTRL_OFFSET,
|
|
&data);
|
|
if (ret_val)
|
|
goto out;
|
|
ret_val = e1000e_write_kmrn_reg(hw,
|
|
E1000_KMRNCTRLSTA_CTRL_OFFSET,
|
|
data & ~(1 << 0));
|
|
if (ret_val)
|
|
goto out;
|
|
ret_val = e1000e_read_kmrn_reg(hw,
|
|
E1000_KMRNCTRLSTA_HD_CTRL,
|
|
&data);
|
|
if (ret_val)
|
|
goto out;
|
|
data &= ~(0xF << 8);
|
|
data |= (0xB << 8);
|
|
ret_val = e1000e_write_kmrn_reg(hw,
|
|
E1000_KMRNCTRLSTA_HD_CTRL,
|
|
data);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
/* Write PHY register values back to h/w defaults */
|
|
e1e_rphy(hw, PHY_REG(769, 20), &data);
|
|
ret_val = e1e_wphy(hw, PHY_REG(769, 20), data & ~(1 << 14));
|
|
if (ret_val)
|
|
goto out;
|
|
e1e_rphy(hw, PHY_REG(769, 23), &data);
|
|
data &= ~(0x7F << 5);
|
|
ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
|
|
if (ret_val)
|
|
goto out;
|
|
e1e_rphy(hw, PHY_REG(769, 16), &data);
|
|
data &= ~(1 << 12);
|
|
data |= (1 << 13);
|
|
ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
|
|
if (ret_val)
|
|
goto out;
|
|
e1e_rphy(hw, PHY_REG(776, 20), &data);
|
|
data &= ~(0x3FF << 2);
|
|
data |= (0x8 << 2);
|
|
ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
|
|
if (ret_val)
|
|
goto out;
|
|
ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
|
|
if (ret_val)
|
|
goto out;
|
|
e1e_rphy(hw, HV_PM_CTRL, &data);
|
|
ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10));
|
|
if (ret_val)
|
|
goto out;
|
|
}
|
|
|
|
/* re-enable Rx path after enabling/disabling workaround */
|
|
ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
|
|
* done after every PHY reset.
|
|
**/
|
|
static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
|
|
{
|
|
s32 ret_val = 0;
|
|
|
|
if (hw->mac.type != e1000_pch2lan)
|
|
goto out;
|
|
|
|
/* Set MDIO slow mode before any other MDIO access */
|
|
ret_val = e1000_set_mdio_slow_mode_hv(hw);
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_lan_init_done_ich8lan - Check for PHY config completion
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Check the appropriate indication the MAC has finished configuring the
|
|
* PHY after a software reset.
|
|
**/
|
|
static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
|
|
{
|
|
u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
|
|
|
|
/* Wait for basic configuration completes before proceeding */
|
|
do {
|
|
data = er32(STATUS);
|
|
data &= E1000_STATUS_LAN_INIT_DONE;
|
|
udelay(100);
|
|
} while ((!data) && --loop);
|
|
|
|
/*
|
|
* If basic configuration is incomplete before the above loop
|
|
* count reaches 0, loading the configuration from NVM will
|
|
* leave the PHY in a bad state possibly resulting in no link.
|
|
*/
|
|
if (loop == 0)
|
|
e_dbg("LAN_INIT_DONE not set, increase timeout\n");
|
|
|
|
/* Clear the Init Done bit for the next init event */
|
|
data = er32(STATUS);
|
|
data &= ~E1000_STATUS_LAN_INIT_DONE;
|
|
ew32(STATUS, data);
|
|
}
|
|
|
|
/**
|
|
* e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
|
|
* @hw: pointer to the HW structure
|
|
**/
|
|
static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
|
|
{
|
|
s32 ret_val = 0;
|
|
u16 reg;
|
|
|
|
if (e1000_check_reset_block(hw))
|
|
goto out;
|
|
|
|
/* Perform any necessary post-reset workarounds */
|
|
switch (hw->mac.type) {
|
|
case e1000_pchlan:
|
|
ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
|
|
if (ret_val)
|
|
goto out;
|
|
break;
|
|
case e1000_pch2lan:
|
|
ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
|
|
if (ret_val)
|
|
goto out;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* Dummy read to clear the phy wakeup bit after lcd reset */
|
|
if (hw->mac.type >= e1000_pchlan)
|
|
e1e_rphy(hw, BM_WUC, ®);
|
|
|
|
/* Configure the LCD with the extended configuration region in NVM */
|
|
ret_val = e1000_sw_lcd_config_ich8lan(hw);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
/* Configure the LCD with the OEM bits in NVM */
|
|
ret_val = e1000_oem_bits_config_ich8lan(hw, true);
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_phy_hw_reset_ich8lan - Performs a PHY reset
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Resets the PHY
|
|
* This is a function pointer entry point called by drivers
|
|
* or other shared routines.
|
|
**/
|
|
static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
|
|
{
|
|
s32 ret_val = 0;
|
|
|
|
ret_val = e1000e_phy_hw_reset_generic(hw);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
ret_val = e1000_post_phy_reset_ich8lan(hw);
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_set_lplu_state_pchlan - Set Low Power Link Up state
|
|
* @hw: pointer to the HW structure
|
|
* @active: true to enable LPLU, false to disable
|
|
*
|
|
* Sets the LPLU state according to the active flag. For PCH, if OEM write
|
|
* bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
|
|
* the phy speed. This function will manually set the LPLU bit and restart
|
|
* auto-neg as hw would do. D3 and D0 LPLU will call the same function
|
|
* since it configures the same bit.
|
|
**/
|
|
static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
|
|
{
|
|
s32 ret_val = 0;
|
|
u16 oem_reg;
|
|
|
|
ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
if (active)
|
|
oem_reg |= HV_OEM_BITS_LPLU;
|
|
else
|
|
oem_reg &= ~HV_OEM_BITS_LPLU;
|
|
|
|
oem_reg |= HV_OEM_BITS_RESTART_AN;
|
|
ret_val = e1e_wphy(hw, HV_OEM_BITS, oem_reg);
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
|
|
* @hw: pointer to the HW structure
|
|
* @active: true to enable LPLU, false to disable
|
|
*
|
|
* Sets the LPLU D0 state according to the active flag. When
|
|
* activating LPLU this function also disables smart speed
|
|
* and vice versa. LPLU will not be activated unless the
|
|
* device autonegotiation advertisement meets standards of
|
|
* either 10 or 10/100 or 10/100/1000 at all duplexes.
|
|
* This is a function pointer entry point only called by
|
|
* PHY setup routines.
|
|
**/
|
|
static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
|
|
{
|
|
struct e1000_phy_info *phy = &hw->phy;
|
|
u32 phy_ctrl;
|
|
s32 ret_val = 0;
|
|
u16 data;
|
|
|
|
if (phy->type == e1000_phy_ife)
|
|
return ret_val;
|
|
|
|
phy_ctrl = er32(PHY_CTRL);
|
|
|
|
if (active) {
|
|
phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
|
|
ew32(PHY_CTRL, phy_ctrl);
|
|
|
|
if (phy->type != e1000_phy_igp_3)
|
|
return 0;
|
|
|
|
/*
|
|
* Call gig speed drop workaround on LPLU before accessing
|
|
* any PHY registers
|
|
*/
|
|
if (hw->mac.type == e1000_ich8lan)
|
|
e1000e_gig_downshift_workaround_ich8lan(hw);
|
|
|
|
/* When LPLU is enabled, we should disable SmartSpeed */
|
|
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
|
|
data &= ~IGP01E1000_PSCFR_SMART_SPEED;
|
|
ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
} else {
|
|
phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
|
|
ew32(PHY_CTRL, phy_ctrl);
|
|
|
|
if (phy->type != e1000_phy_igp_3)
|
|
return 0;
|
|
|
|
/*
|
|
* LPLU and SmartSpeed are mutually exclusive. LPLU is used
|
|
* during Dx states where the power conservation is most
|
|
* important. During driver activity we should enable
|
|
* SmartSpeed, so performance is maintained.
|
|
*/
|
|
if (phy->smart_speed == e1000_smart_speed_on) {
|
|
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
|
|
&data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
data |= IGP01E1000_PSCFR_SMART_SPEED;
|
|
ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
|
|
data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
} else if (phy->smart_speed == e1000_smart_speed_off) {
|
|
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
|
|
&data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
data &= ~IGP01E1000_PSCFR_SMART_SPEED;
|
|
ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
|
|
data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
|
|
* @hw: pointer to the HW structure
|
|
* @active: true to enable LPLU, false to disable
|
|
*
|
|
* Sets the LPLU D3 state according to the active flag. When
|
|
* activating LPLU this function also disables smart speed
|
|
* and vice versa. LPLU will not be activated unless the
|
|
* device autonegotiation advertisement meets standards of
|
|
* either 10 or 10/100 or 10/100/1000 at all duplexes.
|
|
* This is a function pointer entry point only called by
|
|
* PHY setup routines.
|
|
**/
|
|
static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
|
|
{
|
|
struct e1000_phy_info *phy = &hw->phy;
|
|
u32 phy_ctrl;
|
|
s32 ret_val;
|
|
u16 data;
|
|
|
|
phy_ctrl = er32(PHY_CTRL);
|
|
|
|
if (!active) {
|
|
phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
|
|
ew32(PHY_CTRL, phy_ctrl);
|
|
|
|
if (phy->type != e1000_phy_igp_3)
|
|
return 0;
|
|
|
|
/*
|
|
* LPLU and SmartSpeed are mutually exclusive. LPLU is used
|
|
* during Dx states where the power conservation is most
|
|
* important. During driver activity we should enable
|
|
* SmartSpeed, so performance is maintained.
|
|
*/
|
|
if (phy->smart_speed == e1000_smart_speed_on) {
|
|
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
|
|
&data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
data |= IGP01E1000_PSCFR_SMART_SPEED;
|
|
ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
|
|
data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
} else if (phy->smart_speed == e1000_smart_speed_off) {
|
|
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
|
|
&data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
data &= ~IGP01E1000_PSCFR_SMART_SPEED;
|
|
ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
|
|
data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
}
|
|
} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
|
|
(phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
|
|
(phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
|
|
phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
|
|
ew32(PHY_CTRL, phy_ctrl);
|
|
|
|
if (phy->type != e1000_phy_igp_3)
|
|
return 0;
|
|
|
|
/*
|
|
* Call gig speed drop workaround on LPLU before accessing
|
|
* any PHY registers
|
|
*/
|
|
if (hw->mac.type == e1000_ich8lan)
|
|
e1000e_gig_downshift_workaround_ich8lan(hw);
|
|
|
|
/* When LPLU is enabled, we should disable SmartSpeed */
|
|
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
data &= ~IGP01E1000_PSCFR_SMART_SPEED;
|
|
ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
|
|
* @hw: pointer to the HW structure
|
|
* @bank: pointer to the variable that returns the active bank
|
|
*
|
|
* Reads signature byte from the NVM using the flash access registers.
|
|
* Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
|
|
**/
|
|
static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
|
|
{
|
|
u32 eecd;
|
|
struct e1000_nvm_info *nvm = &hw->nvm;
|
|
u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
|
|
u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
|
|
u8 sig_byte = 0;
|
|
s32 ret_val = 0;
|
|
|
|
switch (hw->mac.type) {
|
|
case e1000_ich8lan:
|
|
case e1000_ich9lan:
|
|
eecd = er32(EECD);
|
|
if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
|
|
E1000_EECD_SEC1VAL_VALID_MASK) {
|
|
if (eecd & E1000_EECD_SEC1VAL)
|
|
*bank = 1;
|
|
else
|
|
*bank = 0;
|
|
|
|
return 0;
|
|
}
|
|
e_dbg("Unable to determine valid NVM bank via EEC - "
|
|
"reading flash signature\n");
|
|
/* fall-thru */
|
|
default:
|
|
/* set bank to 0 in case flash read fails */
|
|
*bank = 0;
|
|
|
|
/* Check bank 0 */
|
|
ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
|
|
&sig_byte);
|
|
if (ret_val)
|
|
return ret_val;
|
|
if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
|
|
E1000_ICH_NVM_SIG_VALUE) {
|
|
*bank = 0;
|
|
return 0;
|
|
}
|
|
|
|
/* Check bank 1 */
|
|
ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
|
|
bank1_offset,
|
|
&sig_byte);
|
|
if (ret_val)
|
|
return ret_val;
|
|
if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
|
|
E1000_ICH_NVM_SIG_VALUE) {
|
|
*bank = 1;
|
|
return 0;
|
|
}
|
|
|
|
e_dbg("ERROR: No valid NVM bank present\n");
|
|
return -E1000_ERR_NVM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* e1000_read_nvm_ich8lan - Read word(s) from the NVM
|
|
* @hw: pointer to the HW structure
|
|
* @offset: The offset (in bytes) of the word(s) to read.
|
|
* @words: Size of data to read in words
|
|
* @data: Pointer to the word(s) to read at offset.
|
|
*
|
|
* Reads a word(s) from the NVM using the flash access registers.
|
|
**/
|
|
static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
|
|
u16 *data)
|
|
{
|
|
struct e1000_nvm_info *nvm = &hw->nvm;
|
|
struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
|
|
u32 act_offset;
|
|
s32 ret_val = 0;
|
|
u32 bank = 0;
|
|
u16 i, word;
|
|
|
|
if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
|
|
(words == 0)) {
|
|
e_dbg("nvm parameter(s) out of bounds\n");
|
|
ret_val = -E1000_ERR_NVM;
|
|
goto out;
|
|
}
|
|
|
|
nvm->ops.acquire(hw);
|
|
|
|
ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
|
|
if (ret_val) {
|
|
e_dbg("Could not detect valid bank, assuming bank 0\n");
|
|
bank = 0;
|
|
}
|
|
|
|
act_offset = (bank) ? nvm->flash_bank_size : 0;
|
|
act_offset += offset;
|
|
|
|
ret_val = 0;
|
|
for (i = 0; i < words; i++) {
|
|
if ((dev_spec->shadow_ram) &&
|
|
(dev_spec->shadow_ram[offset+i].modified)) {
|
|
data[i] = dev_spec->shadow_ram[offset+i].value;
|
|
} else {
|
|
ret_val = e1000_read_flash_word_ich8lan(hw,
|
|
act_offset + i,
|
|
&word);
|
|
if (ret_val)
|
|
break;
|
|
data[i] = word;
|
|
}
|
|
}
|
|
|
|
nvm->ops.release(hw);
|
|
|
|
out:
|
|
if (ret_val)
|
|
e_dbg("NVM read error: %d\n", ret_val);
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_flash_cycle_init_ich8lan - Initialize flash
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* This function does initial flash setup so that a new read/write/erase cycle
|
|
* can be started.
|
|
**/
|
|
static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
|
|
{
|
|
union ich8_hws_flash_status hsfsts;
|
|
s32 ret_val = -E1000_ERR_NVM;
|
|
s32 i = 0;
|
|
|
|
hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
|
|
|
|
/* Check if the flash descriptor is valid */
|
|
if (hsfsts.hsf_status.fldesvalid == 0) {
|
|
e_dbg("Flash descriptor invalid. "
|
|
"SW Sequencing must be used.\n");
|
|
return -E1000_ERR_NVM;
|
|
}
|
|
|
|
/* Clear FCERR and DAEL in hw status by writing 1 */
|
|
hsfsts.hsf_status.flcerr = 1;
|
|
hsfsts.hsf_status.dael = 1;
|
|
|
|
ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
|
|
|
|
/*
|
|
* Either we should have a hardware SPI cycle in progress
|
|
* bit to check against, in order to start a new cycle or
|
|
* FDONE bit should be changed in the hardware so that it
|
|
* is 1 after hardware reset, which can then be used as an
|
|
* indication whether a cycle is in progress or has been
|
|
* completed.
|
|
*/
|
|
|
|
if (hsfsts.hsf_status.flcinprog == 0) {
|
|
/*
|
|
* There is no cycle running at present,
|
|
* so we can start a cycle.
|
|
* Begin by setting Flash Cycle Done.
|
|
*/
|
|
hsfsts.hsf_status.flcdone = 1;
|
|
ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
|
|
ret_val = 0;
|
|
} else {
|
|
/*
|
|
* Otherwise poll for sometime so the current
|
|
* cycle has a chance to end before giving up.
|
|
*/
|
|
for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
|
|
hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS);
|
|
if (hsfsts.hsf_status.flcinprog == 0) {
|
|
ret_val = 0;
|
|
break;
|
|
}
|
|
udelay(1);
|
|
}
|
|
if (ret_val == 0) {
|
|
/*
|
|
* Successful in waiting for previous cycle to timeout,
|
|
* now set the Flash Cycle Done.
|
|
*/
|
|
hsfsts.hsf_status.flcdone = 1;
|
|
ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
|
|
} else {
|
|
e_dbg("Flash controller busy, cannot get access\n");
|
|
}
|
|
}
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
|
|
* @hw: pointer to the HW structure
|
|
* @timeout: maximum time to wait for completion
|
|
*
|
|
* This function starts a flash cycle and waits for its completion.
|
|
**/
|
|
static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
|
|
{
|
|
union ich8_hws_flash_ctrl hsflctl;
|
|
union ich8_hws_flash_status hsfsts;
|
|
s32 ret_val = -E1000_ERR_NVM;
|
|
u32 i = 0;
|
|
|
|
/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
|
|
hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
|
|
hsflctl.hsf_ctrl.flcgo = 1;
|
|
ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
|
|
|
|
/* wait till FDONE bit is set to 1 */
|
|
do {
|
|
hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
|
|
if (hsfsts.hsf_status.flcdone == 1)
|
|
break;
|
|
udelay(1);
|
|
} while (i++ < timeout);
|
|
|
|
if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
|
|
return 0;
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_read_flash_word_ich8lan - Read word from flash
|
|
* @hw: pointer to the HW structure
|
|
* @offset: offset to data location
|
|
* @data: pointer to the location for storing the data
|
|
*
|
|
* Reads the flash word at offset into data. Offset is converted
|
|
* to bytes before read.
|
|
**/
|
|
static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
|
|
u16 *data)
|
|
{
|
|
/* Must convert offset into bytes. */
|
|
offset <<= 1;
|
|
|
|
return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
|
|
}
|
|
|
|
/**
|
|
* e1000_read_flash_byte_ich8lan - Read byte from flash
|
|
* @hw: pointer to the HW structure
|
|
* @offset: The offset of the byte to read.
|
|
* @data: Pointer to a byte to store the value read.
|
|
*
|
|
* Reads a single byte from the NVM using the flash access registers.
|
|
**/
|
|
static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
|
|
u8 *data)
|
|
{
|
|
s32 ret_val;
|
|
u16 word = 0;
|
|
|
|
ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
*data = (u8)word;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* e1000_read_flash_data_ich8lan - Read byte or word from NVM
|
|
* @hw: pointer to the HW structure
|
|
* @offset: The offset (in bytes) of the byte or word to read.
|
|
* @size: Size of data to read, 1=byte 2=word
|
|
* @data: Pointer to the word to store the value read.
|
|
*
|
|
* Reads a byte or word from the NVM using the flash access registers.
|
|
**/
|
|
static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
|
|
u8 size, u16 *data)
|
|
{
|
|
union ich8_hws_flash_status hsfsts;
|
|
union ich8_hws_flash_ctrl hsflctl;
|
|
u32 flash_linear_addr;
|
|
u32 flash_data = 0;
|
|
s32 ret_val = -E1000_ERR_NVM;
|
|
u8 count = 0;
|
|
|
|
if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
|
|
return -E1000_ERR_NVM;
|
|
|
|
flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
|
|
hw->nvm.flash_base_addr;
|
|
|
|
do {
|
|
udelay(1);
|
|
/* Steps */
|
|
ret_val = e1000_flash_cycle_init_ich8lan(hw);
|
|
if (ret_val != 0)
|
|
break;
|
|
|
|
hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
|
|
/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
|
|
hsflctl.hsf_ctrl.fldbcount = size - 1;
|
|
hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
|
|
ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
|
|
|
|
ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
|
|
|
|
ret_val = e1000_flash_cycle_ich8lan(hw,
|
|
ICH_FLASH_READ_COMMAND_TIMEOUT);
|
|
|
|
/*
|
|
* Check if FCERR is set to 1, if set to 1, clear it
|
|
* and try the whole sequence a few more times, else
|
|
* read in (shift in) the Flash Data0, the order is
|
|
* least significant byte first msb to lsb
|
|
*/
|
|
if (ret_val == 0) {
|
|
flash_data = er32flash(ICH_FLASH_FDATA0);
|
|
if (size == 1) {
|
|
*data = (u8)(flash_data & 0x000000FF);
|
|
} else if (size == 2) {
|
|
*data = (u16)(flash_data & 0x0000FFFF);
|
|
}
|
|
break;
|
|
} else {
|
|
/*
|
|
* If we've gotten here, then things are probably
|
|
* completely hosed, but if the error condition is
|
|
* detected, it won't hurt to give it another try...
|
|
* ICH_FLASH_CYCLE_REPEAT_COUNT times.
|
|
*/
|
|
hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
|
|
if (hsfsts.hsf_status.flcerr == 1) {
|
|
/* Repeat for some time before giving up. */
|
|
continue;
|
|
} else if (hsfsts.hsf_status.flcdone == 0) {
|
|
e_dbg("Timeout error - flash cycle "
|
|
"did not complete.\n");
|
|
break;
|
|
}
|
|
}
|
|
} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_write_nvm_ich8lan - Write word(s) to the NVM
|
|
* @hw: pointer to the HW structure
|
|
* @offset: The offset (in bytes) of the word(s) to write.
|
|
* @words: Size of data to write in words
|
|
* @data: Pointer to the word(s) to write at offset.
|
|
*
|
|
* Writes a byte or word to the NVM using the flash access registers.
|
|
**/
|
|
static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
|
|
u16 *data)
|
|
{
|
|
struct e1000_nvm_info *nvm = &hw->nvm;
|
|
struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
|
|
u16 i;
|
|
|
|
if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
|
|
(words == 0)) {
|
|
e_dbg("nvm parameter(s) out of bounds\n");
|
|
return -E1000_ERR_NVM;
|
|
}
|
|
|
|
nvm->ops.acquire(hw);
|
|
|
|
for (i = 0; i < words; i++) {
|
|
dev_spec->shadow_ram[offset+i].modified = true;
|
|
dev_spec->shadow_ram[offset+i].value = data[i];
|
|
}
|
|
|
|
nvm->ops.release(hw);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* The NVM checksum is updated by calling the generic update_nvm_checksum,
|
|
* which writes the checksum to the shadow ram. The changes in the shadow
|
|
* ram are then committed to the EEPROM by processing each bank at a time
|
|
* checking for the modified bit and writing only the pending changes.
|
|
* After a successful commit, the shadow ram is cleared and is ready for
|
|
* future writes.
|
|
**/
|
|
static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_nvm_info *nvm = &hw->nvm;
|
|
struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
|
|
u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
|
|
s32 ret_val;
|
|
u16 data;
|
|
|
|
ret_val = e1000e_update_nvm_checksum_generic(hw);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
if (nvm->type != e1000_nvm_flash_sw)
|
|
goto out;
|
|
|
|
nvm->ops.acquire(hw);
|
|
|
|
/*
|
|
* We're writing to the opposite bank so if we're on bank 1,
|
|
* write to bank 0 etc. We also need to erase the segment that
|
|
* is going to be written
|
|
*/
|
|
ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
|
|
if (ret_val) {
|
|
e_dbg("Could not detect valid bank, assuming bank 0\n");
|
|
bank = 0;
|
|
}
|
|
|
|
if (bank == 0) {
|
|
new_bank_offset = nvm->flash_bank_size;
|
|
old_bank_offset = 0;
|
|
ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
|
|
if (ret_val)
|
|
goto release;
|
|
} else {
|
|
old_bank_offset = nvm->flash_bank_size;
|
|
new_bank_offset = 0;
|
|
ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
|
|
if (ret_val)
|
|
goto release;
|
|
}
|
|
|
|
for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
|
|
/*
|
|
* Determine whether to write the value stored
|
|
* in the other NVM bank or a modified value stored
|
|
* in the shadow RAM
|
|
*/
|
|
if (dev_spec->shadow_ram[i].modified) {
|
|
data = dev_spec->shadow_ram[i].value;
|
|
} else {
|
|
ret_val = e1000_read_flash_word_ich8lan(hw, i +
|
|
old_bank_offset,
|
|
&data);
|
|
if (ret_val)
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If the word is 0x13, then make sure the signature bits
|
|
* (15:14) are 11b until the commit has completed.
|
|
* This will allow us to write 10b which indicates the
|
|
* signature is valid. We want to do this after the write
|
|
* has completed so that we don't mark the segment valid
|
|
* while the write is still in progress
|
|
*/
|
|
if (i == E1000_ICH_NVM_SIG_WORD)
|
|
data |= E1000_ICH_NVM_SIG_MASK;
|
|
|
|
/* Convert offset to bytes. */
|
|
act_offset = (i + new_bank_offset) << 1;
|
|
|
|
udelay(100);
|
|
/* Write the bytes to the new bank. */
|
|
ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
|
|
act_offset,
|
|
(u8)data);
|
|
if (ret_val)
|
|
break;
|
|
|
|
udelay(100);
|
|
ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
|
|
act_offset + 1,
|
|
(u8)(data >> 8));
|
|
if (ret_val)
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Don't bother writing the segment valid bits if sector
|
|
* programming failed.
|
|
*/
|
|
if (ret_val) {
|
|
/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
|
|
e_dbg("Flash commit failed.\n");
|
|
goto release;
|
|
}
|
|
|
|
/*
|
|
* Finally validate the new segment by setting bit 15:14
|
|
* to 10b in word 0x13 , this can be done without an
|
|
* erase as well since these bits are 11 to start with
|
|
* and we need to change bit 14 to 0b
|
|
*/
|
|
act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
|
|
ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
|
|
if (ret_val)
|
|
goto release;
|
|
|
|
data &= 0xBFFF;
|
|
ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
|
|
act_offset * 2 + 1,
|
|
(u8)(data >> 8));
|
|
if (ret_val)
|
|
goto release;
|
|
|
|
/*
|
|
* And invalidate the previously valid segment by setting
|
|
* its signature word (0x13) high_byte to 0b. This can be
|
|
* done without an erase because flash erase sets all bits
|
|
* to 1's. We can write 1's to 0's without an erase
|
|
*/
|
|
act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
|
|
ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
|
|
if (ret_val)
|
|
goto release;
|
|
|
|
/* Great! Everything worked, we can now clear the cached entries. */
|
|
for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
|
|
dev_spec->shadow_ram[i].modified = false;
|
|
dev_spec->shadow_ram[i].value = 0xFFFF;
|
|
}
|
|
|
|
release:
|
|
nvm->ops.release(hw);
|
|
|
|
/*
|
|
* Reload the EEPROM, or else modifications will not appear
|
|
* until after the next adapter reset.
|
|
*/
|
|
if (!ret_val) {
|
|
e1000e_reload_nvm(hw);
|
|
msleep(10);
|
|
}
|
|
|
|
out:
|
|
if (ret_val)
|
|
e_dbg("NVM update error: %d\n", ret_val);
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
|
|
* If the bit is 0, that the EEPROM had been modified, but the checksum was not
|
|
* calculated, in which case we need to calculate the checksum and set bit 6.
|
|
**/
|
|
static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
|
|
{
|
|
s32 ret_val;
|
|
u16 data;
|
|
|
|
/*
|
|
* Read 0x19 and check bit 6. If this bit is 0, the checksum
|
|
* needs to be fixed. This bit is an indication that the NVM
|
|
* was prepared by OEM software and did not calculate the
|
|
* checksum...a likely scenario.
|
|
*/
|
|
ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
if ((data & 0x40) == 0) {
|
|
data |= 0x40;
|
|
ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
ret_val = e1000e_update_nvm_checksum(hw);
|
|
if (ret_val)
|
|
return ret_val;
|
|
}
|
|
|
|
return e1000e_validate_nvm_checksum_generic(hw);
|
|
}
|
|
|
|
/**
|
|
* e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* To prevent malicious write/erase of the NVM, set it to be read-only
|
|
* so that the hardware ignores all write/erase cycles of the NVM via
|
|
* the flash control registers. The shadow-ram copy of the NVM will
|
|
* still be updated, however any updates to this copy will not stick
|
|
* across driver reloads.
|
|
**/
|
|
void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_nvm_info *nvm = &hw->nvm;
|
|
union ich8_flash_protected_range pr0;
|
|
union ich8_hws_flash_status hsfsts;
|
|
u32 gfpreg;
|
|
|
|
nvm->ops.acquire(hw);
|
|
|
|
gfpreg = er32flash(ICH_FLASH_GFPREG);
|
|
|
|
/* Write-protect GbE Sector of NVM */
|
|
pr0.regval = er32flash(ICH_FLASH_PR0);
|
|
pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
|
|
pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
|
|
pr0.range.wpe = true;
|
|
ew32flash(ICH_FLASH_PR0, pr0.regval);
|
|
|
|
/*
|
|
* Lock down a subset of GbE Flash Control Registers, e.g.
|
|
* PR0 to prevent the write-protection from being lifted.
|
|
* Once FLOCKDN is set, the registers protected by it cannot
|
|
* be written until FLOCKDN is cleared by a hardware reset.
|
|
*/
|
|
hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
|
|
hsfsts.hsf_status.flockdn = true;
|
|
ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
|
|
|
|
nvm->ops.release(hw);
|
|
}
|
|
|
|
/**
|
|
* e1000_write_flash_data_ich8lan - Writes bytes to the NVM
|
|
* @hw: pointer to the HW structure
|
|
* @offset: The offset (in bytes) of the byte/word to read.
|
|
* @size: Size of data to read, 1=byte 2=word
|
|
* @data: The byte(s) to write to the NVM.
|
|
*
|
|
* Writes one/two bytes to the NVM using the flash access registers.
|
|
**/
|
|
static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
|
|
u8 size, u16 data)
|
|
{
|
|
union ich8_hws_flash_status hsfsts;
|
|
union ich8_hws_flash_ctrl hsflctl;
|
|
u32 flash_linear_addr;
|
|
u32 flash_data = 0;
|
|
s32 ret_val;
|
|
u8 count = 0;
|
|
|
|
if (size < 1 || size > 2 || data > size * 0xff ||
|
|
offset > ICH_FLASH_LINEAR_ADDR_MASK)
|
|
return -E1000_ERR_NVM;
|
|
|
|
flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
|
|
hw->nvm.flash_base_addr;
|
|
|
|
do {
|
|
udelay(1);
|
|
/* Steps */
|
|
ret_val = e1000_flash_cycle_init_ich8lan(hw);
|
|
if (ret_val)
|
|
break;
|
|
|
|
hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
|
|
/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
|
|
hsflctl.hsf_ctrl.fldbcount = size -1;
|
|
hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
|
|
ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
|
|
|
|
ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
|
|
|
|
if (size == 1)
|
|
flash_data = (u32)data & 0x00FF;
|
|
else
|
|
flash_data = (u32)data;
|
|
|
|
ew32flash(ICH_FLASH_FDATA0, flash_data);
|
|
|
|
/*
|
|
* check if FCERR is set to 1 , if set to 1, clear it
|
|
* and try the whole sequence a few more times else done
|
|
*/
|
|
ret_val = e1000_flash_cycle_ich8lan(hw,
|
|
ICH_FLASH_WRITE_COMMAND_TIMEOUT);
|
|
if (!ret_val)
|
|
break;
|
|
|
|
/*
|
|
* If we're here, then things are most likely
|
|
* completely hosed, but if the error condition
|
|
* is detected, it won't hurt to give it another
|
|
* try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
|
|
*/
|
|
hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
|
|
if (hsfsts.hsf_status.flcerr == 1)
|
|
/* Repeat for some time before giving up. */
|
|
continue;
|
|
if (hsfsts.hsf_status.flcdone == 0) {
|
|
e_dbg("Timeout error - flash cycle "
|
|
"did not complete.");
|
|
break;
|
|
}
|
|
} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_write_flash_byte_ich8lan - Write a single byte to NVM
|
|
* @hw: pointer to the HW structure
|
|
* @offset: The index of the byte to read.
|
|
* @data: The byte to write to the NVM.
|
|
*
|
|
* Writes a single byte to the NVM using the flash access registers.
|
|
**/
|
|
static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
|
|
u8 data)
|
|
{
|
|
u16 word = (u16)data;
|
|
|
|
return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
|
|
}
|
|
|
|
/**
|
|
* e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
|
|
* @hw: pointer to the HW structure
|
|
* @offset: The offset of the byte to write.
|
|
* @byte: The byte to write to the NVM.
|
|
*
|
|
* Writes a single byte to the NVM using the flash access registers.
|
|
* Goes through a retry algorithm before giving up.
|
|
**/
|
|
static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
|
|
u32 offset, u8 byte)
|
|
{
|
|
s32 ret_val;
|
|
u16 program_retries;
|
|
|
|
ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
|
|
if (!ret_val)
|
|
return ret_val;
|
|
|
|
for (program_retries = 0; program_retries < 100; program_retries++) {
|
|
e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
|
|
udelay(100);
|
|
ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
|
|
if (!ret_val)
|
|
break;
|
|
}
|
|
if (program_retries == 100)
|
|
return -E1000_ERR_NVM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
|
|
* @hw: pointer to the HW structure
|
|
* @bank: 0 for first bank, 1 for second bank, etc.
|
|
*
|
|
* Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
|
|
* bank N is 4096 * N + flash_reg_addr.
|
|
**/
|
|
static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
|
|
{
|
|
struct e1000_nvm_info *nvm = &hw->nvm;
|
|
union ich8_hws_flash_status hsfsts;
|
|
union ich8_hws_flash_ctrl hsflctl;
|
|
u32 flash_linear_addr;
|
|
/* bank size is in 16bit words - adjust to bytes */
|
|
u32 flash_bank_size = nvm->flash_bank_size * 2;
|
|
s32 ret_val;
|
|
s32 count = 0;
|
|
s32 j, iteration, sector_size;
|
|
|
|
hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
|
|
|
|
/*
|
|
* Determine HW Sector size: Read BERASE bits of hw flash status
|
|
* register
|
|
* 00: The Hw sector is 256 bytes, hence we need to erase 16
|
|
* consecutive sectors. The start index for the nth Hw sector
|
|
* can be calculated as = bank * 4096 + n * 256
|
|
* 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
|
|
* The start index for the nth Hw sector can be calculated
|
|
* as = bank * 4096
|
|
* 10: The Hw sector is 8K bytes, nth sector = bank * 8192
|
|
* (ich9 only, otherwise error condition)
|
|
* 11: The Hw sector is 64K bytes, nth sector = bank * 65536
|
|
*/
|
|
switch (hsfsts.hsf_status.berasesz) {
|
|
case 0:
|
|
/* Hw sector size 256 */
|
|
sector_size = ICH_FLASH_SEG_SIZE_256;
|
|
iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
|
|
break;
|
|
case 1:
|
|
sector_size = ICH_FLASH_SEG_SIZE_4K;
|
|
iteration = 1;
|
|
break;
|
|
case 2:
|
|
sector_size = ICH_FLASH_SEG_SIZE_8K;
|
|
iteration = 1;
|
|
break;
|
|
case 3:
|
|
sector_size = ICH_FLASH_SEG_SIZE_64K;
|
|
iteration = 1;
|
|
break;
|
|
default:
|
|
return -E1000_ERR_NVM;
|
|
}
|
|
|
|
/* Start with the base address, then add the sector offset. */
|
|
flash_linear_addr = hw->nvm.flash_base_addr;
|
|
flash_linear_addr += (bank) ? flash_bank_size : 0;
|
|
|
|
for (j = 0; j < iteration ; j++) {
|
|
do {
|
|
/* Steps */
|
|
ret_val = e1000_flash_cycle_init_ich8lan(hw);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
/*
|
|
* Write a value 11 (block Erase) in Flash
|
|
* Cycle field in hw flash control
|
|
*/
|
|
hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
|
|
hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
|
|
ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
|
|
|
|
/*
|
|
* Write the last 24 bits of an index within the
|
|
* block into Flash Linear address field in Flash
|
|
* Address.
|
|
*/
|
|
flash_linear_addr += (j * sector_size);
|
|
ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
|
|
|
|
ret_val = e1000_flash_cycle_ich8lan(hw,
|
|
ICH_FLASH_ERASE_COMMAND_TIMEOUT);
|
|
if (ret_val == 0)
|
|
break;
|
|
|
|
/*
|
|
* Check if FCERR is set to 1. If 1,
|
|
* clear it and try the whole sequence
|
|
* a few more times else Done
|
|
*/
|
|
hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
|
|
if (hsfsts.hsf_status.flcerr == 1)
|
|
/* repeat for some time before giving up */
|
|
continue;
|
|
else if (hsfsts.hsf_status.flcdone == 0)
|
|
return ret_val;
|
|
} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* e1000_valid_led_default_ich8lan - Set the default LED settings
|
|
* @hw: pointer to the HW structure
|
|
* @data: Pointer to the LED settings
|
|
*
|
|
* Reads the LED default settings from the NVM to data. If the NVM LED
|
|
* settings is all 0's or F's, set the LED default to a valid LED default
|
|
* setting.
|
|
**/
|
|
static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
|
|
{
|
|
s32 ret_val;
|
|
|
|
ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
|
|
if (ret_val) {
|
|
e_dbg("NVM Read Error\n");
|
|
return ret_val;
|
|
}
|
|
|
|
if (*data == ID_LED_RESERVED_0000 ||
|
|
*data == ID_LED_RESERVED_FFFF)
|
|
*data = ID_LED_DEFAULT_ICH8LAN;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* e1000_id_led_init_pchlan - store LED configurations
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* PCH does not control LEDs via the LEDCTL register, rather it uses
|
|
* the PHY LED configuration register.
|
|
*
|
|
* PCH also does not have an "always on" or "always off" mode which
|
|
* complicates the ID feature. Instead of using the "on" mode to indicate
|
|
* in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init()),
|
|
* use "link_up" mode. The LEDs will still ID on request if there is no
|
|
* link based on logic in e1000_led_[on|off]_pchlan().
|
|
**/
|
|
static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_mac_info *mac = &hw->mac;
|
|
s32 ret_val;
|
|
const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
|
|
const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
|
|
u16 data, i, temp, shift;
|
|
|
|
/* Get default ID LED modes */
|
|
ret_val = hw->nvm.ops.valid_led_default(hw, &data);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
mac->ledctl_default = er32(LEDCTL);
|
|
mac->ledctl_mode1 = mac->ledctl_default;
|
|
mac->ledctl_mode2 = mac->ledctl_default;
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
|
|
shift = (i * 5);
|
|
switch (temp) {
|
|
case ID_LED_ON1_DEF2:
|
|
case ID_LED_ON1_ON2:
|
|
case ID_LED_ON1_OFF2:
|
|
mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
|
|
mac->ledctl_mode1 |= (ledctl_on << shift);
|
|
break;
|
|
case ID_LED_OFF1_DEF2:
|
|
case ID_LED_OFF1_ON2:
|
|
case ID_LED_OFF1_OFF2:
|
|
mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
|
|
mac->ledctl_mode1 |= (ledctl_off << shift);
|
|
break;
|
|
default:
|
|
/* Do nothing */
|
|
break;
|
|
}
|
|
switch (temp) {
|
|
case ID_LED_DEF1_ON2:
|
|
case ID_LED_ON1_ON2:
|
|
case ID_LED_OFF1_ON2:
|
|
mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
|
|
mac->ledctl_mode2 |= (ledctl_on << shift);
|
|
break;
|
|
case ID_LED_DEF1_OFF2:
|
|
case ID_LED_ON1_OFF2:
|
|
case ID_LED_OFF1_OFF2:
|
|
mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
|
|
mac->ledctl_mode2 |= (ledctl_off << shift);
|
|
break;
|
|
default:
|
|
/* Do nothing */
|
|
break;
|
|
}
|
|
}
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_get_bus_info_ich8lan - Get/Set the bus type and width
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
|
|
* register, so the the bus width is hard coded.
|
|
**/
|
|
static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_bus_info *bus = &hw->bus;
|
|
s32 ret_val;
|
|
|
|
ret_val = e1000e_get_bus_info_pcie(hw);
|
|
|
|
/*
|
|
* ICH devices are "PCI Express"-ish. They have
|
|
* a configuration space, but do not contain
|
|
* PCI Express Capability registers, so bus width
|
|
* must be hardcoded.
|
|
*/
|
|
if (bus->width == e1000_bus_width_unknown)
|
|
bus->width = e1000_bus_width_pcie_x1;
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_reset_hw_ich8lan - Reset the hardware
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Does a full reset of the hardware which includes a reset of the PHY and
|
|
* MAC.
|
|
**/
|
|
static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
|
|
u16 reg;
|
|
u32 ctrl, icr, kab;
|
|
s32 ret_val;
|
|
|
|
/*
|
|
* Prevent the PCI-E bus from sticking if there is no TLP connection
|
|
* on the last TLP read/write transaction when MAC is reset.
|
|
*/
|
|
ret_val = e1000e_disable_pcie_master(hw);
|
|
if (ret_val)
|
|
e_dbg("PCI-E Master disable polling has failed.\n");
|
|
|
|
e_dbg("Masking off all interrupts\n");
|
|
ew32(IMC, 0xffffffff);
|
|
|
|
/*
|
|
* Disable the Transmit and Receive units. Then delay to allow
|
|
* any pending transactions to complete before we hit the MAC
|
|
* with the global reset.
|
|
*/
|
|
ew32(RCTL, 0);
|
|
ew32(TCTL, E1000_TCTL_PSP);
|
|
e1e_flush();
|
|
|
|
msleep(10);
|
|
|
|
/* Workaround for ICH8 bit corruption issue in FIFO memory */
|
|
if (hw->mac.type == e1000_ich8lan) {
|
|
/* Set Tx and Rx buffer allocation to 8k apiece. */
|
|
ew32(PBA, E1000_PBA_8K);
|
|
/* Set Packet Buffer Size to 16k. */
|
|
ew32(PBS, E1000_PBS_16K);
|
|
}
|
|
|
|
if (hw->mac.type == e1000_pchlan) {
|
|
/* Save the NVM K1 bit setting*/
|
|
ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, ®);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
if (reg & E1000_NVM_K1_ENABLE)
|
|
dev_spec->nvm_k1_enabled = true;
|
|
else
|
|
dev_spec->nvm_k1_enabled = false;
|
|
}
|
|
|
|
ctrl = er32(CTRL);
|
|
|
|
if (!e1000_check_reset_block(hw)) {
|
|
/*
|
|
* Full-chip reset requires MAC and PHY reset at the same
|
|
* time to make sure the interface between MAC and the
|
|
* external PHY is reset.
|
|
*/
|
|
ctrl |= E1000_CTRL_PHY_RST;
|
|
}
|
|
ret_val = e1000_acquire_swflag_ich8lan(hw);
|
|
e_dbg("Issuing a global reset to ich8lan\n");
|
|
ew32(CTRL, (ctrl | E1000_CTRL_RST));
|
|
msleep(20);
|
|
|
|
if (!ret_val)
|
|
e1000_release_swflag_ich8lan(hw);
|
|
|
|
if (ctrl & E1000_CTRL_PHY_RST) {
|
|
ret_val = hw->phy.ops.get_cfg_done(hw);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
ret_val = e1000_post_phy_reset_ich8lan(hw);
|
|
if (ret_val)
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* For PCH, this write will make sure that any noise
|
|
* will be detected as a CRC error and be dropped rather than show up
|
|
* as a bad packet to the DMA engine.
|
|
*/
|
|
if (hw->mac.type == e1000_pchlan)
|
|
ew32(CRC_OFFSET, 0x65656565);
|
|
|
|
ew32(IMC, 0xffffffff);
|
|
icr = er32(ICR);
|
|
|
|
kab = er32(KABGTXD);
|
|
kab |= E1000_KABGTXD_BGSQLBIAS;
|
|
ew32(KABGTXD, kab);
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_init_hw_ich8lan - Initialize the hardware
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Prepares the hardware for transmit and receive by doing the following:
|
|
* - initialize hardware bits
|
|
* - initialize LED identification
|
|
* - setup receive address registers
|
|
* - setup flow control
|
|
* - setup transmit descriptors
|
|
* - clear statistics
|
|
**/
|
|
static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_mac_info *mac = &hw->mac;
|
|
u32 ctrl_ext, txdctl, snoop;
|
|
s32 ret_val;
|
|
u16 i;
|
|
|
|
e1000_initialize_hw_bits_ich8lan(hw);
|
|
|
|
/* Initialize identification LED */
|
|
ret_val = mac->ops.id_led_init(hw);
|
|
if (ret_val)
|
|
e_dbg("Error initializing identification LED\n");
|
|
/* This is not fatal and we should not stop init due to this */
|
|
|
|
/* Setup the receive address. */
|
|
e1000e_init_rx_addrs(hw, mac->rar_entry_count);
|
|
|
|
/* Zero out the Multicast HASH table */
|
|
e_dbg("Zeroing the MTA\n");
|
|
for (i = 0; i < mac->mta_reg_count; i++)
|
|
E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
|
|
|
|
/*
|
|
* The 82578 Rx buffer will stall if wakeup is enabled in host and
|
|
* the ME. Reading the BM_WUC register will clear the host wakeup bit.
|
|
* Reset the phy after disabling host wakeup to reset the Rx buffer.
|
|
*/
|
|
if (hw->phy.type == e1000_phy_82578) {
|
|
hw->phy.ops.read_reg(hw, BM_WUC, &i);
|
|
ret_val = e1000_phy_hw_reset_ich8lan(hw);
|
|
if (ret_val)
|
|
return ret_val;
|
|
}
|
|
|
|
/* Setup link and flow control */
|
|
ret_val = e1000_setup_link_ich8lan(hw);
|
|
|
|
/* Set the transmit descriptor write-back policy for both queues */
|
|
txdctl = er32(TXDCTL(0));
|
|
txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
|
|
E1000_TXDCTL_FULL_TX_DESC_WB;
|
|
txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
|
|
E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
|
|
ew32(TXDCTL(0), txdctl);
|
|
txdctl = er32(TXDCTL(1));
|
|
txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
|
|
E1000_TXDCTL_FULL_TX_DESC_WB;
|
|
txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
|
|
E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
|
|
ew32(TXDCTL(1), txdctl);
|
|
|
|
/*
|
|
* ICH8 has opposite polarity of no_snoop bits.
|
|
* By default, we should use snoop behavior.
|
|
*/
|
|
if (mac->type == e1000_ich8lan)
|
|
snoop = PCIE_ICH8_SNOOP_ALL;
|
|
else
|
|
snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
|
|
e1000e_set_pcie_no_snoop(hw, snoop);
|
|
|
|
ctrl_ext = er32(CTRL_EXT);
|
|
ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
|
|
ew32(CTRL_EXT, ctrl_ext);
|
|
|
|
/*
|
|
* Clear all of the statistics registers (clear on read). It is
|
|
* important that we do this after we have tried to establish link
|
|
* because the symbol error count will increment wildly if there
|
|
* is no link.
|
|
*/
|
|
e1000_clear_hw_cntrs_ich8lan(hw);
|
|
|
|
return 0;
|
|
}
|
|
/**
|
|
* e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Sets/Clears required hardware bits necessary for correctly setting up the
|
|
* hardware for transmit and receive.
|
|
**/
|
|
static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
|
|
{
|
|
u32 reg;
|
|
|
|
/* Extended Device Control */
|
|
reg = er32(CTRL_EXT);
|
|
reg |= (1 << 22);
|
|
/* Enable PHY low-power state when MAC is at D3 w/o WoL */
|
|
if (hw->mac.type >= e1000_pchlan)
|
|
reg |= E1000_CTRL_EXT_PHYPDEN;
|
|
ew32(CTRL_EXT, reg);
|
|
|
|
/* Transmit Descriptor Control 0 */
|
|
reg = er32(TXDCTL(0));
|
|
reg |= (1 << 22);
|
|
ew32(TXDCTL(0), reg);
|
|
|
|
/* Transmit Descriptor Control 1 */
|
|
reg = er32(TXDCTL(1));
|
|
reg |= (1 << 22);
|
|
ew32(TXDCTL(1), reg);
|
|
|
|
/* Transmit Arbitration Control 0 */
|
|
reg = er32(TARC(0));
|
|
if (hw->mac.type == e1000_ich8lan)
|
|
reg |= (1 << 28) | (1 << 29);
|
|
reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
|
|
ew32(TARC(0), reg);
|
|
|
|
/* Transmit Arbitration Control 1 */
|
|
reg = er32(TARC(1));
|
|
if (er32(TCTL) & E1000_TCTL_MULR)
|
|
reg &= ~(1 << 28);
|
|
else
|
|
reg |= (1 << 28);
|
|
reg |= (1 << 24) | (1 << 26) | (1 << 30);
|
|
ew32(TARC(1), reg);
|
|
|
|
/* Device Status */
|
|
if (hw->mac.type == e1000_ich8lan) {
|
|
reg = er32(STATUS);
|
|
reg &= ~(1 << 31);
|
|
ew32(STATUS, reg);
|
|
}
|
|
|
|
/*
|
|
* work-around descriptor data corruption issue during nfs v2 udp
|
|
* traffic, just disable the nfs filtering capability
|
|
*/
|
|
reg = er32(RFCTL);
|
|
reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
|
|
ew32(RFCTL, reg);
|
|
}
|
|
|
|
/**
|
|
* e1000_setup_link_ich8lan - Setup flow control and link settings
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Determines which flow control settings to use, then configures flow
|
|
* control. Calls the appropriate media-specific link configuration
|
|
* function. Assuming the adapter has a valid link partner, a valid link
|
|
* should be established. Assumes the hardware has previously been reset
|
|
* and the transmitter and receiver are not enabled.
|
|
**/
|
|
static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
|
|
{
|
|
s32 ret_val;
|
|
|
|
if (e1000_check_reset_block(hw))
|
|
return 0;
|
|
|
|
/*
|
|
* ICH parts do not have a word in the NVM to determine
|
|
* the default flow control setting, so we explicitly
|
|
* set it to full.
|
|
*/
|
|
if (hw->fc.requested_mode == e1000_fc_default) {
|
|
/* Workaround h/w hang when Tx flow control enabled */
|
|
if (hw->mac.type == e1000_pchlan)
|
|
hw->fc.requested_mode = e1000_fc_rx_pause;
|
|
else
|
|
hw->fc.requested_mode = e1000_fc_full;
|
|
}
|
|
|
|
/*
|
|
* Save off the requested flow control mode for use later. Depending
|
|
* on the link partner's capabilities, we may or may not use this mode.
|
|
*/
|
|
hw->fc.current_mode = hw->fc.requested_mode;
|
|
|
|
e_dbg("After fix-ups FlowControl is now = %x\n",
|
|
hw->fc.current_mode);
|
|
|
|
/* Continue to configure the copper link. */
|
|
ret_val = e1000_setup_copper_link_ich8lan(hw);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
ew32(FCTTV, hw->fc.pause_time);
|
|
if ((hw->phy.type == e1000_phy_82578) ||
|
|
(hw->phy.type == e1000_phy_82579) ||
|
|
(hw->phy.type == e1000_phy_82577)) {
|
|
ew32(FCRTV_PCH, hw->fc.refresh_time);
|
|
|
|
ret_val = hw->phy.ops.write_reg(hw,
|
|
PHY_REG(BM_PORT_CTRL_PAGE, 27),
|
|
hw->fc.pause_time);
|
|
if (ret_val)
|
|
return ret_val;
|
|
}
|
|
|
|
return e1000e_set_fc_watermarks(hw);
|
|
}
|
|
|
|
/**
|
|
* e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Configures the kumeran interface to the PHY to wait the appropriate time
|
|
* when polling the PHY, then call the generic setup_copper_link to finish
|
|
* configuring the copper link.
|
|
**/
|
|
static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
|
|
{
|
|
u32 ctrl;
|
|
s32 ret_val;
|
|
u16 reg_data;
|
|
|
|
ctrl = er32(CTRL);
|
|
ctrl |= E1000_CTRL_SLU;
|
|
ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
|
|
ew32(CTRL, ctrl);
|
|
|
|
/*
|
|
* Set the mac to wait the maximum time between each iteration
|
|
* and increase the max iterations when polling the phy;
|
|
* this fixes erroneous timeouts at 10Mbps.
|
|
*/
|
|
ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
|
|
if (ret_val)
|
|
return ret_val;
|
|
ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
|
|
®_data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
reg_data |= 0x3F;
|
|
ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
|
|
reg_data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
switch (hw->phy.type) {
|
|
case e1000_phy_igp_3:
|
|
ret_val = e1000e_copper_link_setup_igp(hw);
|
|
if (ret_val)
|
|
return ret_val;
|
|
break;
|
|
case e1000_phy_bm:
|
|
case e1000_phy_82578:
|
|
ret_val = e1000e_copper_link_setup_m88(hw);
|
|
if (ret_val)
|
|
return ret_val;
|
|
break;
|
|
case e1000_phy_82577:
|
|
case e1000_phy_82579:
|
|
ret_val = e1000_copper_link_setup_82577(hw);
|
|
if (ret_val)
|
|
return ret_val;
|
|
break;
|
|
case e1000_phy_ife:
|
|
ret_val = hw->phy.ops.read_reg(hw, IFE_PHY_MDIX_CONTROL,
|
|
®_data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
reg_data &= ~IFE_PMC_AUTO_MDIX;
|
|
|
|
switch (hw->phy.mdix) {
|
|
case 1:
|
|
reg_data &= ~IFE_PMC_FORCE_MDIX;
|
|
break;
|
|
case 2:
|
|
reg_data |= IFE_PMC_FORCE_MDIX;
|
|
break;
|
|
case 0:
|
|
default:
|
|
reg_data |= IFE_PMC_AUTO_MDIX;
|
|
break;
|
|
}
|
|
ret_val = hw->phy.ops.write_reg(hw, IFE_PHY_MDIX_CONTROL,
|
|
reg_data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return e1000e_setup_copper_link(hw);
|
|
}
|
|
|
|
/**
|
|
* e1000_get_link_up_info_ich8lan - Get current link speed and duplex
|
|
* @hw: pointer to the HW structure
|
|
* @speed: pointer to store current link speed
|
|
* @duplex: pointer to store the current link duplex
|
|
*
|
|
* Calls the generic get_speed_and_duplex to retrieve the current link
|
|
* information and then calls the Kumeran lock loss workaround for links at
|
|
* gigabit speeds.
|
|
**/
|
|
static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
|
|
u16 *duplex)
|
|
{
|
|
s32 ret_val;
|
|
|
|
ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
if ((hw->mac.type == e1000_ich8lan) &&
|
|
(hw->phy.type == e1000_phy_igp_3) &&
|
|
(*speed == SPEED_1000)) {
|
|
ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
|
|
}
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Work-around for 82566 Kumeran PCS lock loss:
|
|
* On link status change (i.e. PCI reset, speed change) and link is up and
|
|
* speed is gigabit-
|
|
* 0) if workaround is optionally disabled do nothing
|
|
* 1) wait 1ms for Kumeran link to come up
|
|
* 2) check Kumeran Diagnostic register PCS lock loss bit
|
|
* 3) if not set the link is locked (all is good), otherwise...
|
|
* 4) reset the PHY
|
|
* 5) repeat up to 10 times
|
|
* Note: this is only called for IGP3 copper when speed is 1gb.
|
|
**/
|
|
static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
|
|
u32 phy_ctrl;
|
|
s32 ret_val;
|
|
u16 i, data;
|
|
bool link;
|
|
|
|
if (!dev_spec->kmrn_lock_loss_workaround_enabled)
|
|
return 0;
|
|
|
|
/*
|
|
* Make sure link is up before proceeding. If not just return.
|
|
* Attempting this while link is negotiating fouled up link
|
|
* stability
|
|
*/
|
|
ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
|
|
if (!link)
|
|
return 0;
|
|
|
|
for (i = 0; i < 10; i++) {
|
|
/* read once to clear */
|
|
ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
/* and again to get new status */
|
|
ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
/* check for PCS lock */
|
|
if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
|
|
return 0;
|
|
|
|
/* Issue PHY reset */
|
|
e1000_phy_hw_reset(hw);
|
|
mdelay(5);
|
|
}
|
|
/* Disable GigE link negotiation */
|
|
phy_ctrl = er32(PHY_CTRL);
|
|
phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
|
|
E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
|
|
ew32(PHY_CTRL, phy_ctrl);
|
|
|
|
/*
|
|
* Call gig speed drop workaround on Gig disable before accessing
|
|
* any PHY registers
|
|
*/
|
|
e1000e_gig_downshift_workaround_ich8lan(hw);
|
|
|
|
/* unable to acquire PCS lock */
|
|
return -E1000_ERR_PHY;
|
|
}
|
|
|
|
/**
|
|
* e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
|
|
* @hw: pointer to the HW structure
|
|
* @state: boolean value used to set the current Kumeran workaround state
|
|
*
|
|
* If ICH8, set the current Kumeran workaround state (enabled - true
|
|
* /disabled - false).
|
|
**/
|
|
void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
|
|
bool state)
|
|
{
|
|
struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
|
|
|
|
if (hw->mac.type != e1000_ich8lan) {
|
|
e_dbg("Workaround applies to ICH8 only.\n");
|
|
return;
|
|
}
|
|
|
|
dev_spec->kmrn_lock_loss_workaround_enabled = state;
|
|
}
|
|
|
|
/**
|
|
* e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Workaround for 82566 power-down on D3 entry:
|
|
* 1) disable gigabit link
|
|
* 2) write VR power-down enable
|
|
* 3) read it back
|
|
* Continue if successful, else issue LCD reset and repeat
|
|
**/
|
|
void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
|
|
{
|
|
u32 reg;
|
|
u16 data;
|
|
u8 retry = 0;
|
|
|
|
if (hw->phy.type != e1000_phy_igp_3)
|
|
return;
|
|
|
|
/* Try the workaround twice (if needed) */
|
|
do {
|
|
/* Disable link */
|
|
reg = er32(PHY_CTRL);
|
|
reg |= (E1000_PHY_CTRL_GBE_DISABLE |
|
|
E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
|
|
ew32(PHY_CTRL, reg);
|
|
|
|
/*
|
|
* Call gig speed drop workaround on Gig disable before
|
|
* accessing any PHY registers
|
|
*/
|
|
if (hw->mac.type == e1000_ich8lan)
|
|
e1000e_gig_downshift_workaround_ich8lan(hw);
|
|
|
|
/* Write VR power-down enable */
|
|
e1e_rphy(hw, IGP3_VR_CTRL, &data);
|
|
data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
|
|
e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
|
|
|
|
/* Read it back and test */
|
|
e1e_rphy(hw, IGP3_VR_CTRL, &data);
|
|
data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
|
|
if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
|
|
break;
|
|
|
|
/* Issue PHY reset and repeat at most one more time */
|
|
reg = er32(CTRL);
|
|
ew32(CTRL, reg | E1000_CTRL_PHY_RST);
|
|
retry++;
|
|
} while (retry);
|
|
}
|
|
|
|
/**
|
|
* e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
|
|
* LPLU, Gig disable, MDIC PHY reset):
|
|
* 1) Set Kumeran Near-end loopback
|
|
* 2) Clear Kumeran Near-end loopback
|
|
* Should only be called for ICH8[m] devices with IGP_3 Phy.
|
|
**/
|
|
void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
|
|
{
|
|
s32 ret_val;
|
|
u16 reg_data;
|
|
|
|
if ((hw->mac.type != e1000_ich8lan) ||
|
|
(hw->phy.type != e1000_phy_igp_3))
|
|
return;
|
|
|
|
ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
|
|
®_data);
|
|
if (ret_val)
|
|
return;
|
|
reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
|
|
ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
|
|
reg_data);
|
|
if (ret_val)
|
|
return;
|
|
reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
|
|
ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
|
|
reg_data);
|
|
}
|
|
|
|
/**
|
|
* e1000e_disable_gig_wol_ich8lan - disable gig during WoL
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* During S0 to Sx transition, it is possible the link remains at gig
|
|
* instead of negotiating to a lower speed. Before going to Sx, set
|
|
* 'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
|
|
* to a lower speed.
|
|
*
|
|
* Should only be called for applicable parts.
|
|
**/
|
|
void e1000e_disable_gig_wol_ich8lan(struct e1000_hw *hw)
|
|
{
|
|
u32 phy_ctrl;
|
|
|
|
phy_ctrl = er32(PHY_CTRL);
|
|
phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU | E1000_PHY_CTRL_GBE_DISABLE;
|
|
ew32(PHY_CTRL, phy_ctrl);
|
|
|
|
if (hw->mac.type >= e1000_pchlan)
|
|
e1000_phy_hw_reset_ich8lan(hw);
|
|
}
|
|
|
|
/**
|
|
* e1000_cleanup_led_ich8lan - Restore the default LED operation
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Return the LED back to the default configuration.
|
|
**/
|
|
static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
|
|
{
|
|
if (hw->phy.type == e1000_phy_ife)
|
|
return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
|
|
|
|
ew32(LEDCTL, hw->mac.ledctl_default);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* e1000_led_on_ich8lan - Turn LEDs on
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Turn on the LEDs.
|
|
**/
|
|
static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
|
|
{
|
|
if (hw->phy.type == e1000_phy_ife)
|
|
return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
|
|
(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
|
|
|
|
ew32(LEDCTL, hw->mac.ledctl_mode2);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* e1000_led_off_ich8lan - Turn LEDs off
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Turn off the LEDs.
|
|
**/
|
|
static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
|
|
{
|
|
if (hw->phy.type == e1000_phy_ife)
|
|
return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
|
|
(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
|
|
|
|
ew32(LEDCTL, hw->mac.ledctl_mode1);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* e1000_setup_led_pchlan - Configures SW controllable LED
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* This prepares the SW controllable LED for use.
|
|
**/
|
|
static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
|
|
{
|
|
return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
|
|
(u16)hw->mac.ledctl_mode1);
|
|
}
|
|
|
|
/**
|
|
* e1000_cleanup_led_pchlan - Restore the default LED operation
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Return the LED back to the default configuration.
|
|
**/
|
|
static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
|
|
{
|
|
return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
|
|
(u16)hw->mac.ledctl_default);
|
|
}
|
|
|
|
/**
|
|
* e1000_led_on_pchlan - Turn LEDs on
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Turn on the LEDs.
|
|
**/
|
|
static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
|
|
{
|
|
u16 data = (u16)hw->mac.ledctl_mode2;
|
|
u32 i, led;
|
|
|
|
/*
|
|
* If no link, then turn LED on by setting the invert bit
|
|
* for each LED that's mode is "link_up" in ledctl_mode2.
|
|
*/
|
|
if (!(er32(STATUS) & E1000_STATUS_LU)) {
|
|
for (i = 0; i < 3; i++) {
|
|
led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
|
|
if ((led & E1000_PHY_LED0_MODE_MASK) !=
|
|
E1000_LEDCTL_MODE_LINK_UP)
|
|
continue;
|
|
if (led & E1000_PHY_LED0_IVRT)
|
|
data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
|
|
else
|
|
data |= (E1000_PHY_LED0_IVRT << (i * 5));
|
|
}
|
|
}
|
|
|
|
return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
|
|
}
|
|
|
|
/**
|
|
* e1000_led_off_pchlan - Turn LEDs off
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Turn off the LEDs.
|
|
**/
|
|
static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
|
|
{
|
|
u16 data = (u16)hw->mac.ledctl_mode1;
|
|
u32 i, led;
|
|
|
|
/*
|
|
* If no link, then turn LED off by clearing the invert bit
|
|
* for each LED that's mode is "link_up" in ledctl_mode1.
|
|
*/
|
|
if (!(er32(STATUS) & E1000_STATUS_LU)) {
|
|
for (i = 0; i < 3; i++) {
|
|
led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
|
|
if ((led & E1000_PHY_LED0_MODE_MASK) !=
|
|
E1000_LEDCTL_MODE_LINK_UP)
|
|
continue;
|
|
if (led & E1000_PHY_LED0_IVRT)
|
|
data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
|
|
else
|
|
data |= (E1000_PHY_LED0_IVRT << (i * 5));
|
|
}
|
|
}
|
|
|
|
return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
|
|
}
|
|
|
|
/**
|
|
* e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Read appropriate register for the config done bit for completion status
|
|
* and configure the PHY through s/w for EEPROM-less parts.
|
|
*
|
|
* NOTE: some silicon which is EEPROM-less will fail trying to read the
|
|
* config done bit, so only an error is logged and continues. If we were
|
|
* to return with error, EEPROM-less silicon would not be able to be reset
|
|
* or change link.
|
|
**/
|
|
static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
|
|
{
|
|
s32 ret_val = 0;
|
|
u32 bank = 0;
|
|
u32 status;
|
|
|
|
e1000e_get_cfg_done(hw);
|
|
|
|
/* Wait for indication from h/w that it has completed basic config */
|
|
if (hw->mac.type >= e1000_ich10lan) {
|
|
e1000_lan_init_done_ich8lan(hw);
|
|
} else {
|
|
ret_val = e1000e_get_auto_rd_done(hw);
|
|
if (ret_val) {
|
|
/*
|
|
* When auto config read does not complete, do not
|
|
* return with an error. This can happen in situations
|
|
* where there is no eeprom and prevents getting link.
|
|
*/
|
|
e_dbg("Auto Read Done did not complete\n");
|
|
ret_val = 0;
|
|
}
|
|
}
|
|
|
|
/* Clear PHY Reset Asserted bit */
|
|
status = er32(STATUS);
|
|
if (status & E1000_STATUS_PHYRA)
|
|
ew32(STATUS, status & ~E1000_STATUS_PHYRA);
|
|
else
|
|
e_dbg("PHY Reset Asserted not set - needs delay\n");
|
|
|
|
/* If EEPROM is not marked present, init the IGP 3 PHY manually */
|
|
if (hw->mac.type <= e1000_ich9lan) {
|
|
if (((er32(EECD) & E1000_EECD_PRES) == 0) &&
|
|
(hw->phy.type == e1000_phy_igp_3)) {
|
|
e1000e_phy_init_script_igp3(hw);
|
|
}
|
|
} else {
|
|
if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
|
|
/* Maybe we should do a basic PHY config */
|
|
e_dbg("EEPROM not present\n");
|
|
ret_val = -E1000_ERR_CONFIG;
|
|
}
|
|
}
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* In the case of a PHY power down to save power, or to turn off link during a
|
|
* driver unload, or wake on lan is not enabled, remove the link.
|
|
**/
|
|
static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
|
|
{
|
|
/* If the management interface is not enabled, then power down */
|
|
if (!(hw->mac.ops.check_mng_mode(hw) ||
|
|
hw->phy.ops.check_reset_block(hw)))
|
|
e1000_power_down_phy_copper(hw);
|
|
}
|
|
|
|
/**
|
|
* e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Clears hardware counters specific to the silicon family and calls
|
|
* clear_hw_cntrs_generic to clear all general purpose counters.
|
|
**/
|
|
static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
|
|
{
|
|
u16 phy_data;
|
|
|
|
e1000e_clear_hw_cntrs_base(hw);
|
|
|
|
er32(ALGNERRC);
|
|
er32(RXERRC);
|
|
er32(TNCRS);
|
|
er32(CEXTERR);
|
|
er32(TSCTC);
|
|
er32(TSCTFC);
|
|
|
|
er32(MGTPRC);
|
|
er32(MGTPDC);
|
|
er32(MGTPTC);
|
|
|
|
er32(IAC);
|
|
er32(ICRXOC);
|
|
|
|
/* Clear PHY statistics registers */
|
|
if ((hw->phy.type == e1000_phy_82578) ||
|
|
(hw->phy.type == e1000_phy_82579) ||
|
|
(hw->phy.type == e1000_phy_82577)) {
|
|
hw->phy.ops.read_reg(hw, HV_SCC_UPPER, &phy_data);
|
|
hw->phy.ops.read_reg(hw, HV_SCC_LOWER, &phy_data);
|
|
hw->phy.ops.read_reg(hw, HV_ECOL_UPPER, &phy_data);
|
|
hw->phy.ops.read_reg(hw, HV_ECOL_LOWER, &phy_data);
|
|
hw->phy.ops.read_reg(hw, HV_MCC_UPPER, &phy_data);
|
|
hw->phy.ops.read_reg(hw, HV_MCC_LOWER, &phy_data);
|
|
hw->phy.ops.read_reg(hw, HV_LATECOL_UPPER, &phy_data);
|
|
hw->phy.ops.read_reg(hw, HV_LATECOL_LOWER, &phy_data);
|
|
hw->phy.ops.read_reg(hw, HV_COLC_UPPER, &phy_data);
|
|
hw->phy.ops.read_reg(hw, HV_COLC_LOWER, &phy_data);
|
|
hw->phy.ops.read_reg(hw, HV_DC_UPPER, &phy_data);
|
|
hw->phy.ops.read_reg(hw, HV_DC_LOWER, &phy_data);
|
|
hw->phy.ops.read_reg(hw, HV_TNCRS_UPPER, &phy_data);
|
|
hw->phy.ops.read_reg(hw, HV_TNCRS_LOWER, &phy_data);
|
|
}
|
|
}
|
|
|
|
static struct e1000_mac_operations ich8_mac_ops = {
|
|
.id_led_init = e1000e_id_led_init,
|
|
/* check_mng_mode dependent on mac type */
|
|
.check_for_link = e1000_check_for_copper_link_ich8lan,
|
|
/* cleanup_led dependent on mac type */
|
|
.clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan,
|
|
.get_bus_info = e1000_get_bus_info_ich8lan,
|
|
.set_lan_id = e1000_set_lan_id_single_port,
|
|
.get_link_up_info = e1000_get_link_up_info_ich8lan,
|
|
/* led_on dependent on mac type */
|
|
/* led_off dependent on mac type */
|
|
.update_mc_addr_list = e1000e_update_mc_addr_list_generic,
|
|
.reset_hw = e1000_reset_hw_ich8lan,
|
|
.init_hw = e1000_init_hw_ich8lan,
|
|
.setup_link = e1000_setup_link_ich8lan,
|
|
.setup_physical_interface= e1000_setup_copper_link_ich8lan,
|
|
/* id_led_init dependent on mac type */
|
|
};
|
|
|
|
static struct e1000_phy_operations ich8_phy_ops = {
|
|
.acquire = e1000_acquire_swflag_ich8lan,
|
|
.check_reset_block = e1000_check_reset_block_ich8lan,
|
|
.commit = NULL,
|
|
.get_cfg_done = e1000_get_cfg_done_ich8lan,
|
|
.get_cable_length = e1000e_get_cable_length_igp_2,
|
|
.read_reg = e1000e_read_phy_reg_igp,
|
|
.release = e1000_release_swflag_ich8lan,
|
|
.reset = e1000_phy_hw_reset_ich8lan,
|
|
.set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan,
|
|
.set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan,
|
|
.write_reg = e1000e_write_phy_reg_igp,
|
|
};
|
|
|
|
static struct e1000_nvm_operations ich8_nvm_ops = {
|
|
.acquire = e1000_acquire_nvm_ich8lan,
|
|
.read = e1000_read_nvm_ich8lan,
|
|
.release = e1000_release_nvm_ich8lan,
|
|
.update = e1000_update_nvm_checksum_ich8lan,
|
|
.valid_led_default = e1000_valid_led_default_ich8lan,
|
|
.validate = e1000_validate_nvm_checksum_ich8lan,
|
|
.write = e1000_write_nvm_ich8lan,
|
|
};
|
|
|
|
struct e1000_info e1000_ich8_info = {
|
|
.mac = e1000_ich8lan,
|
|
.flags = FLAG_HAS_WOL
|
|
| FLAG_IS_ICH
|
|
| FLAG_RX_CSUM_ENABLED
|
|
| FLAG_HAS_CTRLEXT_ON_LOAD
|
|
| FLAG_HAS_AMT
|
|
| FLAG_HAS_FLASH
|
|
| FLAG_APME_IN_WUC,
|
|
.pba = 8,
|
|
.max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN,
|
|
.get_variants = e1000_get_variants_ich8lan,
|
|
.mac_ops = &ich8_mac_ops,
|
|
.phy_ops = &ich8_phy_ops,
|
|
.nvm_ops = &ich8_nvm_ops,
|
|
};
|
|
|
|
struct e1000_info e1000_ich9_info = {
|
|
.mac = e1000_ich9lan,
|
|
.flags = FLAG_HAS_JUMBO_FRAMES
|
|
| FLAG_IS_ICH
|
|
| FLAG_HAS_WOL
|
|
| FLAG_RX_CSUM_ENABLED
|
|
| FLAG_HAS_CTRLEXT_ON_LOAD
|
|
| FLAG_HAS_AMT
|
|
| FLAG_HAS_ERT
|
|
| FLAG_HAS_FLASH
|
|
| FLAG_APME_IN_WUC,
|
|
.pba = 10,
|
|
.max_hw_frame_size = DEFAULT_JUMBO,
|
|
.get_variants = e1000_get_variants_ich8lan,
|
|
.mac_ops = &ich8_mac_ops,
|
|
.phy_ops = &ich8_phy_ops,
|
|
.nvm_ops = &ich8_nvm_ops,
|
|
};
|
|
|
|
struct e1000_info e1000_ich10_info = {
|
|
.mac = e1000_ich10lan,
|
|
.flags = FLAG_HAS_JUMBO_FRAMES
|
|
| FLAG_IS_ICH
|
|
| FLAG_HAS_WOL
|
|
| FLAG_RX_CSUM_ENABLED
|
|
| FLAG_HAS_CTRLEXT_ON_LOAD
|
|
| FLAG_HAS_AMT
|
|
| FLAG_HAS_ERT
|
|
| FLAG_HAS_FLASH
|
|
| FLAG_APME_IN_WUC,
|
|
.pba = 10,
|
|
.max_hw_frame_size = DEFAULT_JUMBO,
|
|
.get_variants = e1000_get_variants_ich8lan,
|
|
.mac_ops = &ich8_mac_ops,
|
|
.phy_ops = &ich8_phy_ops,
|
|
.nvm_ops = &ich8_nvm_ops,
|
|
};
|
|
|
|
struct e1000_info e1000_pch_info = {
|
|
.mac = e1000_pchlan,
|
|
.flags = FLAG_IS_ICH
|
|
| FLAG_HAS_WOL
|
|
| FLAG_RX_CSUM_ENABLED
|
|
| FLAG_HAS_CTRLEXT_ON_LOAD
|
|
| FLAG_HAS_AMT
|
|
| FLAG_HAS_FLASH
|
|
| FLAG_HAS_JUMBO_FRAMES
|
|
| FLAG_DISABLE_FC_PAUSE_TIME /* errata */
|
|
| FLAG_APME_IN_WUC,
|
|
.flags2 = FLAG2_HAS_PHY_STATS,
|
|
.pba = 26,
|
|
.max_hw_frame_size = 4096,
|
|
.get_variants = e1000_get_variants_ich8lan,
|
|
.mac_ops = &ich8_mac_ops,
|
|
.phy_ops = &ich8_phy_ops,
|
|
.nvm_ops = &ich8_nvm_ops,
|
|
};
|
|
|
|
struct e1000_info e1000_pch2_info = {
|
|
.mac = e1000_pch2lan,
|
|
.flags = FLAG_IS_ICH
|
|
| FLAG_HAS_WOL
|
|
| FLAG_RX_CSUM_ENABLED
|
|
| FLAG_HAS_CTRLEXT_ON_LOAD
|
|
| FLAG_HAS_AMT
|
|
| FLAG_HAS_FLASH
|
|
| FLAG_HAS_JUMBO_FRAMES
|
|
| FLAG_APME_IN_WUC,
|
|
.flags2 = FLAG2_HAS_PHY_STATS
|
|
| FLAG2_HAS_EEE,
|
|
.pba = 18,
|
|
.max_hw_frame_size = DEFAULT_JUMBO,
|
|
.get_variants = e1000_get_variants_ich8lan,
|
|
.mac_ops = &ich8_mac_ops,
|
|
.phy_ops = &ich8_phy_ops,
|
|
.nvm_ops = &ich8_nvm_ops,
|
|
};
|