linux/arch/powerpc/kvm/book3s.c
Alexander Graf fef093bec0 KVM: PPC: Make use of hash based Shadow MMU
We just introduced generic functions to handle shadow pages on PPC.
This patch makes the respective backends make use of them, getting
rid of a lot of duplicate code along the way.

Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
2010-08-01 10:47:28 +03:00

1408 lines
36 KiB
C

/*
* Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
*
* Authors:
* Alexander Graf <agraf@suse.de>
* Kevin Wolf <mail@kevin-wolf.de>
*
* Description:
* This file is derived from arch/powerpc/kvm/44x.c,
* by Hollis Blanchard <hollisb@us.ibm.com>.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, version 2, as
* published by the Free Software Foundation.
*/
#include <linux/kvm_host.h>
#include <linux/err.h>
#include <linux/slab.h>
#include <asm/reg.h>
#include <asm/cputable.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
#include <asm/mmu_context.h>
#include <linux/gfp.h>
#include <linux/sched.h>
#include <linux/vmalloc.h>
#include <linux/highmem.h>
#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
/* #define EXIT_DEBUG */
/* #define EXIT_DEBUG_SIMPLE */
/* #define DEBUG_EXT */
static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
ulong msr);
/* Some compatibility defines */
#ifdef CONFIG_PPC_BOOK3S_32
#define MSR_USER32 MSR_USER
#define MSR_USER64 MSR_USER
#define HW_PAGE_SIZE PAGE_SIZE
#endif
struct kvm_stats_debugfs_item debugfs_entries[] = {
{ "exits", VCPU_STAT(sum_exits) },
{ "mmio", VCPU_STAT(mmio_exits) },
{ "sig", VCPU_STAT(signal_exits) },
{ "sysc", VCPU_STAT(syscall_exits) },
{ "inst_emu", VCPU_STAT(emulated_inst_exits) },
{ "dec", VCPU_STAT(dec_exits) },
{ "ext_intr", VCPU_STAT(ext_intr_exits) },
{ "queue_intr", VCPU_STAT(queue_intr) },
{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
{ "pf_storage", VCPU_STAT(pf_storage) },
{ "sp_storage", VCPU_STAT(sp_storage) },
{ "pf_instruc", VCPU_STAT(pf_instruc) },
{ "sp_instruc", VCPU_STAT(sp_instruc) },
{ "ld", VCPU_STAT(ld) },
{ "ld_slow", VCPU_STAT(ld_slow) },
{ "st", VCPU_STAT(st) },
{ "st_slow", VCPU_STAT(st_slow) },
{ NULL }
};
void kvmppc_core_load_host_debugstate(struct kvm_vcpu *vcpu)
{
}
void kvmppc_core_load_guest_debugstate(struct kvm_vcpu *vcpu)
{
}
void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
#ifdef CONFIG_PPC_BOOK3S_64
memcpy(to_svcpu(vcpu)->slb, to_book3s(vcpu)->slb_shadow, sizeof(to_svcpu(vcpu)->slb));
memcpy(&get_paca()->shadow_vcpu, to_book3s(vcpu)->shadow_vcpu,
sizeof(get_paca()->shadow_vcpu));
to_svcpu(vcpu)->slb_max = to_book3s(vcpu)->slb_shadow_max;
#endif
#ifdef CONFIG_PPC_BOOK3S_32
current->thread.kvm_shadow_vcpu = to_book3s(vcpu)->shadow_vcpu;
#endif
}
void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu)
{
#ifdef CONFIG_PPC_BOOK3S_64
memcpy(to_book3s(vcpu)->slb_shadow, to_svcpu(vcpu)->slb, sizeof(to_svcpu(vcpu)->slb));
memcpy(to_book3s(vcpu)->shadow_vcpu, &get_paca()->shadow_vcpu,
sizeof(get_paca()->shadow_vcpu));
to_book3s(vcpu)->slb_shadow_max = to_svcpu(vcpu)->slb_max;
#endif
kvmppc_giveup_ext(vcpu, MSR_FP);
kvmppc_giveup_ext(vcpu, MSR_VEC);
kvmppc_giveup_ext(vcpu, MSR_VSX);
}
#if defined(EXIT_DEBUG)
static u32 kvmppc_get_dec(struct kvm_vcpu *vcpu)
{
u64 jd = mftb() - vcpu->arch.dec_jiffies;
return vcpu->arch.dec - jd;
}
#endif
static void kvmppc_recalc_shadow_msr(struct kvm_vcpu *vcpu)
{
vcpu->arch.shadow_msr = vcpu->arch.msr;
/* Guest MSR values */
vcpu->arch.shadow_msr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE |
MSR_BE | MSR_DE;
/* Process MSR values */
vcpu->arch.shadow_msr |= MSR_ME | MSR_RI | MSR_IR | MSR_DR | MSR_PR |
MSR_EE;
/* External providers the guest reserved */
vcpu->arch.shadow_msr |= (vcpu->arch.msr & vcpu->arch.guest_owned_ext);
/* 64-bit Process MSR values */
#ifdef CONFIG_PPC_BOOK3S_64
vcpu->arch.shadow_msr |= MSR_ISF | MSR_HV;
#endif
}
void kvmppc_set_msr(struct kvm_vcpu *vcpu, u64 msr)
{
ulong old_msr = vcpu->arch.msr;
#ifdef EXIT_DEBUG
printk(KERN_INFO "KVM: Set MSR to 0x%llx\n", msr);
#endif
msr &= to_book3s(vcpu)->msr_mask;
vcpu->arch.msr = msr;
kvmppc_recalc_shadow_msr(vcpu);
if (msr & (MSR_WE|MSR_POW)) {
if (!vcpu->arch.pending_exceptions) {
kvm_vcpu_block(vcpu);
vcpu->stat.halt_wakeup++;
}
}
if ((vcpu->arch.msr & (MSR_PR|MSR_IR|MSR_DR)) !=
(old_msr & (MSR_PR|MSR_IR|MSR_DR))) {
kvmppc_mmu_flush_segments(vcpu);
kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
}
/* Preload FPU if it's enabled */
if (vcpu->arch.msr & MSR_FP)
kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
}
void kvmppc_inject_interrupt(struct kvm_vcpu *vcpu, int vec, u64 flags)
{
vcpu->arch.srr0 = kvmppc_get_pc(vcpu);
vcpu->arch.srr1 = vcpu->arch.msr | flags;
kvmppc_set_pc(vcpu, to_book3s(vcpu)->hior + vec);
vcpu->arch.mmu.reset_msr(vcpu);
}
static int kvmppc_book3s_vec2irqprio(unsigned int vec)
{
unsigned int prio;
switch (vec) {
case 0x100: prio = BOOK3S_IRQPRIO_SYSTEM_RESET; break;
case 0x200: prio = BOOK3S_IRQPRIO_MACHINE_CHECK; break;
case 0x300: prio = BOOK3S_IRQPRIO_DATA_STORAGE; break;
case 0x380: prio = BOOK3S_IRQPRIO_DATA_SEGMENT; break;
case 0x400: prio = BOOK3S_IRQPRIO_INST_STORAGE; break;
case 0x480: prio = BOOK3S_IRQPRIO_INST_SEGMENT; break;
case 0x500: prio = BOOK3S_IRQPRIO_EXTERNAL; break;
case 0x600: prio = BOOK3S_IRQPRIO_ALIGNMENT; break;
case 0x700: prio = BOOK3S_IRQPRIO_PROGRAM; break;
case 0x800: prio = BOOK3S_IRQPRIO_FP_UNAVAIL; break;
case 0x900: prio = BOOK3S_IRQPRIO_DECREMENTER; break;
case 0xc00: prio = BOOK3S_IRQPRIO_SYSCALL; break;
case 0xd00: prio = BOOK3S_IRQPRIO_DEBUG; break;
case 0xf20: prio = BOOK3S_IRQPRIO_ALTIVEC; break;
case 0xf40: prio = BOOK3S_IRQPRIO_VSX; break;
default: prio = BOOK3S_IRQPRIO_MAX; break;
}
return prio;
}
static void kvmppc_book3s_dequeue_irqprio(struct kvm_vcpu *vcpu,
unsigned int vec)
{
clear_bit(kvmppc_book3s_vec2irqprio(vec),
&vcpu->arch.pending_exceptions);
}
void kvmppc_book3s_queue_irqprio(struct kvm_vcpu *vcpu, unsigned int vec)
{
vcpu->stat.queue_intr++;
set_bit(kvmppc_book3s_vec2irqprio(vec),
&vcpu->arch.pending_exceptions);
#ifdef EXIT_DEBUG
printk(KERN_INFO "Queueing interrupt %x\n", vec);
#endif
}
void kvmppc_core_queue_program(struct kvm_vcpu *vcpu, ulong flags)
{
to_book3s(vcpu)->prog_flags = flags;
kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_PROGRAM);
}
void kvmppc_core_queue_dec(struct kvm_vcpu *vcpu)
{
kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_DECREMENTER);
}
int kvmppc_core_pending_dec(struct kvm_vcpu *vcpu)
{
return test_bit(BOOK3S_INTERRUPT_DECREMENTER >> 7, &vcpu->arch.pending_exceptions);
}
void kvmppc_core_dequeue_dec(struct kvm_vcpu *vcpu)
{
kvmppc_book3s_dequeue_irqprio(vcpu, BOOK3S_INTERRUPT_DECREMENTER);
}
void kvmppc_core_queue_external(struct kvm_vcpu *vcpu,
struct kvm_interrupt *irq)
{
kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_EXTERNAL);
}
void kvmppc_core_dequeue_external(struct kvm_vcpu *vcpu,
struct kvm_interrupt *irq)
{
kvmppc_book3s_dequeue_irqprio(vcpu, BOOK3S_INTERRUPT_EXTERNAL);
}
int kvmppc_book3s_irqprio_deliver(struct kvm_vcpu *vcpu, unsigned int priority)
{
int deliver = 1;
int vec = 0;
ulong flags = 0ULL;
switch (priority) {
case BOOK3S_IRQPRIO_DECREMENTER:
deliver = vcpu->arch.msr & MSR_EE;
vec = BOOK3S_INTERRUPT_DECREMENTER;
break;
case BOOK3S_IRQPRIO_EXTERNAL:
deliver = vcpu->arch.msr & MSR_EE;
vec = BOOK3S_INTERRUPT_EXTERNAL;
break;
case BOOK3S_IRQPRIO_SYSTEM_RESET:
vec = BOOK3S_INTERRUPT_SYSTEM_RESET;
break;
case BOOK3S_IRQPRIO_MACHINE_CHECK:
vec = BOOK3S_INTERRUPT_MACHINE_CHECK;
break;
case BOOK3S_IRQPRIO_DATA_STORAGE:
vec = BOOK3S_INTERRUPT_DATA_STORAGE;
break;
case BOOK3S_IRQPRIO_INST_STORAGE:
vec = BOOK3S_INTERRUPT_INST_STORAGE;
break;
case BOOK3S_IRQPRIO_DATA_SEGMENT:
vec = BOOK3S_INTERRUPT_DATA_SEGMENT;
break;
case BOOK3S_IRQPRIO_INST_SEGMENT:
vec = BOOK3S_INTERRUPT_INST_SEGMENT;
break;
case BOOK3S_IRQPRIO_ALIGNMENT:
vec = BOOK3S_INTERRUPT_ALIGNMENT;
break;
case BOOK3S_IRQPRIO_PROGRAM:
vec = BOOK3S_INTERRUPT_PROGRAM;
flags = to_book3s(vcpu)->prog_flags;
break;
case BOOK3S_IRQPRIO_VSX:
vec = BOOK3S_INTERRUPT_VSX;
break;
case BOOK3S_IRQPRIO_ALTIVEC:
vec = BOOK3S_INTERRUPT_ALTIVEC;
break;
case BOOK3S_IRQPRIO_FP_UNAVAIL:
vec = BOOK3S_INTERRUPT_FP_UNAVAIL;
break;
case BOOK3S_IRQPRIO_SYSCALL:
vec = BOOK3S_INTERRUPT_SYSCALL;
break;
case BOOK3S_IRQPRIO_DEBUG:
vec = BOOK3S_INTERRUPT_TRACE;
break;
case BOOK3S_IRQPRIO_PERFORMANCE_MONITOR:
vec = BOOK3S_INTERRUPT_PERFMON;
break;
default:
deliver = 0;
printk(KERN_ERR "KVM: Unknown interrupt: 0x%x\n", priority);
break;
}
#if 0
printk(KERN_INFO "Deliver interrupt 0x%x? %x\n", vec, deliver);
#endif
if (deliver)
kvmppc_inject_interrupt(vcpu, vec, flags);
return deliver;
}
void kvmppc_core_deliver_interrupts(struct kvm_vcpu *vcpu)
{
unsigned long *pending = &vcpu->arch.pending_exceptions;
unsigned int priority;
#ifdef EXIT_DEBUG
if (vcpu->arch.pending_exceptions)
printk(KERN_EMERG "KVM: Check pending: %lx\n", vcpu->arch.pending_exceptions);
#endif
priority = __ffs(*pending);
while (priority < BOOK3S_IRQPRIO_MAX) {
if (kvmppc_book3s_irqprio_deliver(vcpu, priority) &&
(priority != BOOK3S_IRQPRIO_DECREMENTER)) {
/* DEC interrupts get cleared by mtdec */
clear_bit(priority, &vcpu->arch.pending_exceptions);
break;
}
priority = find_next_bit(pending,
BITS_PER_BYTE * sizeof(*pending),
priority + 1);
}
}
void kvmppc_set_pvr(struct kvm_vcpu *vcpu, u32 pvr)
{
u32 host_pvr;
vcpu->arch.hflags &= ~BOOK3S_HFLAG_SLB;
vcpu->arch.pvr = pvr;
#ifdef CONFIG_PPC_BOOK3S_64
if ((pvr >= 0x330000) && (pvr < 0x70330000)) {
kvmppc_mmu_book3s_64_init(vcpu);
to_book3s(vcpu)->hior = 0xfff00000;
to_book3s(vcpu)->msr_mask = 0xffffffffffffffffULL;
} else
#endif
{
kvmppc_mmu_book3s_32_init(vcpu);
to_book3s(vcpu)->hior = 0;
to_book3s(vcpu)->msr_mask = 0xffffffffULL;
}
/* If we are in hypervisor level on 970, we can tell the CPU to
* treat DCBZ as 32 bytes store */
vcpu->arch.hflags &= ~BOOK3S_HFLAG_DCBZ32;
if (vcpu->arch.mmu.is_dcbz32(vcpu) && (mfmsr() & MSR_HV) &&
!strcmp(cur_cpu_spec->platform, "ppc970"))
vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
/* Cell performs badly if MSR_FEx are set. So let's hope nobody
really needs them in a VM on Cell and force disable them. */
if (!strcmp(cur_cpu_spec->platform, "ppc-cell-be"))
to_book3s(vcpu)->msr_mask &= ~(MSR_FE0 | MSR_FE1);
#ifdef CONFIG_PPC_BOOK3S_32
/* 32 bit Book3S always has 32 byte dcbz */
vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
#endif
/* On some CPUs we can execute paired single operations natively */
asm ( "mfpvr %0" : "=r"(host_pvr));
switch (host_pvr) {
case 0x00080200: /* lonestar 2.0 */
case 0x00088202: /* lonestar 2.2 */
case 0x70000100: /* gekko 1.0 */
case 0x00080100: /* gekko 2.0 */
case 0x00083203: /* gekko 2.3a */
case 0x00083213: /* gekko 2.3b */
case 0x00083204: /* gekko 2.4 */
case 0x00083214: /* gekko 2.4e (8SE) - retail HW2 */
case 0x00087200: /* broadway */
vcpu->arch.hflags |= BOOK3S_HFLAG_NATIVE_PS;
/* Enable HID2.PSE - in case we need it later */
mtspr(SPRN_HID2_GEKKO, mfspr(SPRN_HID2_GEKKO) | (1 << 29));
}
}
/* Book3s_32 CPUs always have 32 bytes cache line size, which Linux assumes. To
* make Book3s_32 Linux work on Book3s_64, we have to make sure we trap dcbz to
* emulate 32 bytes dcbz length.
*
* The Book3s_64 inventors also realized this case and implemented a special bit
* in the HID5 register, which is a hypervisor ressource. Thus we can't use it.
*
* My approach here is to patch the dcbz instruction on executing pages.
*/
static void kvmppc_patch_dcbz(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte)
{
struct page *hpage;
u64 hpage_offset;
u32 *page;
int i;
hpage = gfn_to_page(vcpu->kvm, pte->raddr >> PAGE_SHIFT);
if (is_error_page(hpage))
return;
hpage_offset = pte->raddr & ~PAGE_MASK;
hpage_offset &= ~0xFFFULL;
hpage_offset /= 4;
get_page(hpage);
page = kmap_atomic(hpage, KM_USER0);
/* patch dcbz into reserved instruction, so we trap */
for (i=hpage_offset; i < hpage_offset + (HW_PAGE_SIZE / 4); i++)
if ((page[i] & 0xff0007ff) == INS_DCBZ)
page[i] &= 0xfffffff7;
kunmap_atomic(page, KM_USER0);
put_page(hpage);
}
static int kvmppc_xlate(struct kvm_vcpu *vcpu, ulong eaddr, bool data,
struct kvmppc_pte *pte)
{
int relocated = (vcpu->arch.msr & (data ? MSR_DR : MSR_IR));
int r;
if (relocated) {
r = vcpu->arch.mmu.xlate(vcpu, eaddr, pte, data);
} else {
pte->eaddr = eaddr;
pte->raddr = eaddr & 0xffffffff;
pte->vpage = VSID_REAL | eaddr >> 12;
pte->may_read = true;
pte->may_write = true;
pte->may_execute = true;
r = 0;
}
return r;
}
static hva_t kvmppc_bad_hva(void)
{
return PAGE_OFFSET;
}
static hva_t kvmppc_pte_to_hva(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte,
bool read)
{
hva_t hpage;
if (read && !pte->may_read)
goto err;
if (!read && !pte->may_write)
goto err;
hpage = gfn_to_hva(vcpu->kvm, pte->raddr >> PAGE_SHIFT);
if (kvm_is_error_hva(hpage))
goto err;
return hpage | (pte->raddr & ~PAGE_MASK);
err:
return kvmppc_bad_hva();
}
int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
bool data)
{
struct kvmppc_pte pte;
vcpu->stat.st++;
if (kvmppc_xlate(vcpu, *eaddr, data, &pte))
return -ENOENT;
*eaddr = pte.raddr;
if (!pte.may_write)
return -EPERM;
if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
return EMULATE_DO_MMIO;
return EMULATE_DONE;
}
int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
bool data)
{
struct kvmppc_pte pte;
hva_t hva = *eaddr;
vcpu->stat.ld++;
if (kvmppc_xlate(vcpu, *eaddr, data, &pte))
goto nopte;
*eaddr = pte.raddr;
hva = kvmppc_pte_to_hva(vcpu, &pte, true);
if (kvm_is_error_hva(hva))
goto mmio;
if (copy_from_user(ptr, (void __user *)hva, size)) {
printk(KERN_INFO "kvmppc_ld at 0x%lx failed\n", hva);
goto mmio;
}
return EMULATE_DONE;
nopte:
return -ENOENT;
mmio:
return EMULATE_DO_MMIO;
}
static int kvmppc_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
{
return kvm_is_visible_gfn(vcpu->kvm, gfn);
}
int kvmppc_handle_pagefault(struct kvm_run *run, struct kvm_vcpu *vcpu,
ulong eaddr, int vec)
{
bool data = (vec == BOOK3S_INTERRUPT_DATA_STORAGE);
int r = RESUME_GUEST;
int relocated;
int page_found = 0;
struct kvmppc_pte pte;
bool is_mmio = false;
bool dr = (vcpu->arch.msr & MSR_DR) ? true : false;
bool ir = (vcpu->arch.msr & MSR_IR) ? true : false;
u64 vsid;
relocated = data ? dr : ir;
/* Resolve real address if translation turned on */
if (relocated) {
page_found = vcpu->arch.mmu.xlate(vcpu, eaddr, &pte, data);
} else {
pte.may_execute = true;
pte.may_read = true;
pte.may_write = true;
pte.raddr = eaddr & 0xffffffff;
pte.eaddr = eaddr;
pte.vpage = eaddr >> 12;
}
switch (vcpu->arch.msr & (MSR_DR|MSR_IR)) {
case 0:
pte.vpage |= ((u64)VSID_REAL << (SID_SHIFT - 12));
break;
case MSR_DR:
case MSR_IR:
vcpu->arch.mmu.esid_to_vsid(vcpu, eaddr >> SID_SHIFT, &vsid);
if ((vcpu->arch.msr & (MSR_DR|MSR_IR)) == MSR_DR)
pte.vpage |= ((u64)VSID_REAL_DR << (SID_SHIFT - 12));
else
pte.vpage |= ((u64)VSID_REAL_IR << (SID_SHIFT - 12));
pte.vpage |= vsid;
if (vsid == -1)
page_found = -EINVAL;
break;
}
if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
(!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
/*
* If we do the dcbz hack, we have to NX on every execution,
* so we can patch the executing code. This renders our guest
* NX-less.
*/
pte.may_execute = !data;
}
if (page_found == -ENOENT) {
/* Page not found in guest PTE entries */
vcpu->arch.dear = kvmppc_get_fault_dar(vcpu);
to_book3s(vcpu)->dsisr = to_svcpu(vcpu)->fault_dsisr;
vcpu->arch.msr |= (to_svcpu(vcpu)->shadow_srr1 & 0x00000000f8000000ULL);
kvmppc_book3s_queue_irqprio(vcpu, vec);
} else if (page_found == -EPERM) {
/* Storage protection */
vcpu->arch.dear = kvmppc_get_fault_dar(vcpu);
to_book3s(vcpu)->dsisr = to_svcpu(vcpu)->fault_dsisr & ~DSISR_NOHPTE;
to_book3s(vcpu)->dsisr |= DSISR_PROTFAULT;
vcpu->arch.msr |= (to_svcpu(vcpu)->shadow_srr1 & 0x00000000f8000000ULL);
kvmppc_book3s_queue_irqprio(vcpu, vec);
} else if (page_found == -EINVAL) {
/* Page not found in guest SLB */
vcpu->arch.dear = kvmppc_get_fault_dar(vcpu);
kvmppc_book3s_queue_irqprio(vcpu, vec + 0x80);
} else if (!is_mmio &&
kvmppc_visible_gfn(vcpu, pte.raddr >> PAGE_SHIFT)) {
/* The guest's PTE is not mapped yet. Map on the host */
kvmppc_mmu_map_page(vcpu, &pte);
if (data)
vcpu->stat.sp_storage++;
else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
(!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32)))
kvmppc_patch_dcbz(vcpu, &pte);
} else {
/* MMIO */
vcpu->stat.mmio_exits++;
vcpu->arch.paddr_accessed = pte.raddr;
r = kvmppc_emulate_mmio(run, vcpu);
if ( r == RESUME_HOST_NV )
r = RESUME_HOST;
}
return r;
}
static inline int get_fpr_index(int i)
{
#ifdef CONFIG_VSX
i *= 2;
#endif
return i;
}
/* Give up external provider (FPU, Altivec, VSX) */
void kvmppc_giveup_ext(struct kvm_vcpu *vcpu, ulong msr)
{
struct thread_struct *t = &current->thread;
u64 *vcpu_fpr = vcpu->arch.fpr;
#ifdef CONFIG_VSX
u64 *vcpu_vsx = vcpu->arch.vsr;
#endif
u64 *thread_fpr = (u64*)t->fpr;
int i;
if (!(vcpu->arch.guest_owned_ext & msr))
return;
#ifdef DEBUG_EXT
printk(KERN_INFO "Giving up ext 0x%lx\n", msr);
#endif
switch (msr) {
case MSR_FP:
giveup_fpu(current);
for (i = 0; i < ARRAY_SIZE(vcpu->arch.fpr); i++)
vcpu_fpr[i] = thread_fpr[get_fpr_index(i)];
vcpu->arch.fpscr = t->fpscr.val;
break;
case MSR_VEC:
#ifdef CONFIG_ALTIVEC
giveup_altivec(current);
memcpy(vcpu->arch.vr, t->vr, sizeof(vcpu->arch.vr));
vcpu->arch.vscr = t->vscr;
#endif
break;
case MSR_VSX:
#ifdef CONFIG_VSX
__giveup_vsx(current);
for (i = 0; i < ARRAY_SIZE(vcpu->arch.vsr); i++)
vcpu_vsx[i] = thread_fpr[get_fpr_index(i) + 1];
#endif
break;
default:
BUG();
}
vcpu->arch.guest_owned_ext &= ~msr;
current->thread.regs->msr &= ~msr;
kvmppc_recalc_shadow_msr(vcpu);
}
static int kvmppc_read_inst(struct kvm_vcpu *vcpu)
{
ulong srr0 = kvmppc_get_pc(vcpu);
u32 last_inst = kvmppc_get_last_inst(vcpu);
int ret;
ret = kvmppc_ld(vcpu, &srr0, sizeof(u32), &last_inst, false);
if (ret == -ENOENT) {
vcpu->arch.msr = kvmppc_set_field(vcpu->arch.msr, 33, 33, 1);
vcpu->arch.msr = kvmppc_set_field(vcpu->arch.msr, 34, 36, 0);
vcpu->arch.msr = kvmppc_set_field(vcpu->arch.msr, 42, 47, 0);
kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_INST_STORAGE);
return EMULATE_AGAIN;
}
return EMULATE_DONE;
}
static int kvmppc_check_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr)
{
/* Need to do paired single emulation? */
if (!(vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE))
return EMULATE_DONE;
/* Read out the instruction */
if (kvmppc_read_inst(vcpu) == EMULATE_DONE)
/* Need to emulate */
return EMULATE_FAIL;
return EMULATE_AGAIN;
}
/* Handle external providers (FPU, Altivec, VSX) */
static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
ulong msr)
{
struct thread_struct *t = &current->thread;
u64 *vcpu_fpr = vcpu->arch.fpr;
#ifdef CONFIG_VSX
u64 *vcpu_vsx = vcpu->arch.vsr;
#endif
u64 *thread_fpr = (u64*)t->fpr;
int i;
/* When we have paired singles, we emulate in software */
if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE)
return RESUME_GUEST;
if (!(vcpu->arch.msr & msr)) {
kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
return RESUME_GUEST;
}
/* We already own the ext */
if (vcpu->arch.guest_owned_ext & msr) {
return RESUME_GUEST;
}
#ifdef DEBUG_EXT
printk(KERN_INFO "Loading up ext 0x%lx\n", msr);
#endif
current->thread.regs->msr |= msr;
switch (msr) {
case MSR_FP:
for (i = 0; i < ARRAY_SIZE(vcpu->arch.fpr); i++)
thread_fpr[get_fpr_index(i)] = vcpu_fpr[i];
t->fpscr.val = vcpu->arch.fpscr;
t->fpexc_mode = 0;
kvmppc_load_up_fpu();
break;
case MSR_VEC:
#ifdef CONFIG_ALTIVEC
memcpy(t->vr, vcpu->arch.vr, sizeof(vcpu->arch.vr));
t->vscr = vcpu->arch.vscr;
t->vrsave = -1;
kvmppc_load_up_altivec();
#endif
break;
case MSR_VSX:
#ifdef CONFIG_VSX
for (i = 0; i < ARRAY_SIZE(vcpu->arch.vsr); i++)
thread_fpr[get_fpr_index(i) + 1] = vcpu_vsx[i];
kvmppc_load_up_vsx();
#endif
break;
default:
BUG();
}
vcpu->arch.guest_owned_ext |= msr;
kvmppc_recalc_shadow_msr(vcpu);
return RESUME_GUEST;
}
int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu,
unsigned int exit_nr)
{
int r = RESUME_HOST;
vcpu->stat.sum_exits++;
run->exit_reason = KVM_EXIT_UNKNOWN;
run->ready_for_interrupt_injection = 1;
#ifdef EXIT_DEBUG
printk(KERN_EMERG "exit_nr=0x%x | pc=0x%lx | dar=0x%lx | dec=0x%x | msr=0x%lx\n",
exit_nr, kvmppc_get_pc(vcpu), kvmppc_get_fault_dar(vcpu),
kvmppc_get_dec(vcpu), to_svcpu(vcpu)->shadow_srr1);
#elif defined (EXIT_DEBUG_SIMPLE)
if ((exit_nr != 0x900) && (exit_nr != 0x500))
printk(KERN_EMERG "exit_nr=0x%x | pc=0x%lx | dar=0x%lx | msr=0x%lx\n",
exit_nr, kvmppc_get_pc(vcpu), kvmppc_get_fault_dar(vcpu),
vcpu->arch.msr);
#endif
kvm_resched(vcpu);
switch (exit_nr) {
case BOOK3S_INTERRUPT_INST_STORAGE:
vcpu->stat.pf_instruc++;
#ifdef CONFIG_PPC_BOOK3S_32
/* We set segments as unused segments when invalidating them. So
* treat the respective fault as segment fault. */
if (to_svcpu(vcpu)->sr[kvmppc_get_pc(vcpu) >> SID_SHIFT]
== SR_INVALID) {
kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
r = RESUME_GUEST;
break;
}
#endif
/* only care about PTEG not found errors, but leave NX alone */
if (to_svcpu(vcpu)->shadow_srr1 & 0x40000000) {
r = kvmppc_handle_pagefault(run, vcpu, kvmppc_get_pc(vcpu), exit_nr);
vcpu->stat.sp_instruc++;
} else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
(!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
/*
* XXX If we do the dcbz hack we use the NX bit to flush&patch the page,
* so we can't use the NX bit inside the guest. Let's cross our fingers,
* that no guest that needs the dcbz hack does NX.
*/
kvmppc_mmu_pte_flush(vcpu, kvmppc_get_pc(vcpu), ~0xFFFUL);
r = RESUME_GUEST;
} else {
vcpu->arch.msr |= to_svcpu(vcpu)->shadow_srr1 & 0x58000000;
kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
kvmppc_mmu_pte_flush(vcpu, kvmppc_get_pc(vcpu), ~0xFFFUL);
r = RESUME_GUEST;
}
break;
case BOOK3S_INTERRUPT_DATA_STORAGE:
{
ulong dar = kvmppc_get_fault_dar(vcpu);
vcpu->stat.pf_storage++;
#ifdef CONFIG_PPC_BOOK3S_32
/* We set segments as unused segments when invalidating them. So
* treat the respective fault as segment fault. */
if ((to_svcpu(vcpu)->sr[dar >> SID_SHIFT]) == SR_INVALID) {
kvmppc_mmu_map_segment(vcpu, dar);
r = RESUME_GUEST;
break;
}
#endif
/* The only case we need to handle is missing shadow PTEs */
if (to_svcpu(vcpu)->fault_dsisr & DSISR_NOHPTE) {
r = kvmppc_handle_pagefault(run, vcpu, dar, exit_nr);
} else {
vcpu->arch.dear = dar;
to_book3s(vcpu)->dsisr = to_svcpu(vcpu)->fault_dsisr;
kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
kvmppc_mmu_pte_flush(vcpu, vcpu->arch.dear, ~0xFFFUL);
r = RESUME_GUEST;
}
break;
}
case BOOK3S_INTERRUPT_DATA_SEGMENT:
if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_fault_dar(vcpu)) < 0) {
vcpu->arch.dear = kvmppc_get_fault_dar(vcpu);
kvmppc_book3s_queue_irqprio(vcpu,
BOOK3S_INTERRUPT_DATA_SEGMENT);
}
r = RESUME_GUEST;
break;
case BOOK3S_INTERRUPT_INST_SEGMENT:
if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)) < 0) {
kvmppc_book3s_queue_irqprio(vcpu,
BOOK3S_INTERRUPT_INST_SEGMENT);
}
r = RESUME_GUEST;
break;
/* We're good on these - the host merely wanted to get our attention */
case BOOK3S_INTERRUPT_DECREMENTER:
vcpu->stat.dec_exits++;
r = RESUME_GUEST;
break;
case BOOK3S_INTERRUPT_EXTERNAL:
vcpu->stat.ext_intr_exits++;
r = RESUME_GUEST;
break;
case BOOK3S_INTERRUPT_PERFMON:
r = RESUME_GUEST;
break;
case BOOK3S_INTERRUPT_PROGRAM:
{
enum emulation_result er;
ulong flags;
program_interrupt:
flags = to_svcpu(vcpu)->shadow_srr1 & 0x1f0000ull;
if (vcpu->arch.msr & MSR_PR) {
#ifdef EXIT_DEBUG
printk(KERN_INFO "Userspace triggered 0x700 exception at 0x%lx (0x%x)\n", kvmppc_get_pc(vcpu), kvmppc_get_last_inst(vcpu));
#endif
if ((kvmppc_get_last_inst(vcpu) & 0xff0007ff) !=
(INS_DCBZ & 0xfffffff7)) {
kvmppc_core_queue_program(vcpu, flags);
r = RESUME_GUEST;
break;
}
}
vcpu->stat.emulated_inst_exits++;
er = kvmppc_emulate_instruction(run, vcpu);
switch (er) {
case EMULATE_DONE:
r = RESUME_GUEST_NV;
break;
case EMULATE_AGAIN:
r = RESUME_GUEST;
break;
case EMULATE_FAIL:
printk(KERN_CRIT "%s: emulation at %lx failed (%08x)\n",
__func__, kvmppc_get_pc(vcpu), kvmppc_get_last_inst(vcpu));
kvmppc_core_queue_program(vcpu, flags);
r = RESUME_GUEST;
break;
case EMULATE_DO_MMIO:
run->exit_reason = KVM_EXIT_MMIO;
r = RESUME_HOST_NV;
break;
default:
BUG();
}
break;
}
case BOOK3S_INTERRUPT_SYSCALL:
// XXX make user settable
if (vcpu->arch.osi_enabled &&
(((u32)kvmppc_get_gpr(vcpu, 3)) == OSI_SC_MAGIC_R3) &&
(((u32)kvmppc_get_gpr(vcpu, 4)) == OSI_SC_MAGIC_R4)) {
u64 *gprs = run->osi.gprs;
int i;
run->exit_reason = KVM_EXIT_OSI;
for (i = 0; i < 32; i++)
gprs[i] = kvmppc_get_gpr(vcpu, i);
vcpu->arch.osi_needed = 1;
r = RESUME_HOST_NV;
} else {
vcpu->stat.syscall_exits++;
kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
r = RESUME_GUEST;
}
break;
case BOOK3S_INTERRUPT_FP_UNAVAIL:
case BOOK3S_INTERRUPT_ALTIVEC:
case BOOK3S_INTERRUPT_VSX:
{
int ext_msr = 0;
switch (exit_nr) {
case BOOK3S_INTERRUPT_FP_UNAVAIL: ext_msr = MSR_FP; break;
case BOOK3S_INTERRUPT_ALTIVEC: ext_msr = MSR_VEC; break;
case BOOK3S_INTERRUPT_VSX: ext_msr = MSR_VSX; break;
}
switch (kvmppc_check_ext(vcpu, exit_nr)) {
case EMULATE_DONE:
/* everything ok - let's enable the ext */
r = kvmppc_handle_ext(vcpu, exit_nr, ext_msr);
break;
case EMULATE_FAIL:
/* we need to emulate this instruction */
goto program_interrupt;
break;
default:
/* nothing to worry about - go again */
break;
}
break;
}
case BOOK3S_INTERRUPT_ALIGNMENT:
if (kvmppc_read_inst(vcpu) == EMULATE_DONE) {
to_book3s(vcpu)->dsisr = kvmppc_alignment_dsisr(vcpu,
kvmppc_get_last_inst(vcpu));
vcpu->arch.dear = kvmppc_alignment_dar(vcpu,
kvmppc_get_last_inst(vcpu));
kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
}
r = RESUME_GUEST;
break;
case BOOK3S_INTERRUPT_MACHINE_CHECK:
case BOOK3S_INTERRUPT_TRACE:
kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
r = RESUME_GUEST;
break;
default:
/* Ugh - bork here! What did we get? */
printk(KERN_EMERG "exit_nr=0x%x | pc=0x%lx | msr=0x%lx\n",
exit_nr, kvmppc_get_pc(vcpu), to_svcpu(vcpu)->shadow_srr1);
r = RESUME_HOST;
BUG();
break;
}
if (!(r & RESUME_HOST)) {
/* To avoid clobbering exit_reason, only check for signals if
* we aren't already exiting to userspace for some other
* reason. */
if (signal_pending(current)) {
#ifdef EXIT_DEBUG
printk(KERN_EMERG "KVM: Going back to host\n");
#endif
vcpu->stat.signal_exits++;
run->exit_reason = KVM_EXIT_INTR;
r = -EINTR;
} else {
/* In case an interrupt came in that was triggered
* from userspace (like DEC), we need to check what
* to inject now! */
kvmppc_core_deliver_interrupts(vcpu);
}
}
#ifdef EXIT_DEBUG
printk(KERN_EMERG "KVM exit: vcpu=0x%p pc=0x%lx r=0x%x\n", vcpu, kvmppc_get_pc(vcpu), r);
#endif
return r;
}
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
{
return 0;
}
int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
int i;
regs->pc = kvmppc_get_pc(vcpu);
regs->cr = kvmppc_get_cr(vcpu);
regs->ctr = kvmppc_get_ctr(vcpu);
regs->lr = kvmppc_get_lr(vcpu);
regs->xer = kvmppc_get_xer(vcpu);
regs->msr = vcpu->arch.msr;
regs->srr0 = vcpu->arch.srr0;
regs->srr1 = vcpu->arch.srr1;
regs->pid = vcpu->arch.pid;
regs->sprg0 = vcpu->arch.sprg0;
regs->sprg1 = vcpu->arch.sprg1;
regs->sprg2 = vcpu->arch.sprg2;
regs->sprg3 = vcpu->arch.sprg3;
regs->sprg5 = vcpu->arch.sprg4;
regs->sprg6 = vcpu->arch.sprg5;
regs->sprg7 = vcpu->arch.sprg6;
for (i = 0; i < ARRAY_SIZE(regs->gpr); i++)
regs->gpr[i] = kvmppc_get_gpr(vcpu, i);
return 0;
}
int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
int i;
kvmppc_set_pc(vcpu, regs->pc);
kvmppc_set_cr(vcpu, regs->cr);
kvmppc_set_ctr(vcpu, regs->ctr);
kvmppc_set_lr(vcpu, regs->lr);
kvmppc_set_xer(vcpu, regs->xer);
kvmppc_set_msr(vcpu, regs->msr);
vcpu->arch.srr0 = regs->srr0;
vcpu->arch.srr1 = regs->srr1;
vcpu->arch.sprg0 = regs->sprg0;
vcpu->arch.sprg1 = regs->sprg1;
vcpu->arch.sprg2 = regs->sprg2;
vcpu->arch.sprg3 = regs->sprg3;
vcpu->arch.sprg5 = regs->sprg4;
vcpu->arch.sprg6 = regs->sprg5;
vcpu->arch.sprg7 = regs->sprg6;
for (i = 0; i < ARRAY_SIZE(regs->gpr); i++)
kvmppc_set_gpr(vcpu, i, regs->gpr[i]);
return 0;
}
int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
struct kvm_sregs *sregs)
{
struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
int i;
sregs->pvr = vcpu->arch.pvr;
sregs->u.s.sdr1 = to_book3s(vcpu)->sdr1;
if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
for (i = 0; i < 64; i++) {
sregs->u.s.ppc64.slb[i].slbe = vcpu3s->slb[i].orige | i;
sregs->u.s.ppc64.slb[i].slbv = vcpu3s->slb[i].origv;
}
} else {
for (i = 0; i < 16; i++) {
sregs->u.s.ppc32.sr[i] = vcpu3s->sr[i].raw;
sregs->u.s.ppc32.sr[i] = vcpu3s->sr[i].raw;
}
for (i = 0; i < 8; i++) {
sregs->u.s.ppc32.ibat[i] = vcpu3s->ibat[i].raw;
sregs->u.s.ppc32.dbat[i] = vcpu3s->dbat[i].raw;
}
}
return 0;
}
int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
struct kvm_sregs *sregs)
{
struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
int i;
kvmppc_set_pvr(vcpu, sregs->pvr);
vcpu3s->sdr1 = sregs->u.s.sdr1;
if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
for (i = 0; i < 64; i++) {
vcpu->arch.mmu.slbmte(vcpu, sregs->u.s.ppc64.slb[i].slbv,
sregs->u.s.ppc64.slb[i].slbe);
}
} else {
for (i = 0; i < 16; i++) {
vcpu->arch.mmu.mtsrin(vcpu, i, sregs->u.s.ppc32.sr[i]);
}
for (i = 0; i < 8; i++) {
kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), false,
(u32)sregs->u.s.ppc32.ibat[i]);
kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), true,
(u32)(sregs->u.s.ppc32.ibat[i] >> 32));
kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), false,
(u32)sregs->u.s.ppc32.dbat[i]);
kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), true,
(u32)(sregs->u.s.ppc32.dbat[i] >> 32));
}
}
/* Flush the MMU after messing with the segments */
kvmppc_mmu_pte_flush(vcpu, 0, 0);
return 0;
}
int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
return -ENOTSUPP;
}
int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
return -ENOTSUPP;
}
int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
struct kvm_translation *tr)
{
return 0;
}
/*
* Get (and clear) the dirty memory log for a memory slot.
*/
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
struct kvm_dirty_log *log)
{
struct kvm_memory_slot *memslot;
struct kvm_vcpu *vcpu;
ulong ga, ga_end;
int is_dirty = 0;
int r;
unsigned long n;
mutex_lock(&kvm->slots_lock);
r = kvm_get_dirty_log(kvm, log, &is_dirty);
if (r)
goto out;
/* If nothing is dirty, don't bother messing with page tables. */
if (is_dirty) {
memslot = &kvm->memslots->memslots[log->slot];
ga = memslot->base_gfn << PAGE_SHIFT;
ga_end = ga + (memslot->npages << PAGE_SHIFT);
kvm_for_each_vcpu(n, vcpu, kvm)
kvmppc_mmu_pte_pflush(vcpu, ga, ga_end);
n = kvm_dirty_bitmap_bytes(memslot);
memset(memslot->dirty_bitmap, 0, n);
}
r = 0;
out:
mutex_unlock(&kvm->slots_lock);
return r;
}
int kvmppc_core_check_processor_compat(void)
{
return 0;
}
struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id)
{
struct kvmppc_vcpu_book3s *vcpu_book3s;
struct kvm_vcpu *vcpu;
int err = -ENOMEM;
vcpu_book3s = vmalloc(sizeof(struct kvmppc_vcpu_book3s));
if (!vcpu_book3s)
goto out;
memset(vcpu_book3s, 0, sizeof(struct kvmppc_vcpu_book3s));
vcpu_book3s->shadow_vcpu = (struct kvmppc_book3s_shadow_vcpu *)
kzalloc(sizeof(*vcpu_book3s->shadow_vcpu), GFP_KERNEL);
if (!vcpu_book3s->shadow_vcpu)
goto free_vcpu;
vcpu = &vcpu_book3s->vcpu;
err = kvm_vcpu_init(vcpu, kvm, id);
if (err)
goto free_shadow_vcpu;
vcpu->arch.host_retip = kvm_return_point;
vcpu->arch.host_msr = mfmsr();
#ifdef CONFIG_PPC_BOOK3S_64
/* default to book3s_64 (970fx) */
vcpu->arch.pvr = 0x3C0301;
#else
/* default to book3s_32 (750) */
vcpu->arch.pvr = 0x84202;
#endif
kvmppc_set_pvr(vcpu, vcpu->arch.pvr);
vcpu_book3s->slb_nr = 64;
/* remember where some real-mode handlers are */
vcpu->arch.trampoline_lowmem = kvmppc_trampoline_lowmem;
vcpu->arch.trampoline_enter = kvmppc_trampoline_enter;
vcpu->arch.highmem_handler = (ulong)kvmppc_handler_highmem;
#ifdef CONFIG_PPC_BOOK3S_64
vcpu->arch.rmcall = *(ulong*)kvmppc_rmcall;
#else
vcpu->arch.rmcall = (ulong)kvmppc_rmcall;
#endif
vcpu->arch.shadow_msr = MSR_USER64;
err = kvmppc_mmu_init(vcpu);
if (err < 0)
goto free_shadow_vcpu;
return vcpu;
free_shadow_vcpu:
kfree(vcpu_book3s->shadow_vcpu);
free_vcpu:
vfree(vcpu_book3s);
out:
return ERR_PTR(err);
}
void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu)
{
struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);
kvm_vcpu_uninit(vcpu);
kfree(vcpu_book3s->shadow_vcpu);
vfree(vcpu_book3s);
}
extern int __kvmppc_vcpu_entry(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu);
int __kvmppc_vcpu_run(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
{
int ret;
double fpr[32][TS_FPRWIDTH];
unsigned int fpscr;
int fpexc_mode;
#ifdef CONFIG_ALTIVEC
vector128 vr[32];
vector128 vscr;
unsigned long uninitialized_var(vrsave);
int used_vr;
#endif
#ifdef CONFIG_VSX
int used_vsr;
#endif
ulong ext_msr;
/* No need to go into the guest when all we do is going out */
if (signal_pending(current)) {
kvm_run->exit_reason = KVM_EXIT_INTR;
return -EINTR;
}
/* Save FPU state in stack */
if (current->thread.regs->msr & MSR_FP)
giveup_fpu(current);
memcpy(fpr, current->thread.fpr, sizeof(current->thread.fpr));
fpscr = current->thread.fpscr.val;
fpexc_mode = current->thread.fpexc_mode;
#ifdef CONFIG_ALTIVEC
/* Save Altivec state in stack */
used_vr = current->thread.used_vr;
if (used_vr) {
if (current->thread.regs->msr & MSR_VEC)
giveup_altivec(current);
memcpy(vr, current->thread.vr, sizeof(current->thread.vr));
vscr = current->thread.vscr;
vrsave = current->thread.vrsave;
}
#endif
#ifdef CONFIG_VSX
/* Save VSX state in stack */
used_vsr = current->thread.used_vsr;
if (used_vsr && (current->thread.regs->msr & MSR_VSX))
__giveup_vsx(current);
#endif
/* Remember the MSR with disabled extensions */
ext_msr = current->thread.regs->msr;
/* XXX we get called with irq disabled - change that! */
local_irq_enable();
/* Preload FPU if it's enabled */
if (vcpu->arch.msr & MSR_FP)
kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
ret = __kvmppc_vcpu_entry(kvm_run, vcpu);
local_irq_disable();
current->thread.regs->msr = ext_msr;
/* Make sure we save the guest FPU/Altivec/VSX state */
kvmppc_giveup_ext(vcpu, MSR_FP);
kvmppc_giveup_ext(vcpu, MSR_VEC);
kvmppc_giveup_ext(vcpu, MSR_VSX);
/* Restore FPU state from stack */
memcpy(current->thread.fpr, fpr, sizeof(current->thread.fpr));
current->thread.fpscr.val = fpscr;
current->thread.fpexc_mode = fpexc_mode;
#ifdef CONFIG_ALTIVEC
/* Restore Altivec state from stack */
if (used_vr && current->thread.used_vr) {
memcpy(current->thread.vr, vr, sizeof(current->thread.vr));
current->thread.vscr = vscr;
current->thread.vrsave = vrsave;
}
current->thread.used_vr = used_vr;
#endif
#ifdef CONFIG_VSX
current->thread.used_vsr = used_vsr;
#endif
return ret;
}
static int kvmppc_book3s_init(void)
{
int r;
r = kvm_init(NULL, sizeof(struct kvmppc_vcpu_book3s), 0,
THIS_MODULE);
if (r)
return r;
r = kvmppc_mmu_hpte_sysinit();
return r;
}
static void kvmppc_book3s_exit(void)
{
kvmppc_mmu_hpte_sysexit();
kvm_exit();
}
module_init(kvmppc_book3s_init);
module_exit(kvmppc_book3s_exit);