linux/drivers/gpu/drm/nouveau/nv04_instmem.c
Ben Skeggs f56cb86f9a drm/nouveau: add instmem flush() hook
This removes the previous prepare_access() and finish_access() hooks, and
replaces it with a much simpler flush() hook.

All the chipset-specific code before nv50 has its use removed completely,
as it's not required there at all.

Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
2010-07-13 10:13:40 +10:00

202 lines
4.8 KiB
C

#include "drmP.h"
#include "drm.h"
#include "nouveau_drv.h"
/* returns the size of fifo context */
static int
nouveau_fifo_ctx_size(struct drm_device *dev)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
if (dev_priv->chipset >= 0x40)
return 128;
else
if (dev_priv->chipset >= 0x17)
return 64;
return 32;
}
static void
nv04_instmem_determine_amount(struct drm_device *dev)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
int i;
/* Figure out how much instance memory we need */
if (dev_priv->card_type >= NV_40) {
/* We'll want more instance memory than this on some NV4x cards.
* There's a 16MB aperture to play with that maps onto the end
* of vram. For now, only reserve a small piece until we know
* more about what each chipset requires.
*/
switch (dev_priv->chipset) {
case 0x40:
case 0x47:
case 0x49:
case 0x4b:
dev_priv->ramin_rsvd_vram = (2 * 1024 * 1024);
break;
default:
dev_priv->ramin_rsvd_vram = (1 * 1024 * 1024);
break;
}
} else {
/*XXX: what *are* the limits on <NV40 cards?
*/
dev_priv->ramin_rsvd_vram = (512 * 1024);
}
NV_DEBUG(dev, "RAMIN size: %dKiB\n", dev_priv->ramin_rsvd_vram >> 10);
/* Clear all of it, except the BIOS image that's in the first 64KiB */
for (i = 64 * 1024; i < dev_priv->ramin_rsvd_vram; i += 4)
nv_wi32(dev, i, 0x00000000);
}
static void
nv04_instmem_configure_fixed_tables(struct drm_device *dev)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct nouveau_engine *engine = &dev_priv->engine;
/* FIFO hash table (RAMHT)
* use 4k hash table at RAMIN+0x10000
* TODO: extend the hash table
*/
dev_priv->ramht_offset = 0x10000;
dev_priv->ramht_bits = 9;
dev_priv->ramht_size = (1 << dev_priv->ramht_bits); /* nr entries */
dev_priv->ramht_size *= 8; /* 2 32-bit values per entry in RAMHT */
NV_DEBUG(dev, "RAMHT offset=0x%x, size=%d\n", dev_priv->ramht_offset,
dev_priv->ramht_size);
/* FIFO runout table (RAMRO) - 512k at 0x11200 */
dev_priv->ramro_offset = 0x11200;
dev_priv->ramro_size = 512;
NV_DEBUG(dev, "RAMRO offset=0x%x, size=%d\n", dev_priv->ramro_offset,
dev_priv->ramro_size);
/* FIFO context table (RAMFC)
* NV40 : Not sure exactly how to position RAMFC on some cards,
* 0x30002 seems to position it at RAMIN+0x20000 on these
* cards. RAMFC is 4kb (32 fifos, 128byte entries).
* Others: Position RAMFC at RAMIN+0x11400
*/
dev_priv->ramfc_size = engine->fifo.channels *
nouveau_fifo_ctx_size(dev);
switch (dev_priv->card_type) {
case NV_40:
dev_priv->ramfc_offset = 0x20000;
break;
case NV_30:
case NV_20:
case NV_10:
case NV_04:
default:
dev_priv->ramfc_offset = 0x11400;
break;
}
NV_DEBUG(dev, "RAMFC offset=0x%x, size=%d\n", dev_priv->ramfc_offset,
dev_priv->ramfc_size);
}
int nv04_instmem_init(struct drm_device *dev)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
uint32_t offset;
int ret;
nv04_instmem_determine_amount(dev);
nv04_instmem_configure_fixed_tables(dev);
/* Create a heap to manage RAMIN allocations, we don't allocate
* the space that was reserved for RAMHT/FC/RO.
*/
offset = dev_priv->ramfc_offset + dev_priv->ramfc_size;
/* It appears RAMRO (or something?) is controlled by 0x2220/0x2230
* on certain NV4x chipsets as well as RAMFC. When 0x2230 == 0
* ("new style" control) the upper 16-bits of 0x2220 points at this
* other mysterious table that's clobbering important things.
*
* We're now pointing this at RAMIN+0x30000 to avoid RAMFC getting
* smashed to pieces on us, so reserve 0x30000-0x40000 too..
*/
if (dev_priv->card_type >= NV_40) {
if (offset < 0x40000)
offset = 0x40000;
}
ret = drm_mm_init(&dev_priv->ramin_heap, offset,
dev_priv->ramin_rsvd_vram - offset);
if (ret) {
NV_ERROR(dev, "Failed to init RAMIN heap: %d\n", ret);
return ret;
}
return 0;
}
void
nv04_instmem_takedown(struct drm_device *dev)
{
}
int
nv04_instmem_populate(struct drm_device *dev, struct nouveau_gpuobj *gpuobj, uint32_t *sz)
{
if (gpuobj->im_backing)
return -EINVAL;
return 0;
}
void
nv04_instmem_clear(struct drm_device *dev, struct nouveau_gpuobj *gpuobj)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
if (gpuobj && gpuobj->im_backing) {
if (gpuobj->im_bound)
dev_priv->engine.instmem.unbind(dev, gpuobj);
gpuobj->im_backing = NULL;
}
}
int
nv04_instmem_bind(struct drm_device *dev, struct nouveau_gpuobj *gpuobj)
{
if (!gpuobj->im_pramin || gpuobj->im_bound)
return -EINVAL;
gpuobj->im_bound = 1;
return 0;
}
int
nv04_instmem_unbind(struct drm_device *dev, struct nouveau_gpuobj *gpuobj)
{
if (gpuobj->im_bound == 0)
return -EINVAL;
gpuobj->im_bound = 0;
return 0;
}
void
nv04_instmem_flush(struct drm_device *dev)
{
}
int
nv04_instmem_suspend(struct drm_device *dev)
{
return 0;
}
void
nv04_instmem_resume(struct drm_device *dev)
{
}